NEW HORIZONS

Myeloid Cells in Hepatocellular Carcinoma
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Hepatocellular carcinoma (HCC) is highly associated with inflammation. Myeloid cells,
including tumor-associated macrophages and myeloid-derived suppressor cells, are abun-
dant in the HCC microenvironment and are often associated with poor prognosis. Mye-
loid cells in HCC play a vital role in supporting tumor initiation, progression,
angiogenesis, metastasis, and therapeutic resistance. Here, we summarize our current
knowledge about myeloid cells in HCC and focus on their immune-suppressive activities
and tumor-promoting functions, as well as the relevance to potential new therapies in

HCC. (HeratoLoGY 2015562:1304-1312)

nflammation contributes to all stages of hepatocellu-

lar carcinoma (HCC), including tumor initiation,

progression, and dissemination, with malignant and
inflammatory cells coevolving in their microenviron-
ment." Myeloid cells are abundant in the HCC tumor
microenvironment and have been linked to uncon-
trolled malignant growth. Myeloid cells are generated
from myeloid progenitors and immature myeloid cells,
which terminally differentiate into mature granulocytes,
monocytes/macrophages, and dendritic cells (DCs).
These cells function to phagocytize dying cells, eliminate
foreign substances, repair tissue, and stimulate lympho-
cytes to respond to pathogens. In cancer patients,
tumors globally alter the differentiation and function of
myeloid cells, shifting them into immunosuppressive
and tumor-promoting cells, such as tumor-associated
macrophages (TAMs) and myeloid-derived suppressor
cells (MDSCs). TAMs and MDSCs have been well rec-
ognized for their immunosuppressive function in HCC.
In addition, other functions of myeloid cells have also
been documented, including the promotion of tumor
incidence, invasion, metastasis, and angiogenesis. A bet-
ter understanding of these cells in HCC will be critical
for developing effective HCC therapy. TAMs have been
noted in HCC and other liver cancers, such as cholan-
giocarcinoma. However, given the higher prevalence of
HCC, more mechanistic data are available for myeloid

cells in HCC. Therefore, for purposes of this review, we
will focus on the influences of TAMs and MDSCs on
HCC through their immunosuppressive and tumor-
promoting functions.

Definition of TAMs and MDSCs
TAMs

Macrophages arise from bone marrow-derived circu-
lating monocytes, which then reside in tissues. Macro-
phages are incredibly plastic in response to various
environmental stimuli and can be in a spectrum of
functional states. The two polarization states at the
extreme end are the classical activation state (M1) and
the alternative activation state (M2) (Fig. 1). Classically
activated M1 macrophages, in response to lipopolysac-
charides (LPS) and interferon-gamma (IFN-y), produce
proinflammatory cytokines, such as interleukin (IL)-12,
and stimulate effector T-cell proliferation and function.
When monocytes are alternatively activated, M2, by IL-
4, IL-10, and IL-13 in vitro, they produce low IL-12,
high IL-10, transforming growth factor beta (TGF-f),
and chemokine (C-C motif) ligand (CCL) family
members, such as CCL17, CCL18, CCL22, and
CCL24. The tumor microenvironment skews macro-
phage differentiation and functions toward immuno-
suppressive and tumor-promoting cells.” Given that
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Fig. 1. Classically activated M1 and alternatively activated M2 macrophages. Macrophages originate from myeloid progenitors and circulating
monocytes. Macrophages are incredibly plastic in response to various environmental stimuli and can be in a spectrum of functional states. The
two polarization states at the extreme end are the classical activation state (M1) and the alternative activation state (M2). LPS and IFN-y gener-
ate classically activated M1 macrophages, which has proinflammatory activities, express high HLA-DR and IL-12, and stimulate effector T-cell
function. IL-4, IL-10, and IL-13 generate alternatively activated M2 macrophages, which produce low IL-12, high IL-10 and PD-L1 (B7-H1), and

have immunosuppressive functions.

TAM phenotypes may differ among cancer types, indi-
vidual patients, and even location within the tumor,
simply defining TAMs based on the classical versus
alternatively activated phenotype has its limitations.
TAMs comprise heterogeneous populations with diverse
and mixed phenotypes.* In mice, TAMs are identified
in tumors as F4/80" and CD11b™. In humans, TAMs
are identified as CD68™" by immunohistochemistry and
CD14" by flow cytometry. Additional markers used to
define HCC TAM:s include human leukocyte antigen
(HLA)-DR™, CD163", CD206", and high arginase
activity. Frequency of infiltrating TAMs is correlated
with poor prognosis in HCC.> Thus, a better under-
standing of TAMs will be important for developing
future therapy for treating patients with HCC.

