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Web-based Supplementary Materials for “Multiple Testing for Neuroimaging

via Hidden Markov Random Field” by Hai Shu, Bin Nan, and Robert Koeppe

1. Web Appendix A: Interpretations of the Ising Model Parameters

For the two-parameter Ising model defined in (1) in the main paper, we can show that

log

{
P (Θs = 1,Θt = 1|θS\{s,t})
P (Θs = 1,Θt = 0|θS\{s,t})

×
P (Θs = 0,Θt = 0|θS\{s,t})
P (Θs = 0,Θt = 1|θS\{s,t})

}

=


β, t ∈ N (s),

0, otherwise.

Therefore, if s and t are neighbors, β is equal to a log odds ratio that describes the association

between Θs and Θt conditional on all the other state variables being withheld. We can see

that β reflects how likely the same-state voxels are clustered together. Similarly,

log

{
P (Θs = 1|

∑
t∈N (s) Θt = 0)

P (Θs = 0|
∑

t∈N (s)Θt = 0)

}
= h,

which is the log odds for Θs = 1 given that ΘN (s) are all zero. Thus, β > 0 and h 6 0 imply

the nonnegative dependency of state variables at neighboring voxels. In addition, for a voxel

s with m nearest neighbors, we have

log

{(
P (Θs = 1|

∑
t∈N (s) Θt = n)

P (Θs = 0|
∑

t∈N (s)Θt = n)

)
/(

P (Θs = 0|
∑

t∈N (s) Θt = m− n)

P (Θs = 1|
∑

t∈N (s)Θt = m− n)

)}

= mβ + 2h,

where n is an integer satisfying 0 6 n 6 m, which reflects the log ratio of the cluster effect

of signals (nonnulls) relative to the cluster effect of noises (nulls).
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2. Web Appendix B: Theoretical Results of the Oracle LIS-Based Procedures

for HMRF

In this section, we show the theoretical results of the oracle LIS-based procedures originally

for HMC model in Sun and Cai (2009) (Theorems 1 to 4 and Corollary 1) and Wei et al.

(2009) (Theorems 1 and 2), including the validity and optimality of the procedures, also

hold for our HMRF model. Here, an FDR procedure is called valid if it controls FDR at

a prespecified level α, and is called optimal if it minimizes marginal FNR (mFNR) while

controlling marginal FDR (mFDR) at the level α.

Unless stated otherwise, the notation in this section is the same as in Sun and Cai (2009) to

which readers are referred. Define πij = P (Θi = j), i ∈ S, j = 0, 1. The model homogeneity,

i.e., πij = π
(k)
j for all i in k-th HMC, is required in Sun and Cai (2009) and in Wei et al.

(2009) but fails to hold for HMRF because the boundary voxels and interior voxels have

different numbers of neighbors. However, the theory of the oracle procedures still holds for

HMRF if we redefine the average conditional cumulative distribution functions (CDFs) of

the test statistic T (x) = {Ti(x) : i ∈ S} by

Gj(t) =

∑
i∈S πijG

j
i (t)∑

i∈S πij
, (B.1)

where Gj
i (t) = P (Ti < t|Θi = j).

For HMC model, Sun and Cai (2009) proved the optimality of oracle LIS procedure in

their Theorems 1 to 3 and Corollary 1, and its validity in their Theorem 4; Wei et al. (2009)

showed the validity of oracle SLIS procedure in their Theorem 1, and both validity and

optimality of oracle PLIS procedure in their Theorem 2. Let us keep all the statements in

these theorems and corollary by

(i) replacing HMM by HMRF;

(ii) in Corollary 1 of Sun and Cai (2009), replacing the definition of Gj(t) by (B.1) and

the equation g1(t)/g0(t) = (1/t)π0/π1 by g1(t)/g0(t) = (1/t)
∑

i∈S πi0/
∑

i∈S πi1;
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(iii) in Theorem 2 of Wei et al. (2009), more precisely stating the optimality of oracle PLIS

procedure based on mFDR and mFNR.

For simplicity, we omit all these statements and only provide their proofs in the following.

