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Summary

Soil microbial communities are abundant, hyper-
diverse and mediate global biogeochemical cycles,
but we do not yet understand the processes mediat-
ing their assembly. Current hypothetical frameworks
suggest temporal (e.g. dispersal limitation) and
environmental (e.g. soil pH) filters shape microbial
community composition; however, there is limited
empirical evidence supporting this framework in the
hyper-diverse soil environment, particularly at large
spatial (i.e. regional to continental) and temporal (i.e.
100 to 1000 years) scales. Here, we present evidence
from a long-term chronosequence (4000 years) that
temporal and environmental filters do indeed shape
soil bacterial community composition. Furthermore,
nearly 20 years of environmental monitoring allowed
us to control for potentially confounding environ-
mental variation. Soil bacterial communities were
phylogenetically distinct across the chronosequence.
We determined that temporal and environmental
factors accounted for significant portions of bacterial
phylogenetic structure using distance-based linear
models. Environmental factors together accounted
for the majority of phylogenetic structure, namely,
soil temperature (19%), pH (17%) and litter
carbon:nitrogen (C:N; 17%). However, of all individual
factors, time since deglaciation accounted for the
greatest proportion of bacterial phylogenetic struc-
ture (20%). Taken together, our results provide empiri-
cal evidence that temporal and environmental filters
act together to structure soil bacterial communities
across large spatial and long-term temporal scales.
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Introduction

Identifying the processes that structure biotic communi-
ties has generated scientific discourse over the past
century; it is presently fueled by our emerging under-
standing of the ecological forces shaping microbial com-
munities, especially those in highly diverse habitats like
soil (Fukami etal., 2010; Cline and Zak, 2014; Talbot
etal., 2014). Soil microbes mediate biogeochemical
cycles of global importance (van der Heijden et al., 2008);
therefore, understanding the ecological forces that shape
microbial communities is key for understanding how
biogeochemical cycles may respond to human-induced
environmental change. Evidence is mounting that both
temporal (i.e. dispersal limitation, priority effects) and
environmental (i.e. soil pH, C:N) factors can structure soil
microbial communities (Fierer and Jackson, 2006;
Hanson etal, 2012; Ramirez etal, 2012; Nemergut
et al,, 2013; Talbot et al., 2014). The resulting filter-type
models (Loreau et al., 2001; Vellend, 2010; Martiny et al.,
2011; Talbot et al., 2014) predict that over large temporal
scales, ecological drift may structure dispersal-limited
communities by stochastic local extinctions, and also can
contribute to bacterial genome evolution (Kuo etal.,
2009). Conversely, well-dispersed microbial propagules
may enter the local species pool to counteract ecological
drift (e.g. transport in air or on dust; Pearce et al., 2009;
Favet et al., 2013). Environmental filters may then modify
microbial community composition through the loss of
species unable to acclimate and compete in a changing
environment (Keddy, 1992). To date, determination of
temporal and environmental filters on microbial commu-
nities have mainly assayed low-diversity environments,
e.g. hot springs, recently deglaciated soils and subsur-
face soils (Whitaker etal., 2003; Stegen etal., 2013;
Brown and Jumpponen, 2014); or the magnitude of eco-
logical forces at various spatial scales, e.g. local, conti-
nental and global (Martiny etal, 2011; Talbot etal.,
2014). Consequently, there is limited experimental
support that environmental and temporal filters act
together to shape microbial communities in the hyper-
diverse soil environment, particularly across large spatial
(i.e. regional to continental) and temporal (i.e. centuries
to millennia) scales.
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Glacial retreat presents an opportunity to observe sites
that vary in age, but have similar ecological and edaphic
attributes, thereby providing a natural experiment to
determine the combined effects of temporal and environ-
mental filters in structuring present-day biotic communi-
ties (Brown and Jumpponen, 2014; Cline and Zak, 2014).
To investigate the ecological forces that shape highly
diverse bacterial communities in soil, we quantified bac-
terial phylogenetic structure across a 4000-year glacial
chronosequence in the Upper Great Lakes Region of
North America. In this region, the retreat of the Laurentide
ice sheet ¢. 14 000 years ago occurred in a south to north
direction. We selected four northern hardwood forest
stands along this chronosequence, in which new land
was exposed over 4000 years, and similar soils and
forests have developed to date (Burton etal., 1991).
Geographic distance between sites, serving as a
proxy for time since deglaciation, enabled us to investi-
gate the influence of time on the structure of present-day
bacterial communities. Furthermore, long-term environ-
mental monitoring (i.e. nearly two decades) enabled us to
determine the effects of subtle climatic gradients on bac-
terial phylogenetic structure, as well as to identify and
quantify confounding environmental variation along the
chronosequence.

