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ABSTRACT
Priority effectsarean important ecological force shaping biotic commundied ecosystem
processesn whichthe establishment of early colonists atdre colonization success of later-
arriving organisms via competitive exclusiand habitat modificatiorHowever we do not
understand which biotic and abiotic conditions lead to strong priority effects &nd las
historical'eentingencies. Using saprotrophic funghimodelleaf decompositiosystemwe
investigated"whethexompogional and functional consequences of initial colonizatiarev
dependent on initial colonizer traits, resource availability, or a combinaticaoth&o test these
ideas, we factorially manipulated leaf litter biochemistry and initial fungal colml@stity,
guantifyingssubsequent community composition, usiegtral genetic markerandcommunity
functional characteristics, includirgnzyme potential and leaf deaages During the first 3
months, initial colonistespirationrate andohysiologicalcapacityto degrade plant detritwgere
significantdeterminants of fungal community composition agaf iecay, indicating that rapid

growth and_lignolytic potential of early colonists contributedltered trajectories of community

assemblyFEurther initial colonization oroakleaves generated increasingly divergent trajectories

of fungal community composition and enzyme potential, indicasingngerinitial colonizer
effectson energy-poor substrates. Togethieeseobservations provide evidenigtial
colonizationeffects and subequent consequenceslitier decayaredependent upon substrate
biochemistryand physiological traits within a regional species pBetause microbialecay of

plant detritus is important to global C storager results demonstrate that understanding the
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mechanisms by whicimitial conditions alter priority effects duringppmmunity assembly is key
to understanding the drivers of ecosystlenel processes
INTRODUCTION

Community assembly history, or the stochastic sequence and timing of specasis
an important.ecological foecshaping competitive outcomes, and, in tthracompositionof
biotic communitiegLewontin 1969; Diamond 1975; Drake 1991; Chase 200Bigal colonizers
can excludelatearriving species, a mechanism known as priority effects, as a resutirgj str
interspecific’interactions and habitat modificat{®vilbur & Alford 1985; Belyea & Lancaster
1999; Vannette & Fukami 20143or example, gaining early access to resources can lead to

niche preemptioby aninitial colonist and the subsequeampetitiveexclusion of latesarriving

speciegKorneret al. 2008). Furthermore, through resource consumption and the production of

secondary metabadis, initial colonists casuppresshe colonizationsuccess of latearriving
specieqAllison 2012; Hiscoxet al. 2015). Due to the competitive advantage obtaineidibgl
colonizersgarly immigration history appears to hangortantconsequence®r ecosystem
level processesncluding biogeochemical cycling in so(lKérneret al. 2008; Fukamet al.
2010; Dickieetsal. 2012).Furthermore, pority effects could be particularly important in litter
decay systemas autumnal leaf abscissigesults in large litter inputs atop an established
saprotrophic’ community.

Despite our growing knowledge of the mechanisms by which historical contiegenci
shape community assembly, the magnitude of priority effects appears dependeintidoal
specis andenvironmental conditions (Chase 2007; Kaadall. 2013; Tucker & Fukami 2014;
Hiscoxet alw2015).For examplestrong priority effect®ccurredn a field manipulation of
wood-decay fungiyetthe introduction of somspecieslicitedlargerchanges taommunity
composition and rates of wood decompositielative to other¢Dickie et al. 2012).However
we do not understanghich traits of nitial colonists or environmental conditiolead tostrong
priority effectsand therénave beerfew empirical test®f their effect on community assembly
and ecosystem procesg®annette & Fukami 2014)

The'strength opriority effectsmaydepend on thphysiological traits of initial colonists
For examplerapidly growing organismsiaygain a largecompetitive foothold whethey are
the initial colonists of &abitat(Vannette & Fukami 2014; Clelargtial. 2015). Additionally,
initial colonistscapable of accesw) energypoor resourcesuch as lignin during leaf decay,
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could gain a substantial advantage in the absence of rgpaiiyng competitorsThe
physiological capacity to decompose lignin, an aromatic biopolymer and cosstituent of
plant litter, is largely limited to a small subset of microorganisms in the fyphgaim
Basidiomycota (Hatakka 1994; Floudasl. 2012).By gaining access to a resource largely
inaccessible.to othelecayorganismsinitial colonization by lignolytic fungi could plausibly
alterthe trajectory otommunity assemblyzurthermore, m organism’s ability tgproduce
secondary'metabolites maphanceriority effects through the combinationioferference
competitionand habitat modificatio(Boddy 2000; Kennedy & Bruns 2005; Hiscebal. 2015).
Strong priority effects may also occur between more closely relateditax# the intensity of
competitionbetween ecologically similar species observed in model yeast and bacterial
communitiegPeayet al. 2012; Taret al. 2012). By considering a coloristresource
requirements, potential to mogithe environment, and resource aserlap withother species
Vanette & Fukam{2015)demonstrate the utility of incorporating species traits to model priority
effects in the assembly model neetanabiting yeast communities with varied assembly history.

In addition to physiological traits of initial colonistecal resource availability may serve
to magnify‘ordamperhe strengthof priority effects by directly impacting the colonization
success of.eardgrriving propagulegChase 2007; Langenheder & Székely 2011; Pagaliag
2014). Forsexample, conditions of low resource supply may decreasectessful
establishment of initial colonists, thereby overriding priority effects witigtselection
imposed by the local environmetmiapitat filterng sensu Chase 2007)Vhereas, nder high
resource availabilitypriority effects may be enhancadinitial colonizers establisuickly and
excludelaterarrivingspeciegEjrneeset al. 2006; Kardokt al. 2013). Identifying species traits
and habitat characteristics that lead to strong priority effects, viat¢bhessiful colonization of
early colopsts may be key to understanding drivers of community assembly, especiallyedivers
communities.of saprotrophic mawrganisms in soflvan der Wakt al. 2013; Nemerguét al.
2013).

