
ih

ot

.. .. ....

.................... ..........

................. 

....

.

................. .................

. . ........

gums j

MEN

.. ...... .

........................

Tom"

!' .... .... . ..

............. 
A - --- -

... ..........

m-w- QQW
.................

......... . .

.......... 

.

....... ...... ..

..........

list

. .... ......

.... 
...... 

too 

NITAT 

Kv

77' ;7'

low

--- 
--------------



1. r , .Y

.;t'.

i . --
,;ti F _

i ,

\\ ""

. i

- ' ' .. .1.

p (F_

f"

_ / _ .

- .
_

.. 
, ,.fir.

=.

_ 'Y

1 k '

. . 't ...

y + i _, ;.

h.

V 
a 

; 

3 
'

f 
7 

-

Y Y'

i. -

Y t i . Jul'.; .< "

lr r- z ' l - i

-yt :.y_ i :

4 1

_

_ -:' _

.t

'T . <

1 f -'

.', .4 -

(-.. ~

f 1 ' ,

r _ ,

_

' i 1 \ _

._..} 
"

f .

r f

fl 
' ,11 ^ 

f
r 

- "' '

/

.. _ ; t

.
:

_ 
i;;'"

'_ 7- .L

;_ l

1 _ i;

_ .,

ti.

:

1 % - °

.- ;

f - %- ', 

-
l z,

t'..
__ y r;.

>f .

' r' 
- . -- 1 '

j

1

( (" }

1 .

t 

5: \a

"-f'

, v - r

r ,1 ,- ,y

rr,,

t r 4 - ''

:J.

t l' '

, l\

l ' \

t

ly I

'? 
.s.". . , ,till

l 
y

":2

+. l

., .^ 1

.

: . .

.i'

f. 

J }

l -
'

: ''~..

- '.3 _

, = ; _

f .i: 

,

t ti '

f ;. t
i i i.

._

s t

Z, i y

T _ 1 %c

} i

h 
y,- _-\

r.V _ ._._ _ \

e r -i >. , lt

:; i S .' t

..

- ,'

; :;i

__

';=h

,

' u
- .

:: >°
,

.- r: ... ":

'"Z:v:.

S 

_

, .

.
C t!'.-. --

' . a"

- t \ .yt. ..

1 t , l '. 1 f\

4 :rr ! t tt.
t, _

1 \ 4: _ '= 1.

.?

-+

.
R..

... _ 1-. .

!, 
i}

t f t '.

t . r _ ,,

'! - t i ! ' y'

_ , fit tJ"'- rr

^ k

ti.
.-

_T
r _ \:a

F ( -

'

S

l _ . ".

.. _ w /_

q ) .

/ + .

j;

" t r 
T It

ti"

;J ( r 4

t _

17

\ ' i ' .

Y "1 l l

1 1.

l ,; ' ,. , ;'.

{ 
- .l.t

t( ,

i } 
- ..

J ; / ' 'c
,''

. :

< <

i

v . i

:1 
J 

_t

t

f

j..

:._-

J:

i '

1 ; .

' i -, .

,' :.,~

.,1,J

. . . t qtr

_ i _ .. . i

} :cif .'yF l i. lr i :i . ; . ( i. /

II ,! ! \

\ t. .,

r 

,

. _ :,

.. .,

, _ r ti -

. ,:. y,-.

/'_a

-;,:.

-

.:

.. .. -. ..- ., '1.' .

., ,1. 

,, ;

_ "_ '

i. -
r .

. i ,
: 

:.r. 
, .

ko

- - I

I

1 ,

, :r

. r .l,

y,;_

- ::

i

1 a } ..

- -
S . ; . 1 1""

' .

t 
"I. 

-

4 . ..
f4

J r 'I
4-f 1 8 1T. r -ft . 4§\ C~{IA-E~j

Y ' _> \

i; _

'.ti^-

. ' ..
i..

. ,, ,

''r

' \.. L '(

-. ;

"' K _

; .

>

' ( X ,t:

,

-
, ,

.(

y . .4

_. ..- :

,
ti

:

,
i ..

