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Summary. Genetic association studies with longitudinal markers of chronic diseases (e.g., blood pressure, body mass index)
provide a valuable opportunity to explore how genetic variants affect traits over time by utilizing the full trajectory of
longitudinal outcomes. Since these traits are likely influenced by the joint effect of multiple variants in a gene, a joint analysis
of these variants considering linkage disequilibrium (LD) may help to explain additional phenotypic variation. In this article, we
propose a longitudinal genetic random field model (LGRF), to test the association between a phenotype measured repeatedly
during the course of an observational study and a set of genetic variants. Generalized score type tests are developed, which
we show are robust to misspecification of within-subject correlation, a feature that is desirable for longitudinal analysis. In
addition, a joint test incorporating gene–time interaction is further proposed. Computational advancement is made for scalable
implementation of the proposed methods in large-scale genome-wide association studies (GWAS). The proposed methods are
evaluated through extensive simulation studies and illustrated using data from the Multi-Ethnic Study of Atherosclerosis
(MESA). Our simulation results indicate substantial gain in power using LGRF when compared with two commonly used
existing alternatives: (i) single marker tests using longitudinal outcome and (ii) existing gene-based tests using the average
value of repeated measurements as the outcome.

Key words: Genetic association; Generalized estimating equations; Generalized score test; Longitudinal study; Multi-
marker test; Random field.

1. Introduction
Genome-wide association studies (GWAS) have been success-
ful in identifying susceptibility loci for risk factors of chronic
diseases. For genetic studies of cardiovascular disease risk
factors, such as the Mulit-Ethnic Study of Atherosclerosis
(MESA), observations at multiple time points are available for
each individual (Bild et al., 2002). The longitudinal nature of
these studies results in more precise phenotypic characteriza-
tion, enhancing the ability to associate genes or chromosomal
regions with the phenotypes and assess gene–time interac-
tion. However, current statistical methods for testing genetic
association in longitudinal studies, in the presence of effect
heterogeneity across time are limited, even for one single-
nucleotide polymorphism (SNP) at a time analysis (Fan et al.,
2012; Furlotte, Eskin, and Eyheramendy, 2012). Investigators
often take a simple approach of collapsing the repeated mea-
surements into a single value and hence the method is not able
to harness the power of the complete information that is con-
tained in the longitudinal trajectory. One can also apply the
standard methods available for correlated outcome models to
better utilize the longitudinal data, namely, random effects
models (Fitzmaurice, Laird, and Ware, 2011) and generalized
estimating equations (GEE) (Zeger and Liang, 1986). These
methods are primarily proposed for modeling and testing a

limited number of SNPs, and cannot be directly applied to
assess the joint association of a longitudinally varying out-
come with an entire gene or a region with hundreds of SNPs
without further modifications.

Recent studies showed the advantages of multi-marker tests
over individual SNP analyses. First, the genetic markers in
LD with the causal SNP(s) carry additional information and
may enhance the power of identifying the true effect. Second,
gene-based tests considerably reduce the burden of multiple
comparisons. Third, Region-based methods are appealing for
multi-ethnic cohorts due to differences in LD structure across
ethnic groups and thus meta-analysis of a region-based statis-
tic is likely to be more consistent than meta-analysis of single
marker tests across ethnicities. Last, gene-based tests enhance
the power of identifying rare-variant association in next gen-
eration sequencing studies (Morris and Zeggini, 2010). Two
notable existing approaches are the sequence kernel associa-
tion tests (SKAT) (Wu et al., 2011) and similarity regression
(SIMreg) (Tzeng et al., 2009). From a random field frame-
work and borrowing ideas from spatial statistics, the genetic
random field model (GenRF) was recently developed for mod-
eling and testing joint associations (He et al., 2014; Li et al.,
2014). So far, however, extensions of these methods are not
available for longitudinal data.
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It is desirable to have a multi-marker test for longitudinal
studies that can incorporate the time-dependent variation in
outcome, utilize all the variants in a gene or region and boost
power in the presence of effect heterogeneity across time.
Extending the GenRF method to the longitudinal setting, we
propose a longitudinal genetic random field model (LGRF)
and develop generalized score type tests to study the associ-
ation between repeatedly measured phenotypes and a set of
genetic variants in a gene or region. The methods are evalu-
ated through extensive simulation studies and illustrated by
analyzing the association between blood pressure and 29 can-
didate genomic regions across four ethnic groups in MESA.

2. Method

2.1. Notation

Consider a study population of m subjects, and the ith sub-
ject has ni repeated observations. Each subject is sequenced
in a region of interest with q variants, and measured on p ad-
ditional non-genetic covariates such as age, gender and other
potential confounders. Let Yi,l be the phenotypic value for
the lth observation on the ith subject, measured at time ti,l;
Gi = (Gi,1, Gi,2, . . . , Gi,q)

T be the genotypes for the q vari-
ants within the region where Gi,h ∈ {0, 1, 2} for any 1 ≤ h ≤ q,
which does not change over time; Xi,l = (Xi,l,1, . . . , Xi,l,p)

T be
the covariates corresponding to the lth observation on the
ith subject, either time-varying or time-invariant. We denote
n = ∑

i
ni, Yn×1 = (Y1,1, . . . , Y1,n1 , Y2,1, . . .)

T and define Xn×p,
Gn×q similarly for covariates and genotypes. We are interested
in investigating the association between phenotype Yn×1 and
variants Gn×q, adjusted for the effect of Xn×p.

