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1. Introduction. The proble~n of finding uniformly valid asymptotic solutions 
to the Navier-Stokes equaticn has been studied particularly intensively in the 
past ten years. Goldstein (1.956), (1960) suggested a first consistent extension 
to the Blasius boundary Ltyer solution for the incompressible flow past a semi­
infinite flat plate. t Murr'1Y (1965a) established the validity of Goldstein's solu­
tion up to the term of Oa-3

), where ~ is the conventional parabolic coordinate 
stretched by (U/v)! where U is the free stream velocity and v is the kinematic 
viscosity, by showing that certain constraints were met. In the low Reynolds 
number range the method of matched expansions was formally developed and 
applied to a variety of problems. An account of this method with a selected 
bibliography has been given by Van Dyke (1964a). A series of papers by Van 
Dyke (1962a, 1962b, 19Mb) has laid the foundation for a rigorous approach 
in the large Reynolds number range. 

Although systematic methods are available theoretically for finding asymp­
totic solutions, it can still be very difficult in practice to do so. In the case of the 
semi-infinite flat plate solution very careful reasoning was involved before the 
final form for the stream function, 'if;, was found. An account of this is given by 
Goldstein (1960). It is clear, in this example, that once the form of 'if; near the 
plate, or rather in the singular perturbation region, was found, the major diffi­
culty of the problem was overcome. It is the purpose of this paper to suggest a 
method which will give reasonable and possible asymptotic forms for the solu­
tions, in the first instance, to a class of problems consisting of flows past semi­
infinite cylinders in a direction parallel to the generators. The solutions are for 
the region where the Reynolds number based on the radius or the equivalent 
length in non-circular cylinders is large compared with zl/a where Zl is the axial 
coordinate measured from the leading edge and a is the cylinder radius or equiva­
lent length. 

The method may be described as a modified 'modified Oseen' method. Basically 
the solution of the boundary layer Oseen equation is taken, or even an approxi­
mate form of it in some cases, and U, in this solution, is replaced by a function 
of Zl, U and v where this function is to be determined, ordinarily in asymptotic 
form. The function of Zl, U and v is determined by substituting the modified 
boundary layer Oseen solution into the full N avier-Stokes equation and inte­
grating over an appropriate range of the variable other than Zl , weighting the 
integrand if necessary for convergence. An ordinary differential equation for 
the function to be determined is obtained and, in the examples considered, an 
asymptotic expansion of the function can be found fairly simply. With this 

t See the footnotes below regarding equns. (23) and (46). 

1 



2 J. D. MURRAY 

asymptotic solution a form for the stream function can easily be deduced as 
illustrated in §§2, 3. 

The same starting point is, of course, obtained from the equivalent Rayleigh 
solution for the impulsive motion problems. The time, t, is replaced not by Zl! U 
as was done by Rayleigh (1911) (to approximate the solution for the flow past 
a semi-infinite flat plate) but by a function of Zl, U and P. Thus, the method 
could also be described as a modified 'Rayleigh method'. 

The motivation for the method is that the Oseen equation is a valid first 
approximation to the exact Navier-Stokes equation over part of the field of flow. 
It is reasonable, therefore, to try and use the solution of it as a type of generating 
function in conjunction with the N avier-Stokes equation. The type of integration 
of the N avier-Stokes equation used should produce the type of singularity in 
the axial coordinate that could be expected to appear in the exact solution. As 
shown below, it seems to do so. 

The method is applied first to the flow past a semi-infinite flat plate and the 
first three asymptotic terms are given correctly as compared with the Goldstein 
(1960) form for the stream function. Higher order terms are not given exactly 
but their character is indicated. The problem of the possible origin displacement 
which is specifically suggested by this method does not affect the comparison, 
as is shown below by means of a simple coordinate transformation. As a bi­
product of this method the first term in the local skin friction coefficient is given 
to within 470 of the Blasius solution with comparable accuracy in other quan­
tities of interest. The connection with the modified Oseen method given initially 
by Lewis and Carrier (1949) is clear in that the first term is the same as if zt/U 
were replaced by zt/cU where c is a constant; this, in fact, is what they did. Their 
constant is a possible first term in the asymptotic expansion of the function of 
Zl, U, and p introduced in this method. By a possible solution is meant that it 
is the case where the origin displacement is taken to be zero. Lewis and Carrier 
(1949), to determine c, required their approximate solution to be such that the 
difference between the exact and approximate form of the momentum terms, 
when suitably integrated, should be zero. As seen below the same result is given 
by integrating the boundary layer equations with the approximate solution 
inserted. Recently Carrier (1965) used the Blasius form of boundary layer 
equations to determine c. This connection accounts for the term, modified 
'modified Oseen' method, and provides further motivation for the method 
developed here. 

The problem of axial flow past a semi-infinite circular cylinder is considered 
in §§3, 4. Any difficulties in extending the analysis to other cross sections will 
be manipulative; in principle, no difficulty arises. The final form suggested for 
the stream function is an asymptotic solution for the full N avier-Stokes equation 
and not simply for the boundary layer equations for which, as far as the author 
is aware, all previous studies of this problem have been made. The form found 
is for large Reynolds number, Re, based on the cylinder radius and for large 
Re(zl/a). It differs fundamentally from those previously given for the boundary 
layer equations and suggests that the solution, which hitherto has been used for 
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comparison of approximate methods, and referred to as the exact solution may 
not be so exact! The solution, as given in §3, Eq. (45), is a type of dual series 
involving both a Reynolds number expansion and a coordinate expansion. 

Although the analysis of the axial flow past a semi-infinite cylinder is not the 
main purpose of this paper, a brief survey of some of the pertinent literature on 
this subject will be given since a new result is presented here. A more complete 
list is given by Rosenhead (1963). 

Atkinson and Goldstein in 1933 (see Goldstein (1938» considered entry 
flow into a circular pipe by introducing a series expansion in powers of (zlv/a2 U)'t 
times functions of the variable [(a2 

- ri)/4a] (U/z1v)t, where rl is the radial 
coordinate and U, Zl, a, v are as above. They used the boundary layer equations. 