-

_ 

.

'.,. 
.. r

;tr j'-,

1

r', f

'

.E

. ;.
;:i?

r

L 

k

-

h: t 
t.

t _ i "

r / .

< Y ' r .

-Z. ,.^-2. '4

1
T .

5., ..

r a:.,

t \ 1

. 4Y
- . - +. .



Growth and Spacing

in an

Even-aged Stand of Douglas-fir

George R. Staebler

Thesis submitted in partial fulfill-
ment of the requirements for the
degree of Master of Forestry, School
of Natural Resources, University of
Michigan.

May 1951



TABLE OF CONTENTS

Introduction page 1

Source of data - stand description nv 5

Factors affecting tree growth nv 8

Formulation of spacing hypotheses
to explain growth n 12

Area of overlap hypothesis nv 15

The dependent variable n 16

Measuring competition r 17

Correlation results ?'24

Competition curve hypothesis vi 33

The dependent variable" 33

Measuring competition" 35

Correlation results "t 38

Conclusions and suggestions for
further study" 42

Bibliography "45

Appendix vv 47



Growth and Spacing in an Even-aged

Stand of Douglas-fir

Introduction

The successful practice of forestry is based on the

growth of trees. In agriculture, profitable and successful

husbandry is dependent on continuous, maximum crop yields

from the land. Just so in forestry: a successful forest

business requires a growing forest and the repeated harvest

of the growth. Forest growth is imperfectly understood;

yet with the practice of more and more intensive management,

knowledge of that growth becomes increasingly important.

Much information exists on per-acre growth rates.

yield tables prepared for a great many forest types in the

United States are the foremost example. Forest inventory

growth dataare almost universally expressed as so much per

acre per year. Such information, though essential to for-

est management, really gives only a rudimentary description

of growth. Rather than the final answer, as regards growth,

it is only the beginning.

A recent and fruitful development in growth studies

has been to regard the tree as the unit rather than the

acre. Per-acre growth rates, if they are to be completely
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explained, require that the stand to which they apply be

described in terms that are often discovered only after

considerable research. For example, one stand grows

twice as fast as another in terms of board feet per acre.

Why? Assuming that the familiar variables of site and

age are eliminated there comes the difficulty of describ-

ing such things as the stocking of the stand, diameter

distribution, and stand uniformity in terms which will

explain the difference in growth rates. Wide variations

in mortality, particularly, make interpretation of per-

acre growth rates difficult.

When the tree is regarded as the unit the object is to

explain the growth of each tree by means of easily recog-

nized characteristics. When this is accomplished the growth

of a particular stand may be determined by adding the growth

of the component trees. And what is more important, hypo-

thetical stands may be synthesized and comparative growth

rates studied from a management or silvicultural standpoint.

It is inevitable that in the solution of an individual tree

growth problem much will be learned of the growth character-

istics of trees. Knowledge of growth so defined is the very

backbone of intelligent silvicultural and management practice.

The approach in this study, which is an individual tree

proposition, has been to try to explain a tree's growth in

terms of the space which it occupies in the forest. If

space, or spacing, or competition,can be defined in such a

."2 -



way as to explain a treets growth the possible applications

are legion.

Perhaps the foremost possibility is the study of the

perplexing problem of stocking. The best known definition

of adequate stocking is that of Prof. Filibert Roth, "room

to grow and none to waste ". Probably no better purely

qualitative definition will ever be written. Perhaps there

are foresters with long experience, highly developed powers

of observation, and excellent judgment who can look at a

forest and decide whether or not the trees have room to

grow while wasting none; foresters who can thin a stand

to bring about adequate stocking by this criterion. How-

ever, until "room to grow and none to waste" is defined in

quantitative terms their art must remain the property of a

few.

Thinning practice embraces the idea of the tree as the

basic unit. Crop trees are picked, partly for their form

and quality, and partly because it is expected that they will

make adequate growth between the time of thinning and their

harvest. Alternative choices are nearly always encountered.