2.1 Theorem 1 of Sun and Cai (2009) for HMRF

Proof. Following the proof of Proposition 1 in Sun and Cai (2007), we have

g0(c)G1(c)−G0(c)g1(c) > 0 (1)

and

g0(c)[1−G1(c)]− g1(c)[1−G0(c)] < 0. (2)

Additionally, by (B.1),

mFDR(c) =
E(N10)

E(R)
=

∑
i∈S P (Ti < c,Θi = 0)∑

i∈S P (Ti < c)

=

∑
i∈S πi0G

0
i (c)∑

i∈S(πi0G0
i (c) + πi1G1

i (c))

=
G0(c)

∑
i∈S πi0

G0(c)
∑

i∈S πi0 +G1(c)
∑

i∈S πi1
,

and

mFNR(c) =
E(N01)

E(S)
=

∑
i∈S P (Ti > c,Θi = 1)∑

i∈S P (Ti > c)

=

∑
i∈S πi1[1−G1

i (c)]∑
i∈S(πi0[1−G0

i (c)] + πi1[1−G1
i (c)])

=
[1−G1(c)]

∑
i∈S πi1

[1−G0(c)]
∑

i∈S πi0 + [1−G1(c)]
∑

i∈S πi1
.
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Then,

d(mFDR(c))

dc

=

(
g0(c)

∑
i∈S

πi0

[
G0(c)

∑
i∈S

πi0 +G1(c)
∑
i∈S

πi1

]

−G0(c)
∑
i∈S

πi0

[
g0(c)

∑
i∈S

πi0 + g1(c)
∑
i∈S

πi1

])
/[

G0(c)
∑
i∈S

πi0 +G1(c)
∑
i∈S

πi1

]2

=
[g0(c)G1(c)−G0(c)g1(c)](

∑
i∈S πi0)(

∑
i∈S πi1)

[G0(c)
∑

i∈S πi0 +G1(c)
∑

i∈S πi1]2

> 0

following from (1), and

d(mFNR(c))

dc

=

{
− g1(c)

∑
i∈S

πi1

(
[1−G0(c)]

∑
i∈S

πi0 + [1−G1(c)]
∑
i∈S

πi1

)

−

(
[1−G1(c)]

∑
i∈S

πi1

)(
−g0(c)

∑
i∈S

πi0 − g1(c)
∑
i∈S

πi1

)}
/(

[1−G0(c)]
∑
i∈S

πi0 + [1−G1(c)]
∑
i∈S

πi1

)2

=
(g0(c)[1−G1(c)]− g1(c)[1−G0(c)])(

∑
i∈S πi0)(

∑
i∈S πi1)

([1−G0(c)]
∑

i∈S πi0 + [1−G1(c)]
∑

i∈S πi1)2

< 0

following from (2). Hence we obtain part (a) and (b) of the theorem.

For part (c), the classification risk with the loss function

Lλ(Θ, δ) =
1

N

∑
i∈S

{λ(1−Θi)δi + Θi(1− δi)}
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is

E[Lλ(Θ, δ)] =
1

N

∑
i∈S

{λP (Θi = 0, Ti < c) + P (Θi = 1, Ti > c)}

=
1

N

∑
i∈S

{λπi0G0
i (c) + πi1[1−G1

i (c)]}

=
1

N

{
λG0(c)

∑
i∈S

πi0 + [1−G1(c)]
∑
i∈S

πi1

}
.

The optimal cutoff c∗ that minimizes this risk satisfies

λ =
g1(c∗)

∑
i∈S πi1

g0(c∗)
∑

i∈S πi0
.

Since T ∈ T , we have g1(c∗)/g0(c∗) is monotonically decreasing in c∗. Thus, λ(c∗) is mono-

tonically decreasing in c∗.

2.2 Theorem 2 in Sun and Cai (2009) for HMRF

Proof. Suppose there are vL hypotheses from the null and kL hypotheses from the nonnull

among the r rejected hypotheses when the decision rule δ(L, cL) is applied with test statistic

L and cutoff cL. We have vL =
∑

i∈S P (Θi = 0, Li < cL) and kL =
∑

i∈S P (Θi = 1, Li < cL),

and the classification risk

Rλ(α) = E[Lλ(α)(Θ, δ(L, cL))]

=
1

N

∑
i∈S

{λ(α)P (Θi = 0, Li < cL) + P (Θi = 1, Li > cL)}

=
1

N

{∑
i∈S

πi1 + λ(α)vL − kL

}
. (C.4)

Then following the proof of Theorem 1 in Sun and Cai (2007) using the expression (C.4) for

the classification risk Rλ(α), we complete the proof.