Moreover, understanding the combined importancsadly immigration historand
habitat filtering during community assembly may elucidate the complex linkegesen
composition and functioricarly immigration historynay shape rates of ecosystem proceskes
conmpositional differenceslicited by initial colonization reflect important functional trait

differencesn the community. For example, the order of colonization by waeahy fungi
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altered rates of decomposition in both laboratory and field seffiud@miet al. 2010; Dickieet
al. 2012), indicating direct links between early immigration history, community congoaitd
functional characteristics of the communijternatively, if habitat filtering remains a more
important ecological force shaping the functional traits of communities, functioma¢igence
may occur_during community assembly despite divergence in composition (Feikdn#005).

Using saprotrophititter-decay fungi as a model system, wglementeda microcosm
experimenttorinvestigateow physiological traits of initial colonizers interact with litter
biochemistrytanfluenceearly immigration historyBecauseaprotrophic microorganisnisave
varied capacities to degrade constituents of mafritus, litter biochemistry functions as a
strong habitat-filte(McGuireet al. 2010; Votiskova & Baldrian 2013). We evaluatednitial
colonization'effectdy quantifyingthevariation incomposition and functioaf fungallitter-
decay communitiepreviously colonizedielative to “control” communities receiving no initial
colonizer.Due to ecological similarities, we expected that the initial colonization of closely
related fungi would result in the assembly of similar communtitiesigh time. Further, &
hypothesizedhat initial colonizers exhibiting rapid growth and/or high lignolytic capacityldio
result in lagerdeviations in community composition and functre@ative to a control
community,, Additionallywe reasonethat resource availability alters te#ects of initial
colonizatien; such that the impact gparticularinitial colonizeron community assembly would
vary on lignin-poor and lignimich leaf litter.We furtherhypothesized that the importance of an
initial colonizer would attenuate with time dueth@increased importana# habitat filtering as
the biochemical components of plant litter aretabolized and lignin dominates the latter stages
of decay.Toitest these ideas, we factoriathanipulateccombinations ofeaf litter biochemistry
and initial fungalcolonization to quantifgommunityassemblyandleaf decaythroughout an
eightmonth laboratory experiment, the equivalent of a growing séasemperate forests
Furthermaorewe, carefullycharacterized initial colonizers order toinvestigate the
physiological traitsesulting invaried fungacommunity composition angtes of

decomppsition

MATERIALS & METHODS

Experimental design & sampling
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To understand the relative importanceha physiological traits of initial fungal colonists
andhabitat filtering in shapingommunityassemblywe collectedeaves ofcontrasting
biochemistry andulturedlitter-decay fungi from a northern hardwood (NH) ecosysteiar
Oceana, MIThis ecosystem was chodeecausdt is a widespread forest type of North America
Further, previousharacterizationsf litter-decay fungi at this siterovided the background
knowledge texperimentdy manipulatenative ecologically relevant fungal communities
(Edwards'&Zak 2011; Entwistkt al. 2013; Cline & Zak 2014) eaf litter traps were placed in
the fieldto"collectsenescent leaved Acer saccharum andQuercusrubra (hereaftermaple and
oaklitter). Biochemical analyss revealed that odkaf litterhad ovettwice the lignin content of
maple leavesyas well ahmherC:N (TableS1 in Supporting InformatignLeaf lignin content
was determined by the acid detergent ligiibL) procedure, in which ADlwasdetermined
gravimetrically as the residue remaining upon ignition afte3®} treatment Goering & Van
Soest 1970Q)Leaf cellulose was calculated by subtracting percent acidgkstefiber (ADF) and
lignin from.dry mass. ADF was determined gravimetrically as the resahoaiming after
dissolutionsand extraction of cell solubles, hemicellulose and soluble minéitals w
hexadecyltrimethylammoniunrdmide and sulfuric acidlotal leaf C was determinagsing a
Leco CNS2000 Analyzer (LECO® St. Joseph, Mtal leaf N was measured colorimetrically

following.digestion in concentrated,B0, (Lachet Instruments, Loveland, GO

We generatednisolate collection oprevalentitter-decayfungi, following the
collectionef'sperocarps and decaying leaves fromsiudy sitein September 2013.
Furthermaore, prevalent ascomycete saprotrophs presgribimmolecular inventories dhis
study site(Edwards & Zak 2011; Entwistkt al. 2013; Cline & Zak 2014), but missing from the
culture collectionwere obtained from the USDA Forests Products Labordtooyn acollection
of 30 fungakiselates, Bitial colonistswerecarefullychosen to represephylogenetic pairs of
fungi with vaied metaboliccapacitis (Figure 1)includingAspergillus asperescens,
Dichostereumaff. Pallescens, Gymnopus contrarius, Mycena galopus, Rhodocol lybia butyraceae
andPhomepsis sp. Phylogenetic pairs of fungveredetermined by constructiregmaximum
likelihood phylogenetic tree following DNAxtraction and amplificatioaf thefungal 28S gene
(protocols located in the following sectioR)pr a list of reference sequences used to construct
phylogenetic tree see Table.&peciedevel designations of isolates were made according to

top blast hits with>99 maximum identity and an e-value of Do measureolonist respiration
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183  rates, each organism was inoculated onto oak and rieaptecatmentsand respiratiowas

184  quantifiedfor 2 weeks using a gas chromatograph equipped with a Porapak Q e@ridenn

185 thermal conductivity detector (Trace 2000, Thermo Quest, CA). On both litter tggpsgation
186  was highest foPhomopsis and lowest irRhodocollybia (Figure 1B) Here, and in following

187  sectionswetefer to fungal isolates by gerfos simplicity. However, fungal isolates represent a
188  single genetic.individuathereforejsolate characteristics aitial colonization effects areot
189 necessarily'generalizable tpesies or genus effects