Will two or more small trees after release make more growth

than one larger one? Is the larger one capable of more

growth if the small ones are removed? Just how much space

does each need for maximum growth? The choice must be made

for each tree in turn, and optimum densities in per-acre

terms, even if they were known, would not make the decision



any less difficult. Again, it is evident that what it needed

is knowledge of growth-growing space relationships defined,

perhaps, by tree diameter and dominance.

Intensive silviculture is likely to borrow a term from

the engineer, "quality control" . Lumber grading rules

specify grades in terms of size and number of knots and

rings per inch, among other things. Both characteristics

are largely controlled by stand density, which is under the

silviculturist t s control. Production of lumber with a

specific number of rings per inch, "quality control", cer-

tainly will require a complete knowledge of the growth-

growing space equation.

In this study an attempt has been made to correlate
diameter

a treets/growth with the area which the tree occupies, or

more specifically, with the competition exerted on it by

its neighbors. This difficult problem has by no means

been solved and this thesis should be considered only as

a progress report. So little is known of the laws of tree

growth in terms of competition that what has been done in

this study is simply exploratory in nature. The true

relationships can only .be discovered by trial and error,

hence there is a virtual infinity of possibilities and

pitifully few of them have been investigated.



Source of data - stand description

Data used in the study came from an even-aged stand

of Douglas-fir on the north side of the Olympic Pennisula

in Washington. They are taken from the Pacific Northwest

Forest and Range Experiment Station's Kugel Creek Plots.

The four plots in the series were established in 1939,

when the stand was 38 years old. Three were thinned in

1939, and again in 1950. The fourth was left undisturbed

as a check plot. Data analyzed for this study came from

'the .63-acre check plot.

All trees were tagged and measured in 1939 and re-

measured in 1944, and again in 1949. In 1050 a stem map

was made of the check plot (fig. 1) and two of the thinned

plots. Stumps were located and measured in the thinned

areas so that the stand can be reconstructed as it was in

1939 before thinning. The stand was chosen for study

largely because of these thinning plots in the same general

stand. Growth-spacing relations can be developed for

natural and thinned plots in the same stand and results

compared and studied.

The stand is uniformly well-stocked. Originating

after a fire., the trees varied in age from 30 to 50 years

in 1939, although the great majority are within a few years

of the average (38 years). The stand occupies an average

site for Douglas-fir, with a site index of 140 ft. in 1949.

-5-
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Table 1. Stand table of study plot as it existed
in 1939 at beginning of growth period

trees B.A.
dbh per per

acre acre

3 3.2 0.2
4 73.0 6.4
5 87.3 12.3
6 107.9 21.2
7 60.3 16.1
8 82.5 28.8
9 50.8 22.5

10 44.4 24.2
11 22.2 14.7
12 19.0 14.9
13 14.3 13.2
14 7.9 8.4
15 6.3 7.7
16 12.7 17.7
17 3.2 5.0
18 3.2 5.7
19 3.2 6.3
20 - -

21 - -
22 1.6 2.8

Total 603.0 228.1

On the check plot average dbh in 1939 was 8.3 inches.

The stand table at that time (Table 1) showed 603 trees per

acre with a basal area of 228 sq. ft. There were 7334 cu.

ft. per acre which is 150 percent of full stocking by yield

table standard. Dominant and codominant trees in 1939

averaged 73 ft. in height.

In 1939, the year for which competition was measured,

average spacing was 8.5 feet for trees 2.6 inches and over.

-7-



For trees 5.0 inches and over average dbh was 9.5 inches and

average spacing, 10.0 feet. (smaller trees ignored).

The plot is practically level except for one corner on

a ten percent slope.
data

Growth and dbh/for the study were taken from the perma-

nent sawple plot record sheets. Spacing figures (for measuring

competition) were taken from the stem map. The record sheets

show the dbh of each numbered tree by 1/10 inch classes for

each of the three measurements, 1939, 1944, and 1949. Crown

classes are given and the heights of several trees. Also

shown, of course, is the record of the trees which died.