2.2. Longitudinal Genetic Random Field Model

The GenRF method (He et al., 2014) is a gene-based associ-
ation test motivated by the general idea that, if the genetic
variants in a region are jointly associated with the pheno-
type, then subjects having similar genotypes in that region
will have similar phenotype (Tzeng et al., 2009). Motivated by
development in spatial statistics (Cressie, 1993) and random
field theory (Besag, 1974; Adler and Taylor, 2007), GenRF
views phenotypic values as a random field on a genetic space
where the vector of genotype sequences determines the loca-
tion in the space; that is, the phenotype at each location is a
random variable and these random variables are possibly cor-
related depending on their spatial location, for example, the
closer the more similar. It directly regresses the phenotype of
a given subject on that of all others, where the contribution
of other subjects is weighted by their genotype similarity with
the given subject. This leads to a conditional autoregressive
model commonly used in spatial statistics to study spatial
dependence.

With repeated measurements, one has to appropriately ac-
count for the within-subject correlation between outcomes to
obtain valid inference and improve efficiency. Extending the
GenRF model to the longitudinal setting, we propose a longi-
tudinal GenRF (LGRF) model, where the conditional mean
of each observation is modeled as a weighted sum of all other
observations, including those from the same subject. In a lon-
gitudinal setting, one may expect that phenotypes from the
same subject may be more similar due to reasons other than

the shared genetic variants of interest. To capture this, we
define a within-subject similarity, which depends on the time
between two measurements on the same subject; for example,
if two observations are measured closer in time, their within-
subject similarity may be larger. Formally LGRF model is
written as:

Yi,l|Y−(i,l) = XT
i,lβ +

∑
k �=l

w(ti,k, ti,l; η)(Yi,k − XT
i,kβ)

+ γ
∑

(j,k) �=(i,l)

si,j(Yj,k − XT
j,kβ) + εi,l, (1)

where Y−(i,l) denotes all other phenotypic values except Yi,l;
Xi,l and β are, respectively, covariates and the correspond-
ing regression coefficients, and thus XT

i,lβ is the contribu-
tion to outcome mean from non-genetic covariates; εi,l ∼ i.i.d.
N(0, σ2); w(ti,k, ti,l; η) is the within-subject similarity between
Yi,k and Yi,l with parameters η playing the role of intro-
ducing within-subject correlation between repeated measure-
ments, similar to parameters in a correlation matrix in a GEE
framework; si,j is the genetic similarity between subjects i

and j. Possible forms can be si,j = ∑q

h=1
(Gi,h − 2ph)(Gj,h −

2ph) referred to as genetic relationship (GR) (Yang et al.,
2011) where ph is the population allele frequency of hth
SNP in the region, and the identity-by-state (IBS) similar-
ity: si,j = ∑q

h=1
(2 − |Gi,h − Gj,h|). Parameter γ measures the

magnitude of the joint association between genetic variants
and the phenotype. If none of the genetic variants are asso-
ciated with the phenotype, the phenotype of subject i will
be irrelevant to the phenotypes of others regardless of their
proximity in the genetic space, that is, γ = 0. On the con-
trary, a large positive γ indicates a strong spatial dependence
or equivalently genetic association. Thus, γ can be interpreted
as the magnitude of the joint association between the q genetic
variants and the phenotype. Briefly, the conditional autore-
gressive model relates each observation to others measured
on the same subject by within-subject similarity w(ti,k, ti,l; η),
and all other observations (including other measurements on
the same subject) in the study by genetic similarity si,j.

According to the factorization theorem of Besag (1974), the
conditional model (1) uniquely determines a joint distribution
of Y :

Y |X = Xβ + v, v ∼ N(0, σ2{I − W(η) − γS}−1), (2)

where I is an n × n identity matrix; W(η) and S are matrices
(n × n) composed of w(ti,k, ti,l; η) and si,j, respectively. Specifi-
cally, the within-subject similarity matrix W(η) is block diag-
onal with block i (ni × ni) corresponding to subject i and the
(k, l)th element of block i is w(ti,k, ti,l; η) except for diagonal
elements of W(η). The genetic similarity matrix S is com-
posed of m × m block matrices with dimension ni × nj, i, j =
1, . . . , m, and all elements in the (i, j)th block are si,j except
for the diagonal elements of S. The diagonal elements of W(η)
and S are 0 as in model (1) observations are not compared
with themselves. To evaluate the joint association of multi-
ple genetic variants with the phenotype we can test the null
hypothesis H0 : γ = 0 involving a single parameter in the pre-
cision matrix (or equivalently in the variance matrix).

With respect to the within-subject similarity, the random
field model focuses on how the observations are related,



608 Biometrics, September 2015

regardless of the direction (past or future) as opposed to
transition models which condition each observation only
on the past observations. However, they can result in very
similar marginal correlation structures such as the first-order
auto-regressive (AR1) correlation. Examples of plausible
W(η) are given below.

Example 1. One might assume observations from the same
subject to be equally similar and sets w(ti,k, ti,l; η) = η for
∀i, k, l, and in matrix notation, W(η) = ηT , where T is a block
diagonal matrix with block i, i = 1, . . . , m, an ni × ni matrix
with 0’s in the diagonal and 1’s off-diagonal. Under H0 : γ =
0, the corresponding covariance matrix is σ2(I − ηT )−1. This
specification is equivalent to the usual compound symmetric
correlation.

Example 2. One might assume each observation condi-
tionally depends on only the nearest observations before and
after it (Markov property): w(ti,k, ti,l; η) = η if |k − l| = 1, and
0 otherwise. This is an approximation of the usual AR1
correlation by ignoring the edge effect (Qu, Lindsay, and
Li, 2000). Again W(η) = ηT for a block diagonal matrix T ,
where the (k, l)th element of the ith block is 1 if |k − l| = 1
and 0 otherwise.

In addition, multiple within-subject similarities can be
combined for a better working precision matrix, adaptively
approximating the underlying structure. Taking W(η) to be
linear in η, for example, the two examples given above and
their linear combinations, can lead to a rich class to accom-
modate many commonly used working correlation structures.
A similar idea has been studied by Qu et al. (2000) to improve
efficiency of estimation over GEE method.