If temporal filters structure bacterial community compo-
sition in our chronosequence, then a correlation should
exist between bacterial community composition and time
since deglaciation (i.e. geographic distance between
sites). However, if environmental filters structure bacterial
communities, differences in bacterial community compo-
sition should be correlated with environmental gradients
across sites, not time since deglaciation. Moreover, if both
temporal and environmental filtering structure bacterial
communities, temporal and environmental factors should
account for different portions of bacterial phylogenetic
structure. To test these hypotheses, we analysed forest
floor bacterial phylogenetic structure using Pacific
Biosciences high-throughput deoxyribonucleic acid (DNA)
sequencing technology (Schadt etal, 2010), thereby
enabling us to pursue high-resolution phylogenetic
analyses on high-quality DNA sequences of greater
length than afforded by other popular sequencing tech-
nologies (Fichot and Norman, 2013). Here, we provide
evidence that temporal and environmental filters act
together to shape soil bacterial communities over centu-
ries to millennia.

Results

Defining a glacial chronosequence

We selected four forest stands along a long-term glacial
chronosequence, which spans the north—south geo-
graphic range of the northern hardwood forests in the
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300 km

Fig. 1. The geographic distribution of the study sites in lower and
upper Michigan. In this region, the retreat of the Wisconsin glacier
c. 14 000 years ago occurred in a south to north direction as
shown.

Great Lakes region of North America (Fig. 1; Burton et al.,
1991). The southernmost site (site D) was freed from
glacial ice approximately 13 500 years ago (ya), and
pollen records indicate sugar maple forest establishment
10 000 ya (Evenson et al., 1976; Davis, 1983). Site C,
located 83 km north of site D, was ice free ~ 13 000 ya,
followed by maple forest establishment 9000 ya. One-
hundred and fifty kilometres north of site C lies site B,
which was uncovered approximately 11 000 ya, with
sugar maple forest establishment 7000 ya. Finally, the
northernmost site A is found 343 km northwest of site B,
was ice free 9500 ya, followed by forest establishment
6000 ya. All sites are floristically and edaphically similar
and fall along a climatic gradient (Table 1 and Table S1;
Burton etal, 1991; Zak etal., 2008). In each stand
(n=4), three 30 m by 30 m replicate plots were estab-
lished (n=12). The biogeochemical, climatic and floristic
characteristics of these plots are well characterized,
which enabled us to quantify potentially confounding envi-
ronmental variation along the chronosequence. Since
1987, we have recorded daily air temperature, soil mois-
ture and soil temperature, as well as annual or semi-
annual determinations of tree biomass by species, litter
biomass, production and biochemistry. All long-term
data are available at the Michigan Gradient website
(http://www.webpages.uidaho.edu/nitrogen-gradient/).

Bacterial community composition differs along the
glacial chronosequence

Bacterial community structure across the chrono-
sequence was determined using high-throughput DNA
sequencing of polymerase chain reaction (PCR)-amplified
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Table 1. Temporal, physical and biogeochemical characteristics of four forest stands along a glacial chronosequence.

Characteristic Factor Site A Site B Site C Site D
Temporal
Time since glacial retreat (y) 9500 11 000 13 000 13 500
Physical
Soil temperature (°C) 7.2+0.08 7.9+0.20 8.3+0.04 9.1+0.11
Soil moisture (%) 25.2+0.02 30.3+0.01 38.7 £ 0.04 33.7+0.03
Biogeochemical
Soil pH 46+0.17 4.7 £0.07 4.4+0.07 4.6+0.25
Leaf litter N content (g N m™) 143+2.7 321+£71 259+3.2 40.6 8.1
Leaf litter C content (g N Kg™') 4582 +1.4 456.4 + 0.52 453.6 + 0.88 4552 +1.3
Leaf litter C:N 63.7+2.6 57.1£6.1 52.9+2.1 43.4+0.66
Leaf litter mass (g m) 412.8+18.6 396.4+13.6 591.0+51.7 550.3 + 30.6
Forest floor turnover (y) 2.2+0.03 4.9+0.56 5.2+0.86 6.5+14

Values presented are the average + SE of three experimental plots per each site.

Plant cover data can be found in Table S1.

16S ribosomal ribonucleic acid (rRNA) gene fragments
(500 bp; V1-V3 region). Prior to quality control (QC), we
obtained 224 331 16S rRNA gene sequences, after QC,
106 435 sequences remained (53% removed). Sequence
loss through each step of our pipeline is summarized in
Table S2. In all, 18 180 operational taxonomic units
(OTUs) were generated at 95% sequence similarity to
assay the relative effects of temporal and environmental
filters on bacterial community composition at a taxonomi-
cally broad (i.e. genus) level. For all analyses, the dataset
was rarefied to 5000 sequences per plot across the four
forest stands.