MDSCs

In cancer, differentiation of myeloid cells is often
altered, generating a population of immature myeloid
cells with potent immunosuppressive activities and
impaired function as antigen-presenting cells (APCs).°
These cells are now known as MDSCs, which are a het-
erogeneous population of immature myeloid cells.
There are two main types of MDSCs: monocytic
MDSCs and granulocytic MDSC:s (also called polymor-
phonuclear MDSCs). In mice, MDSCs are character-

ized by CD11b" and Gr-1", weakly or do not express
other markers of mature myeloid cells (MHCII'/I"W, F4/
80", and CD11d®"). Monocytic MDSCs are further
defined as Ly6G'Ly6Chigh, and granulocytic MDSCs are
Ly6G " Ly6C*™. More important, they are functionally
defined as suppressors for T-cell activation.6 In human
HCC, phenotype and markers used to identify MDSCs
varies and includes: Lin” CD14"HLA-DR"*"'~ (mono-
cytic  MDSCs),”  Lin"CD33"CD11b"HLA-DR™
MDSCs,* and Lin CD14 CD33"CDI11b"HLA-
DR~ (granulocytic MDSCs).” Similar to TAMs,
MDSCs are also plastic in response to microenviron-
mental signals. MDSCs can differentiate into macro-
phages, granulocytes, and DCs in viro.'® In the
presence of tumor-derived factors or hypoxia, MDSCs
can differentiate toward immunosuppressive TAMs. "
In summary, MDSCs and TAMs are notably diverse
and plastic cells that are able to shift their functional
state in response to numerous cytokines and growth fac-
tors in the tumor microenvironment. MDSCs and
TAMs show considerable overlapping phenotype and
functions, including inhibition of effector T cells, pro-
duction of immunosuppressive cytokines, and promo-
tion of angiogenesis. Yet, studies in HCC also
demonstrate a variety of distinct mechanisms for their
immunosuppressive and tumor-promoting functions.
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Myeloid Cells and HCC Development

The link between TAMs and HCC development has
been examined in various mouse models (Table 1). In the
Md2-knockout mouse model, mice spontaneously
develop cholestatic hepatitis followed by HCC. Tumor
necrosis factor alpha (TNF-o) produced by TAMs and
endothelial cells (ECs) activates nuclear factor kappa B
(NF-kB), which protects hepatocytes from apoptosis and
promotes tumor growth.'” In the chemical carcinogen
diethylnitrosamine (DEN)-driven HCC model, TAM-
derived TNF-a and IL-6 accelerate hepatocyte prolifera-
tion, leading to hepatocarcinogenesis.'” Similar to human
HCC, DEN-driven HCC in mice show gender disparity,
with 100% HCC incidence in male mice and only 10%-
30% HCC incidence in female littermates. This gender
disparity is largely the result of higher MyD88-dependent
IL-6 production by resident hepatic macrophages in male
mice than in female mice. IL-6 promotes compensatory
hepatocyte proliferation in response to DEN-induced tis-
sue damage, which plays a critical role in DEN-induced
HCC. Estrogen, at the concentrations present in females,
inhibited IL-6 production by macrophages by decreasing
activation of transcription factors NF-xB and CCAAT/
enhancer-binding protein (C/EBP)f, resulting in less
incidence of HCC initiation in females.'* Macrophages
are activated, in part, by necrotic hepatocyte-derived
high-mobility group box, which binds to the triggering
receptor expressed on myeloid cells 1 (TREM-1).
TREM-1""" mice showed reduced proinflammatory
cytokines IL-1f, IL-6, TNE, CCL2, and C-X-C motif
chemokine (CXCL)10, as well as decreased DEN-
induced liver damage, compensatory hepatocyte prolifera-
tion, and liver tumorigenesis.15 All together, these studies
support that TAM-derived cytokines play a pivotal role in
HCC development and progression.