As in the GEE framework, the within-subject similarity
matrix W(η), or equivalently the correlation matrix {I −
W(η)}−1 under the null, is only a working assumption that is
not required to be correct for valid inference. Thus we present
our test using a working within-subject similarity matrix that
is of the form ηT , as in the two examples, and note the method
applies to more general W(η). For simplicity, the matrix rep-
resentation of the LGRF model is given by:

Y |Y− = Xβ + (ηT + γS)(Y − Xβ) + ε, (3)

where Y is the n dimensional vector of all observations; Y |Y−
stands for that each observation Y(i,l) is conditional on all
other observations Y−(i,l); Matrices T and S have diagonal
elements equal to zero, to reflect that the mean of each ele-
ment of Y only depends on other elements but not on itself;
ε = (ε1,1, . . . , ε1,n1 , ε2,1, . . .)

T is the residual vector. Since the
genetic similarities are compared across all observations, the
model does not have the Markov property, that is, each ob-
servation has finite neighbors, typically assumed in a condi-
tional auto-regressive model in spatial statistics. Thus the reg-
ular likelihood-ratio test or score test used in spatial statistics
for testing spatial auto-correlation cannot be applied directly.
Also, because of the within-subject similarly, the pseudo-
likelihood approach developed by He et al. (2014) does not
apply. Instead, we propose a set of generalized score type
tests.

2.3. Association Test Under the Longitudinal Genetic
Random Field Model

In this subsection we focus on developing a generalized score
type test for testing H0 : γ = 0 under model (3). The inference
procedure is developed by treating the within-subject corre-
lation as a working model, leading to a test that is robust to
misspecification of the correlation structure. Model (3) states,
given all other observations, the conditional mean of each
observation is linearly related to others, that is, E(Y |Y−) =
Xβ + (ηT + γS)(Y − Xβ). Adopting the similar argument for
the usual GEE method (Zeger and Liang, 1986) to our condi-
tional auto-regressive model, we construct the following gen-
eralized estimating function:

Uγ(β, η, γ) = ∂E(Y |Y−)

∂γ

T

{Y − E(Y |Y−)}

= (Y − μ)T S(I − ηT − γS)(Y − μ), (4)

where μ = Xβ. The estimating equation is quadratic in Y be-
cause γ is a coefficient in an auto-regressive model and cor-
responds to a parameter in the marginal variance as in (2).
In the Supplementary Materials Section 1.1, we show that
the above estimating function is unbiased in the sense that
its expectation is zero under the truth. Therefore, following
Boos (1992), we refer to it as a “generalized” score and the
score evaluated at γ = 0, that is, Uγ(β, η, 0) = (Y − μ)T S(I −
ηT )(Y − μ), can be used to construct a generalized score type
test. Due to the unbiasedness, we show that Uγ(β, η, 0) has
mean 0 under H0 and positive mean γE{(Y − μ)T S2(Y − μ)}
under H1 : γ > 0. This rationale leads to constructing a gen-
eralized score statistic

QG = Uγ(β̂, η̂, 0)

m
= (Y − μ̂)T S(I − η̂T )(Y − μ̂)

m
(5)

and rejecting H0 when it is sufficiently large. In (5), μ̂ = Xβ̂

and η̂ are estimates under the null hypothesis that γ = 0.

Specifically, β̂ and η̂ are the solution to the following estimat-
ing equations:{

Uβ(β, η, 0) = XT (I − ηT )(Y − μ) = 0

Uη(β, η, 0) = (Y − μ)T T (I − ηT )(Y − μ) = 0.

The first equation is the usual estimating equation for esti-
mating β in GEE based on the joint distribution (2) as I − ηT

is proportional to the inverse of a working correlation matrix
under H0. The second equation is derived by considering the

estimating function ∂E(Y |Y−)

∂η

T {Y − E(Y |Y−)} under H0. It is
worth noting that the second estimating equation is linear in
η. Thus the estimators β̂ and η̂ can be calculated by iteratively
solving linear equations. This property remains when we lin-
early combine multiple within-subject similarities, leading to
an efficient way to estimate the correlation structure.

We derive an asymptotically equivalent representation of
QG under H0 and show that this representation allows us to
achieve theoretical protection against the misspecification of
within-subject correlation as well as facilitating computation-
ally efficient implementation suitable for large-scale studies.
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Specifically, we show in Supplementary Materials Sections 1.2
and 1.3 that for all the genetic similarity metrics introduced
previously, under H0, QG can be represented as

QG = 1

2m
R1(η0, β̂)T

(
0dq Idq

Idq 0dq

)
R1(η0, β̂) + c + op(1),

where η0 is the true parameter under H0; Idq is a dq × dq iden-

tity matrix and 0dq is a zero matrix; R1(η, β) = Z̃(η)T (Y − μ)

and Z̃(η) = {(I − ηT )Z, Z}; Z is an n × dq matrix for some
integer d, and c is a constant. The exact form or value of
Z, d and c depend on the chosen genetic similarity and the
details are given in the Supplementary Materials Sections 1.2
and 1.4. For example, for GR similarity, Z, (n × q), is the cen-
tered genotype matrix, that is, each column of the genotype
matrix G is now centered by the genotype population mean
2ph. Note that R1(η0, β̂) = ∑m

i=1
{Z̃i(η0)

T (Y i − μ̂i)}, which is a
summation of m terms each with expectation zero under the
null regardless of the specified working correlation structure.
Therefore, the summand is an unbiased estimating function
for β, and according to the theory of M-estimators (Stefanski

and Boos, 2002), 1√
m
R1(η0, β̂) is asymptotically normal with

a covariance matrix that can be robustly estimated by some
sandwich covariance estimates, leading to robustness to mis-
specification of working correlation.