Along the chronosequence, bacterial communities dif-
fered by taxonomic affiliation, alpha diversity (Shannon
index (H) and Chaol richness) and beta diversity
(phylogenetic structure; abundance weighted UniFrac
distance). The bacterial community was dominated by
the phyla Proteobacteria (41.2+£0.9% of community;
Table S3), Bacteroidetes (20.9 + 0.7%) and Actinobacteria
(16.3 £ 0.4%). The relative proportions of bacterial phyla
were largely consistent across the chronosequence.
However, Proteobacteria increased in relative proportion
(P<0.02) from north to south in the chronosequence,
whereas the relative proportion of Bacteroidetes and
Verrucomicrobia declined (P < 0.05). Among the Pro-
teobacteria, the relative abundances of Alphaproteo-
bacteria and Betaproteobacteria increased from north to
south in the chronosequence (P < 0.05). Conversely, the
relative abundance of Deltaproteobacteria declined from
north to south (P < 0.02). Bacterial alpha diversity was
lowest in the youngest site A (H” 6% lower; Chao1 69%
lower; P<0.05; Fig. S1) but similar across the three
southern-most sites. Beta diversity estimations indicated
bacterial communities were phylogenetically dis-
tinct across the chronosequence [weighted UniFrac
distance; permutational multivariate analysis of variance
(PerMANOVA); Pseudo-F =3.7; P<0.01]. Furthermore,
all sites differed from one another by pairwise PerMANOVA

(Table S4; P < 0.05), with the exception of the oldest south-
ernmost sites, C and D (P = 0.11). There was no difference
in community heterogeneity across sites permutational
test for homogeneity of multivariate dispersions
(PERMDISP; P> 0.10).

To determine which OTUs were driving compositional
differences along the chronosequence, ordinations were
obtained from principle coordinates analysis (PCoA) of
Bray—Curtis dissimilarity derived from the full OTU abun-
dance matrix (Fig. 2). Our PCoA clearly differentiated bac-
terial communities along the chronosequence, wherein
sites aligned by time since deglaciation along the second
principle coordinate (p = 0.89, P < 0.01). Here, 235 OTUs,
representing 20% of the community were significantly
(P < 0.05) and positively correlated with principle coordi-
nate 2 (PCo2). Operational taxonomic units attributable to
the phyla Actinobacteria (17%; Table S5), Bacteroidetes
(16%) and Proteobacteria (32%) accounted for a substan-
tial proportion of the OTUs significantly correlated with
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Fig. 2. Ordinations obtained from PCoA of Bray—Curtis dissimilarity

derived from all OTUs. Pairwise significance is presented in
Table S1.
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PCo2. OTUs attributable to Sphingobacteria accounted
for 87% of significantly correlated OTUs in the Bacte-
roidetes phylum. Order Actinomycetales account for 73%
of actinobacterial OTUs driving compositional differences
among sites in our chronosequence (Table S6). Among
the Proteobacteria, orders Rhizobiales (15%; alpha-
class), Rhodospirillales (13%; alpha), Myxococcales
(15%; delta)y and Xanthomonadales (12%; gamma)
accounted for the majority of correlated OTUs. No other
factor (Table 1) exhibited significant correlations to prin-
ciple coordinate 1 (PCo1) or PCo2.

Modeling temporal and environmental filters on bacterial
phylogenetic structure

To elucidate the contribution of temporal and environmen-
tal filters in structuring bacterial communities, we first
determined which broad characteristics (e.g. biogeo-
graphic, physical, plant community and temporal) were
correlated with bacterial phylogenetic structure along the
chronosequence. Environmental distance matrices were
calculated from data separated into four groups: (i)
biogeochemical, (ii) physical, (iii) plant community com-
position and (iv) temporal (i.e. geographic distance, a
surrogate for time). Individual factors comprising each
characteristic can be found in Table 1 and Table S1. Using
RELATE (a non-parametric form of Mantel test; Clarke
and Ainsworth, 1993), we modeled phylogenetic distance
(i.e. abundance-weighted UniFrac) as a function of
environmental and temporal variation across our long-
term chronosequence. Both temporal and physical char-
acteristics were correlated with bacterial phylogenetic
structure (P < 0.05; Table 2), whereas the correlation of
biogeochemical factors with bacterial phylogenetic struc-
ture was moderately significant (P=0.10). Plant com-
munity composition was not significantly correlated to
bacterial community structure (P = 0.20).

Distance-based linear models (DistLM; Legendre and
Legendre, 1998) were then used to determine: (i) which
individual factors (Table 1) within each correlated charac-

Table 2. Correlations of broad ecological characteristics to bacterial
phylogenetic structure by RELATE®.

Characteristic Rho
Environmental Biogeochemical 0.20"**

Physical 0.38*

Plant cover 0.06
Temporal Distance 0.47*

a. Rho values were calculated from abundance-weighted UniFrac
Distance.

Individual factors that are grouped into each characteristic can be
found in Table 1, factors grouped in plant cover can be found in
Table S1.