190 To compare th@otentialenzyme activity ofungalcolonists on sterile oak and maple
191 litter, 0.5 g of homogenized leaves were sampled asaad forthe activityof -1,4-

192  glucosidagecgellobiohydrolase, Nwcetytp-glucosaminidase, and summed phenol oxidase and
193  peroxidasactivity. To measure activity d3-1,4-glucosidasegellobiohydrolase, and BHeety}3-
194 glucosaminidase, we used 20801 methylumbellyferyl MUBIlinked substrates. A 284 L-

195 dihydroxy-phenlyalanine (L(DOPA) substrate was used to assay phenol oxidase and peroxidase.
196  Enzyme activity was measured in a Molecular Devices f MAX fluorometer sebatr36

197  excitation/wavelength and 460 nm emission wavelength. Phenol oxidase and perosiagse as
198  were incubatefor 24 h and rates were estimated spectrophotometri&diyaCork et al.

199 2002).Euclidean distances log-transformed enzyme activity were calculated to visualize
200 variationrin.colonizeenzymatigootential(principal coordinates analysisigure 1C). PCol

201  correlatedwith B-glucosidase, Nxcetylaminoglucosidasand cellobiohydrolasactivity (r = 0.89
202 —0.91,P <0:0001)andPCo2 correlatedith lignolytic activity (r =- 0.88,P < 0.0001),

203 illustratingthe high lignolytic potential dDichostereum, as well as the potential ®homopsisto
204  metabolizecellulose and chitin.

205 Toinvestigateghe consequences niche preemption bgn initial colonistand habitat

206 filtering, eXperimental microcosms were constructssthg two contrastintitter types which

207  were subsequently inoculated with the initial colonists described allos®cosmsconsised of
208 250 mLwidemouth jars containing 2 &of maple or oak leaves atop gf acidwashed

209  autoclaved san(Quikrete, Ml).Leaves weralried at 40°C, cut into 1cn? squaresndsterilized
210 byethylene oxidéumigation(STERIS, MN).Prior toexperimenation sand was saturated and
211  dry litter was wetted with deionizesterilewater We manipulatednitial colonizerhistory by

212  inoculating a singléungal colonisnto sterile leavesallowingcolonistestablisiment(14 days),

213  and then introducing a native saprotrophic community. Fourteen days was ab@ssightly
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shortened establishment period relative to experimesgtd ofpriority effectsin wood-decay
fungal communitiegFukamiet al. 2010; Dickieet al. 2012) To determine consequences of
niche preemption, a control treatment received no initial colonizer prior to introductioa of
native community.ditial colonizers weréntroduced teach microca®s usingtwo agarplugs
from fungaleultures Thenativecommunity was extracted from decaying littetlectedfrom
our field site Briefly, 509 of leaf litterand 500 mLof autoclavedieionizedwater was
homogenized-in a blender fondin andfiltered through a 500m filter to obtaina homogenous
suspensiofHeet al. 2010). One mlof this slurrywasaddedo each microcosnmMicrocosms
weremaintainedat 20°C and 65% wvaterholding capacity within the favorable range for
saprotrophi@aetivity (Langenheder & Prosser 2008). A total of 210 microcosms pd%id
replicatedor 2 litter typesand 7initial colonizerhistories (including the control), which we
harvested a8 time pointsMicrocosms were destructively harvestgd, 3 and 8 months
following addition of the native communitit eachharvest, leaf massas determinedhen
homogenized. usingterile scissors. A 0.§ sample was removed and plae¢d °C for enzyme
assayswhereas theemaining sample wasgtored at80°C for moleculacommunityanalysis.
DNA extraction & community analysis

Targeted amplification of the funglargeribosomal subunit (28S) was performed to
characterize_ community compositionftér each harvestptal DNA was isolated from two
replicates of each microcosm using eBio PowerLyzer DNA Extraction kit. DNA was
extracted frem:0.25 g of leaf litter and stoe#d30 °C, until we could initiate PCR
amplification.Fungalrichness an@-diversity wereedimatedby targeting the 28S gene using
primers LROR and LR3Vilgalys & Hester 1990)Primers were selected tapture the D1 and
D2 hypervariable regions of the 28S gene, increati@gccuracy of taxonomic assignment
while alseallowing forphylogenetic analys (Porter & Golding 2012; Liwt al. 2012).
Triplicate PCRreactions for each sample containédd uM primers, 200 uM dNTPs,1.5 mM
MgCl,, 0.01"mgBSA and2U Taq polymeraseFollowing an initial denaturation step at 95 °C
for 5 minyPCR was cycled 30 times at 95 °C for 30 s, 54 °C annealing temperature for 30 s, 72
°C for 75 s, andha final extension at 72 °C for 7 min. PCR products were purified using Qiagen
MinElute PCR kit ad quantified using PicoGreen dsDNA kit. Sequencing was performed on the
PacBioRS Il systenutilizing circular consensus technology, which can generate 99.5 - 99.9%

sequence accuracy for DNA fragmerasging from 150 to 500 hi@raverset al. 2010).To
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enable multiplexing of samplea,16nucleotide barcode was added to the 5’ end of each forward
and reverse primer. Ten barcoded samples, pooled in equimolar concentvagrens,
multiplexed on each SMRT chipwenty-onetotal SMRT chips were analyzad the University
of MichiganSequencing FacilitySequences were processed in Mothur using established
pipeline procedures (Schlogsal. 2011),alignedto 28SreferencealignmentqColeet al. 2014),
and chimerasvereidentified using uchiméedgaret al. 2011). Operational taxonomic units
(OTUs)'were clustered at 998¢quence similaritfMartiny et al. 2011)and aixonomic identity
wasdetermined using the RDOfPassifier. Each sampleas rarefiedo 500sequenceslO

samples failed to me#te sequence couind wereexcluded from analysi8ecause recent
concerns havesbeen raised about the statistical validity of subsampling in tonjwith next
generation'seguencing platforiidcMurdie & Holmes 2014)we also analyzed sequence data
by normalizing ©TU abundance to proportions of total sequeBeeswuse & obtained similar
results(Table S3, rarefiedsequence daia presentedObserved OTU richness was used to
comparen-diversitybetween sample§&ood’s coverage was employed as an estimator of
sampling eompleteness, calculating the probability that a randomly selectikcbarhpd

already been'sequencg@dood 1953Claessoret al. 2009).