MDSCs also accumulate in mouse HCCs, but vary in
different HCC models.'® Orthotopic and subcutaneous
tumors derived from mouse HCC cell lines rapidly
induced MDSC expansion in liver, spleen, and blood. In
contrast, in the slow-growing DEN-driven HCC or
MYC-expressing spontancous HCCs, MDSCs only
increased in advanced HCC.'® How MDSCs are involved
in HCC development awaits further investigation.

Myeloid Cells and HCC Angiogenesis

Angiogenesis plays a critical role in HCC progression.
HCC tumors show extensive vasculature that provides
nutrients for tumor growth. Sorafenib, a multikinase
inhibitor, is the only U.S. Food and Drug Administra-
tion (FDA)-approved drug for advanced HCC. Indeed,

sorafenib inhibits vascular endothelial growth factor
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(VEGF) and platelet-derived growth factor (PDGF) sig-
naling important for angiogenesis, along with the
mitogen-activated protein kinase pathway for cell prolif-
eration. Thus, drugs targeting angiogenesis show poten-
tial for treating HCC. Clinical evidence has shown a
positive correlation between the frequency of TAMs and
the density of microvessels, suggesting a role for TAMs in
angiogenesis. TAMs secrete growth factors, including
TGEF-f, VEGE fibroblast growth factor, PDGE angio-
genic factor thymidine phosphorylate, and angiogenesis-
modulating enzymes cyclooxygenase-2 and matrix metal-
loproteinases (MMDPs), including MMP-2, MMP-7,
MMP-9, and MMP-12, which promote migration of
ECs and angiogenesis.17 Similar to TAMs, MDSCs can
directly promote tumor angiogenesis through producing
high levels of MMP-9.'® In an HCC xenograft model,
sorafenib treatment inhibits tumor growth and lung
metastasis, but also increases intratumoral TAM infiltra-
tion. TAM infiltration is accompanied by increased TAM
chemoattractant colony-stimulating factor 1 (CSE-1) and
angiogenic factors stromal cell-derived factor 1 alpha
(SDF-1a) and VEGE TAM depletion by zoledronic acid
(ZA) or clodronate-encapsulated liposomes (clodrolip),
in combination with sorafenib, further reduced tumor
growth, lung metastasis, and tumor angiogenesis.19
Hence, therapies disrupting TAMs is worthy of future
studies to enhance the antitumor efficacy of sorafenib.
TAMs are preferentially attracted to hypoxic areas in
tumor. Hypoxia-induced factor 1 alpha in TAMs is essen-
tial for TAM infiltration and activation 77 vive.”® In addi-
tion, hypoxia stimulates TAM chemokine production,
including CCL2, CCL5, IL-8 (CXCLS8), CXCLI10,
CXCL12, and CXCL13, that are involved in angiogenesis
and tumor progression. For example, IL-8 promotes angio-
genesis and is an independent predictor of mortality in
carly-stage HCC patients.”’ Various TAM subsets have
been described based on surface marker expression. One of
the subsets is tyrosine kinase with Ig and EGF homology
domains 2 (TIE2)-expressing macrophages, which exerts
proangiogenic activity. TIE2 is a receptor of angiopoietins.
TIE2-expressing TAMs selectively migrate toward angio-
poietin 2 released by ECs, especially in hypoxic tumor
areas.”? In HCC, frequency of TIE2-expressing TAMs is
positively correlated with microvessel density and may
serve as diagnostic marker for HCC.> This suggests that
TAMs are involved in angiogenesis through a network of
angiogenic signaling in the HCC microenvironment.

Myeloid Cells and HCC Metastasis

TAMs can facilitate tumor invasion and metastasis.

