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When one attempts to use inequalities involving Legendre functions in 
analyses involved in scattering problems, one finds that most of the existent 
upper bounds are functions of both the degree and the argument of the Le
gendre function. This paper exhibits inequalities which are functions of only the 
degree of the Legendre function. 

It is well known that when n is an integer 

(1) P,,(cos 8) ~ 1 (Ref. 1, p. 52) 

One can obtain this result directly from the Leplace Integral n > 0 

(2) P n(COS 8) = (lin) [. (cos 8 + v=t sin 8 cos 4>)" dcp 

(3) P,,(cos 8) ~ (lltr) [r dcp = 1, q.e.d. 

One may use the bounds for the Legendre polynomials to obtain the bounds 
on their derivatives. 

This can be done upon application of the following recursion formula, 

(4) dP,,+1(x)ldx - dP,,_l(X)/dx = (2n + l)P .. (x) , 

which is readily obtained from the recursion formulas appearing on pages 53 
and 54 of Ref. 1. 

The form of (4) was chosen so that the bound obtained depends only on n 
and not on x. 

By application of (1) with (4), one obtains* 

(5) dP,,(x)/dx ~ !n(n + 1) 

When n is not an integer the problem becomes more complex. 

Let us consider the definition of Pn , , i = 0, 1, 2, 3, ... , 

(6) P",(x) = 2F1( -ni, n. + 1; 1; HI - x). 

When x is equal to -1 and the ni are not integers 

(7) Pn ,(-I) = 2F1(-ni, n. + 1; 1; 1) 

and it is well known that (7) is without bound. In fact the two singular points 
of P .. ,(x) are at -1 and 00. 

By use of (4) (which applies whether or not n is an integer) we observe that 
the derivative of the Legendre function of non-integral degree also has a singular 
point at x = -1. 

* The proof is by induction on n. Prof. R. V. Churchill obtains the same result by a 
different method [see p. 190 of Ref. 61. 
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When one attempts to find the field for the scattering of either sound or 
electromagnetic waves from one or more cones one may hlilove to satisfy the 
following type boundary conditions: 

(8) 

(9) 

Pn;Cx) 1-0 = 0, 

dP n,(x)/dx 1-0 = 0, 

or combinations of the two. In this case the field can sometimes be expressed in 
a form 

(10) <p(r, x) = L; Ad(n;, r)Pn,(x). 

Usually the Ai do not dominate (10) to such an extent that convergence is 
forced. In most cases when (10) appears the fen; , r) are in the form of spherical 
Bessel functions and these functions force convergence if the P n,(X) are bounded. 
The purpose of this paper is to show that bounds exist for the Pn;Cx) under the 
condition (8) or (9). 

This problem is of physical interest for the following reason. Consider an ob
server located very close to the cone and then consider making the cone smaller 
and smaller with the observer remaining close to the cone. Does the field seem 
to increase without limit? A priori, mathematically, one might expect this since 
the ni are not integers; and if one takes the limit as x approaches - 1, the Le
gendre functions increase without limit, that is 

(11) limN_1Pn,(x) 00. 

The above is without physical sense because the fields do not increase without 
limit, and it will be shown that the above conclusion does not make mathe
matical sense either. 

To show this let us move the observer right to the surface of the cone; then 
we must show that 

(12) lim"'O->-lP n,(XU) :F- 00. 

Since the boundary conditions (8) or (9) make the Xo a function of ni and vice 
versa, then to take the limit described in (12) one must take a limit in degree 
and argument simultaneously, i.e., 

lim",o->-lP g(",o) (Xu). 

In order to show that (12) is a correct inequality it is only necessary to show 
that, under boundary condition (8) or (9), 

lim",o->-I!l(Xu) 

is equal to an integer. Then the upper bound to the absolute value of the Le
gendre function in the limit (xu = -1) would be unity. 

Consider the recursion formula (Ref. 2, formula 6) 

(13) P':( -x) = cos[(n + m)1r]P':(x) - (2/1r)sin[(n + m)1r]Q':(x). 
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Letting m = 1 and replacing the associated Legendre function by its definition 
in terms of the derivative of the ordinary Legendre function and then dividing 
through by ~2 we obtain the following recursion formula: 

(14) dP.,(-x) ( ) dPn(x) + 2 . ( ) dQn(x) -cos n'lr -- - sm n'lr --. 
dx dx 'lr dx 

Now letting x = -Xo, n = n, and considering boundary condition (9) we obtain 

(15) 'lr dPn,(x)/dx 1"'=-"'0. 
tan (n,'lr) = 2' dQn,(x»)dx 1--"'0 

N ow taking the limit as Xo ~ -1 and ni = g(xo) we observe 

(16) lim"'o-+-l dQu(",o) (x)/dx 1 "'-"0 = 00 

since the derivative of the Legendre function of the second kind has singularities 
at x = ± 1 independent of whether the n. are integers or not. 