In‘tetal, 15,181 unique sequences were obtained, ranging in length from 493 to 632 bp.
Sequences'were assigned to phyla Ascomycota (73.6%), Basidiomycota (12u8bindertae
sedis (6.5%) and a small number of Chytridiomycota (0.1%). The most abundant ascomycete
orders consisted of Hypocreales (26%) and Eurotiales (24%); whereas afega(ic%) and
Polyporales®(3%) comprised the most abundant basidiomycete orders. Ol&€/adhness
ranged fronR3+t0 1450TUs per samplésood’s coverage estimates raddgrom 0.71 to 0.98,
indicating/that commmnities were undesampled, althougthe mostabundant members of the
fungal communitywere captured~ollowing logtransformation of OTU relative abundance,
taxonomicp-diversity was calculated using the By@yrtis dissimilaritymetric. Sequences were
uploaded tahe NCBI Sequence Read Archive under study accession number SRP056628
Functional.analysis

To characterizétter decomposition, we quantifie@mainingleaf mass, microbial
respiration, and potential enzyme activityeaf mass was calculated as-&&le massemaining
afterl, 3 and 8 months of decomposition. Following the addition of the native saprotrophic

community to each rarocosm respiration was quantified weekly (according to protocol
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described aboydor the first3 months of the experimemtfter headspace gas was samplbe
lids of themicrocosmsavere removed foBO min under a sterile hoad equalize C@Qwith the
ambient atmosphere. Using tReackage grofit, cumulative respiration was fit to the Sigmoidal
Gompertz modg|Zwieteringet al. 1990)to estimate the length of lag timg,(maximum
respirationrate(x), andamount of substrate available for metaboligth Protocols to quantify
enzyme potential of litter communities, at 1, 3 and 8 months, described almogepnducted
immediatelyfollowingdestructive harvestindrollowinglog transformatiorof potentialactivity
of each enzyme categomairwise Euclidean distances were calculdtednultivariate analysis.
Satistical analysis

Univariate and multivariate statistics were employed to quantify the importanagadf in
colonizer historyhabitat filtering and colonizer traits in shaping the assembly of saprotrophic
microbial communitiesTo identify whetheinitial colonizerhistory resulted in parallel changes
in fungal communities and decomposition dynamics, Mantel tests quamtiditetk correlations
between funggs-diversity (BrayCurtisdistance)andEuclidean dissimilarities imass losand
enzyme potentidbetween treatmentdnalysis of variance (ANOVAlleterminedvhether initial
colonizer history and litter biochemistry influenced OTU richness, regpiraind mass losat
each time"peint-or multivariate variablesfungalp-diversity andeuclideandifferencesn
community enzymatic potentjale conducted permutational multivariate analysis of variance
(PerMANOVA) following 9,999 permutations.oldetermie whethethe impact of initial
colonizer history varied acrossntrastinditter types we identified significaninteractions
between factors) bothANOVA and PerMANOVA modelsTo test the hypothesis that the
importance ofiinitial colonization histoattenuated through timeffect sizesof factors were
calculated as partial esaquaredﬁpz), orthevariation explained by &actor in relation to the
summed variation explained biye factorand theerror associated with threodel (Lakens 2013).
Due tothesdimitations of Rin comparing effect sizes between modglakagawa & Cuthill
2007) thissmetric was selected to compare effect sizes within in model, as well astaneos
points.Partial etasquared is calculated as follows:

_ SSfactor
SSfactor + SSresid

Tp2

We employed dispersion dgsis for 3-diversity ancEuclideanvariationin enzyme

potentialto quantifythe variabilityelicited by initial colonizehistorybetweerlitter types
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Specifically,dispersion wasalculatedoy the average dissimilarityf communities with
different fungal colonists tthe centroidof all oak and maple littetommunitiesTo evaluate
whetheroutcomesvould be similar for closely relatemlonists Mantel testgjuantified
correlations betweetolonist phylogenetidistance anfungal B-diversity. To testthe
hypothesis.that colonist respiraticateand lignolytic potentiathapedassembling communities
linear regression was conducted between colonist characteristiBsap@urtis dissimilarities,
Euclidean“distances and mass ledative tocontrol communitiesThese departures from
controlswere calculated foeach litter type, resulting in 12 comparisons. To aid in community
analysis Similarity Percentage analygiSIMPER) calculate the contribution of OTUs wards
thecommunitydissimilarity between each initial coloniza&nd controcommunities
Assumptions of linearity were verified prior to conducting linear regrasand ANOVA,
followed by necessary transformations. Statistiesis were conducted using the R packages
vegan(Oksaneret al. 2015)and grofit(Kahmet al. 2010;http://www.R-project.orqg.