The method of Atkinson and Goldstein with the change in sign in the second 
of the above variables was essentially that used by Seban and Bond (19;jl) to 
study the boundary layer on the outside of a cylinder in an axial flow. Kelly 
(1954) made some numerical corrections to Seban and Bond's work. The solution 
by Seban, Bond and Kelly has been used, and referred to, as the exact solution 
for comparison in connection with suggested approximate methods. The solution 
given in §§3, 4 below suggest that, beyond their second term, the Seban, Bond 
and Kelly description is probably not a correct solution of the Navier-Stokes 
equation. 

GIauert and Lighthill (1955) considered the same problem and, for the solu­
tion near the leading edge, used a Polhausen technique which requires a very 
careful choice of the velocity profile used. It compares well with the solution of 
Seban, Bond and Kelly. The same remarks above on the latter solution also 
hold for that of GIauert and Lighthill. In the same paper GIauert and Lighthill 
also considered the solution of the boundary layer equations in the region where 
the boundary layer is large compared with the cylinder radius, by expanding 
the stream function in inverse powers of log (4v zr/Ua2

). Stewartson (1955) 
independently considered this latter problem with the same results. The boundary 
layer solution they found is consistent in this region of large zr/a with the results 
given by Batchelor (1954) in his study of the flow resulting from the impulsive 
motion of the infinite cylinder parallel to its generators. He used Rayleigh's 
(1911) method to relate his work to the axial flow problem. 

Seban and Bond's (1951) analysis and GIauert and Lighthill's (1955) tech­
nique were directly extended by Cooke (1957) and by Varley (1957) to cylinders 
of arbitrary cross-section. Their suggested form and magnitude of terms higher 
than the second, in the region of the flow field where the boundary layer is small 
compared with the radius, are also probably wrong. Unlike the solution sug­
gested below, all of these solutions cannot give the correct first order correction 
to the Blasius solution for the flat plate as the limit as the cylinder radius tends 
to infinity under the usual limiting process. 

The use of Rayleigh's (1911) method has been criticized because of its poor 
comparison with the Blasius solution in the semi-infinite flat plate problem. The 
forthcoming analysis or comparison with the modified Oseen method when U 
is replaced by cU, with c appropriately chosen, shows that Rayleigh's method 
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can be modified simply, to give fairly good agreement with the Blasius solution. 
Sowerby and Cooke (1953), independently to Lewis and Carrier, introduced 
cU for U in applying the Rayleigh method to the axial flow past a circular cyl­
inder, and chose a value for c so that the first term in this solution gave exactly 
the same value for the local skin friction coefficient as the Blasius solution. They 
then used this value of c in higher order terms from Rayleigh's method but poor 
comparison was found on comparison with Seban and Bond's (1951) higher 
order terms. This is to be expected when one considers the implication of c in 
cU. For each position Zl from the leading edge there is clearly an appropriate 
value for c. Near the leading edge where the boundary layer is thin a value for c 
which results in the first term from Rayleigh's method giving the same skin 
friction as the Blasius solution is appropriate. Higher order terms allow for the 
solution to hold farther from the leading edge in which region the boundary 
layer is thicker. At a position in this region a higher value for c, than that used 
in the solution nearer the leading edge, would thus be appropriate. Eventually 
in the region far downstream from the leading edge where the boundary layer 
is very large (compared with the cylinder radius) a value for c near unity would 
be appropriate. In this case the strict application of Rayleigh's method, that is 
c = 1, should give a reasonably good approximate answer. The solution in this 
region given by Batchelor (1954) using this has in fact been verified by Glauert 
and Lighthill's (1955) solution. However, even if a systematic method for choos­
ing a numerical value for c to be set in the second term from the Rayleigh-type 
solution near the leading edge is used to improve the second term, the correct 
third and higher terms cannot be obtained correctly in form (or magnitude) by 
the use of specific values for c (see §§2, 3 which show in effect that the second 
order approximation to c is not a constant). 

It appears, therefore, that the use of this averaging of the full N avier-Stokes 
equation with a modified solution of the boundary layer Oseen equations pro­
duces the expected type of singularities and the form of some of the terms in the 
asymptotic solution to a class of large Reynolds number Hows. No attempt is 
made here at any rigorous mathematical justification for the method. The 
justification for it, at this stage, is that consistent solutions are found when 
comparison is made with the Hat plate solution of Goldstein (1960) and Murray 
(1965a). Further, in the axial flow problem, the suggested stream function when 
substituted in the full N avier-Stokes equation, shows that a self-similar solution 
is possible and that it reduces to the correctt Hat plate solution under the usual 
limit. Justification in particular for the modified Oseen method is given by the 
close numerical comparison that is found with its use in specific problems. 
Weinbaum (1964) used it to obtain good results for the natural convection in a 
horizontal circular cylinder. In this case the c is replaced for convenience by 
clr where r is the radial coordinate measured from the cylinder center. Some 
examples and developments of the modified Oseen technique (as well as other 
approximate methods) are given by Carrier (1965). The weighting method is 
also described. The objective there, however, is different from ours in that good 

t See the footnotes below after equns. (23) and (46) regarding this solution. 
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numerical approximations to the first term only are sought: in this paper it is 
the asymptotic forms which are required. 

The ordinary differential equations resulting from these solutions produce a 
general linear operator (see §4) which has occurred in a large number of prob­
lems. This seems to suggest that it is a fundamental operator in a class of self­
similar solutions to the N avier-Stokes equations. 

A further result which appears explicitly in this work is that the class of prob­
lems similar to those discussed below can be indeterminate to the extent of a 
displacement of the origin of the coordinates parallel to the body generators. 
This displacement is a function of P. This indeterminacy affects all terms in the 
solution and is a result of not knowing the solution near the origin (or leading 
edge). This indeterminacy is different from that discussed by Goldstein (1960) 
and Murray (1965a). A similar origin displacement is, of course, possible in this 
latter solution since the leading edge is not covered by the solution. 

The application of the idea given here may not necessarily be restricted to the 
situations described below, nor to this class of flows, since the main point is that 
the use of integrals of the N avier-Stokes operator on a function related to the 
problem in question seems to produce at least some of the singularities that may 
be expected in the exact solution. The author intends to study this further. The 
method may also be relevant to singular partial differential equations in general. 

