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1. Introduction. Considerable interest in the exact solution of the problem of 
diffraction of plane electromagnetic waves by optical gratings and in the attain
ment of high grating efficiencies has arisen, following the attainment of high
resolution gratings, notably those ruled according to the interferometric control 
principle first described by G. R. Harrison and G. W. Stroke. i • 2.3 

In the late 1950's, following in particular work by R. P. Madden and J. 
Strong! it became apparent that the scalar wave solutions based on physical 
optics failed to even approximate a satisfactory solution of the distribution of 
diffracted energy, among the orders in blazed gratings, especially because of 
polarization effects. The need for seeking rigorous electromagnetic boundary 
value solutions, for two orthogonal polarizations (E II , E parallel to the groove 
length, and H II , H parallel to the groove length) in the incident field, was again 
formally stressed by Marechal and Stroke,6 following a continued awareness of 
the electromagnetic nature and origins of the diffraction of light by gratings, at 
least since Lord Rayleigh's work in 1907,6 and indeed earlier, as far back as 
Fraunhofer in 1822.7 

Lord Rayleigh proposed a method of solution, in which it is assumed that the 
discrete spectrum of diffracted waves, including the infinity of evanescent waves 
(in each polarization), together with the incident wave is sufficient to satisfy 
the boundary condition on the surface of the grating. In fact, he obtained a 
solution of this type, in a closed form (an infinite system of equations with an 
infinite number of unknowns, the infinity resulting from the infinity of evanes
cent waves) for a perfectly conducting sinusoidal profile grating, for the E u 

waves. Rayleigh's solution was extended to the H u wave, for the sinusoidal 
grating, by Stroke.s The "Rayleigh" method of solution, was further extended 
to dielectric gratings, and gratings of a general periodic profile by Bousquet, 
Petit, J anot, and Hadni.9- 14 

The criterion for attaining the high efficiencies which are sought in optical 
gratings was first formally given by Stroke16 in 1963. High efficiencies in optical 
gratings can only be attained to the extent that polarization is avoided in the 
diffracted light, when the grating is illuminated in non-polarized light.is Mathe
matically, the criterion requires that the energy distribution in the diffracted 
light, for both polarizations, be everywhere the same, as a function of angles of 
diffraction, for given angles of incidence and wavelengths. 

With this criterion and the availability of electronic computers, it rapidly 
became apparent thatiS- 22 the Rayleigh assumption for the boundary condition 
could not be physically justified in a general case and that the solution of the 
grating diffraction problem had to be obtained according to the well-known 
boundary-solution methods using non-homogeneous Helmholtz equations, 23. 24 

where no simplifying boundary-condition assumptions are required. 
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One form of solution for a perfectly reflecting, quasiplanar surface of infinite 
spatial extent, and its particularization to periodic surfaces was given by Wir
gin20 in 1964, who noted, in conclusion, that the solution, while "exact", ap
peared in what seemed to be too complicated a form for the required numerical 
solution. 

More recently, Petit21 • 22 obtained a Helmholtz equation solution, in a form 
readily suitable for numerical computation, and in good agreement with experi
ment, for the case of a perfectly conducting grating, of a general periodic profile, 
for the special case of Ell . 

In this paper: 1) we give some further justification for the formalism of the 
non-homogeneous Helmholtz equation solution, with the aid of the theory of 
distributions,24 and, 2) we extend the solution to the case of H II with perfectly 
conducting boundaries. 

2. H II Polarization-Normal Incidence. Consider a diffraction grating whose 
surface is a perfect conductor. Let the periodic surface of the grating be described 
by the equation y = f(x) wherefis a periodic function with period d. The coordi
nate system is chosen with the grating grooves parallel to the z-axis and normal 
to the xy plane. A plane, monochromatic wave is normally incident on the xz 
plane and is polarized with the H vector parallel to the z axis. Such an incident 
wave has the representation 

Hi = e-iky 

where k = 27r/'A and 'A is the wavelength of the incident wave 
For the above geometry the magnetic field vectors of both the incident and 

diffracted fields have null x and y components. Therefore Hi and H ei will hence
forth denote the z components of the magnetic field vectors of the incident and 
diffracted fields respectively. 