RESULTS

Initial colonization history shapes community assembly
Withurespect to theungal communities developing on oak and maple leaves (hereafter

‘oak litter=eommunities’ and ‘maple litter communities’), initfahgal coloniers significantly
influencedp-diversity, litter decay and enzyme potensiakach time poinfrable ). Averaged
across litter.type he highesOTU richnessoccurredn controlcommunitiegeceiving no initial
Phomopsis, Dichostereum,Gymnopus, and finallyMycena (Table S}). Tukey’'s HSD revealed
that after ane month, oak litter communities initially colonizedSggnnopus had a significantly
lower OTU richnesq38 +9 OTUs) relative to control oak litter communift16 +120TUs P
< 0.00002)whereas, maplitter communities initially colonized by Myoa had a significantly
lower OTUWrichnesg43 +9 OTUg) relative to control maple litter communi($10 +7 OTUs P
= 0.005). After 3 months, oditter communities initially colonized bylycena had a
significantly lower average richnesz3(+ 1 OTUs), relative to the control communigrowing
on oaklitter (134 +130TUs P < 0.00001). After 8 months, significantly lower OTU richness
was reported for oak litter communities initially colonizedGyymnopus (55 +190TUs) and
Mycena (34 +9 OTUSs) relative to control oak litter communi(¢31 +110OTUs P < 0.0016).
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336  Together, results indicate initial colonization by certain initial colonists canesgpfungal

337 community richness through time.

338 Acrossboth litter typesthewide range otommunitydissimilarity (Bray-Curtis

339 distanceprelative tocontrol communities indicated thatitcomesof initial colonizationwere
340 dependenton,colonigtentity (Table S1). For examplethe initial colonization oMycena

341 consistently resulted in large communiligsimilarity relative tacontrolcommunities growing
342 on oak and'maple litter; whereas, colonizatiorRhgdocollybia did not alter community

343 composition(Figure2). Not surprisingly, taxonomic assignment of OTUs contributing to
344  differences in community composition between control and initial colonizénteeds

345 (SIMPER)indicated thatnitial colonists were more abundant after one month, relative to control
346 communities (Table 5. In addition,the presence focertaininitial colonizes enhanced rates of
347  oak and maplétter decompositiomelative to theirespective control communityoFexample,
348 initial colonization byPhomopsis significantly decreased the lag phaseespirationTable %),
349 indicating thiscolonist resulted imostrapidinitial decay Further,oaklitter communities

350 initially colenized byGymnopus, Mycena andDichostereum had higher maximum rates of
351 respiration(p),:a greater substrate pdél), anda greater rate of decag revealed by litter mass
352 loss [Table.$, Figure3). Similarly, maple littecommunitiesnoculated withMycena had

353  significantlylarger pools of metabolizable substrate aridwer remaining litter masgelative to
354  thecontrolcommunity growing on maple litterFinally, lignolytic potentialwas enhancenh oak
355 litter communities initidly colonized withGymnopus, Mycena, andDichostereum, as wellas
356 maple litterreemmunities colonized wiklycena, as indicated by distinseparabn of PCo2 in
357  Figure 4Cansaxis negatively correlated with lignolytic activity (FG:99,P < 0.0001).

358 Together,results indicate that init@lonists particularlybasidiomycetgwith high lignolytic
359 potentialresultedin diverging community composition aethancd rates of deay.

360 To understand whetharitial colonizer historyhad a consistent effechdungal

361 community.and functionadharacteristics, we conducted Mantel correlation tests befiveen
362 diversity, mass loss, and enzyme potentialai and maplétter communitiesWhile no

363  significant correlation occurred between variation in mass losg-alneersity during the first
364 and third months of the experime®#£ 0.25 - 0.56)distancematrices were significantly

365  correlated following 8 months {Rnel = 0.26,P = 0.045).This result indicaté thattheinitial

366  colonist hadoaralleleffects on community composition amgktabolicrate during late stages of

This article is protected by copyright. All rights reserved



367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

decay Weak correlationsccurred betweef-diversity and variation in enzyme potential after 1
month (Ruantet = 0.13,P = 0.098) and 8 months (Rnwi = 0.23,P = 0.054); whereas, no
significant correlation occurred after 3 montRs<0.23. Overall, evidencgenerally supported
our hypothesis that changes to fungal communities, as a result of initial commizesulted in
corresponding,consequenceditter decay
Litter type alters consequences of initial colonizer history

Consequences of initial colonization fumgal canmunity composition and function
were depéendent on littéype as indicated by the significant interaction termanfiodels of
fungal B-diversity, litter decayand enzyme potential (Tablg. Dispersion analysis indicated
that littercommunity compositiomas more variable on oak leaves relative to maple litter after 3
months Figure"B, Pseuder; gg = 5.73,P = 0.019) and 8 month&igure 2C Pseud-F; 55 =
5.82,P = 0.019). Similarlytheinitial fungalcolonizerhad a larger effect on thmotential
enzymeactivity.of oaklitter communitiesdemonstrated bgignificantlygreaterdispersion in
enzyme potential of oak litter communitiedativethose growing omaplelitter at each time
point (Figure 4, Pseudo-F = 4.91 - 1385 0.001). La8y, initial colonization by lignolytic
fungi (i.e., Gymnopus, Mycena andDichostereum) enhanced maximum rates of respiratjo))
substratgooel.size(A), and decay rate (following 8 months) on oak litter, although only minor
enhancements weabserved omapleleaves(Table S6, Figure 3\ hese observations
collectively indicate that initial fungal colonizers had a significantly larger effect on community
assembly bthe energypoor oak leaves
Role of initial colonizer history on community assembly through time

To testthe hypothesis that the importance of initial colonization attenuated through time,
we compareeffects sizeSr(oz) for compositional and functional characteristics of fungal
communitiesat X, 3 and 8 month{ablel). Theinitial colonistaccounted fosubstantial and
relatively consistent variation in funggktdiversity. Whereasthe importance of thmitial
colonizer orenzyme potentiadeclined suggesting thdheinitial colonistwas less important in
determining trajectories of metabolic potentraough time. Interestinglyheinitial fungal
colonist appeared increasingly importantdetermining rates of decagsidentity oftheinitial
colonist accounted fancreasing variancef mass losst later time point¢Table 1) Despite the
substantiatole of initial colonizer in shaping community compositjoasults indicatgthat

subsequerifunctional consequences are dependent on stage of community assembly
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Initial colonizer traits and consequences to community assembly