*P<0.01; **P<0.05; ***P<0.10.
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Table 3. Proportion of bacterial phylogenetic distance accounted for
by individual biogeochemical, physical or temporal factors by mar-
ginal DistLM.

Factor Pseudo-F Proportion
Biogeochemical
Soil pH 2.1* 0.17
Litter N 1.7 0.14
Litter C 1.2 0.11
Litter C:N 2.0 0.17
LLFFTO®? 1.6 0.14
Litter mass® 2.4* 0.19
Physical
Soil temp® 2.3* 0.19
Soil moisture 2.0* 0.16
Temporal
Distance(Km) 2.5* 0.20

a. Leaf litter turnover.

b. Litter mass and soil temperature were collinear predictive vari-
ables (p >0.7), thus, liter mass was not included in subsequent
analyses.

*P<0.05; **P<0.10.

teristic accounted for significant portions of bacterial
phylogenetic structure, and (ii) if the phylogenetic struc-
ture explained by each factor is shared or distinct. To
ensure robust and inclusive models, we chose to include
individual factors that were at least moderately significant
(P < 0.10) from preliminary tests. Marginal DistLM deter-
mined geographic distance (i.e. time since deglaciation),
when considered alone, accounted for a significant
amount of phylogenetic distance (20%; Table 3). Among
environmental factors, soil pH (17%), litter mass (19%),
soil temperature (19%) and soil moisture (16%) also
accounted for significant proportions of bacterial
phylogenetic distance (P < 0.05; Table 3); the contribution
of litter C:N (17%; P =0.06) was marginally significant.
To determine if each individual factor accounted for a
different or similar portion of bacterial phylogenetic struc-
ture, ‘forward’ DistLtM model building was implemented
using the adjusted R? criterion. Prior to model building,
Draftsman Plots (Clarke and Ainsworth, 1993) were cal-
culated to test for collinearity between predictive vari-
ables. Among predictor variables determined significant
by marginal DistLM, litter mass and soil temperature
emerged as significantly collinear (p > 0.7); thus, only soil
temperature was included in subsequent analyses. To
verify the model output, we varied the order of inclusion of
each factor in the model (Table 4 and Table S7). Among
environmental factors, soil pH (+ 17%; P=0.02) and litter
C:N (+ 18%; P=0.03) both accounted for significant and
distinct portions of phylogenetic distance when they were
included first; no additional phylogenetic distance was
accounted for with the inclusion of average soil tempera-
ture or soil moisture. The opposite was true when the
order of environmental factor introduction to the model
was reversed; the addition of average soil temperature
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Table 4. Proportion of, and cumulative bacterial phylogenetic dis-
tance accounted for by individual biogeochemical, physical or tem-
poral factors by sequential DistLM.

Variance explained

Variable Adjusted R? Pseudo-F Proportion Cumulative
+Soil pH 0.09 2.1* 0.17 0.17
+Litter C:N 0.21 2.6* 0.18 0.36
+Avg. Soil Temp. 0.22 1.1 0.08 0.43
+Avg. Soil Moist. 0.26 1.4 0.10 0.53
+Distance (Km)  0.43 3.5* 0.17 0.70

The ‘forward’ DistLM procedure was used with the adjusted R? selec-
tion criterion. Significance indicates the addition of the variable
significantly increases the proportion of phylogenetic structure
accounted for in the model.

*P<0.05.

(+19%; P=0.01) and moisture (+15%; P=0.04)
accounts for different and significant proportions of
bacterial phylogenetic structure when introduced first,
whereas no additional phylogenetic structure was
accounted for with the addition of pH and C:N. After the
inclusion of all environmental factors, the addition of geo-
graphic distance (time) significantly improved the model,
which accounted for a significantly greater portion of bac-
terial phylogenetic structure than when distance was
excluded (+ 17%; P=0.02).

The ‘best’ DistLM model building procedure was used
to determine the combination of individual factors
(Table 1) that accounted for the greatest proportion of
phylogenetic structure across the chronosequence,
wherein factor addition was evaluated stepwise and was
based on sufficient improvement in the model’s adjusted
R2. Geographic distance was the single best predictive
factor (Table 5). In addition to distance, soil temperature
(two-factor model) and soil moisture (three-factor model)
emerged as the best predictor variables. The overall best
model included four factors; distance, soil temperature,
moisture and pH (adjusted R? = 0.47). The addition of litter
C:N did not sufficiently increase the predictive power of
the model.