In Results 2 and 3 of Supplementary Materials, using the
theory of M-estimation as well as distributions for quadratic
forms, we show that QG has an asymptotic distribution

1

2

2dq∑
k=1

λkχ
2
k + c

under H0, where c is a constant which does not affect the
inference; χ2

k ’s are i.i.d. Chi-square distributions with degree
of freedom one; λk are eigenvalues of a 2dq × 2dq matrix

(
0dq Idq

Idq 0dq

)
�,

where � can be consistently estimated by a sandwich covari-
ance estimate �̂, defined in Result 2 of the Supplementary
Materials. Moreover, the null distribution of QG only depends
on the eigen-values of a 2dq × 2dq matrix. As the number of
variants in a target gene q is relatively small, it is compu-
tationally efficient and hence suitable for large scale GWAS.
To obtain the p-value, Davies’ method (1980) can be used as
a computationally efficient way to analytically calculate the
tail probability of a mixture of chi-squares by inverting the
corresponding characteristic function.

2.4. Testing for the Joint Effect of Gene and
Gene–Time Interaction

As in a regression framework interaction effect is typically
modeled using new variables defined as the product of two
interacting factors, similarly, we can define interaction terms,
Giti,l = (Gi,1ti,l, Gi,2ti,l, . . . , Gi,qti,l)

T , and treat them the same

way as Gi. Therefore the modified LGRF is given by:

Yi,l|Y−(i,l) = XT
i,lβ +

∑
k �=l

w(ti,k, ti,l; η)(Yi,k − XT
i,kβ)

+ γ1

∑
(j,k) �=(i,l)

si,j(Yj,k − XT
j,kβ)

+ γ2

∑
(j,k) �=(i,l)

sGT
il,jk(Yj,k − XT

j,kβ) + εi,l,

where sGT
il,jk is the similarity generated by gene–time in-

teraction terms, similar to the genetic similarity; and γ1

and γ2 represent the genotype main effect and gene–time
interaction effect, respectively. The IBS similarity is not
suitable for the interaction terms because it is specifi-
cally designed for genetic variants/imputed dosage lying
between 0 and 2. In the spirit of genetic relationship
similarity, we define sGT

il,jk = ψ(Giti,l, Gjtj,k) = ∑q

h=1
(Gi,hti,l −

Ght)(Gj,htj,k − Ght), where Ght = 1
n

∑
(i,l)

Gi,hti,l. Considering
a working within-subject similarity matrix ηT as before, in
matrix form the model is written as

Y |Y− = Xβ + (ηT + γ1S + γ2SGT )(Y − Xβ) + ε, (6)

where SGT is the similarity matrix of the interaction terms
with the (l, k)th element of the (i, j)th block (ni × nj) equal
to sGT

il,jk except for the diagonal of SGT . Under this model, we
can evaluate the joint effect of gene and gene–time interaction
by testing HJ

0 : γ1 = γ2 = 0.
Denoting γ = (γ1, γ2)

T , following previous development, we
construct two estimating function with respect to γ1 and γ2:{

Uγ1(β, η, γ) = (Y − μ)T S(I − ηT − γ1S − γ2SGT )(Y − μ)

Uγ2(β, η, γ) = (Y − μ)T SGT (I − ηT − γ1S − γ2SGT )(Y − μ).

As before, evaluating the corresponding estimating functions
at HJ

0 : γ1 = γ2 = 0 leads to the following generalized score
statistics{

QG = Uγ1(β̂, η̂,0)/m = (Y − μ̂)T S(I − ηT )(Y − μ̂)/m

QGT = Uγ2(β̂, η̂,0)/m = (Y − μ̂)T SGT (I − ηT )(Y − μ̂)/m.

We propose to combine these two by:

QJ = αGQG + αGT QGT

= (Y − μ̂)T (αGS + αGT SGT )(I − ηT )(Y − μ̂)/m,

where αG =
√

v2
GT

v2
GT

+v2
G

and αGT =
√

v2
G

v2
GT

+v2
G

; v2
G = 2tr(S2) and

v2
G = 2tr(S2

GT ) are proportional to the variance of Uγ1 and
Uγ2 , respectively. Though the choice of weights can be ar-
bitrary depending on the need of assessing marginal or in-
teraction effect, our weights are defined such that αGQG

and αGT QGT have approximately equal variance. Defining
ZGT as the centered gene-interaction matrix, that is, each
gene-interaction term Gi,hti,l is centered by the its mean
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Ght, Z̃J(η) = {α
1
2
G (I − ηT )Z, α

1
2
GT (I − ηT )ZGT , α

1
2
G Z, α

1
2
GT ZGT },

and RJ1(η, β) = Z̃J(η)T (Y − μ), we can rewrite the joint test
statistic as a quadratic form:

QJ = 1

2m
RJ1(η0, β̂)T

(
0(d+1)q I(d+1)q

I(d+1)q 0(d+1)q

)
× RJ1(η0, β̂) + cJ + op(1),

where d is a constant depending on the chosen genetic simi-
larity for the marginal genetic effect as in Section 2.4 and cJ

is a constant similar to c. Although more complex, QJ has
an identical form as QG in Section 2.4. The inference follows
directly from previous development and therefore we omit the
details. The proposed method does not test the gene–time in-
teraction separately; instead, it improves the power of LGRF
test by exploiting the potential interaction effect if exists.