Mantel correlations tested the hypothesis that initial colonization of closelydrlatgal
taxawould result in the assembly of similar communitesr time Following one month of
community assembl3-diversity of maplelitter communities was significantly related to
phylogenetie-distansdetweerfungal colonist§Rwuantel = 0.62,P = 0.032), but not in oak litter
communitiegRuantel = 0.40,P = 0.14). Ater 3 months, phylogenetic distance between initial
colonigswas marginally correlatedith B-diversity in oaKitter communities (Riantes = 0.33,P
= 0.08), but not maplitter communities (Riantel = 0.23,P = 0.24). After 8 months, variation in
colonistphylogenetic distance was not related toftkdiversity ofoaklitter communities
(Rmantel = 0.09,P = 0.54) or maple littecommunitie§Ryanter = 0.32,P = 0.20). Although
phylogenetic relatedness between colonists was not a perfect predicbonmunity assembly
trajectories phylogenetically similacolonistsgenerallyresulted in more similar communities
when compared to distantly related colonatearly stages of decaw lignin+ich leaf litter

To investigatef particularphysiological traits of initial colosis shaped community
assemblygolonizerrespiration, total enzyme activjtgnd lignolytic activitywasregressed
againsfungal communitycompositional and functional departures from the control. Across both
litter types,initial colonists with higher rates of respiration (lbgnsfamed) correlategvith
largerp-diVersity following one month (Figure 5, # 0.54,P = 0.007), although no relationship
occurred at later time point® € 0.17 - 0.47). Further, total enzyme potential or lignolytic
potential ofinitial colorstswas not related to community dissimilaritylat3 or 8 monthsR =
0.16 - 0.94). Total enzyme potential of initial colonimers weakly correlated tmassremaining
(normalized'to the control) aftérmonth (f = 0.28, K 10 = 3.93,P = 0076) and 3 mothis (¥ =
0.27, R 10= 3.65,P = 0.085), but not 8 month® € 0.16). Together, results suggtsitcolonist
respiration. andotal enzyme potential were important factors structuegudy trajectories of

community"assembly.

DISCUSSION
Initial coelonization had important consequenfesungalcommunity assembly, kerein
thephysiological traits of the initial colosiiaccountedor theearly trajectories of community
composition andates oflitter decay Supportfor this comes fronevidencethattheinitial

colonist suppressed fungal communitghnessandenhanced litter decagimilarly, theinitial
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429  colonistgeneratedlifferenttrajectories otommunity composition anahetabolicpotential

430 relative to control communitidacking an initial colonistand, most importantlghe degree of
431 dissimilaritywas highly dependent on the colonistientity. Furthemoreg during theearly

432  stages of community assembly (1 and 3 months), deviations from control comassambly
433  werepositivelyrelatedto colonist respirationate andnetabolicpotential to degrade plant
434  detritus. Importantlylignin-rich oakleaf litter generatethcreasingly divergerttajectories of
435 community'assembly, asitial colonizer identityresulted inncreased-diversity anda broader
436  range of enzyme potentsain oak litter communities relative to maple litter communities
437  Together, our results indicatiee important role thatphysiological traits of initiatolonists, a
438 well asresource availabilityplay in shaping the balance betwdmbitat filteringandinitial

439  colonizationeffectsduring the process of community assembly.

440 Initial colonization altered community assembly

441 Initial colonizer identityalteredcompositional and function#iajectoriesof fungal

442  community,assemblyndicating that initial colonizatiohasimportant implications for

443  biogeochemical cycling in soil®roviding support for this assertion, models of furfigal

444  diversity indicated thabhitial colonizer historyaccounted for di€rencesn fungal community
445  compositionithroughout the experimémablel). Further, dect evidence for priority effects
446  arose fram’increaseditial colonizer abundancgeelative to control communitieg (nonth,

447 Table $). Gaining arly access to resourcplusiblyenhancecestablishment succestfungal
448  colonists, as.the absencecoimpetiion did not require the production of energetically expensive
449  secondary'metabolitecessary focombativeinteractiongHolmer & Stenlid 1997; Boddy
450 2000; Dickieet'al. 2012),leadng to niche preemptiarHowever, nanitial colonist ranked

451 among the top OTUs driving differences between initial colonization treésraed control
452  communities after 3 and 8 months of community as$gniberefore lasting consequences of
453 initial colonizationwere notthe result ohighinitial colonist abundancenstead initial

454  colonizer identitymayshape trajectories of community assemblysblystrate modification and
455  the subseguent suppression or enhancement of later propagule establishmentefalkami
456  2010; Dickieetal. 2012; Ottossomt al. 2014).

457 While important insights can be gleaned from the importangeti@ colonization

458 eventson fungal community assemblgnimportant limitation toour studyis that wedid not
459  explicitly test priority effects. A true test of priority effects requires the ordapetication of
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460 organisms, as well as diregiantification of individual competitive outcom&ghile initial

461 colonization altered trajemties of fungal community assemblygiging afirm understandinghe
462  underlying mechaniswill require furtherexperimental manipulation

463 Our resultsconfirmed the hypothesis thettaracteristics of thiaitial colonizer

464  significantly.alteredates oflitter decay and communignzymaticpotential(Table J), thereby
465 providingevidence thainitial colonization bysaprotrophic fungi have important functional
466 implications(Fukamiet al. 2010; Dickieet al. 2012). Firstjnitial colonizer identityaltered

467  functional'characteristics in a manner that was generally consistent willpesha community
468 composition, indicating that fungal communities are not functionally reduidla@uireet al.
469  2010; Kivlin &iTreseder 2014). Secondly, decomposibgrihe assembling litter community
470 appeared sensitive ioitial colonization as functionatlifferencesrom control communities

471 weredependenton the initial colonizglelandet al. 2015) For example, certaimitial

472  colonists {.e.,, Gymnopus, Mycena, andDichostereum) led to enhanced respiration and

473  decomposition (Table S6, Figure @)ith largest differences in enzyraetivity apparent in

474  communitiesrinitially colonized by lignolytic fungi (Figure 4). Whdemeobservations suggest
475 that functionalscharacteristics may convedgspite strongriority effects(e.g., Fukamiet al.