2. Illustration of the method: Flow past a semi-infinite fiat plate. The problem 
considered is the flow of an incompressible viscous fluid past a two-dimensional 
semi-infinite flat plate. The free stream velocity in the xl-direction is U, the 
plate is YI = 0, X ~ 0, where Xl , YI are Cartesian coordinates, UI, VI are the 
velocity components, PI is the pressure, p is the density, if;l is the stream function, 
and p is the kinematic viscosity. 

The solution to the boundary layer Oseen equation 

U db, = PUIYilli , (1 ) 

subject to UI = 0 on YI = 0, Xl > 0 and Ul ---';> U as Yl ---';> <Xl, Xl > 0 is 

Yl (U)! UI = U erf -- -
2 VXl 

(2) 

The velocity component VI is obtained from the continuity equation. 
Lewis and Carrier (1949) considered the flow past a flat plate using the Oseen 

equations but they introduced a constant c by writing cU for U in the equations. 
The constant c, which is expected to be less than unity, was determined by re­
quiring the solution for UI , as a function of c, to satisfy some integral of the differ­
ence between the exact and approximate form of the ul-convective terms. That 
is, they required their UI to satisfy 

1'" Ul"l(UI - cU) dYl = 0, 

or some weighted form of this. Effectively (as seen below) this requirement is 
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the same as requiring (2), and the resulting VI , with cU for U, to satisfy 

['" (Ul Ub, + VI UIYI - VUIYIY,) dYI O. 
-0 

(3) 

In this particular case c = yz - 1. As mentioned in §1 Carrier (1965) uses 
the Blasius equation to find this value of c. His starting function (and method) 
is slightly different. 

If the Blasius solution is used for comparison, the local skin friction coefficient 
given by (2) is approximately 70 % too high, while that with (yz - 1) U re­
placing U is only 9 % too high. If the integrand in (3) is weighted with UIYI then 
c = V3 - yZ in which case the local skin friction coefficient is within 4 % 
(lower) of the Blasius value. By allowing c to be a special function of x, involving 
two undetermined constants, Carrier can in fact very closely reproduce the 
Blasius function; but not higher order terms in the solution. 

The basic simple idea behind the method suggested in this paper is to replace 
U, or rather (U / VXl) in (2) by ")'1 (Xl, v) * and to find a form for "{I by integrating 
the full N avier-Stokes equation, weighted if necessary to insure convergence, in 
a manner similar to (3). An ordinary differential equation for "{I results, from 
which an asymptic solution can be found for small v. From this an asymptotic 
form for the stream function can be found easily. Simply, the motivation is that 
UU1x, is not a sufficiently accurate approximation to UIUUI + VIUllI1 and so we 
replace U by a function of Xl , v, and U in an attempt to approximate the exact 
asymptotic form solution by taking into account the effect of the correct mo­
mentum terms in an integral form. 

It is convenient to non-dimensionalize the equations of motion by writing 

X = x,U/v, Y = y1U/v, U = uJ/U 

V = vt/U, p = pt/p(f, tit = fIlII, "{ = "{IV/U, 

in which case the equations become 

UUx + V'Uy = -px + (uxx + UIlI/), 

U!J z + VVI/ = -py + (vxz + VI/Y), 

U x + VlI = O. 

Elimination of p from (5) and (6) gives the N avier-Stokes equation as 

L(u, v) = uUx + VUY - VVx - (uyy + 2uxx ) 

(4) 

(5) 

(6) 

(7) 

a [[V ] (8) - ax 0 (uvx - VZZ) dy + I (vv)y=O - (p)v=o} = 0, 

where L(u, v) is defined by (8). 

* This is equivalent to writing a general function of x, , U and v in place of the constant 
c in the modified Oseen method. 
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It is suggested that 

U = erf I'(x)y, if; = y erf I'Y - I'~7r [ 1 - exp (-I'V) J, (9) 

(the latter equation being obtained using (7» will result in an approximate 
asymptotic form for large x for the solution to the full N avier-Stokes equation 
(8) when (9) is required to satisfy 

[' U y L(u, v) dy = O. (10) 

The weighting function U/I in (10) is used so that every term in the integral (10) 
converges at the upper limit; its inclusion in (3) was not necessary but as shown 
above did not, as was to be expected, change the answer qualitatively. Through­
out we consider I'(x) ~ 0, y ~ O. 

Substitution of (9) in (10) gives, after some simple but slightly tedious alge­
bra, the following ordinary differential equation for I'(x): 

where 

and 

C'y'h2 + 21' = F1(I') - F2(I'),t 

( "/ 2 '2 3) III 4 1 "I 5 13 6 F 1 1') = 2 ( I' I' - I' h + an' h + ~ I' I' + a31' h, 
F () b iV/ 4 + b 1 111/ 5 + b 112/ S + b 12 "/ 6 + b 14/ 7 2 I' = II' I' 21' I' I' 31' I' 41' I' I' 61' 1', 

C = y'3" - viz, al = 1 + 1l'/12 - viz, 
~ = -7 - 31l'/4 + 11/v1z + 7/20, 

a3 = 8 + 1l' - 19/2y'2" - 8/O, 
bl = -1 + 1l'/4, 

b4 = -33 + 91l', 

b2 = 10 - 31l', 

bs = 35 - 2h/2. 

b3 = 15/2 - 91l'/4, 

(11) 

The primes denote differentiation with respect to x, If the dimensional form of the 
equations had been used, (11) would be for 1'1 (Xl , v) and v2 would multiply 
F l (I'l) and v4 would multiply F2(I'1). 

Since we are interested in asymptotic forms for large x, that is a coordinate­
type expansion, we write I' in the form of an asymptotic series 

I' = 1'0 + 1'1 + 1'2 + 
which on substitution in (11) gives for 'YO, 

1 2 
cI'oho + 21'0 = O. 

The solution of (13) is 

1'0 = MA + x/crt, 
t The F, , F2 are functions of 'Y and its derivatives. 

(12) 

(13) 

(14) 
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where A is a constant to be determined from the leading edge solution (or bound­
ary condition) which is at present unknown. 