Whereas TAMs are noted in almost all HCC patients,
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Table 1. TAMs and MDSCs in HCC: Phenotypes, Functions, and Clinical and Pathological Associations
Murine HCC Models Presence/Generation Identification/Marker Effects A iated With the Pi of TAMs or MDSCs Refs
Md2-KO mouse, inflammation-induced TAMs detected in tumors Morphology TAM-derived TNF-o activates hepatocyte NF-xB and promotes 12
HCC HCC.
DEN-driven HCC model TAMs detected in tumors Isolation by centrifugation  TAM-derived TNF-x and IL-6 activate NF-xB and C/EBPf and 34
promote HCC.
DEN-driven HCC model TREM-1-expressing TAMs F4/80+ cD11b™* Ly6G TAM activation and TAM-derived proinflammatory cytokines IL- 15
detected in liver Ly6C 6, IL-1b, TNF, CCL2, and CXCL10 promote DEN-driven
HCC; the myeloid cell surface receptor, TREM-1, expressed
by TAMs is crucial in the development of HCC.
Nude mice bearing orthotopic HCC TAMs increased in tumors after ~ F4/80" and CD11b™ by Depletion of TAMs by clodrolip or ZA in combination with sor- 1
tumors sorafenib treatment IHC and FACS afenib significantly inhibited tumor progression, tumor
angiogenesis, and lung metastasis, compared with sorafe-
nib alone.
Nude mice bearing orthotopic HCC TAMs increased in tumors with F4/80™ by IHC Depletion of TAMs using clodrolip dramatically decreased 32
tumors (SMMC7721, HCCLM3) high metastatic properties FoxQ1-enhanced HCC metastasis.
Abcb4 knockout mice mimicking TAMs observed at the invasive F4/80+ by IF TAMs were the major source of MMP-9 at the invasive front of 2
cholangitis-associated HCC front of HCC HCC and could be involved in the matrix remodeling and
HCC invasion.
Orthotopic and ectopic mouse models TAMs detected in tumors CD68™ CD206™ by IHC TAMs link with HCC gender disparity. Estrogen could suppress 63
with mouse HCC cell lines and FACS HCC progression through inhibiting TAMs function, includ-
ing reducing arginase activity, mannose receptor CD206
expression, and IL-10 production. This is dependent on
the JAK1-STAT6-signaling pathway.
Hepal-6 mouse HCC cell line TAMs generated in vitro by cul- Macrophage lines Conditioned media from RAW 264.7 treated with IL-4, but 34
turing RAW 264.7 with IL-4 not LPS, plus IFN-y increased CSC-like properties and EMT
for 24 h of Hepal-6 cells through TGF-fS1.
Subcutaneous and orthotopic mouse MDSCs observed, but differs cD11b* Gr-17 In subcutaneous and orthotopic tumors, MDSCs increased 16
models with HCC cell lines; DEN- depending on the mouse systemically. In DEN-driven and MYC-expression tumors,
driven HCC model; MYC-expressing models MDSCs only accumulate in the livers of mice with
spontaneous HCC model advanced HCC. KC and GM-CSF controlled MDSC
frequency.
HCC Patients Presence/Generation Identification/Marker Effects Associated With the Presence of TAMs or MDSCs Refs
HCC patients TMA High density of TAMs in peritu- CD68™ by HC Peritumoral TAMs correlates with large tumor size, intrahepatic 24
moral liver tissue metastasis, high TNM stage, and poor survival.
Paraffin-embedded tissue from HCC TAMs detected in tumors cD68™ by IHC High density of TAMs was related to increased intratumoral s
patients Treg; TAMs-increased Treg was partially blocked by anti-IL-
10 antibody.
Tumors from HCC patients TAMs detected in tumors CD14" by FACS and TAM galectin-9 binds to T cell TIM-3, which induced senes- 40
CD68™ by IHC cence of effector T cells.
Tumors and peripheral blood samples TAMs detected in tumors cD14" by FACS and TAMs-derived IDO impaired T-cell proliferation and effector a7
from HCC patients CD68™ by IHC cytokine production.
5,49

Tumors from HCC patients, peripheral
blood samples from healthy donors

Tumors and xenograft tumors from HCC
patients, HepG2 human HCC cell
line

HCC patients peripheral blood and
tumor

HepG2 human HCC cell line

Tumors and peripheral blood samples
from HCC patients

Peripheral blood samples from HCC

patients

Peripheral blood samples from HCC
patients

TAMs detected in tumors

TAMs detected in tumors

TEMs increased in HCC
patients

Activated macrophage lines
(RAW 264.7, THP-1, mouse
peritoneal macrophages)

MDSCs increased in peripheral
blood and tumors of HCC
patients

MDSCs increased in HCC
patients

MDSC increased in HCC
patients

CD14™ HLA-DR™ by FACS
and CD68™ by IHC
CD14™ by FACS

CD147CD167TIE2™ by
FACS and IF
Macrophage lines

CD14" HLA-DR /™"
Arginase™e"

CD14" HLA-DR /™"

CD14~ HLA-DR™ CD33"
CD11b™

TAM B7-H1 binds to T cell PD-1, which suppresses effector T-
cell function.