476  2005; Petermanet al. 2010; Taret al. 2012) our results indicate th#tte competitiveadvantage
477  gained byseertaimitial fungal decomposetsadimportantconsequence®r soil

478  biogeochemical cycling and further necessitatesstigation othe factors that strengthen

479  priority effects.

480 Impact of initialcolonizer decreased over time

481 Whileitheinitial fungal colonizeshapeccommunityassembly and litteslecay

482  throughout the experimertabitat filtering may become increasipgmportant at later stages of
483 assembly (Ferrenberjal. 2013).Despite accouirig for a relatively stable amount of variance
484 in fungalp-diversity and mass losthe identity of initial colonizeexplained less variation in
485 enzyme potential througime. Concomitantly, littetype captured an increasing variation in
486 enzyme potential through timpotentiallyindicatingthe growing importance &uccessional
487  trajectoriegn 'shapingunctional characteristiosf communites For example,hie depletion of
488 labile organic substratesayincrea® selection for organisms with the physiological capacity to
489 decompos¢he lignifiedcomponents of plant detritus (Hudson 1968; Frankland 1998; Loeardo
490 al. 2013). Secondlythe mechanism by which initial colorssthapeccommunity assembly may
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change with time, asitial colonistrespirationsignificantly accourgdfor deviations from
community assembly +elative to controls- at early time pointgFigure 5) In early stages of
community assembly, initiadolonistsmaydirectly influence community traimply due to
their high abundanc¢evhereas, in later stages initial colonizers may alter establishmiaté¢of
arriving colaizers viaprior resource consumption and subsequattemodification (impact
niche';Vannette & Fukami 2014)r'he persistent influence wofitial colonizer history indicates
that initial’colonizers alter the competitive dynamics of later establishxag even after their
direct influence dissipatg®©ttossoret al. 2014).Furthermoreour results indicate thatitial
colonizatigneffects arenot mutually exclusive of habitat filtering, biatherthey are
mechanismshat interact tehapegungal community composition and function.
As a habitat+filter, litter type altered the influence of the initial fungal colonist

Contraryito our hypothesis, consequences of initial fungal colomzgesstronger on
oak leaves, a relativelignin-rich andenergypoor substrate, when comparednaples leaves
Supporting.this idea, dispersion analysis revetiatbak litter communit compositionwas
more variablepindicating initial colonizers elicited largeparture$rom control communies
(Figure 2BC).sStronger consequencesdmafial colonizes wereexpectecn maple leavesiue
to evidenee,thahigh resource conditiorenhanced the establishment sucaggdantinitial
colonistsjeading tostrong priority effects anthcreasingly divergent trajectories @dmmunity
assemblyEjrneeset al. 2006; Kardokt al. 2013). Along this same line of thinking, drought
reduced the importance of priority effectative to habitat filteringsplanttaxa wereemoved
according saheir tolerance ttnarsh conditiongChase 2007; Leopokt al. 2015).Becauseur
experimentallow resource’ environment generated wider ranges of community assemebly,
believeit is important taecognizethat resource availability isighly dependnton the
physiological attributes of the organisonsder consideratiorDak leaves, with highgnin
content and. longer residence times on the forest f@ative to maple leavg3 able S1Melillo
et al. 1982), coulde considered mited resourcesubstrate to a sugar fungus. Howewaik
litter mayrepresent an abundamisource for fungtapable of degrading more recalcitrant
components of the plant cell wall, including ligridsono & Takeda 2001; Votiskova &
Baldrian 2013). The larger variationaak littercommunity assemblipllowing initial
colonization, combinewith thelargest differences elicited by isolates with high lignolytic

capacity (e.g.Dichostereum, Gymnopus, Mycena; Figure 2)suggesthatrelativelylignin-rich
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522 oak leavesnayenhance the establishment success of relativelyralew-growingtaxa

523 thereby increasag community divergence and subsequent decompogfagalinget al. 2014).
524  Due to additionatlifferences in litter biochemistry between oak and maple leasidsfrom

525 lignin content(Prestoret al. 2000) determining whether lignin is the biochemical attribute
526  driving different initial colonization effects will requitesting a range of substrates with varied
527 lignin contentNeverthelessour observations indicatkat the interactions between habitat
528 filtering"andinitial colonizationdetermine outcomes of fungal commuragsembly

529  Community'assembly was related to physiological traits of initial colonist

530 Colonistrespiratiomate enzyme potentialand evolutionary historywereimportant

531 determinants«of fungal community composition and functional characterB#causenitial

532  colonizationby-€lose phylogenetic relatives resulted in similar competitive outcomes when
533  considering fungal community compten on oak leaveghe phylogenetic context mée

534  useful to understanding consequencegrimirity effectson microbial community composition
535 and function under certain environmental conditifPsayet al. 2012; Taret al. 2012).

536  Secondly,.eemmunity assembly during the earliest stage of decompositioneaipgependent
537  on respiratiomate of the initial colonizer (Figure Shdicaing that rapidlyrespiring colorsts
538 such ag”hemopsis, gairedacompetitive advantage in early stages of commuassembly.