3. Illustration in MESA

We refer to the LGRF test for the marginal effect of a gene
as LGRF-G and the joint test as LGRF-J. We illustrate the
proposed methods using data from the Multi-Ethnic Study of
Atherosclerosis (MESA). MESA is a collaborative longitudi-
nal study initiated in July 2000 to investigate the prevalence,
correlates, and progression of subclinical cardiovascular dis-
ease (CVD) (Bild et al., 2002). From 2000 to 2007, four ex-
aminations of blood pressure (BP) were conducted over 18- to
24-month periods. We aimed to replicate the findings (29 sig-
nificant SNPs associated with blood pressure) of the Interna-
tional Consortium for Blood Pressure (ICBP) (International
Consortium for Blood Pressure Genome-Wide Association
Studies, 2011) by a region based analysis. A total of 6361
subjects consisting of 2526 Caucasians (CAU), 1611 African
Americans (AFA), 1449 Hispanics (HIS) and 775 Asian of Chi-
nese descent (CHN) with genome-wide genotype data, systolic
blood pressure (sBP) and diastolic blood pressure (dBP) out-
comes were considered in the current analysis. The longitu-
dinal summaries and characteristics of the study population,
descriptive statistics are provided in Supplementary Tables
8–11. For this analysis, we used SNPs that have been directly
genotyped using the Affymetrix Genome-Wide Human SNP
Array 6.0 or imputed as per MESA protocol. Imputation was
performed using the IMPUTE 2.1.0 program (Marchini et al.,
2007) in conjunction with HapMap Phase I and II reference
panels (CEU+YRI+CHB+JPT, release 22—NCBI Build 36
for African-, Chinese- and Hispanic-American participants;
CEU, release 24—NCBI Build 36 for European Americans).
We selected genomic regions around the 29 index SNPs that
have demonstrated significant (p-value < 10−9) by the ICBP.
Each genomic region was defined according to the following
criteria: when the index SNP fell within a gene, we selected
all SNPs within the gene ±5 kb and adopted the gene’s name.
When the index SNP fell outside of a gene, we selected the
index SNP plus all SNPs ±50 kb and name the region after
the index SNP. All SNPs are included in the analysis with-
out any minor allele frequency filters. We applied LGRF-G
and LGRF-J using longitudinal outcomes and SKAT using
the average value of repeated measures to test the associa-
tion between each candidate region and BPs (sBP and dBP)

for the four ethnic groups separately, adjusting for age, gen-
der, BMI and top two principal components (PCs) to cor-
rect for potential within-ethnicity stratification. Since only
the first two principal components were associated with ei-
ther systolic or diastolic blood pressure in any ethnicity at
p < 0.01 (Supplementary Table 7), we only included these
two principal components as adjustment variables. We ad-
justed the measured blood pressures for participants taking
anti-hypertension medications using the standard procedure
of adding 10 mmHg to systolic blood pressure and 5 mmHg to
diastolic blood pressure (Cui, Hopper, and Harrap, 2003). The
SKAT was implemented with a linear kernel and equal weights
on the SNPs. Based on the p-values of the stratified analysis,
a meta-analysis was done by Fisher’s method.

We analyzed 29 regions with details summarized in the Sup-
plementary Tables 12– 21. The LGRF-G test results in compa-
rable or smaller p-values than SKAT using average outcomes
in most cases. We expect LGRF-J to have higher power than
LGRF-G when there exists gene–time interaction, but lower
power when there is no such interaction. In the MESA exam-
ple, the LGRF-J test has smaller p-values than LGRF-G in
relatively few instances (e.g., association of C10orf107 with
diastolic blood pressure in Table 1), but larger p-values than
LGRF-G in general. This may indicate that gene–time inter-
action does not have sufficient contribution to the marginal
gene-level association in most cases. Table 1 shows the results
of the top two associations between sBP/dBP and candidate
regions. The top two regions were selected according to the
p-values of LGRF-G in meta-analysis using Fisher’s combined
probability test. The region indexed by rs13082711 emerged
as the most strongly associated region. The meta-analysis p-
values of LGRF-G are 8.69 × 10−4 for sBP and 6.25 × 10−4 for
dBP. Another suggestive association identified by LGRF-G
that is consistent with the ICBP analysis is between dBP and
C10orf107 (p-value = 9.71 × 10−4), and LGRF-J exhibited a
smaller p-value for this association (p-value= 8.64 × 10−4).

4. Simulation Studies

We evaluated three classes of methods: (a) the proposed
multi-marker tests for longitudinal data: LGRF-G, LGRF-
J; (b) a multi-marker test in cross-sectional studies using
the average of the repeated measures as a single outcome:
SKAT; and (c) single-marker tests for longitudinal outcomes:
namely, GEE Specifically, in LGRF-G, LGRF-J and GEE, a
working compound symmetric correlation structure was used,
and SKAT was implemented with equal weights on the SNPs.
Classes (b) and (c) represent two commonly used strategies
in practice as currently no multi-marker tests are available for
longitudinal data and the specific method (SKAT and GEE)
is chosen to be the representative in each class, recognizing
that multiple other alternatives in each class exist. Additional
simulation studies with respect to the impact of different ge-
netic similarity measures, further evaluation of the power gain
using a longitudinal design, use of LGRF in a meta-analysis,
and evaluation of type-I error rate and power at lower signif-
icance levels are showed in the Supplementary Tables 2–7.

For each replicated dataset, subjects were randomly se-
lected from the Caucasian (CAU) ethnic group in MESA,
and the variants commonly existing in all four ethnicities (154
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Table 1
Analysis of Multi-Ethnic Study of Atherosclerosis (MESA) data: top two regions associated with systolic blood

pressure/diastolic blood pressure. Each cell shows the p-value. CAU: Caucasians; AFA: African Americans; HIS: Hispanics;
CHN: Asians of Chinese descent. Meta: Meta-analysis combining the results of four ethnic groups using Fisher’s combined
probability test. LGRF-G: the LGRF test for the marginal effect of a gene. LGRF-J: the LGRF test for the joint effect of

gene and gene–time interaction. The working correlation assumed in LGRF is compound symmetric. SKAT-Avg.:
cross-sectional SKAT using the average value of repeated measurements as the outcome. The column “SNPs” shows the total

number of typed and imputed SNPs in each ethnic group.