Since the Legendre function of the first kind does not have a singularity when 
x = 1 it is clear by (9), (15) and (16) that 

17) lim.,0-+_1tan(n.1r) = 0 

Thus the n, must become integers as Xo ~ -l. 
Since 

lim"'0-+-1Pn ,(xo) = Pi (-I) = (_I)' 

we have shown that (12) is true and that (11) does not make mathematical 
sense if boundary condition (9) is applied simultaneously. 

The same proof as the above applies for boundary condition (8) except that 
one lets m = 0 in equation (13). In that case a jump occurs as one goes from 
cone to no cone, that is 

(18) 1 Pn,(xo) 1 = 0"", = 0,,0,-1. 

Under boundary condition (9) (which determines the ni) the value of Pn,(xo) 
for ni ~ 0 will be a relative maximum or minimum. This is easily shown because 
the derivative at the point Xo is equal to zero and the second derivative is not 
equal to zero. [The first derivative is equal to zero by the boundary condition. 
The second derivative is not equal to zero by an indirect proof, which follows: 

If the second derivative were equal to zero (xo r" ±1) then by the recursion 
formula the function and all its derivatives would be equal to zero. Since we 
are dealing with an analytic function, then the function is identically zero, but 
this latter statement is known to be false; thus the second derivative of the 
function is not zero.] 

In the region where 0 ;;:;;; x ;;:;;; 1, one may use the following equation (Ref. 
1, p. 67)* 

* The region of validity of (19) is 0 ;;;;; 0 ;;;;; 7r/2 rather than 0 ;;;;; 0 < 7r. See discussion 
(Ref. 3, p. 313). 
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cos (,u'll")P...(COS 0) - (2/'11") sin (}''II")Q~Jcos 0) 

(19) = r(,u + ni + l){sin O)l'TI' r sin21'~ # 
r(n. - }' + 1)Y; r(,u + !) -0 BI'-n. 

where B = (cos 0 ± v=i sin 0 cos ~), Re(}' + !) > 0, 0 ~ 0 ~ '11"/2. Let 
,u = 0 in the above formula: 

(20) P",(cos 0) = (1/'11") [. (cos 0 ± V=1 sin 0 cos ~)'" d~, 

Therefore 

(21) P",(x) ~ 1. 

The point x = 0 can be handled separately. 
Bound8 on P ",(x) , non-integer ni , Xo ~ x ~ 1. 

0<0 < '11"/2. 

The first value of n. for which the Neumann condition (9) holds is no = 0; 
the second is for ni > 1. None of the ni(i > 0) is integral (Ref. 4 & 5) if the 
cone does not have either a 0°, 90°, or 180° half cone angle (all of which are 
not really cones). Since Po(x) = 1, we will only consider ni > 1: By applying 
the formulas 

(22) 

(23) 

we obtain 

(24) 

but since 

(25) 

Pn.(O) 

zr(z) = r(z + 1) 

Y; 
r(tn; + l)r( -tn; + t) 

v;(~ + 1) 
P",(O) = r(~'+2)r( 2ni +~r 

cos (n''II"/2) 1 
'II" ret + tn;)r(t - tn;) 

( ) 1 I 'II" I (ni + 2) P n, 0 < Y; cos n i2 no + 1 . 

By applying the Neumann condition, one finds ni = 2i 

(26) P2
i
(0) = (-1)i(2i)! 1 

22i"l"I ~ -t.t. 2 

(Ref. 1, p. 63) 

(Ref. 1, p. 1), 

Thus the only bound in the range of physical interest for P ".(x) which re
mains to be found is for Xo ~ x < O. 

A very general bound (which does not use the boundary condition) for this 
region is (Ref. 1, p. 67) 
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(27) P",(cos 0) = V218 cos [en. + !)I/>] d¢ 
11" 0 (cos I/> - cosO)l 

P",(cos 0) ::;; V21 18d¢ I 
- 11" 0 (cos cp - cos O)t 

which states that 

(28) P",(cos 0) ~ I P-t(cos 0) I·~ (2/11") I K I, 
where K is the complete elliptic integral of modulusv'HI - x). 