An indication of the nature of A in dimensional form as Al can perhaps be 
more clearly seen if we put 'Yo for'Y in (9), which in dimensional form gives 

UI = U erf {!YI[VXI/CU + vAI(v)ri
}. 

Although the expansion (12) is valid only for large UXI/V, if we consider the 
last equation to hold up to Xl = 0, then with Yl ~ 0, XJ = 0, 

UI = U erf yI/2v Al(V)V. 

If this holds, Al(V) must be such that lim Al(V) = ° as v ~ 0, otherwise the 
first order solution for Ul above for v ~ ° would be independent of Xl. Thus a 
first order solution has A == ° and a modified form of (2) is obtained with 
(V3 - 0) U for U. Of course the solution is not expected to hold at X = 0, 
just as the Blasius solution is not expected to do so. At this point v, from (9), 
is infinite. As seen below 'Yl , 'Y2, '" are functions of 'Yo so the influence of A 
(or the leading edge) is felt in each term of the expansion. It represents, in a 
sense, an unknown (at this stage) displacement of the origin of the coordinate 
system parallel to the Xl-axis. Such a displacement is also possible in the Gold­
stein solution. If we introduce 

Xl = Xl + cUA 1(v), (15) 

(5 )-(8) have X for X and the resulting solution for Ul is 

Yl (CU)! Ul = U erf - -
2 vXl 

This is valid only for large UXI/v. If it were valid at Xl = 0 it would give Ul = U 
at Xl = 0, Yl ;c ° but it would also give v infinite. A is, of course, positive and 
is an estimate of the distance of the leading edge influence in the flow upstream 
of Xl = ° for the leading term. 

To proceed to higher order terms in 'Y it is easy to see that 'Yo from (14) is 
small when X is large and the right side of (11) is of higher order than the left 
and F2 is of higher order than Fl. In fact, from (14), 

, -2 a 
'Yo -- 'Yo, c 

" 12. 'Yo = C2 'Yo, etc, 

and so 

Fkto) = a4 'Y~ , F2C'i'0) = b. 'Y~ , 

a4 = ~ [16 - ~ (15al + 3az + aa)], 
8 (In) 

b5 = 4 (97 - 457r). 
c 

N either of a4 , b. is zero. 
The equation for 'Yl from (11) and (12) is thus 

'/ 2 3 C'Yl 'Yo + 6')'1 = a4'YO 
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the solution of which using (13) is 

'YI = B'Y~ - !a4'Y~ log 'Yo , 

where B is a further undetermined constant. 
Similarly, from (11), (12), (13), (16) and (17) 

'Y2 = 'Y~[HI(B) + H2(B) log 'Yo + loa! (log 'YO)2], 

( 17) 

(18) 

where HI , H2 are known functions of B. A complementary function 'Y~ is also 
given by the equation for 'Y2 , and all higher terms, but it is incorporated in the 
undetermined constant B in 'Yl . 

Although a form for the stream function 1/1 is suggested by Uu = 0 at Y = 0 
it is better to consider 1/1 from (9), which may be written as 

1 
1/1 = - f( 'YY ) , 

'Y 
(19) 

wheref('YY) is a function of 'YY alone. With'Y expanded as in (12), (19) may be 
expanded to give 

1/; = ~ [f( 'Yo y) + 'Yl {-yo yj' ( 'Yo y) - f( 'Yo y) } 
'Yo 'Yo 

+ 'Y!{[('YOY?/2 + 'Y2;0 ('YoY)]/'('YoY) (20) 
'Yo 'Yl 

- 'Yo y( ( 'Yo y) + (1 - 'Y~t) f( 'Yo y)} + ... J. 
Since 'YI ,'Y2, etc. from (17) and (18) are functions of 'Yo only, (20) is an equation 
with variables 'Yo and 'YoY only. If we set A = 0 in (14) then 'YOI is proportional 
to RXI , the Reynolds number based on Xl. Weare thus led to introduce the 
natural variables~, 7J, in the case when A = 0, by 

1 (U)! ~ = (UXI/II)\ 7J = 2" Yl /lXI ' (21) 

which are proportional to 'YOI and 'YoY respectively. However, it is not necessary 
to set A = 0 as shown above with the transformation (15) redefining the XI­
coordinate. The appropriate ~, 7J are then 

(
UXl)i 1 (U)! ~ = -, 7J = - YI - • (22) 

/I 2 /lXl 

A suggested form for the stream function is thus, from (17), (18), (20) and 
(21) or (22), 

1/; = ~ [fo(7J) + ~ {f2(7J) + g2(7J) log 0 
(23) 

+ ~ {fa(7J) + ga(7J) log ~ + ha(7J)(log ~)2} + '" J. 
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The first three terms in (23) are those given by Goldstein (1960)t and computed 
by}\Iurray (1965a)t: parabolic coordinates are used there in place of the ~, 'I) 

above. Parabolic coordinates are clearly suggested by (21) and (22). The fourth 
and higher terms in (23) are not correct in form compared with Goldstein's 
(1960) solution in that the power of ~ in the fa, g3 , h3 bracket should be ~-2 
and not C3 as in (23). The form and powers of the logarithms are the same, 
however. 

In (20), the 'Yl (from (17)) contains an undetermined constant B in the non­
logarithm term, which suggests that such an indeterminacy might appear in 
finding h ( 'I)) in (23). As shown by Goldstein (1960) and Murray (1965a) this 
is in fact the case. Further, a form which could be suggested from (20) is g2('I)) = 
ahf~ - fo) where a is some constant which can be determined. Goldstein (1960) 
shows that g2 is in fact proportional to ('I)j~ - fo) and Murray (1965a) shows 
that a = 1.569. 

A form for -.f; for large ~, such as (23), is not sufficient to find the complete 
solution. A potential solution must be found into which -.f; merges for large 'I). 

This potential solution gives the boundary conditions on the functions of 'I) 

for large 'I). These functions of 'I) all have double zeros at the origin. Goldstein 
(1960) deduced the form of if; for higher order tenns than the first, from a knowl­
edge of the exterior potential flow. When the foregoing method is used, the 
potential flow would be suggested by the foregoing result. What is equally im­
portant, of course, is that it must be verified that the suggested if; is consistent 
with a possible potential flow. 