2.3 Theorems 3 and 4 in Sun and Cai (2009) for HMRF

Proof. The proofs are the same as those of Theorems 3 and 4 in Sun and Cai (2009), thus

omitted.
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2.4 Corollary 1 in Sun and Cai (2009) for HMRF

Proof. Following the proof of Corollary 1 in Sun and Cai (2009) with the expression of

the risk R replaced by

R =
1

N

∑
i∈S

{
1

t
πi0G

0
i (t
∗) + πi1[1−G1

i (t
∗)]

}

=
1

N

{
1

t
G0(t∗)

∑
i∈S

πi0 + [1−G1(t∗)]
∑
i∈S

πi1

}
and their equation g1(t∗)/g0(t∗) = (1/t)π0/π1 substituted by the new equation g1(t∗)/g0(t∗) =

(1/t)
∑

i∈S πi0/
∑

i∈S πi1, we complete the proof.

2.5 Theorems 1 and 2 in Wei et al. (2009) for HMRF

Proof. For Theorem 1 and the validity of oracle PLIS procedure in Theorem 2, the proofs

are the same as those in Wei et al. (2009). For the optimality of oracle PLIS procedure in

Theorem 2, the proof is the same as the proof of the optimality of oracle LIS procedure given

above.

3. Web Appendix C: Unbounded likelihood of HMRF

For any voxel t ∈ S, define a specific configuration of Θ by θ{t} = (θs)s∈S with θt = 1 and

θs = 0 if s 6= t. Then the observed likelihood function of HMRF

L(Φ|x) = PΦ(x) =
∑
Θ

Pφ(x|Θ)Pϕ(Θ)

> Pφ(x|Θ = θ{t})Pϕ(Θ = θ{t})

= Pφ(xt|Θt = 1)
∏

s∈S\{t}

Pφ(xs|Θs = 0)Pϕ(ΘS\{t} = 0,Θt = 1)

=

(
1√

2πσ2
1

exp

{
−(xt − µ1)2

2σ2
1

}
+

L∑
l=2

N(xt;µl, σ
2
l )

)

× (2π)−
N−1

2 exp

−1

2

∑
s∈S\{t}

x2
s

 eh

Z(β, h)

→∞
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if µ1 = xt and σ2
1 → 0 with other parameters fixed. Thus the observed likelihood function

is unbounded. The similar unbounded-likelihood phenomenon for Gaussian hidden Markov

chain model has been shown in Ridolfi (1997) and Chen, Huang, and Wang (2014).

4. Web Appendix D: Gibbs Sampler Approximations

This section presents the approximations of quantities of interest in GEM. Let Ω be the set

of all possible configurations of Θ: Ω = {θ = (θs)s∈S : θs ∈ {0, 1}, s ∈ S}. By the ergodic

theorem of the Gibbs sampler (See Lemma 1 and Theorem 1 in Roberts and Smith (1994)),

for any Gibbs distribution (See definition (4.3) in Geman and Geman (1984)) π(θ) and any

real-valued function f(θ) on Ω, with probability one,

lim
n→∞

1

n

n∑
i=1

f(θ(i)) =

∫
Ω

f(θ)dπ(θ) = E[f(Θ)],

where θ(i), i = 1, ..., n are samples successively generated using the Gibbs sampler by π(θ).

For our HMRF, it is easy to see that both the Ising model probability distribution Pϕ(θ)

and the conditional probability distribution PΦ(t)(θ|x) are Gibbs distributions. Thus by the

ergodic theorem, the following quantities can be approximated using Monte Carlo averages

via Gibbs sampler:

U (t+1)(ϕ) = EΦ(t) [H(Θ)|x]− Eϕ[H(Θ)]

≈ 1

n

n∑
i=1

(
H(θ(t,i,x))−H(θ(i,ϕ))

)
,

I(ϕ) = V arϕ[H(Θ)]