TAMs enhanced human HCC CSCs phenotype through TAMs-
derived IL-6 and its downstream activation of STAT3 sig-
naling in HCC.

TIE2-expressing monocytes/macrophages correlate with micro-
vessel density and could serve as a diagnostic marker.

Conditioned media from macrophages from various sources
activated by PMA or LPS, but not IFN-y, increased migra-
tion and invasiveness of HepG2 cells by destabilizing the
adherens junction in vitro.

MDSCs induced regulatory T cells and inhibited tumor-
specific T-cell activation.

MDSCs inhibited autologous NK cell cytotoxicity and cytokine
secretion in vitro. This is dependent on cell contact and
NKp30 on NK cells, but not on arginase activity of
MDSCs.

Augmented Tregs, MDSC, PD-1+-exhausted T cells, and
immunosuppressive cytokines (IL-10, TGF-f1) in patients
with HCC. Depletion of Tregs, MDSC, PD-1" T cells
restored effector T-cell function in vitro.

36

23

33

56

Abbreviations: IHC, immunohistochemistry; FACS, fluorescence-activated cell sorting; IF, immunofluorescence; KC, keratinocytes; GM-CSF, granulocyte macrophage
colony-stimulating factor; PMA, phorbol-12-myristate-13-acetate.
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higher TAM densities correlate with other known HCC
prognostic factors, such as tumor size, vascular invasion,
number of tumor nodules, and tumor node metastasis
(TNM) stage. Thus, both overall survival and disease-
free survival are negatively correlated with degree of
TAM infiltration.** High expression of peritumoral
CSF-1, an important macrophage growth factor and
chemoattractant, correlates with poor prognosis in
HCC patients.** Livers bearing metastatic HCC also
show higher CSF-1 gene expression, compared to livers
bearing nonmetastatic HCC.*”> Tumor-derived CSF-1
stimulates TAMs to produce epidermal growth factor,
which attracts tumor cells and augment metastasis.
TAMs are often found at the invasive front of advanced
tumors. TAMs can promote tumor invasion through
their matrix remodeling capability. TAMs secrete pro-
teases MMDPs, serine proteases, and cysteine cathepsins,
which cleave components of the extracellular matrix and
basement membrane and disrupt cell adhesion junc-
tions, facilitating tumor cell invasion and metasta-
sis.”?” MMP-9 overexpression is associated with higher
invasive potential of HCC.?® TAMs are identified as the
main MMP-9-expressing cells at the invasive tumor front
in a mouse HCC model.”” Active tumor- and stroma-
derived MMP-9 can enzymatically cleave basement mem-
brane proteins, increased at the HCC invasive front, and
is significantly associated with cancer invasion to the
HCC capsule and portal veins.”® Whereas TAM recruit-
ment to the peritumoral stroma has prognostic signifi-
cance in HCC, the underlying mechanisms of the roles
of TAMs and MDSCs on HCC invasiveness and metas-
tasis require further investigation.

Myeloid Cells and HCC Epithelial-
Mesenchymal Transition and Stemness

Recent findings suggest that TAMs can enhance can-
cer cell migration and invasion through direct influence
on cancer cell phenotypic plasticity. CD163" TAMs
enhanced migration capacities of HCC tumor cells and
lung metastasis; one of the underlying mechanisms
could be that TAM-derived CCL22 promotes epithelial-
mesenchymal transition (EMT) and increases invasive
properties of tumor cells.’’ In HCC, overexpression of
forkhead box Q1 (FoxQ1) induced EMT and secretion
CCL2, which increased TAM infiltration. Depletion of
TAMs decreased FoxQIl-enhanced HCC metastasis,>”
demonstrating the positive feedback loop between HCC
cells and TAMs for tumor metastasis. Activated macro-
phage conditioned medium down-regulated E-cadherin
and shifted liver cancer cells (HepG2 cells) from epithe-
lial morphology toward a mesenchymal phenotype.”
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Treatment with conditioned medium from murine
TAMs also induced EMT of mouse hepatoma cells
(Hepal-6), showing higher mesenchymal markers and
invasion, as well as cancer stem cell (CSC)-like proper-
ties and tumorigenicity. TAM-derived TGEF-f was
important for these TAM-induced EMT and CSC-like
properties.>* HCC MDSCs may utilize similar mecha-
nisms to induce EMT.