This example illustrates the method and its comparative success in predicting 
the correct form of the stream function for large x. It also gives a good quantita­
tive value for the first term in such quantities as the local skin frinction coefficient 
and the displacement thickness. It does not give the correct fourth and higher 
terms as to the power of ~. The second and third terms are invariably the most 
difficult to obtain and if they can be determined higher order terms in many 
cases may be inferred from them, particularly with the experience gained from a 
knowledge of the semi-infinite flat plate solution of Goldstein (1960)t and Murray 
(1965aH. In this latter solution the origin displacement found above is suggested 
by Goldstein's analysis since it does not cover the region near the leading edge. 

3. Incompressible axial flow past a semi-infinite circular cylinder. As was 
discussed in the introduction, the problem of this section has been studied fairly 
extensively before but such studies have been restricted to similarity solutions 
of the boundary-layer equations of motion. We consider here the complete 
N avier-Stokes equations and we look for an asymptotic description of the flow 

t It is still possible that this solution is not sufficiently general. The various functions of 
7/ in (23) all satisfy ordinary differential equations with the operator Ln (see (50) below). 
There is still the possibility of eigensolutions for non-integral n = X, say, being included in 
the form 2:x Ix I~x where the 1(1/) are exponentially small for 1/ large. These are essentially 
perturbations about the Blasius solution, some of which have been computed by Libby and 
Fox (1963). 
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which is valid outside the cylinder: we hope to be guided by that found in §2 
for the flow past a semi-infinite flat plate. 

We consider here the viscous axially symmetric flow past a semi-infinite circu­
lar cylinder of radius a. The velocity components in the axial, Zl, and radial, 
rl, directions respectively are WI , Ul : the free stream velocity is U in the axial 
direction. The origin of the coordinate system is on the axis at the leading edge 
of the cylinder. We seek an asymptotic solution to the axially symmetric Navier­
Stokes equations of motion, namely (25)-(27) below, valid in rl ;:::; a, Zl > 0, such 
that WI , Ul are zero on rl = a, Zl ;:::; 0 and WI --7 U, Ul --7 0 as rl --7 OJ. 

There are now two lengths in the problem, the cylinder radius, a, and the 
viscous length v/U. Introduce the non-dimensional quantities 

1'=rt/a, z=zt/a, R=1"-l, p=pt/pU2
, 

W = wt/U, u = ut/U, Re = Ua/v, if- = ,f,t/Ua2
• 

(24) 

The surface of the cylinder lies in R = 0, z ;:::; O. The non-dimensional equations 
of motion are given by 

WWz + UWR - pz + ~e [ WRR + ~ WR + wzz] , (25) 

1 [ 1 1 ] wUz + UUR -PR + R- URR + - UR - --;; U + Uzz , e r r-
(26) 

(ru)R + (rw)z = 0, (27) 

where W = 0 = U on R = 0, z ;:::; 0 and W --7 1, U --70 as R --7 OJ. 

Eliminating the pressure from (25), (26) gives 

M(w, u) = wWz + UWR - uu= 

- ~e [WRR + ~ WR + 2wzz - (WRR + ~ WR \=J (28) 

- :z [iR 
WU= dR - ~e i R 

Uzz dR + (UR)R=O] = 0, 

where M(w, u) is defined by (28). 
A direct comparison with §2 suggests that a suitably modified boundary 

layer Oseen solution should be used for W just as (9) was used in the previous 
section. Thus, we choose [see Carslaw and Jaeger (1947)] 

= _~ 1"" {Jo(kr) Yo(1c) - Jo(k) Yo(kr)} (_ Zk2) dk 
W 7r 0 Jij(k) + Y5(k) exp Re k' (29)t 

which for small z/Re may be written as 

-! R (Re)! R - 1 ( z )! . R (Re)! W = 1 - r erfc - - + --,- - ~ erfc - -
2 Z 41"' Re 2 z 

(30) 

t The J 0 and Yo are the usual Bessel functions. 
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The method in this paper suggests that it is not necessary to use (29) with 
!(Re/z)l replaced by 1'(z, Re) in the equivalent integral to (10) (equation (33) 
below) but simply 

W = erf 1'(z, Re)R. (31) 

This is an approximation to the first two terms of (30) for the region close to 
the cylinder. More importantly, however, (31) is also a modified (with 1'(z, Re)) 
solution of wz = (Re)-lwRR, while (29) is the solution of the Oseen-linearized 
boundary layer equation (there is an extra term Re r-1wR on the right of the 
last equation). 

The velocity components w, u are given by (27) as 

1 
W = -1/Ir, 

r 
1 

u = --1/12, 
r 

and so from (31) the stream function, 1/1, is 

1/1 = [R erf 1'R + 1'~1r {exp (-lR2) - I} ] 

+ [4~2 (21'2R2 - 1) erf 1'R + 21'~1r exp (_1'
2
R

2
) J. (32) 

Again l' ~ 0, R ~ O. The first square bracket is similar in form to (9). We now 
require w, u to satisfy 

t' WR M(w, u) dR = 0, (33) 

the equivalent of (10) in §2, where here M(w, u) is given by (28). Not all of 
the integrals in (33) can be obtained easily in closed form. However, since we 
are interested, at this stage, in the range Re» z, the function, 1'(z, Re), in (31) 
and (32) is large and asymptotic forms for the integrals can be found. Note 
that with Re» z the solution we shall obtain is that in which the boundary 
layer thickness is small compared with the cylinder radius. 