Discussion

Consistent with the filter-type model of microbial commu-
nity assembly (Loreau et al.,, 2001; Martiny et al., 2006;
Talbot et al.,, 2014), we provide empirical evidence that
temporal and environmental filters act together to struc-
ture soil bacterial communities across a 4000-year glacial
chronosequence. Across these scales, the effects of
historical processes (e.g. dispersal limitation) can be dif-
ficult to distinguish from effects of environmental factors
known to shape microbial community composition (e.g.
pH, C:N; Martiny et al., 2011; Cline and Zak, 2014; Talbot
et al., 2014). Here, we identified and quantified temporal

and environmental filters across a long-term glacial
chronosequence with sequential DistLM model building,
wherein phylogenetic distance was best explained
through a combination of environmental factors and geo-
graphic distance, our proxy for time since glacial retreat
(Tables 3-5 and Table S7). Together, environmental
factors accounted for 53% of bacterial phylogenetic struc-
ture, indicating that bacterial communities across the
chronosequence are mainly shaped by environmental
heterogeneity (Table 4). Temporal factors also accounted
for a significant proportion of phylogenetic distance, 17%
of which was distinct from all other factors (Tables 3 and
4), suggesting the presence of metagenetic artifacts of
historical processes in present-day bacterial communities.
Indeed, it has been proposed that both temporal
and environmental filters guide community assembly;
although, experimental evidence has largely been limited
to ‘low diversity’ environments, e.g. fresh water, hot
springs, wastewater and early successional glacial soils,
(Whitaker et al., 2003; Ostman et al., 2010; Ferrenberg
et al., 2013; Brown and Jumpponen, 2014). Our results
are consistent with a recent study in subsurface soil that
determined ~ 33-57% of bacterial phylogenetic structure
was primarily due to selection (i.e. environmental factors),
and ~ 35-57% was due to dispersal limitation and drift
(i.e. temporal factors; Stegen etal, 2013). Here, we
derived novel insight into hyper-diverse soil bacterial com-
munity assembly and determined that temporal and envi-
ronmental factors accounted for 17% and 53% of bacterial
phylogenetic structure, respectively, along a long-term
glacial chronosequence.

Our temporal factor, i.e. time since deglaciation,
accounted for a significant portion of bacterial
phylogenetic structure, supporting the hypothesis that
ecological drift from historical processes (e.g. dispersal
limitation, priority effects) partially shape present-day soil
bacterial communities. Considering our experimental

Table 5. Results from ‘best’ model selection procedure presented for
each number of predictor variables.

Number variables Adjusted R? R? Predictor variables

1 0.12 0.20 Distance
2 0.25 0.38 Distance
Soil temperature
3 0.39 0.56 Distance
Soil temperature
Soil moisture
4 0.47 0.67 Distance
Soil temperature
Soil moisture
Soil pH
5 0.45 0.70 Distance

Soil temperature
Soil moisture
Soil pH

Litter C:N
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design, we were able to determine the contributions of
broad temporal filters to bacterial phylogenetic structure,
but we could not derive insight into specific historical
processes. Despite this limitation, there is reason to
believe that both priority effects and dispersal limitation
are driving factors in shaping bacterial phylogenetic struc-
ture along the chronosequence. Bacteria are globally dis-
tributed by wind and on dust (Pearce et al., 2009; Favet
et al.,, 2013) and the resulting biogeographic patterns are
thought to result from combinations of dispersal limitation,
priority effects, competition for resources, as well as envi-
ronmental heterogeneity (Whitaker et al,, 2003; Papke
and Ward, 2004). Our study sites lie along the west coast
of Michigan (Fig. 1), where prevailing westerly winds
come across large water bodies (i.e. Lake Michigan and
Lake Superior) before deposition of airborne propagules.
Given our chronosequence is oriented perpendicular to
prevailing winds, we infer that each site was colonized by
wind-blown propagules that originated from the same
regional species pool as the Laurentide ice sheet began
its retreat across the region ~ 14 000 ya (Eisenlord et al.,
2012). If there were no priority effects or limits to disper-
sal, we would expect each site to have similar bacterial
communities, because they constantly were colonized
from the same regional species pool. Additionally, we
would expect differences in bacterial phylogenetic struc-
ture to be driven by environmental, and not temporal
gradients; this was not the case. Therefore, we conclude
that ecological drift resulting from priority effects and
subsequent barriers to dispersal partially shaped
bacterial community structure in our long-term glacial
chronosequence.

It is possible that a proportion of phylogenetic structure
attributable to temporal filters in our models may repre-
sent unmeasured confounding environmental variation. In
our study, we quantified environmental heterogeneity
attributable to environmental factors of recognized impor-
tance; soil C, N, C:N, pH, moisture and temperature and
found that they accounted for the majority of bacterial
phylogenetic structure (Table 4 and Table S4; Pietikainen
etal,, 2005; Fierer and Jackson, 2006; Lauber et al.,
2008; Zak etal., 2008; Garbeva and de Boer, 2009;
Castro et al., 2010; Ramirez et al., 2012). Soil pH, litter
C:N and soil temperature and moisture accounted for
69% of phylogenetic distance when each was considered
separately, and 53% when allowing for overlap in variation
among factors (Tables 3, 4, and Table S7). Soil bacterial
communities can also be altered by heterogeneity in plant
composition (Knelman etal.,, 2012). However, in our
study, small differences in plant composition had no
effect on bacterial phylogenetic structure across the
chronosequence. Given the robust environmental and flo-
ristic characterization across our chronosequence, it is
unlikely that a significant proportion of phylogenetic struc-
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ture attributable to temporal filters in our models can be
ascribed to unmeasured environmental heterogeneity.