The total magnetic field HI = Hi + HII must satisfy the following conditions: 
(1) AHt + k2Ht = 0 for y > f(x) 
(2) radiation condition for y ~ 00 

(3) boundary condition: n· VIIt = aHljan = 0 for y = f(x) 

where n is the unit vector normal to the grating surface. For the analysis which 
follows it is convenient to consider a set of conditions equivalent to those de
scribed above. Euclidean three-space may be taken as composed of two regions; 
(1) the free space region above the grating and (2) the grating region. Region 
(1) then contains the source of the incident plane wave. It is possible27 to con
sider the diffracted field as produced by "polarization currents" on the surface 
of the grating. Then the diffracted field satisfies the homogeneous Maxwell 
equations in region (1) but not on the surface y = f( x). Thus, an equivalent 
set of conditions to those above is obtained by replacing condition (1) with: 

AHa + eHa = 0 for y > f(x). ( 1') 

In region (1) and on the surface y = f( x) the diffracted field satisfies the non-
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homogeneous Maxwell equations24 

v X E + iWIlH = M, v X H - (iWE + u) E = J (2), (3) 

where M and J are magnetic and electric current densities on the surface y = f( x). 
These currents are distributions in the sense of Schwartz29 and Bouix24 and may 
be regarded as the sources of the discontinuities in E and H across the grating 
surface. The nonhomogeneous Maxwell equations give rise to the following 
nonhomogeneous Helmholtz equations:24 

AE + eE = iWIlJ - V X M + (iWIl)-l grad div M (4) 

AH + eH = (iWE + u)M + V X J - (iwp.)-l grad div J (5) 

Eq. (5) will be solved for Hd
, while eq. (4) has been solved by Petit(21) for Ed in 

the case of the E II polarization. Because the field Hd has only a z component, 
eq. (5) reduces to a scalar equation. The right-hand side of (5) further reduces 
to merely the z component of V X J. The M and grad div J terms drop out 
because they have null z components. 

It follows from equations (2) to (5) and from the preceding remarks that J 
may be represented as a distribution in the following way [for example, see Born 
and WOlf28 p. 5 and Petie!.] 

J = T'Y(x) o(y - f(x» (6) 

where T = unit vector tangent to y = f(x), 'Y(x) is some unknown periodic 
function with period d, and 0 is the Dirac delta function. Computing the z com
ponent of V X J and using properties of distributions (Schwarti9

) it follows 
that for the subsequent analysis (V X J)z camp may be assumed to have the repre
sentation 

2ikcp(x)o(y - f(x» (7) 

where cf;( x) is another unknown function of period d. Thus we may represent the 
right-hand side of (5) in the same way as Petit21 has represented the right-hand 
side of (4) in solving the problem for the En polarization. From this point on the 
solution for the Hll case is identical to Petit's for the En case except for the differ
ent boundary condition used. 

The Helmholtz equation to be solved for Hd is 

AHd + k2Hd = 2ikcp(x)o(y - f(x» (8) 

which is a simpler form of eq. (5). Hd
( x, y) is periodic in x with period d, i.e. 

Hd(x, y) = Hd(x + d, y) (9) 

Because of its periodicity Hd(x, y) may be expressed in the following form after 
Fourier expansion: 

H d( ) "",00 Hd ( ) inK'" 
X, Y L-n=-OO n Y e (10) 

where K = 27r/ d. The solution for Hd is formulated in terms of cf;( x). Identifying 
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Fourier coefficients of both sides of equation (8), yields 

d2H~ X2Hd ikK Id ( ) ( j(» -inKx d ( ) -d ~2~- + n n = - cP x 0 y - x e x 11 
y ~ 0 

where Xn = Vk2 - n2K2. (12) 

Petie! has given the solution of this differential equation [in his case for E~ (y)] 
in the form 

H~(y) = 2~~n f cp(x') exp [-inKx' + iXn 1 y - j(x) IJ dx' (13) 

where x' is a dummy variable. 
Now the boundary condition may be introduced in order to obtain a solution 

for cp(x) which will in turn specify Hd(x, y). The boundary condition has the 
alternate forms given by the equation 

aHt aHi aHd 
t - = - + - = n·VH = 0 (14) 

an an an 

fory = j(x), where 

-j'(x) . + 1 . 
n = 1 J 

VI + f'(X)2 VI + f'(X)2 
(15) 

Evaluating the individual terms of eq. (14), substituting and interchanging the 
order of integration and summation, eq. (14) becomes 

Id t kK [Xn sgn (l(x) - j(x'» - j(x')nK] 
o n=-'" 2~ kXn 

·cp(x') exp [inK(x - x') +iXn Ij(x) - j(x') Il dx' = e-ik!(x) = g(x) 

Now in eq. (16) let 

sex, x') = kK t [Xn sgn (l(x) - j(x'» - jeX')nK] 
2~ n=-'" kXn 

·exp [inKex - x') + iXn 1 j(x) - j(x') Il 
Eq. (16) then becomes 

f cp(x')S(x, x') dx' = g(x) 

which is recognized as a Fredholm equation of the first kind. 

(16) 

(17) 

(18) 

The Fredholm eq. (18) may be solved21 by expanding both sides of eq. (18) 
in Fourier series and equating corresponding Fourier coefficients of the two 
sides. 