CSCs, owing to their self-renewal and tumor-
initiating capacity, are involved in tumor survival, che-
moresistance, recurrence, and metastasis. Our group has
observed a mechanistic link between TAMs and HCC
CSCs.” We found that TAMs enhanced the human
HCC CSCs phenotype, including higher stemness-
related gene expression and sphere-forming capacity,
resulting in larger tumor volume 7z vivo. This CSC-
promoting effect was mediated by TAMs through the
IL-6- and signal transduction and activator of transcrip-
tion (STAT)3-signaling pathways. This effect was dis-
rupted by tocilizumab, a humanized ant-IL6R
antibody. MDSCs have also been shown to enhance can-
cer cell stemness and metastasis in ovarian carcinoma by
microRNA101 and corepressor gene C-terminal-
binding protein 2.*® Hence, targeting TAMs and
MDSCs could interrupt CSC-mediated tumor initia-
tion and progression.

Myeloid Cells and HCC Immune
Suppression

TAMs and Immune Suppression

The degree of immune suppression in the tumor
microenvironment is associated with poor prognosis in
HCC patients. In HCC patients, the density of antitu-
mor inflammatory cells, including cytotoxic CD8" T
cells and neutrophils, within the tumor is correlated pos-
itively with apoptotic tumor cells and patient survival.””
However, the majority of HCC patients lack the infiltra-
tion of these antitumor inflammatory cells owing to the
immune-suppressive environment in HCC.?® In con-
trast, TAMs are abundant in the HCC microenviron-
ment, and the frequencies of TAMs in the tumor are
comparable to that in the nontumor or peritumor
areas.”” TAMs actively disrupt antitumor immu-
nity. >4 TAMs suppress T-cell effector function
through multiple mechanisms. Classically activated
macrophages produce IL-12, which promotes T-helper
(Th)1-cell activation. However, TAMs produce limited
IL-12 and instead produce IL-10, which promotes Th2
cell development and reduces cytotoxic T lymphocytes
(CTLs).*! Moreover, TAMs produce chemokines
CCL17, CCL18, and CCL22, which preferentially
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attract T regulatory (Treg) and Th2 cells to the tumor
and, in turn, impair CTL activation. 243 However, this
mechanism has yet to be demonstrated in HCC.
Increased tumor-infiltrating Treg correlates with poor
prognosis in HCC patients, and the intratumoral preva-
lence of Treg is associated with high density of TAMs.**
Additionally, Treg production of IL-10, IL-4, and IL-13
can promote differentiation of monocytes into immuno-
suppressive TAMs.*> Therefore, a positive feedback loop
may exist between TAMs and Treg cells that further
enhance their immunosuppressive effects in HCC.

In hepatitis B virus (HBV)-associated HCC, TAMs
expressed a high level of galectin-9. Binding of
galectin-9 to T-cell immunoglobulin domain and
mucin domain 3 (TIM-3) on T cells induces senes-
cence of T cells. Blockade of TIM-3/galectin-9 signal-
ing restored functionality of tumor-infiltrating effector
T cells.” Hence, TAM galectin-9 and T-cell TIM-3
could be immunotherapeutic targets in patients with
HBV-associated HCC. Indoleamine-pyrrole 2,3-dioxy-
genase (IDO), an immunomodulatory enzyme that
suppresses T-cell responses, is also highly expressed in
HCC TAMs. HCC-infiltrating CD69™ T cells induce
IDO expression in TAMs through IFN-y and TNF-a.
TAMs-derived IDO, in turn, impairs T-cell prolifera-
tion and effector cytokine production, contributing to
immunosuppression in HCC.*® TAMs suppress T cells
through expression of the coinhibitory molecule, B7-
HI, to the ligand for programmed death 1 (PD-1) on
T cells, reducing T-cell effector functions against tumor
cells. B7-H1 levels in liver macrophages are higher in
tumor-bearing mice than in normal mice, which, in
turn, suppress T-cell activation.”” Tumor-associated IL-
10 and TNF-a contribute to induction of B7-H1 on
HCC TAMs. Importantly, blocking B7-H1 on TAMs
or PD-1 on T cells using neutralizing antibodies recov-
ered effector T-cell function and antitumor activity.”*®
Therefore, targeting the immunosuppressive function
of TAMs provides important therapeutic implications
for treatment of HCC. Indeed, anti-PD-1-targeted
agents are approved by the FDA to treat patients with
melanoma and are currently in phase I clinical trial in

HCC patients.