When 0 < x ~ 1 the derivative of the Legendre function of non-integral 
degree has a bound similar to the derivative of the polynomial. 

Using equation (19) and letting J.I. = 1, 

P' ( 0) - -n,(n, + 1) sin 0 111' sin
2

1/1 dl/l 1 _ . . cos - ~-------- n 
'" 11" 0 (cos 0 ± v' -1 sin 0 cos 1/1) , 

(29) dP",(cos 0) = ni(n, + 1) 1" ___ sin
2

1/1 dl/l 1 _ n. 
d(cos 0) 11" 0 (cos 0 ± V-i sin 0 cos 1/1) , 

I dP",(x)/dx I ~ !n,cn. + 1). 

When x = 0 (Ref. 1, p. 64) 

dP ",(0) _ 2 sin (11"n,/2)r(!n. + 1) 
dx - -v; ran. + !) 

(30) dP ",(0) = _n_, sin (n_i_11") rein,) 
-d7x'-'--- -v; 2 r(in. + i) , dP",(O) ::;; n i +11 . (ni11") I 

dx - -v; Sill 2 . 

When one has the Neumann boundary conditions, not only is I P",(Xo) I a rela
tive maximum with respect to x, but also it can be shown by application of 
the recursion formulas that 

P",-l(Xo) = P",+l(XO) = XGP",(Xo). 

Therefore 

(31) I P",(xo) I > P",+l(Xo). 

Rewriting equation (14) with x replaced by -x, we obtain 

(32) dP ",cx) 2. ( ) dQ",( -x) + ( ) dP ",( -x) --- = -- SIn n'11" cos n.11" . 
~ 11" ~ ~ 

Letting x = xo and applying the Neumann boundary condition and inequality 
(29) we obtain 

(33) dQ",(-xo) = ~ t ( . ) dP",c-xo) < ~ I t ( . ) I ni(n. + 1) 
dx 2 co n, 11" dx = 2 co n, 11" 2 • 
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The usual bound on the Legendre Function good for all 8 for Pn,(x) is 

(34) 
2 

Pn,(cos) < - In, 11" sin 

Now applying the non-linear relationship 

(35) P .( ) dQlI,(x) _ Q .( ) dP",(x) = _1_ 
n. x dx n. x dx 1 _ x2 

and equation (13), we obtain 

(36) Pn,(-x) dPn,(-x) _ Pn.(x) dP",(-x) = ~ sinnnl" 
dx • dx 1I"1-x2 

(Ref. 1, p. 71) 

(Ref. 1, p. 63) 

Now applying the Neumann Condition at x 
obtain 

Xo where -1 < Xo < 0, we 

(37) 
Pn.(Xo) = 

2 sin n. 11" 

11" (l-x3) dPn ,( -x) I 
dx X=Xo 

We have already observed that as Xo -t -1 (subject to the Neumann Condi
tion which makes ni a function of xo), that the left-hand side approaches ( -1)i. 
The right-hand side becomes an indeterminate form. The 

dP",( -x)lx = xo-t-l 
dx 

approaches i(i + 1) 

This latter function decreases with decreasing I Xo I becoming zero at Xo = O. 
The sin ni1l" is zero at Xo = -1 because there ni = i and at Xo = 0, as there 
n, = 2i. It's minimum at nl = 1.5 occurs for Xo = cos 115°. 

The numerical values of P n 1 (COS ( 0) are monotonically increasing from -1 
at 80 = 180° to -0.5 at 80 = 90°. In-between values are P1.6(cos 115°) = -0.6 
and P1.03(COS 165°) = -0.9. The upper hound then is I Pn,(xo) I ~ 1, when the 
function obeys the Neumann Condition. The author, despite much effort, has 
not been able to find a short proof of this statement. The original analysis in
volved the substitution of the series obtained from the Neumann Condition into 
the series for the Legendre function and bounds obtained from this series. This 
analysis seems too lengthy and uninspiring to present here. 

It is also true that I Pn1(xo) I ~ 1 implies that I Pn,(xo)1 ~ 1, (i = 1,2, ... ). 
Again the author fails to find other than a lengthy series proof as no one has 
been able to find a recursion formula for the Legendre functions when the suc
cessive ni differ by other than an integer. 

The Legendre function inequalities obtained in this paper are in all cases 
stated in forms which are explicitly independent of their argument. 
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