Systolic blood pressure

Region indexed by rs13082711 Region indexed by rs1378942

SNPs LGRF-G LGRF-J SKAT-Avg. SNPs LGRF-G LGRF-J SKAT-Avg.

CAU 111 0.0052 0.0078 0.0047 84 0.0019 0.0023 0.0019
AFA 82 0.6750 0.6315 0.6806 70 0.1894 0.2047 0.1929
HIS 82 0.0267 0.0453 0.0307 70 0.5269 0.3446 0.4094
CHN 79 0.0191 0.0496 0.0302 70 0.8798 0.9364 0.8969

Meta – 0.0009 0.0036 0.0013 – 0.0258 0.0248 0.0222

Diastolic blood pressure

Region Indexed by rs13082711 C10orf107

SNPs LGRF-G LGRF-J SKAT-Avg. SNPs LGRF-G LGRF-J SKAT-Avg.

CAU 111 0.1774 0.1185 0.1704 190 0.0283 0.0412 0.0202
AFA 82 0.0263 0.0222 0.0233 157 0.0129 0.0106 0.0152
HIS 82 0.0086 0.0349 0.0058 157 0.0104 0.0081 0.0234
CHN 79 0.0292 0.0713 0.0308 154 0.5361 0.4998 0.4757

Meta – 0.0006 0.0024 0.0004 – 0.0010 0.0009 0.0015

SNPs) in genotype region C10orf107 are included as the tar-
get region. We varied the number of repeated measurements
to be 4, 6, and 8, and number of subjects 600, 400, and 300
respectively, keeping total number of observations as 2400.
Assuming missing completely at random, we first simulated
the complete data, and then a missingness indicator with fixed
drop-out rate of 4% at each exam was applied approximating
what is observed in the MESA study.

4.1. Type-I Error Simulations

We evaluated the type-I error rate at level α = 0.05, 0.01, and
0.001 using 100,000 replicates. Data are generated from the
model:

Yi,l = α0ti,l + εi,l, ti,l = 1, . . . , r, (7)

where α0 = 12
r
; r is the number of measurements per subject;

εi = (εi,1, . . . , εi,r)
T independently follows multivariate normal

distribution with four types of covariance matrices:

� Independent (Ind.): εi ∼ N(0, σ2
indIr).

� Auto-regressive of order 1 (AR1): εi ∼ N(0, �AR), where
�AR is an r × r matrix and its (l, k) element is ρ|l−k|σ2

AR.
� Compound symmetry (CS): εi,l = bi + ε∗

i,l, ε∗
i,l ∼ N(0, σ2

error),
bi ∼ N(0, σ2

CS), where ε∗
i,l and bi are independent.

� Mixed model with a random intercept and a random slope
(RR): εi,l = b1i + b2iti,l/r + ε∗

i,l, ε∗
i,l ∼ N(0, σ2

error), b1i, b2i ∼
N(0, σ2

RR), where ε∗
i,l, b1i and b2i are independent.

Where σ2
ind=16; σ2

AR = 6, ρ = 0.6; σ2
error = 2.25; σ2

CS = 2.25;
σ2

RR = 1. The missingness indicator was then applied to the
simulated data with 4% drop-out rate. The empirical type-I
error rates are presented in Table 2. LGRF-G and LGRF-
J both have well controlled type-I error rates under all sce-
narios, even if the true correlation is not the assumed work-
ing correlation “CS.” The tests also have valid type-I error
rates at low α-levels (0.01 and 0.001). The simulation results
demonstrate that, consistent with the asymptotic result, the
proposed methods are robust to misspecification of within-
subject correlation in finite samples. We note that the pro-
posed methods tend to be slightly conservative at lower sig-
nificance levels (Supplementary Table 5) due to the use of
sandwich estimator as in regular GEE.

4.2. Power Simulations

In the first set of power simulations, one out of 154 SNPs was
randomly set to be causal. We evaluated two distinct scenar-
ios where the effect of the single causal SNP is manifested
through: 1. its marginal association with outcome, without
any gene–time interaction; 2. its interaction with time (SNP ×
Time interaction). The data were generated respectively:

1. Gene marginal effect : Yi,l = α0ti,l + α1Gi + εi,l, ti,l

= 1, . . . , r, (8)

2. Gene–time interaction : Yi,l = α0ti,l + α2Giti,l + εi,l, ti,l

= 1, . . . , r, (9)
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Table 2
Type-I error rate corresponding to different within-subject
correlation structures. Each cell represents the empirical

type-I error rate evaluated at α=0.05, 0.01, and 0.001 based
on 100,000 replicates. The total number of observations is
2400 and repeated measurements per subject were generated

in the same follow-up period according to different
correlation structures. Ind.: the repeated measurements are
independent. CS: the correlation is compound symmetric.

AR1: the repeated measurements follow a first-order
auto-regressive model. RR: observations follow a mixed

model with a random intercept and a random slope.
LGRF-G: the LGRF test for the marginal effect of a gene.
LGRF-J: the LGRF test for the joint effect of gene and

gene–time interaction. The working correlation assumed in
LGRF is CS.