It has been implicated that both temporal and environ-
mental filters can affect microbial community function
(Knelman etal.,, 2012; Freedman etal, 2013; Talbot
etal.,, 2014). In this study, we determined OTUs attribut-
able to Alphaproteobacteria and Gammaproteobacteria
drove the majority of compositional differences across the
chronosequence (Fig. 2; Tables S5 and S6). Among these
OTUs, Rhizobiales accounted for 15% of correlated
proteobacterial OTUs and 48% of the community.
Members of the order Rhizobiales are core members of
root microbiota (Schlaeppi etal., 2014) and are well-
known for their N.-fixation capacity when in symbioses
with leguminous plants, although evidence for N,-fixation
while free living has been observed (Ludwig, 1984).
Among the Actinobacteria phylum, compositional differ-
ences were driven by the order Actinomycetales
(accounting for 80% of correlated Actinobacteria).
Actinomyceteales are ecologically important in soil, and
have been linked to lignocellulose decay and humus
formation (Zimmermann, 1990; Wohl and McArthur,
1998). Operational taxonomic units attributable to order
Spingobacteriales (Phylum Bacteroidetes) accounted for
14% of correlated OTUs. Spingobacteriales have been
associated with exopolysaccharide and lignin decomposi-
tion and are prevalent during plant seedling development
(Green etal., 2006; Taylor etal., 2012). Many OTUs
responsible for compositional differences along the
chronosequence are of functional importance in forest
floor, indicating that historical processes may affect the
functional potential of microbial communities, and further-
more, how these communities may respond to human-
induced environmental change (Fukami etal, 2010;
Talbot et al., 2014).

Improvements in high-throughput DNA sequencing
technologies may lead to an improved understanding of
microbial biogeographic patterns, especially in highly
diverse habitats like soil. A meta-analysis of studies aimed
to determine environmental and temporal filters’ on
microbial community assembly (n=54) found those
studies that utilized 16S rRNA pyrosequencing (often at
more coarse scales of phylogenetic resolution) were less
likely to detect metagenetic artefacts of historical pro-
cesses than studies using whole-genome or Sanger
sequencing-based technologies (Hanson etfal., 2012).
This was consistent with several studies that found finer,
rather than coarse scales of taxonomic resolution led to
more robust evidence of historical processes shaping
microbial communities (Cho and Tiedje, 2000; Martiny
etal, 2009; Schauer etal, 2010). In this study, we
utilized a conservative OTU definition (95% similarity) to
assay the effects of temporal and environmental filters on
a broad bacterial taxonomic resolution (i.e. genus).
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Regardless, we determined that temporal and environ-
mental factors accounted for 17% and 53% of bacterial
phylogenetic structure respectively. Furthermore, our
models accounted for a markedly greater proportion of
bacterial community structure as compared with the
findings of the above-mentioned meta-analysis, which
determined geographic distance and environmental het-
erogeneity accounted for, on average, 10.3% and 26% of
variation in bacterial community structure respectively
(Hanson et al., 2012). Taken together, our results indicate
recent improvements to high-throughput DNA sequencing
technologies (often affording high quality sequences
> 500 bp) may lead to a greater understanding of micro-
bial biogeographic patterns and the processes that drive
them.

Conclusions

Our study supports the hypothesis that bacterial commu-
nities are partially structured by historical processes and
environmental filters over time scales of centuries to mil-
lennia. Using distance-based linear models, we deter-
mined that both temporal (17%) and environmental
factors (59%) accounted for different portions of bacterial
community phylogenetic structure along a long-term
glacial chronosequence. Metagenetic artefacts of histori-
cal processes have been previously observed in soil
Actinobacteria (Eisenlord et al., 2012), and fungi (Cline
and Zak, 2014) along the chronosequence we studied,
and together with the evidence presented here, support
the notion that long-term ecological mechanisms shape
the structure of highly diverse soil microorganisms on the
scale of centuries to millennia. Together, our results high-
light the importance of temporal and environmental filter-
ing as ecological forces, which together, act to shape
community composition of soil bacterial communities in
temperate forest ecosystems.

Experimental procedures
Site description and sample collection

Forest floor samples were collected from four sugar maple
(Acer saccharum Marsh.) dominated northern hardwood
forest stands in lower and upper Michigan, USA (Fig. 1). The
stands were selected from 31 candidate sites based on mul-
tivariate similarity of plant community composition, stand age
and soil properties (Table 1; Braun, 1950; Burton et al., 1991;
Macdonald et al., 1991). The thin Oi horizon is composed of
sugar maple leaf litter, and the thicker Oe horizon is interpen-
etrated by a dense root mat. The soils are sandy (85-90%),
well-drained, isotic, frigid Typic Haplorthods of the Kalkaska
series.