If cp(x') and g(x) have the Fourier series representations 

( ') '"'''' ij'Kx' cp x L...,j'=-'" CPj' e () 
,",'" ijKx g x L...,j'=-o:> gj e (19), (20) 
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and setting 
d d 

Sjj' 11 sex, x')eiK(i'x'-ixl dx dx' (21 ) 

then eq. (18) may be solved for cp( x') by solving the system of equations 
"",",00 " 
,L.,i~-'" S ij CPj g i (22) 

Eq. (22) gives the solution of the Hu boundary value problem, for the per
fectly conducting grating in normal incidence. 

3. H II Polarization-General Angle of Incidence. We now generalize the 
solution of Section 2, for all angles. The incident wave has the following form 

Hi eik(x sin 6-y cos 0) (23) 

The diffracted field Hd obeys the relation. 

Hd(x + d, y) = aHd(x, y) (24) 

where a is a phase change introduced by the lack of symmetry due to an oblique 
angle of incidence. Eq. (14) also applies here. Using eq. (23) and eq. (15), eq. 
( 14) yields. 

[
J(X)ik sin 0 + ik cos 0 Hi] = -J(x)aHdjax + aHdjay (25) 
VI + J'(X)2 VI + j'(x)2 VI + j'(X)2 VI + j'(X)2 

Since eq. (25) must hold for x + d as well as for x and since 

H\x + d) = Hi(x) eikdBin8 (26) 

it is clear that 

a eikd sin 8 (27) 

This gives the following expressions for Hd(x, V). 

Hd(x, y) = exp (ikx sin 0) L::--", H~(y) einKx (28) 

It may be easily verified by substitution that eq. (28) satisfies the condition of 
eq. (24). Eq. (28) corresponds to eq. (10). 

Following the same procedure used in section (2), H~ must satisfy the follow
ing differential equation. 

d2H~ + X;'Fn = ikK ld r(x)c5(y _ J(x) )e-inK", dx (29) 
dy2 11' 0 

where now 

x,. = Vk2 - (nK + k sin 0)2 (30) 

and r( x) is an unknown periodic function of period d. 
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The boundary condition yields the following equation. 

( '£ kK rXn sgn (j(x) - j(x'» - j' (x) (nK + k sin (J)] rex') 
• n--OO 211" kX n 

·exp [inK(x - x') + iXn 1 j(x) - j(x') I] dx' 
(31) 

= [cos (J + j'(x) sin (J] exp [ike -j(x) cos (J)] = hex) 

N p.xt letting 

T(x, x') = kK t [Xnsgn (j(x) - j(x'» - j'(x)(nK + kSin(J)] 
211" n--OO kXn (32) 

·exp [inK(x - x') + iXn 1 j(x) - j(x') I] 

eq. (31) reduces to 
d 1 r(x')T(x, x') dx' = hex) (33) 

which may be solved in the same way as eq. (18). 

4. Diffracted Field Above Grating Surface. It may be of interest to note the 
form of Ed and Hd for y > max Vex)], that is the form of the diffracted field 
above the grating. 

Hd of eq. (28), has the form 

Hd(x, y) = L:~-oo Bn ei(kxsin HnKx+Xny) (34) 

where 

Bn = kK 1d r(x')e-inKxf_iXn!(xfl dx' 

211"Xn 0 

We also recall, according to Petit21 that Ed has the form 

where 

Ed(x y) _ ,",00 A i(kx sin 9+nKx+Xny) 
, - L...-in=-oo n e 

An = kK 1d <I>(x')e-inKx'-iXn!(x') dx' 
211"Xn 0 

(35) 

(36) 

(37) 

6. Numerical Calculations. Petit21 has described a procedure for computing 
approximate solutions for the system of eqs. (22). The approximate solution 
consists of some finite number F of the Fourier components of cf>(x) (i.e. a finite 
sum of terms form the right-hand side of eq. (19». To obtain these Fourier com
ponents we solve a F X F subsystem of the system of eqs. (22). For each of the 
Sii' , coefficients in this subsystem, we will use an N-term approximation ob
tained by consideration of eq. (17) and eq. (21). 

Details will be given when a program has actually given results in a form 
comparable to our experimental measurements. For an independently obtained 
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solution of the H II problem involving a somewhat more elaborate approach than 
that which we present (and requiring renormalization), which has appeared after 
our above solution was first submitted, the reader may also wish to consult our 
reference (30). 

6. Conclusion. We may finally note that we have good experimental evidence 
to indicate that multifacet grooves (consisting, for example, of three plane
facetted sections) give higher efficiencies, through a broader angular range, than 
grooves with two-facet saw-tooth cross-sections. 
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