MDSCs and Immune Suppression

MDSCs inhibit T-cell responses through diverse
mechanisms. First, MDSCs deplete nutrients, L-
arginine, and L-cysteine, necessary for T-cell function.
MDSCs show increased activity of arginase, which
depletes arginine and down-regulates CD3( chain on T
cells, resulting in suppression of T-cell proliferation and
cytokine production.” Cysteine is essential for T-cell
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activation. T cells lack the cystathionase that generates
cysteine and therefore solely depend on exogenous cyste-
ine. APCs import cystine and convert it to cysteine that
is then exported outside of cells. MDSCs compete with
APC:s for cystine and limit the availability of cysteine in
their extracellular environment by not exporting cyste-
ine.
MDSC:s results in impaired T-cell proliferation and acti-
vation.”® MDSCs also generate oxidative stress through
production of reactive oxygen species and reactive nitro-
gen species. These reactive species inhibit T-cell
responses through reducing T-cell receptor (TCR)(-
chain expression, impairing IL-2 receptor signaling and
disrupting TCR interaction with major histocompatibil-
ity complex.”>?

In human HCC, CD14"HLA-DR"~ MDSCs from
peripheral blood or tumors were significantly increased in
HCC patients” CD14" HLA-DR ¥ MDSCs from
HCC patients are unable to stimulate an allogeneic T-cell
response, suppress T-cell proliferation, and have high argi-
nase activity. Additionally, these MDSCs induce
CD4"CD25" Foxp3™ Treg expansion when cocultured
with autologous T cells.” This suggests that MDSCs miti-
gate effector T-cell function by way of Tregs.” A recent
report examined peripheral blood samples from patients
with advanced HCC. They demonstrated augmented
numbers of CD14~CD33"CD11b"HLA-DR™ MDSCs,
Tregs, and PD-1" exhausted T cells along with increased
levels of immunosuppressive cytokines IL-10 and TGE-f,
suggesting immune dysfunction in advanced HCC.” Thus,
MDSCs and Tregs are important components of immuno-
suppressive milieu in HCC, and MDSCs can exert their
immunosuppressive function through inducing Treg
expansion.

Other mechanisms have been described, in which
MDSCs affect T-cell function, survival, and trafficking.
Similar to TAMs, MDSCs express galectin-9 that binds
to TIM-3 on T cells, inducing T-cell apoptosis.””
MDSCs also express ADAM17 that down-regulate L-
selectin (CDG62L) levels on T cells, limiting their hom-
ing to lymph nodes and tumors.’® In a breast cancer
mouse model, MDSCs (CD11b"Gr1™) could home to
and accumulate in high numbers in the liver. Addition-
ally, MDSCs interact with liver macrophages and cause
their up-regulation of B7-H1, further strengthening the
immunosuppressive phenotype.”” MDSCs can also
impair natural killer (NK) cell function. In human
HCC, MDSCs (CD14"HLA-DR™"") inhibit NK cell
cytotoxicity and cytokine release, which is mediated by
the NKp30 receptor.” Tumor-derived IL-1f induces
Ly6C-negative MDSCs, which also inhibit NK' cell
development and function.’® In summary, MDSCs

The reduced extracellular cysteine caused by
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contribute to the immunosuppressive network through
multiple mechanisms and are potential immunotherapy

targets for HCC.