= Eϕ
[
(H(Θ)− Eϕ[H(Θ)])⊗2

]
≈ 1

n− 1

n∑
i=1

(
H(θ(i,ϕ))− 1

n

n∑
j=1

H(θ(j,ϕ))

)⊗
2

,

γ(t)
s (i) = PΦ(t)(Θs = i|x) = EΦ(t) [1(Θs = i)|x]

= EΦ(t) [1(Θs = i)1(Θ ∈ Ω)|x]

≈ 1

n

n∑
k=1

1(θ(t,k,x)
s = i),
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C

Z(ϕ)
= Eϕ[exp{−ϕTH(Θ)}]

≈ 1

n

n∑
i=1

exp{−ϕTH(θ(i,ϕ))},

and

Q2(ϕ(t+1,m)|Φ(t))−Q2(ϕ(t)|Φ(t))

= EΦ(t) [logPϕ(t+1,m)(Θ)− logPϕ(t)(Θ)|x]

= EΦ(t) [(ϕ(t+1,m) −ϕ(t))TH(Θ)|x] + log

(
Z(ϕ(t))

Z(ϕ(t+1,m))

)
≈ 1

n
(ϕ(t+1,m) −ϕ(t))T

n∑
i=1

H(θ(t,i,x))

+ log

(∑n
i=1 exp{−ϕ(t+1,m)TH(θ(i,ϕ(t+1,m)))}∑n

i=1 exp{−ϕ(t)TH(θ(i,ϕ(t)))}

)
,

where {θ(1,ϕ), ...,θ(n,ϕ)} and {θ(t,1,x), ...,θ(t,n,x)} are large n samples successively generated

using the Gibbs sampler by Pϕ(θ) and PΦ(t)(θ|x) respectively, and C is the cardinality of

set Ω.

5. Web Appendix E: ADNI FDG-PET Imaging Data Analysis

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly population.

The worldwide prevalence of Alzheimer’s disease was 26.6 million in 2006 and is predicted

to be 1 in 85 persons by 2050 (Brookmeyer et al., 2007). Much progress has been made

in the diagnosis of AD including clinical assessment and neuroimaging techniques. One

such extensively used neuroimaging technique is 18F-Fluorodeoxyglucose positron emission

tomography (FDG-PET) imaging, which can be used to evaluate the cerebral metabolic

rate of glucose (CMRgl). Numerous FDG-PET studies (Nestor et al., 2003; Mosconi et al.,

2005; Langbaum et al., 2009) have demonstrated significant reductions of CMRgl in brain

regions in patients with AD and its prodromal stage mild cognitive impairment (MCI),

compared with normal control (NC) subjects. These reduction can be used for the early
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detection of AD. Voxel-level multiple testing methods are common approaches to identify

voxels with significant group differences in CMRgl (Alexander et al., 2002; Mosconi et al.,

2005; Langbaum et al., 2009). We focus on the comparison between MCI and NC for such a

purpose.

The motivating FDG-PET imaging data are obtained from Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) database (adni.loni.usc.edu). These are the baseline FDG-

PET images of 102 NC subjects and 206 MCI patients. Each subjects baseline FDG-PET

image has been reoriented into a standard 160 × 160 × 96 voxel image grid with 1.5 mm

cubic voxels and the anterior-posterior axis of the subject is parallel to the line connecting

the anterior and posterior commissures, so-called AC-PC line. Each image is normalized

by the average of voxel values in pons and cerebellar vermis, which are well preserved

regions in Alzheimers patients. In human brain, the cerebral cortex is segregated into 43

Brodmann areas (BAs) based on the cytoarchitectural organization of neurons (Garey, 2006).

We consider 30 of them after removing the BAs that are either too small or not always

reliably registered. We also investigate 9 subcortical regions, including hippocampus, which

are commonly considered in AD studies. A region is further divided into two if its bilateral

parts in the left and right hemispheres are separated completely without a shared border in

the middle of the brain. We have considered combining neighboring regions to potentially

increase accuracy, but failed to find any pair with similar estimated HMRF model parameters.

Finally, 61 regions of interest (ROIs) are included in the analysis, where the number of voxels

in each region ranges from 149 to 20,680 with a median of 2,517. The total number of voxels

of these 61 ROIs is N = 251, 500.