Forest floor sampling was performed in May 2012. In each
stand (n=4), samples were collected from three 30 m by
30 m replicate plots. In each plot (n=12), 10 random 0.1 m

by 0.1 m forest floor samples (Oe/Oa horizons) were col-
lected after removing the Oi horizon. All samples were
composited within each plot and homogenized by hand in the
field. The samples were transported on ice to the University of
Michigan, where they were stored at —-80°C.

DNA extraction

Genomic DNA was extracted from 2.5g of forest floor
samples (1 per plot; n=12) using the PowerMax Soil DNA
isolation kit (MoBio Laboratories, Carlsbad, CA, USA) and
was purified using the PowerClean DNA Clean-up kit (MoBio)
following manufacturer’s instructions. Extracted DNA quality
was determined using an ND8000 Nanodrop (Thermo
Scientific, Waltham, MA, USA) and quantified by Quant-iT
PicoGreen (Invitrogen, Carlsbad, CA, USA), according to
manufacturer’s instructions, on a Synergy HT fluorimeter
(BioTek, Winooski, VT, USA). All DNA was stored at —-80°C.

PCR ampilification, high-throughput sequencing

PCR amplifications were performed in triplicate using the
Expand High Fidelity PCR System (Roche, Indianapolis, IN,
USA) on a Mastercycler ProS thermocycler (Eppendorf,
Hauppauge, NY, USA) and were pooled prior to purification.
Bacterial primers 27F and 519R (Lane, 1991) were used to
amplify approximately 500 bp (V1-V3 region) of the 16S
rRNA gene from each plot (n=12). The reaction mixture
contained 1 uM primers, 3mM MgCl,, 200 uM deoxyri-
bonucleotides (dNTPs) 3 uL bovine serum albumin (10 pg/
uL) and two units of expand high-fidelity tag polymerase (v.
20; Roche, Indianapolis, IN, USA). Polymerase chain reac-
tion conditions included an initial denaturation stage of 95°C
for 10 min, then 25 cycles of 95°C for 30 s followed by 1 min
each at 55°C and 72°C. All products were purified using the
MinElute PCR Purification Kit (Qiagen, Valencia, CA, USA).
Libraries created from PCR products were pooled in equi-
molar concentrations by plot and were sequenced on the
PacBio-RS Il system (Pacific Biosciences, Menlo Park, CA,
USA) at the University of Michigan DNA Sequencing Core,
using C2 chemistry and standard protocols (Eid et al., 2009).
In this study, we utilized PacBio circular consensus technol-
ogy, which can generate at least 99.5% sequence accuracy
for DNA fragments up 500 bp (Travers et al., 2010).

DNA sequence processing

Fastq files of the dataset used in this analysis have been
deposited to National Center for Biotechnology Information
under project accession number SRR1382191. Sequences
were processed using the PBH5TOOLS package (Pacific
Biosciences) and MOTHUR (Version 1.31.1; (Schloss et al.,
2009). Initial quality control measures removed any
sequence with a consensus fold coverage <5, average
quality score <25 (50 bp rolling window), anomalous length
(< 450 or > 550 bp), an ambiguous base, > 8 homopolymers
or a >1bp mismatch to either the barcode or primer
(Marshall etal., 2012; Freedman and Zak, 2014). High-
quality reads were de-replicated and aligned with the
SILVA ribosomal database (Quast et al., 2013) using k-mer
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searching (8-mers) with Needleman-Wunsch global,
pairwise alignment methods (Needleman and Wunsch, 1970)
and checked for chimeras using UCHIME (Edgar et al., 2011).

Analysis of bacterial community structure

Operational taxonomic units were selected at 95% sequence
similarity to determine any effects of temporal and environ-
mental filters on bacterial phylogenetic structure at a broad
(i.e. genus) taxonomic level. Bacterial 16S rRNA gene
sequences were taxonomically assigned with the SILvA data-
base using a Bayesian classifier (Wang et al., 2007), using a
bootstrap cut-off of 80.

Assemblage diversity was estimated using the Shannon
Index (H’; Shannon and Weaver, 1963) and richness using
the Chao1 estimator (Chao, 1984); significance was deter-
mined by a one-way analysis of variance (ANOVA), combined
with a protected Tukey’s honestly significantly different test of
means (HSD; spss Statistics, Version 20, IBM, Armonk, NY,
USA).

Pairwise distances between 16S rRNA gene assemblages
across the chronosequence were determined by
phylogenetic structure, i.e. the abundance weighted UniFrac
distance (Lozupone and Knight, 2005). UniFrac measures
the sum of unique branch length attributable to one site or the
other, but not both. Phylogenetic analyses were performed
using a maximum likelihood tree generated using representa-
tive sequences from each OTU in FastTree (Price etal.,
2009). Calculation of UniFrac distance and all downstream
analysis were performed using MOTHUR and PRIMER (Version
6, Primer-E, Plymouth, UK).