Myeloid Cells and HCC Therapy

Owing to the tumor-promoting and immunosuppres-
sive roles of myeloid cells, there is great interest in tar-
geting them to enhance the efficacy of conventional
cancer therapy. A recently approved chemotherapeutic
agent, trabectedin, not only targets tumor cells, but also
induces rapid apoptosis in myeloid cells, whereas neu-
trophils and lymphocytes are not affected.”” Notewor-
thy, although trabectedin has no effects on some
sarcoma and ovarian cell lines 77 vitro, it still retained its
efficacy on in vivo tumor growth from these lines, indi-
cating that trabectedin-induced apoptosis of myeloid
cells plays a key role in limiting tumor growth.”” Trabec-
tedin clinical trials reported reversible hepatotoxicity in
human patients.”® Trabectedin also exerts potent cyto-
toxicity on HepG2 liver cancer cells.”” Therefore, tra-
bectedin may be a promising therapy for HCC through
targeting both cancer cells and myeloid cells. HCC is a

Mouse: F4/80*
Human: CD14* CD68*
CD163* CD206* HLA-
DR* Arginasenish

TAM
. _ IDO, Arginase
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male-predominant cancer with worse prognosis for men
compared to women.®® Estrogen, the primary female
sex hormone, suppresses myeloid cell function in
HCC.®! Estrogen inhibited secretion of IL-6 from mac-
rophages exposed to necrotic hepatocytes and reduced
liver cancer risk in DEN-treated female mice.'* Estro-
gen inhibited myeloid cell function, including reduced
arginase activity, mannose receptor CD206 expression,
and IL-10 production. Estrogen suppressed tumor-
promoting myeloid cells through inhibiting Janus kinase
(JAK)-STATG activation, leading to reduced tumor
growth murine HCC models.> Hence, estrogen therapy
may be useful in disrupting the development and func-
tion of myeloid cells in HCC. Myeloid cell elimination
can be achieved by two well-studied agents: ZA and
clodronate-containing liposome (clodrolip). ZA is an
FDA-approved drug for bone metastasis, which specifi-
cally induces apoptosis of osteoclasts and macrophages.
Clodrolip is a bisphosphonate clodronate-containing
liposome that reduces myeloid cell number in tumors
and circulating monocytes in peripheral blood. In a
metastatic HCC mouse model, depletion of myeloid
cells by ZA and clodrolip in combination with sorafenib

Immune
suppression

Fig. 2. Immunosuppressive  and
tumor-promoting functions of TAMs and
MDSCs in HCC. HCC TAMs and MDSCs
suppress  T-cell effector functions
through their expression of IDO, argi-
nase, B7-H1 (PD-L1), and galectin-9,
induction and recruitment of regulatory
T cells, as well as MDSC-mediated
suppression of NK cells. TAMs promote
HCC development and proliferation
through TNF-o- and IL-6-activated NF-
kB and C/EBPf; pathways. TAM-derived

o

NK

or HLA-DR- CD33* CD11b*

: T SDF-1¢;, VEGE and MMPs induce
ﬂg;ii%%uﬁ HGLr);_DR_m‘ angiogenesis in  HCC. HCC TAMs

enhance CSCs through IL-6-activated

© @ |/
Normal Tumor CSCs Blood
hepatocyte cell vessels

STAT3 signaling. HCC TAMs are found
at the invasive front of tumors and
associated with invasion and metasta-
sis. TAM-derived TGF-f induces EMT
and enhances HCC metastasis. MMPs
disrupt basement membrane and also
facilitate tumor cell invasion. Surface
markers used to identify HCC TAMs and
MDSCs in mouse and human are listed
in green box and blue box respectively.
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significantly inhibited tumor progression, tumor angio-
genesis, and lung metastasis, compared with sorafenib
treatment alone.'” Hence, targeting myeloid cells repre-
sents a point of further study as a possible adjuvant ther-
apy to attenuate HCC progression.

Concluding Remarks

Mpyeloid cells in HCC are skewed to suppress antitu-
mor immunity and support HCC progression (Fig. 2
and Table 1). Immunosuppressive effects of myeloid
cells are one of the key factors limiting the efficacy of
immunotherapies that require active antitumor immune
responses.”> Therefore, disrupting these cells could
counteract the immunosuppressive network and impede
tumor progression. Potential methods to inhibit mye-
loid cells in HCC include: (1) target molecular path-
ways involved with suppressing effector cell function or
promoting tumor growth; (2) target tumor factors that
induce immunosuppressive myeloid cells from bone
marrow progenitors; (3) repolarize them to become
active APCs that stimulate antitumor immunity; and
(4) induce apoptosis of myeloid cells or block trafficking
to lymphoid organs and tumors. Targeting these com-
mon pathways utilized by immunosuppressive and
tumor-promoting myeloid cells could provide novel
therapeutic strategies to better treat HCC patients.
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