We apply the PLIS procedure with HMRFs to the analysis of ADNIs FDG-PET imaging

data, which is compared with BH, q-value and CLfdr procedures. Since the FDG-PET scans

were normalized to the average of pons and cerebellar vermis, areas of the brain known to
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be least affected in AD, it was not surprising that almost all the signal voxels are found

with decreased CMRgl. Both PLIS and CLfdr procedures discovered significant metabolic

reduction, with a regional proportion of signals > 50%, in brain regions preferentially affected

by AD, including the posterior cingulate (BAs 23, 31; Mosconi et al., 2008; Langbaum et al.,

2009), parietal cortex (BAs 7, 37, 39, 40; Minoshima et al., 1995; Matsuda, 2001), temporal

cortex (BAs 20 to 22; Alexander et al., 2002; Landau et al., 2011), medial temporal cortex

(BAs 28, 34; Karow et al., 2010), frontal cortex (BAs 8 to 11, and 44 to 47; Mosconi, 2005),

insular cortex (Perneczky et al., 2007), amygdala (Nestor et al., 2003) and hippocampus

(Mosconi et al., 2005). In regions also typically affected in AD, such as anterior cingulate

(BAs 24, 32; Fouquet et al., 2009) and occipital cortex (BAs 17 to 19; Langbaum et al., 2009),

the proportions of signals found by PLIS are 49.6% and 39.0%, respectively, compared with

35.4% and 11.6% found by CLfdr, 12.2% and 0.94% by q-value, as well as only 1.24% and

0.87% by BH.

With respect to the regions that are relatively spared from AD (Benson et al., 1983;

Matsuda, 2001; Ishii, 2002) or rarely reported in the literature of the disease, caudate,

thalamus and putamen are found with high proportions of signals by PLIS (> 45%) and

CLfdr (> 25%) in each of these regions; signals in medulla, midbrain, cerebellar hemispheres,

pre-motor cortex (BA 6) and primary somatosensory cortex (BAs 1, 2, 3, 5) are each claimed

with a proportion greater than 20% by PLIS, but very sparse found by the other three

procedures. Since MCI as a group consists of a mix of patients, many of them will progress

to AD but some will not which may include subjects with corticobasal degeneration (Ishii,

2002), frontotemporal dementia (Jeong et al., 2005), or Parkinsonism (Huang et al., 2007;

Zeman, Carpenter, and Scott, 2011; Ishii, 2013), it is not surprising that some areas not

typical of AD patients were found to be abnormal in the MCI group.



11

References

Alexander, G. E., Chen, K., Pietrini, P., Rapoport, S. I., and Reiman, E. M. (2002). Longi-

tudinal PET evaluation of cerebral metabolic decline in dementia: A potential outcome

measure in Alzheimer’s disease treatment studies. American Journal of Psychiatry 196,

738-745.

Benson, D. F., Kuhl, D. E., Hawkins, R. A., Phelps, M. E., Cummings, J. L., and Tsai,

S. Y. (1983). The fluorodeoxyglucose 18F scan in Alzheimer’s disease and multi-infarct

dementia. Archives of Neurology 40, 711-714.

Brookmeyer, R., Johnson, E., Ziegler-Graham, K., and Arrighi, H. M. (2007). Forecasting

the global burden of Alzheimers disease. Alzheimer’s & Dementia 3, 186-191.

Chen, J., Huang, Y., and Wang, P. (2014). Composite likelihood under hidden Markov model.

Statistica Sinica [Preprint], doi:10.5705/ss.2013.084t.

Fouquet, M., Desgranges, B., Landeau, B., Duchesnay, E., Mezenge, F., De La Sayette,

V., et al. (2009). Longitudinal brain metabolic changes from amnestic mild cognitive

impairment to Alzheimer’s disease. Brain 132, 2058-2067.

Garey, L. J. (2006). Brodmann’s Localisation in the Cerebral Cortex. New York: Springer.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the

Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine

Intelligence 6, 721-741.

Huang, C., Tang, C., Feigin, A., Lesser, M., Ma, Y., Pourfar, M., et al. (2007). Changes in

network activity with the progression of Parkinsons disease. Brain 130, 1834-1846.