Type-I error rate

Four repeated measurements (600 subjects)

LGRF-G LGRF-J

α = 0.05 0.01 0.001 0.05 0.01 0.001

Ind. 0.0495 0.0096 0.0008 0.0493 0.0097 0.0008
CS 0.0493 0.0099 0.0009 0.0491 0.0096 0.0009

AR1 0.0499 0.0097 0.0009 0.0507 0.0097 0.0009
RR 0.0497 0.0094 0.0009 0.0498 0.0096 0.0008

Six repeated measurements (400 Subjects)

LGRF-G LGRF-J

α = 0.05 0.01 0.001 0.05 0.01 0.001

Ind. 0.0501 0.0096 0.0009 0.0501 0.0093 0.0010
CS 0.0501 0.0097 0.0009 0.0488 0.0089 0.0008

AR1 0.0485 0.0093 0.0009 0.0494 0.0097 0.0008
RR 0.0497 0.0096 0.0010 0.0500 0.0095 0.0009

Eight repeated measurements (300 Subjects)

LGRF-G LGRF-J

α = 0.05 0.01 0.001 0.05 0.01 0.001

Ind. 0.0488 0.0091 0.0008 0.0483 0.0091 0.0007
CS 0.0484 0.0092 0.0010 0.0488 0.0090 0.0007

AR1 0.0474 0.0090 0.0008 0.0471 0.0089 0.0009
RR 0.0492 0.0095 0.0008 0.0485 0.0091 0.0008

where Gi is the genotype of subject i for the randomly se-
lected causal SNP; α0 = 12/r, α1 = 0.4, and α2 = 0.6/r; r is
the number of measurements per subject. To mimic the real
data scenario, α1 and α2 were elicited based on fitting sin-
gle SNP models with and without gene–time interaction to
MESA data. We chose a large α0 in our simulation studies to
illustrate the power gain that can be expected from a longi-
tudinal design with strong time trend in the mean outcome
levels compared to using the average of repeated measures.
We recognize that smaller values of α0 will lead to smaller
power differences.

In the second set of simulations, ten out of 154 were ran-
domly set to be causal each time. Among them, six SNPs have

only marginal effects, three have both marginal and interac-
tion effects and the remaining one has only an interaction
effect. The true model is of the form:

Yi,l = α0ti,l + α∗
1

∑
1≤k≤9

Gi,k + α∗
2

∑
7≤k≤10

Gi,kti,l + εi,l, ti,l = 1, . . . , r.

Where Gi,k is the genotype of subject i on the kth randomly
selected causal SNP. The coefficients are proportional to α1

and α2: α∗
1 = α1/10 = 0.04 and α∗

2 = α2/10 = 0.06/r, such that
the empirical powers are differentiable.

Two important points are illustrated by this simulation
(Tables 3–5): (1) the advantage of incorporating longitudi-
nal information over using only the average outcome; (2) the
use of multi-marker tests over single-marker tests. The pro-
posed multi-marker tests using the longitudinal outcome have
larger power than SKAT using the average of outcomes, as
the proposed tests use the whole trajectory of longitudinal
outcomes as opposed to only information contained in the av-
erage. When the number of repeated measurements increases,
the power becomes more distinct. Not surprisingly, LGRF-J
test has slightly lower power than LGRF-G because gene–time
interaction does not exist in these scenarios.

When the causal SNP has only an interaction effect (Ta-
ble 4), the relative performance of the methods using repeated
measures compared with the one using average outcome is
more distinct. In addition, the joint test LGRF-J is able to
further enhance power in these scenarios because it incorpo-
rates the gene–time interaction explicitly. We note that the
power difference between LGRF and SKAT using average out-
come is mainly attributed to the longitudinal design rather
than the difference between genetic random field model and
SKAT (Supplementary Table 4).

We also note that the proposed multi-marker tests have
larger power than single-marker tests using GEE with Bon-
ferroni correction (Tables 3–5), consistent with results found
in cross-sectional studies where advantages of multi-marker
tests over single-marker tests have been demonstrated repeat-
edly. The advantage in power is more substantial when there
are multiple causal SNPs (Table 5) than when there is only
one causal SNP (Tables 3 and 4).

5. Discussion

We extended the genetic random field model to the longitudi-
nal setting and developed generalized score type tests to test
the joint association between a set of genetic variants and
a repeatedly measured phenotype. Besides the advantages of
region-based tests over single-marker tests in cross-sectional
studies, the LGRF model is able to utilize all the repeated
measurements, incorporate gene–time interaction explicitly
and result in higher power. As in GenRF, LGRF models
the joint association using a single parameter by consider-
ing the similarity in phenotype induced by genetic similarity.
A main challenge in modeling longitudinal data is to account
for within-subject correlation and correlation is conceptually
viewed and modeled in a unified way as the joint genetic asso-
ciation in LGRF. Furthermore, the specified correlation struc-
ture is treated as a working assumption in inference and the
resulting LGRF tests are robust to misspecification.
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Table 3
Power comparisons when one randomly selected SNP is

causal and has a marginal effect. Each cell represents the
empirical power from 500 replicates at level α = 0.05. The

total number of observations is 2400 and repeated
measurements were recorded in the same follow-up period.
Ind.: the repeated measurements are independent. CS: the

correlation is compound symmetric. AR1: the repeated
measurements follow a first-order auto-regressive model. RR:
observations follow a mixed model with a random intercept

and a random slope. LGRF-G: the LGRF test for the
marginal effect of a gene. LGRF-J: the LGRF test for the
joint effect of gene and gene–time interaction. The working

correlation assumed in LGRF is CS. SKAT-Avg.:
cross-sectional SKAT using the average value of repeated
measurements as the outcome. GEE-G: test the marginal

association by GEE. GEE-J: jointly test the marginal
association and gene–time interaction by GEE. These

single-marker tests were implemented by testing every SNP
in the region and adjusting the minimum p-value by the

Bonferroni correction.