Substitution of (32) into (33) gives, after even more tedious algebra, as the 
ordinary difterential equation for 1'(z, Re), 

C1" h 2 + ~e l' = fl( 1', Re) + h( 1', Re) + fa( 1', Re) + ... , (34) 

where C = v'3 - V2 as in §2, the prime denotes differentiation with respect 
to z, the higher f-terms are of small order in l' and Re and 

h( 1', Re) = CI1" h 3 + c2/Re, 

( ) /If/ 4 ,j' 11 / 5 d "/ 6 1 (d '2/ a d / ) f2 1', Re = dl l' l' + U2 l' l' l' + 3 l' l' + Re 4 l' l' + fi 1', ( 35) 

( ) /If/ fi , /1/ 6 '3/ 7 '/ fi 1 ( / 2) f3 1', Re = ell' l' + el l' l' l' + e3 l' l' + e4 l' l' + Re efi l' , 
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where c, , d, , ei , i ~ 1, none of which is zero, are given by 

Cl = hi2 tan-l 0 - 1)/y';, 

C2 y'211" - 2y';, 2 
Ca C2 - - Cl, 

C 

dl = 1 + 11"/12 - 0, 3 
d2 = -7 - 4; 11" + 60 + 7/2y'3, 

da = 8 + 11" - 19/20 - 8/y'3, d4 = 3, d6 = -1, 

4 1 2 
d6 = -;;a (30dl + 6~ + 2da - C d4 ), d7 = 3 Ca + C Cl Ca + d6 , 

el = J1r G -20 tan-
l 

0 - 0 tan-
l 

1/0 ), 

e2 = J1r ( -~ + ~ 11" + 190 tan-
l 

0 - 90 tan-
l 
1/0), 

1 (35 7 _ /0 -1 _ /0 23 -1 0) ea = -= - - - 11" - 27 v 2 tan v 2 + -= tan 1/ 2 V1l" 12 4 V2' 

1 (1 1 -1 _ /0) 
e4 = V1r -3 + 2V2 tan v 2 , 

y'; 
e6 = 2V2' 

I t is convenient to write 

Z = Rez, 'Y(z, Re) = Re r(Z, Re), 

where, with Re large and Z large, r is small. Equation (34) now becomes 

cr' /r2 + 2r = [dl r"' /r4 + ~ r'r" /rs + da r,a/r 6 + d4 r'2/r 7 + ... J 

(36) 

(37) 

1 [{ '/ a } { "'/ 5 , "/ 6 ,3 7} J + Re Cl r r + C2 + el r r + e2 r r r + ea r /r +... (38) 

+ _1_ [d6/r + .. J + _1_ [e4 r'/r5 + e6/r2 + ... J + ... 
(Re)2 (Re)a ' 

where the prime denotes differentiation with respect to Z. With Re large, (38) 
suggests expanding r in a simple series 

1 1 
r = ro(Z) + Re rl(Z) + (Re)2 r2(Z) + .... (39) 

In the dimensional form of (11) in §2 an expansion would have been in powers 
of Jl

2. Substitution of (39) into (38) gives equations for ro, r l , r 2 , ••• , where, 
for example, 

, 2 ", 4 , "/ 6 '3 / 6 12/ a ) cro/ro + 2ro = dlro fro + d2roro ro + daro , ro + d4ro ro + .... (40 

Equation (40) now suggests that ro(Z) should be expressed as an asymptotic 
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coordinate expansion for large Z in analogy to the expansion for 'Y in §2. We 
write 

ro = oro + IrO + 2rO + 
where from (40) we find that 

oro = ![C + Zlcr\ IrO = D or~ - d6 or~ log oro, 

2rO = org[Ha(D) + H4 (D) log oro + i d~ (log oro)2], etc., 
(41) 

where C (corresponding to A in (14» is an undetermined constant and repre­
sents a displacement of the origin of Zl , D is another undetermined constant 
comparable to B in (17), Ha , H4 are known functions of D, and d6 is given by 
(36). The series for ro is similar to that for 'Y in §2. This is expected, since for 
large a (or small Zl) the cylinder approximates to a semi-infinite flat plate. 

The equation for r 1 is obtained from (38) by equating the coefficients of the 
liRe terms in (38). Again, we expand r 1 as a coordinate expansion 

and find that 

r 1 = Or] + ]r] + Zr] + ... 

Orl = lCa + Or~[hl + hz log oro], lrl = E or~ 

2rl = OrUH5(D) + H6(D) log oro + ha (log oro)2] 

arl = E Or~[H7(D) + hi log oro], etc. 

(42) 

where h, , i ~ 1 are known non-zero constants, H5 , H6 , H7 are known functions 
of D (equation (41» and E is another undetermined constant. 

With an expansion for r 2 analogous to those for r 1 and ro , we find that 

Or2 = d7/4 oro, 

lrZ = oro[Hs(D) + hs log oro], 2r2 Ehs or~ , 

ar2 = or~[F + H 9(D) log oro + h7 (log oro)2], 

4r2 = E Or~[HlO(D) + hs log oro], ek. 

(43) 

where d7 is given by (36), H s ... H 10 are known functions of D, hs ... hs are 
known non-zero constants and F is another undetermined constant. 

Equation (32) shows that 

1 1 
if; = -fC"/R) + -0 gC"/R). 

'Y 'Y" 

(The first term is similar to that of Eq. (19) in §2.) In an exactly similar way 
to that used in §2 we expand the if; of (32) by expressing 'Y in terms of rand 
expanding for large Re and Z using (37), (39), (41), (42) and (43). Here one 
natural variable would appear to be proportional to R Re oro. However, keep­
ing in mind the limit as the cylinder radius a ~ co, but with (r] - a) finite, a 
more appropriate and equally valid variable is proportional to R(R + 2) Re oro 
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or, in terms of r, (r2 - 1) Re oro. If, for example, C in (41) is zero we get com­
parable variables ~, 1) to those in (21) where here ~ 0: oro\ 1) 0: (r2 - 1) Re oro, 
and ~, 1) are given as 

~ = (Rez)t, 1) = Hr2 - 1) (Re/z)! 

or in dimensional form as 

2 2(T')~ rl - a u 
1)= -

4a liZ 1 
~ = (UzJ/v)\ (44) 

The limit as a -0> 00 with rl - a -0> YI gives the limiting 1) in (44) as tyl ( U / VZI) t 
which is the same as (21) with Zl for Xl . With a similar transformation to (15) 
with rl corresponding to Xl we have 

rl = Zl + CUCI(V), 

where Cl (lI) is the dimensional form of the undetermined constant C, we can 
write 

~ = (Url/lI)\ 
o 0 ( )1 _ ri - a" U ' 

1)- -
4a Vrl 

(45) 

in place of (44) (the special case of (45) with Cl = 0). Equation (45) cor-
responds to (22). 