Ishii, K. (2002). Clinical application of positron emission tomography for diagnosis of

dementia. Annals of Nuclear Medicine 16, 515-525.

Ishii, K. (2013). PET approaches for diagnosis of dementia. American Journal of Neurora-

diology [online], DOI: 10.3174/ajnr.A3695.



12

Jeong, Y., Cho, S. S., Park, J. M., Kang, S. J., Lee, J. S., Kang, E., et al. (2005). 18F-FDG

PET findings in frontotemporal dementia: An SPM analysis of 29 patients. Journal of

Nuclear Medicine 46, 233-239.

Karow, D. S., McEvoy, L. K., Fennema-Notestine, C., Hagler, D. J., Jennings, R. G., Brewer,

J. B., et al. (2010). Relative capability of MR imaging and FDG PET to depict changes

associated with prodromal and early Alzheimer disease. Radiology 256, 932-942.

Landau, S. M., Harvey, D., Madison, C. M., Koeppe, R. A., Reiman, E. M., Foster, N. L.,

et al. (2011). Associations between cognitive, functional, and FDG-PET measures of

decline in AD and MCI. Neurobiology of Aging 32, 1207-1218.

Langbaum, J. B. S., Chen, K., Lee, W., Reschke, C., Bandy, D., Fleisher, A. S., et al.

(2009). Categorical and correlational analyses of baseline fluorodeoxyglucose positron

emission tomography images from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI). NeuroImage 45, 1107-1116.

Matsuda, H. (2001). Cerebral blood flow and metabolic abnormalities in Alzheimers disease.

Annals of Nuclear Medicine 15, 85-92.

Minoshima, S., Frey, K. A., Koeppe, R. A., Foster, N. L., and Kuhl, D. E. (1995). A diagnostic

approach in Alzheimer’s disease using three-dimensional stereotactic surface projections

of Fluorine-18-FDG PET. Journal of Nuclear Medicine 36, 1238-1248.

Mosconi, L. (2005). Brain glucose metabolism in the early and specific diagnosis of

Alzheimer’s disease. European Journal of Nuclear Medicine and Molecular Imaging 32,

486-510.

Mosconi, L., Tsui, W. H., De Santi, S., Li, J., Rusinek, H., Convit, A., et al. (2005). Re-

duced hippocampal metabolism in MCI and AD: Automated FDG-PET image analysis.

Neurology 64, 1860-1867.

Mosconi, L., Tsui, W. H., Herholz, K., Pupi, A., Drzezga, A., Lucignani, G., et al.



13

(2008). Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment,

Alzheimer’s disease, and other dementias. Journal of Nuclear Medicine 49, 390-398.

Nestor, P. J., Fryer, T. D., Smielewski, P., and Hodges, J. R. (2003). Limbic hypometabolism

in Alzheimer’s disease and mild cognitive impairment. Annals of Neurology 54, 343-351.

Perneczky, R., Drzezga, A., Diehl-Schmid, J., Li, Y., and Kurz, A. (2007). Gender differences

in brain reserve: An (18)F-FDG PET study in Alzheimers disease. Journal of Neurology

254, 1395-1400.

Ridolfi, A. (1997). Maximum likelihood estimation of hidden Markov model parameters, with

application to medical image segmentation. Politecnico di Milano, Milan, Italy.

Roberts, G. O. and Smith A. F. M. (1994). Simple conditions for the convergence of the Gibbs

sampler and Metropolis-Hastings algorithms. Stochastic Processes and their Applications

49, 207-216.

Sun, W. and Cai, T. T. (2007). Oracle and adaptive compound decision rules for false

discovery rate control. Journal of the American Statistical Association 102, 901-912.

Sun, W. and Cai, T. T. (2009). Large-scale multiple testing under dependence. Journal of

the Royal Statistical Society, Series B 71, 393-424.

Wei, Z., Sun, W., Wang, K., and Hakonarson, H. (2009). Multiple testing in genome-wide

association studies via hidden Markov models. Bioinformatics 25, 2802-2808.

Zeman, M. N., Carpenter, G. M., and Scott, P. J. (2011). Diagnosis of dementia using nuclear

medicine imaging modalities. In 12 Chapters on Nuclear Medicine. Croatia: InTech, pp.

199-230.