539  Third, thetotal enzyme potential of initial colonizers weakly correlated witls ofdgterlost
540 (normalized to control) after one and three months. fEsisltsupportghe idea that the

541 metabolic'potential of initiatolonistsaltered decommation ratesdue to changes in

542  compositiomefrassembling communitigbat resulted from successful colonist establishment
543  Relative toseantrol treatmentthe largest departures in community composition and litter decay
544  of litter communitiesarose follownginitial colonizationby Mycena, Gymnopus and

545  Dichostereum, all basidiomycetes capable @écomposindignin. While no linear relationship
546  occurred betweeoolonistlignolytic potential and communitgeparture from control

547 communitiesour observationmdicate thagbility to metabolize lignirmay beone of several
548 factorsthatdetermine successful fungal establishment and the strengtitiad colonization
549 effectsin sapretrophic communities.

550 Conclusion

551 The importance of the stochastic sequencetiamdg of propagules may hinder our

552  ability to predictoutcomes oEommunity assemblfDickie et al. 2012). Here, we have
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553 demonstrated thaninitial colonizercan alter the community composition and functional

554  characteristics of assembling saprotroghingi. However, ve also present evidence that the
555 strength of thesmitial colonizationeffectson fungal community composition and

556 decomposition rate change through time, and are dependensulpgirate availabilitgnd

557  physiologicalktraits withiraregional species pool. As a resultientifiableecological

558 mechanismgppear to unded the seemingly stochastic consequencaxiofity effects

559 (Vannette"& Fukami 2014)nvestigation of the factors that alter dispersal and establishment
560 successfoorganisms is necessdir a comprehensive understanding of factors that influence
561  strength of priority effect§Johnson 2015), and ultimately, the factors that structure community
562 assemblyFurthermore, as regulators of biogeochemical cycling in,smilsresults suggest that
563 understandingithe mechanisms by wipciority effectsstructurefungalcommunity assembly
564 may be key to understanding drivers of ecosyd&amal processes.
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DNA sequences can be accessed aNiB| Sequence Read Archive undgudy accession
number SRP05662&lignment files, tree files and OTU tables can be accessed at Dngizal
doi:10.5061/dryad.r3b5d, in addition to community enzyme, respiration and mass data.
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Tablel. Effect sizesmpz) from ANOVA (OTU richness, mass losaid PerMANOVA(S-
diversity and&nzyme potential) modatseachexperimental time poin*qp2 wascalculated as
the proportion‘of variation explained by factor when accounting for error in nadedalp-
diversity was calculated from the Br&@urtis dissimilarity metric. Variation in enzyme potential
was calculated.as pairwise Euclidean distanceseafracellular enzymes (see Methods for more
details).C x.L.indicates interaction term between coloniaad litter type. *** representactor
significange atr < 0.001, **a < 0.01, *a < 0.05,and” a < 0.10.

Response

Variable Factor 1 Month 3 Months 8 Months

OTU Richness | Colonizer 0.45%** 0.60*** 0.51**
Litter Type 0.01 0.02 0.001
I*L 0.41%** 0.19n 0.35**

B-diversity Colonizer 0.31%** 0.26*** 0.26***
Litter Type 0.06*** 0.08*** 0.12%**
I*L 0.15%** 0.12%** 0.16***

Enzyme potential| Colonizer 0.58*** 0.42*** 0.49%**
Litter Type 0.45%** 0.46*** 0.68***
I*L 0.25** 0.20* 0.32**

Mass Loss Colonizer 0.21* 0.30*** 0.47**
Litter Type 0.54*** 0.30*** 0.17**
I*L 0.197 0.20* 0.30**
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FIGURE LEGENDS

Figure 1.Six.initial colonizersvere characterized and selected according to varied evolutionary
histories (A), rates of respiration (B) and potential enzyme activity (@aRimum likelihood
phylogenetic'tree was constructed following the amplification of a fragmehé &8S fungal

gene from"each colonizer. Respiration of initial colonizers growing oitedtaf litter was
guantified using a gas chromatogram (n = 15), for a period of two weeks, prior to thatioocul
of the native litter community. Open bars represent maplditissftreatments and closed bars
oak treatments. Error bars denote standard error. Potential actiedgloenzyme category was
log-transformed, followed by the calculation of pairwise Euclidean distaatween samples,

and visualization by principabordinates analysis (PCoA). Similarly in the PCoA, error bars

represent standard error between replicates within a treatment.

Figure 2.Principal cardinatesanalysisof fungal B-diversity after 1 month (A), three months (B)
and eight'months (C). The Br&urtis distance metric was used to calculate pairwise differences
in log-transformed OTU abundances between treatments. Error bars denotel stenadar

between replicates withia treatment.

Figure 3.Masswemaining after 8 months, normalized to the control community, on maple (open
bars) and oak«(closed bars) litter. Negative values indicate greater dexmayrlitter

communities inoculated with an initial colonist relatteehe control. Error bars denote standard
error. Representing values significantly different from zero, an dstigisotes significance at
<0.05.

Figure4. Principal components analysis of potential enzyme activity after 1 montB (ddnths
(B) and8 months (C). The Euclidean distance metric was used to calculate pairwiseirteat
differences in logransformed enzyme potential at each time p&mnbr bars denote standard
error between replicates within a treatmeydross all time points, PCoZgatively correlated

with B-glucosidase, Nrcetylaminoglucosidasdcellobiohydrolasgotential activity(r =-0.69
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to -0.93,P < 0.0001). PCoih Figure 4C is negatively correlated with lignolytic activity (r =
0.99;P < 0.0001).

Figure 5. Average Bragurtis dissimilarity of each initial colonizer history after one month,

normalized.te,control, as a function of (ltrgnsformed) respiration rate of initial colonizer.

Simple linear regression revealed a significant relationship<@05.
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