The expansion of ..p as described above using (24), (37), (39), (41), (42), 
(43), and (45) (or (44) suggests the asymptotic form 

..p = ~e [10(1) + fz {f2(1) + g2(1) log~} + ... ] 

+ (~eY [Fo(1) + ~ {F2(1) + G2(1) log~) + ... ] (46)t 

+ (~eY [5'0(1) + ~ {5'2(1) + g2(1)lOg~) + ... J + 
The higher order terms in each square bracket suggested by the method here are 
O( (log n2/~4) as in §2. However, with the experience from that case the higher 
order terms are probably O«(log ~)2/~3) and so the extension to each of the 
coordinate expansions in (46) is probably of the same form as the correct one 
for the semi-infinite flat plate case discussed in §2. Thus the probable extension 
to the first bracket in (46) is 

~ {f3(1) + g3(1)) log ~ + h3(1))(log ~?}, 

with similar ones for the higher (~/Re)-terIllS. 

t There is still the possibility that arbitrary multiples of eigensolutions of Lnln = 0 (see 
(50» for non-integral n might be required in this equation within each square bracket (see 
the footnote after (23) as well). These solutions for such n have double zeros at." = 0 and 
tend to zero exponentially for." -7 o:l. 
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The solution suggested by (46) is self-similar in the sense that ordinary 
differential equations are required to be solved for the functions of '1/ as shown in 
§4. The equations (25) and (26) do not possess similarity solutions in the same 
sense that the boundary layer equations do. The similarity variables used with 
the boundary layer equations are ~jRe and '1/. These were first introduced by 
Atkinson and Goldstein (see Goldstein (1938» and used by subsequent workers. 
The solution (46) has in effect three 'variables' :~, URe, '11. 

4. The ordinary differential equations for 10, 12, g2 , F o ••.• and the skin 
friction on the cylinder. The functions of '11 in (46) are determined from the 
ordinary differential equations obtained by substituting (46) into the full 
Navier-Stokes equations (25) and (26) in vorticity form and equating the co­
efficients of powers of ~ in the usual way. The following ordinary differential 
equations are obtained: 

111" ( ) f 0 + fof 0 = 0, L2 g2 = 0, 

() ( ' )2 ( '" "') ~ f2 = d TJfo - fo jdTJ + fo g2 - fo g2 • 

L-1(Fo) -4(2f~' + 7JfbV
) 

'" I 1/ " , '" iV) L1(G2) = -(2Fog2 + 3FoY2 + FOY2 + 8Y2 + 4TJY2 , 

L1(F2) = fn{fo, Y2 ,f2, Fo , G2). 

L-2(fJo) -2(Fo F~' + 4F~' + 2TJFbV
), 

L o(92) d ( " " F G" " G''') - d7J 3fJo Y2 - fJo g2 + 2 0 2 + 4G2 + 4TJ 2 , 

LO(fJ2) = fn(fo , Y2 ,f2 , Fo , G2 , F2 , fJo , 92), 

where the operator 

If d
3 

( ),d
2 

"d ( 
Ln = dTJ4 + fo dTJ3 + n + 1 f 0 dTJ2 + f 0 dTJ - n- l)f~'; 

and where the notationfn is used to show the functional dependence. 

(47) 

(48) 

(49) 

(50) 

There appears, from (46)-(50), to be a pattern within each coordinate series 
in successive ~jRe terms in (46) in that the first (zeroth) functions satisfy an 
equation with n = n1, say, in Ln , the second and third terms satisfy equations 
with n = n1 + 2 in Ln , the fourth, fifth and sixth with n = n1 + 3, and so on. 
Further, higher ~jRe terms seem to have a value of n one less than the term 
previous to it (see (47), (48), (49». It seems, at this stage, that the operator 
Ln will appear in this solution with all positive and negative integral values of n. 
The semi-infinite flat plate solution (§2) has only positive integral values of 
n in Ln , but the possibility of non-integral n does exist. 

The boundary conditions for (47) -( 49) are that each function and its first 
derivative must be zero at TJ = O. The remaining conditions must be given for 
large '11 by the form of the external flow into which 1/1 from (46) must merge, for 
large TJ, with exponentially small vorticity. The conditions on fo , 12 , Y2, ... and 
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the computed functions have been given by Goldstein (1960) and Murray 
(1965a). Until the potential flow into which higher ~/Re terms must merge, is 
found, the outer (large 7]) boundary conditions cannot be specified with any 
confidence. Obtaining the external potential flow and hence the Fo , F2 , G2 , ••• , 

5'0 , 5'2 , g2 .•• is not the purpose of this paper. However, even without it, certain 
observations can be made about the solution given by (46). 

The operator Ln can be integrated once to give Kn where 

d3 d2 ,d " 
Kn = d7]3 + fo d7]2 + nf 0 d7] - (n - 1)J 0 • (51) 

If the constant of integration is set equal to zero then the equations resulting 
for Fo and 5'0 (and fo) are the same as those given by Goldstein (1938) for the 
entry flow into a circular pipe if 7] and the functions have reversed signs to those 
above and if the constants in that problem which relate to the constant pipe 
flow condition are set equal to zero. This first integral form with K" was given 
by Goldstein (1960) and it is useful in obtaining asymptotic forms for the solu­
tions of (47)-(49). 

The dimensionless skin friction coefficient T on the cylinder is given by 

1 (Re)2 T = (a/ ILU)[ILWlrJl=a = '4 T [1f~~l~=o, 

where IL is the viscosity. From (46) we get 

T = ! (Re) [[f;(O) + (.l..) F;(O) + log ~ g:(O) 
4 ~ Re r 

+ (~eY 5'~(O) + 0 (?)]. 
(52) 

In (52), fo is the Blasius solution, Fo , 5'0 have been computed by Seban and Bond 
(1951) and Kelly (1954) and g2 has been given by Murray (1965a). In dimen­
sional form the skin friction coefficient Tl is then given by 

aTl = 0.332 (Ua
2)t + 0.696 + 0.551 (~) (~)! log (~)t 

IL U VZl Zl UZl UZ l 

( 
VZl )i ( va

2 )1 
- 0.797 Ua2 + 0 UZl3 , 

(53) 

where ~ as given by (44) has been used so that comparison can be made with 
previous solutions. If (45) were used in place of (44) the Zl would simply be 
replaced by tl' An alternative way of writing (53) which shows more clearly the 
role of the Reynolds number based on Zl is 

arl = 0.332 (UZl)i (~) + 0.696 + 0.551 (_v )i (~) log (_v )t 
ILU v Zl UZ l Zl UZ l 

i 1 (54) 