To further test the hypothesis that temporal and environ-
mental filtering shape soil bacterial communities, differences
in phylogenetic structure were statistically tested by
PerMANOVA (Anderson, 2001). Permutational multivariate
analysis of variance allows multivariate information to be
partitioned according to the experimental design and deter-
mines significance by permutation. A distance-based test for
homogeneity of multivariate dispersions (PERMDISP;
Anderson, 2004) was used to determine if any observed
compositional response was driven by differences in
metagenetic heterogeneity between sites. Ordinations were
obtained from PCoA calculated from Bray—Curtis dissimilarity
of OTU abundance tables (Legendre and Legendre, 1998),
from which, Spearman correlations were calculated to ascer-
tain which OTUs contributed to any observed compositional
shift.

Determination of temporal and environmental filters on
bacterial phylogenetic structure

More than 50 environmental factors have been characterized
in each site composing our chronosequence (http://
webpages.uidaho.edu/nitrogen-gradient). For all analyses,
we chose a parsimonious subset known to influence soil
bacterial communities: soil temperature (Pietikainen et al.,
2005; Castro et al., 2010), moisture (Castro et al., 2010), pH
(Fierer and Jackson, 2006), C (Garbeva and de Boer, 2009),
N (Zak et al., 2008; Ramirez et al., 2012), C:N (Lauber et al.,
2008), plant composition (Batten et al., 2006; Knelman et al.,
2012) and historical processes (i.e. dispersal limitation, pri-
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ority effects; Whitaker et al., 2003; Talbot et al., 2014). In
doing so, we reduce the probability of spurious correlations
between bacterial community composition and ecologically
irrelevant variables.

The RELATE (a non-parametric Mantel-type test) test was
first used to determine which broad characteristics (e.g.
biogeochemical, physical, plant cover and temporal) were
significantly correlated to bacterial phylogenetic structure
(Clarke and Ainsworth, 1993). RELATE is similar to the
Mantel test for similarity of two matrices (Mantel, 1967),
except that rank correlations (p), rather than standard Spear-
man correlations are calculated between all elements of the
respective dissimilarity matrices. Significance is determined
by permutation to a null model (999 runs). Environmental
distance matrices were calculated from data separated into
four characteristics: (i) biogeochemical, (ii) physical, (iii) plant
community composition and (iv) temporal (i.e. geographic
distance, a surrogate for time). The biogeochemical dataset
included leaf litter N content (QNm=?), C content
(g C Kg litter"), C:N, turnover (years), total litter mass and
soil pH, and contained the plot means averaged across
2005-2009 (Table 1). Physical characteristics included
average annual soil temperature and soil matric potential
from 1988 to 2009 (Table 1). Plant community composition
was determined as the relative dominance of overstory
species at each plot based on basal area (Table S1).
Biogeochemical and physical dissimilarity matrices were cal-
culated from Euclidian distances of log-transformed data,
whereas the Bray—Curtis metric (Legendre and Legendre,
1998) was used to quantify plant community dissimilarity. All
environmental data may be found at the Michigan Nitrogen
Deposition Gradient Study webpage (http://www.webpages
.uidaho.edu/nitrogen-gradient/).

Distance-based linear model building (Legendre and
Legendre, 1998) was used to determine which individual
factor, or combination of factors, account for the greatest
proportion of observed phylogenetic structure, and if the
phylogenetic structure explained by each factor is shared or
distinct. Prior to DisttM model building, all significant indi-
vidual factors (e.g. geographic distance, litter N, etc.) within
characteristics deemed at least moderately (P < 0.10) signifi-
cant by RELATE were combined to a single matrix and trans-
formed into z-scores. The adjusted R? selection criterion was
selected for all DistLM procedures. Marginal DistLM was first
used to determine which factors accounted for a significant
proportion of phylogenetic structure when taken alone, ignor-
ing all other factors. Prior to multiple regression, Draftsman
Plots (Clarke and Ainsworth, 1993) were used to test for
collinearity between significant factors, wherein, significant
collinearity was defined at p > 0.70. The ‘forward’ procedure
within DistLM was then implemented using all moderately
significant (P < 0.10) individual factors from marginal DistLM.
The ‘forward’ method uses sequential factor introduction
to the model to determine whether the proportion of
phylogenetic structure accounted for by each factor is shared
or distinct to others. Lastly, we used the ‘best’ model building
procedure, which utilizes all possible combinations of factors
to determine which combination of factors account for the
greatest proportion of bacterial phylogenetic structure; factor
addition was evaluated stepwise and was based on sufficient
improvement in the model’s adjusted R2.
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