Power: single SNP marginal effect

Four repeated measurements (600 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.42 0.39 0.34 0.26 0.19
CS 0.53 0.49 0.43 0.41 0.33
AR1 0.46 0.45 0.38 0.32 0.28
RR 0.58 0.55 0.46 0.50 0.43

Six repeated measurements (400 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.48 0.47 0.31 0.29 0.26
CS 0.40 0.41 0.28 0.28 0.23
AR1 0.41 0.38 0.29 0.26 0.21
RR 0.51 0.48 0.35 0.42 0.37

Eight repeated measurements (300 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.40 0.39 0.25 0.29 0.23
CS 0.36 0.35 0.25 0.22 0.18
AR1 0.36 0.36 0.22 0.23 0.21
RR 0.49 0.45 0.24 0.34 0.30

LGRF tests are generalized score tests that only need to
fit the model under the null hypothesis, which is irrelevant to
the target region. Users can fit the null model once and test
all regions without repeatedly fitting the model. In addition,
the computational cost of LGRF mainly depends on the fixed
number of variants in the region but not the sample size. This
property improves the computational efficiency dramatically
(see Supplementary Table 1) especially when the target region
is small, for example if investigators are only interest in the
exon.

We note that not only the longitudinal outcomes precisely
describe the phenotype progression, considering time varying
exposure and its interaction with genotype may also improve
the discovery process. However, an analysis using the aver-

Table 4
Power comparisons when one randomly selected SNP is
causal and has only a gene time interaction effect.

Each cell represents the empirical power from 500 replicates
at level α=0.05. The total number of observations is 2400

and repeated measurements were recorded in the same
follow-up period. Ind.: the repeated measurements are

independent. CS: the correlation is compound symmetric.
AR1: the repeated measurements follow a first-order

auto-regressive model. RR: observations follow a mixed
model with a random intercept and a random slope.

LGRF-G: the LGRF test for the marginal effect of a gene.
LGRF-J: the LGRF test for the joint effect of gene and

gene–time interaction. The working correlation assumed in
LGRF is CS. SKAT-Avg.: cross-sectional SKAT using the
average value of repeated measurements as the outcome.
GEE-G: test the marginal association by GEE. GEE-J:

jointly test the marginal association and gene–time
interaction by GEE. These single-marker tests were
implemented by testing every SNP in the region and

adjusting the minimum p-value by the Bonferroni correction.

Power: single SNP× time effect

Four repeated measurements (600 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.38 0.39 0.29 0.21 0.20
CS 0.48 0.54 0.36 0.33 0.46
AR1 0.41 0.49 0.34 0.27 0.34
RR 0.53 0.57 0.39 0.42 0.50

Six repeated measurements (400 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.38 0.43 0.20 0.21 0.23
CS 0.33 0.44 0.19 0.17 0.37
AR1 0.31 0.39 0.21 0.16 0.21
RR 0.42 0.50 0.25 0.27 0.38

Eight repeated measurements (300 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.32 0.36 0.16 0.16 0.19
CS 0.25 0.36 0.16 0.12 0.30
AR1 0.25 0.35 0.14 0.13 0.16
RR 0.35 0.44 0.16 0.16 0.31

age outcome and a single measure of exposure will lose the
longitudinal features of the time varying exposure variables
and their correlations, reducing the rich exposure and out-
come data to an aggregate summary measure. In the spirit of
multi-marker based tests for gene–environment interaction,
such as GESAT (Lin, et al., 2013), we expect that a potential
future extension of LGRF towards separately testing gene–
time or gene–environment interaction in longitudinal studies
with time dependent covariates may enhance the discovery
process. Finally, the proposed test is only valid when the data
is missing completely at random as in GEE (Zeger and Liang,
1986). Future work extending the method to cases other than
this will be of interest.



614 Biometrics, September 2015

Table 5
Power comparisons when randomly selected multiple SNPs

are causal and have both marginal and interaction
effects. Each cell represents the empirical power from 500

replicates at level α = 0.05. The total number of
observations is 2400 and repeated measurements were

recorded in the same follow-up period. Ind.: the repeated
measurements are independent. CS: the correlation is

compound symmetric. AR1: the repeated measurements
follow a first-order auto-regressive model. RR: observations
follow a mixed model with a random intercept and a random
slope. LGRF-G: the LGRF test for the marginal effect of a
gene. LGRF-J: the LGRF test for the joint effect of gene

and gene–time interaction. The working correlation assumed
in LGRF is CS. SKAT-Avg.: cross-sectional SKAT using the

average value of repeated measurements as the outcome.
GEE-G: test the marginal association by GEE. GEE-J:

jointly test the marginal association and gene–time
interaction by GEE. These single-marker tests were
implemented by testing every SNP in the region and

adjusting the minimum p-value by the Bonferroni correction.

Power: Multiple SNPs combined effect

Four repeated measurements (600 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.36 0.36 0.25 0.13 0.09
CS 0.50 0.49 0.37 0.19 0.18
AR1 0.43 0.42 0.35 0.19 0.17
RR 0.60 0.60 0.46 0.36 0.29

Six repeated measurements (400 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.37 0.36 0.21 0.15 0.11
CS 0.33 0.35 0.21 0.12 0.10
AR1 0.32 0.32 0.22 0.13 0.10
RR 0.46 0.43 0.24 0.22 0.15

Eight repeated measurements (300 Subjects)

LGRF-G LGRF-J SKAT-Avg. GEE-G GEE-J

Ind. 0.30 0.30 0.17 0.11 0.11
CS 0.27 0.29 0.18 0.09 0.11
AR1 0.26 0.28 0.14 0.08 0.08
RR 0.40 0.41 0.20 0.19 0.15

6. Supplementary Materials

Web Appendices referenced in Sections 2, 3, 4, and 5, and
the R code implementing the method are available with this
paper at the Biometrics website on Wiley Online Library.
The code and an illustrative example are also available at:
http://sitemaker.umich.edu/statzihuai/longitudinal genetic
random field lgrf .
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