- 0.797 (~Z) (~) + 0 ((~Z) (~)). 
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To date the solution which has been used for comparison with solutions ob­
tained by approximate methods consists of the first, second and fourth terms in 
(53). It is clear from (53) or (54), that the third term involving (v / U Zl)! 

log (v / U zd is larger than the fourth in the region of interest. Furthermore, in 
the range where z!/a is comparable to a/z1 the fourth term will be affected by the 
O«v/Uzda/z1) term in (54). This term however, comes fromf;(O) which as 
shown by Goldstein (1960) and Murray (1965a) (and suggested by this method 
in §2 above) contains an undetermined constant. Thus, the fo'Urth term cannot 
be given exactly at this stage. 

Thus, to summarize, the solution for the skin friction coefficient where the 
boundary layer is thin compared with the cylinder radius is given by (53) or 
(54). To continue this solution into the region where the boundary layer is large 
compared with the radius Glauert and Lighthill's (1955) solution should be 
used. Their solution is not valid over the complete length of the cylinder as 
suggested since the v log v is absent from their solution in the range discussed 
in this paper. The suggested curves for the skin friction, drag and displacement 
area as given by Glauert and Lighthill (1955) (and reproduced by Rosenhead 
(1963) and others) are valid in the low (vz!/Ua2

)-, or (V/Uz1)(z!/a)2-range 
only 'Up to the second term. For higher order accuracy a logarithmic term as in 
(53) or (54) must be incorporated. The same remarks will apply to Varley 
(1957), Cooke (1957) and others for non-circular cylinders. In the limit as 
a -7 CD, (52) (and (53» give the skin friction for the semi-infinite flat plate 
as found by Goldstein (1960) and Murray (1965a) while the other solutions dis­
cussed above do not. 

To return to (47)-(49), the operator Ln in (50) and Kn in (51) appear re­
peatedly in problems of a semi-infinite nature and one infers that perhaps it is 
fundamental in solutions of the N avier-Stokes equations. For example Ln , Kn , 
n ~ 2, occur in the Goldstein (1960) fundamental flat plate solution. L_1 occurs 
in the case of a semi-infinite flat plate in a uniform shear (see Murray (1961» 
and also in slip flow past a semi-infinite flat plate (see Murray (1965b». In 
the cylinder problem here Ln , Kn appear for all positive and negative integral t n. 
A connection between n and the power of ~, m, say, occurring in (46) is that 
111 + n = 1. The first term is, of course, omitted from this, it being the coefficient 
in the Ln . If n is not restricted to integral values the operator Kn in (51) appears 
in perturbations about the Blasius equation (the first of (47». Perturbations 
about the Blasius equation have been studied by Libby and Fox (1963): that is, 
they studied solutions of an equation Knf = 0 where n is now an eigenvalue. 
In a sense, then, terms which improve on the Blasius solution in the flat plate 
solution and others including the above may be thought of in terms of integral 
perturbations about the Blasius solution. This does not cover the above solution, 
however, since such perturbations as studied by Libby and Fox are restricted to 
complimentary functions of the integrated form of Ln only. The inclusion of 
non-integral terms in the 1/;'s of (23) and (46) is of course a real possibility. 

t Certain non-integral n may also appear. 
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5. Conclusions. The method suggested here for obtaining asymptotic forms 
for a class of N avier-Stokes solutions is to start with an approximate solution of 
the Oseen boundary layer equations, modify this solution by replacing U by a 
function of U, v and the axial coordinate, and require the resulting form to 
satisfy an integral of the K avier-Stokes equation with this modified solution 
inserted. This results in an ordinary differential equation for the function re­
placing U and the solution is found in asymptotic form in general. The method 
seems to be fairly successful. Its application to flow past a semi-infinite flat plate 
gave the form of the first three terms correctly and indicated the type of singu­
larity that could be expected in higher terms. The possible origin displacement 
is also predicted by the method: the actual effective displacement is unknown 
at this stage since the leading edge solution has not yet been found. 

The application to axial flow past a circular cylinder resulted in a solution 
which differs from those previously obtained using the boundary layer equations. 
This is not, of course, surprising, but it also showed that a term O( v! log v) is 
the probable third term in the asymptotic solution for the skin friction coeffi­
cient, etc. and not simply O( v!) as previously suggested. The correct flat plate 
limit is given as the limiting case of the cylinder radius tending to infinity. In 
view of this solution for the circular cylinder the suggested curves for the skin 
friction coefficient, drag, etc. as given by Glauert and Lighthill (1955), Rosen­
head (1963), Varley (1957), Cooke (1957) and any results based on them are 
probably not valid beyond the 0(1) terms in their series form used to compute 
them in the region near the leading edge. The results given here and those given 
recently by Murray (1965b) in the case of slip flow past a semi-infinite flat 
plate suggest that it is usually unprofitable to study higher order solutions of 
the boundary-layer or the Oseen equationst in an attempt to get closer approxi­
mations to the N avier-Stokes solution since fundamentally different singularities 
exist in the latter as compared with the former. The solution, or form of it, 
given here is only a suggestion at this stage. To complete the problem an external 
potential flow must be found and the functions of 'YJ in 1/1 given by (46) must be 
shown to meet the necessary requirements to allow the solution near the cylinder 
to merge into the potential flow with exponentially small vorticity. 

It is hoped to pursue the study of this method initially to fluid mechanical 
problems of a more general nature by using an Oseen boundary layer solution 
as a starting point. In the semi-infinite flat plate problem an attempt was made 
to use the Blasius boundary layer solution with a modified 'YJ in place of the error 
function but without success. The importance of being able to use a first order 
singular perturbation solution in place of an Oseen-type solution as a type of 
generating function in singular perturbation problems in general is clear. A study 
along these lines is also envisaged. 
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