Diameter growth for the trees chosen for the study were taken

from these sheets.

The stem map was carefully plotted on cross section paper;

and each tree designated by its tagged number corresponding to

the plot record sheet. A celluloid overlay with concentric

circles one foot apart (on the stem-map scale) was used to

determine distances to competing trees for the trees whose

growth was studied.

Factors affecting tree growth

It is well known that, other things being equal, open-

grown trees make rapid diameter growth. Those growing in

closed stands make slower growth. Often the density is so

-8-



great that the stand stagnates and individual trees make

almost no growth, though here poor site as well as density

is often a contributing factor. How individual tree growth

changes between these extremes is not known. Schematically,

growth can be expected to increase as growing space increases

up to the point where the tree can no longer utilize the

increased room (Fig. 2). Definition of such a curve is the

real crux of the growth-growing space problem. Very little

is known about it; yet, where thinning can be practiced,

growing space or spacing is the thing most immediately under

the forester's control.

More fundamentally, why does a tree in a crowded stand

grow slowly? What are the basic factors controlling growth?

F. S. Baker in his book, "Principles of Cilviculture"±/ lists

four factors controlling the gross growth of a tree in any

specific year of its life.

1. The site factors, which are virtually fixed and can

be but slightly modified by the forester's art.

2. The inherent capacity of the leaves to carry on

photosynthesis (tolerance is involved here)

3. The input of light energy, water, and nutrients

4. The photosynthetic area

The first two of Baker's factors are assumed to be constant

in this study since it is confined to one species in a single

stand.

1/ Baker, F. S., 1950. Principles of Silviculture. McGraw-Hill.
New York. p.283.

-9-
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D:

STAGNATED FULL TO POOR STOCKING OPEN GROWN

GROWING SPACE

Fig. 2. Schematic representation of the relation of individual
tree growth to growing space.

The third factor, input of light energy, water, and

nutrients may be related to spacing. If the available supply

is critical in the growth of a tree it is possible that there

is a difference whether it is shared by many trees or by a

few. Hence, an increase in spacing might mean increased

growth (per tree) even if there were no increase in the photo-

synthetic area of the tree, Baker's fourth controlling factor.

It is readily apparent that this fourth factor is

directly related to spacing. Photosynthetic area, meaning

leaf surface, has some direct relation to crown area. Open-

grown trees have large, long crowns. In closed, even-aged

stands of intolerant species the crown becomes greatly

reduced both in length and width so that intermediate trees

become "tassel topped". And even dominants may have less

than one-third of their length in live crowns.

-10-



2/
Osborne, in his thinning study of southern pine,~ found

that growth of individual trees could be closely predicted

if the diameter and height of the tree and its crown width

and length are known. That is to say he had a correlated

measure of photosynthetic area. In this study the assumption

is made that crown area is closely controlled by spacing and

dominance. If these factors could be adequately described,

crown area, and hence photosynthetic area, would also be de-

fined. If all trees were of the same height, spacing alone

should control crown area (if we eliminate genetic differences

between individuals as a factor). Since they are not, the

added factor of dominance or relative height must also be

considered. Two trees may have exactly the same growing space

but if one is taller it has a crown above the general level

of the canopy and so makes faster growth.

A more direct measure of photosynthetic area--such as

crown width and length--could undoubtedly be used to predict

growth with more precision than can spacing and dominance.

The use of such a measure in Douglas-fir, however, is

impractical since the trees are so tall and the stands so

dense that accurate crown estimates are very difficult to

make. It is also exceedingly difficult to find measures of

spacing and dominance that are correlated to growth, but

once they are found their application should be relatively

simple.

2/ Osborne, J. G., 1939. A design for experiments in thinning
?orest stands. Jour. Forestry 37: 296-304.
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This discussion of growth factors should not be con-

strued to mean that total growth per acre is affected by

spacing, at least for stands not stagnated. Rather, it

means that a given total growth may be put on many or few

trees. Again, it should be emphasized that in this basic

study the tree is the unit and it is individual tree growth

which is being investigated.

Carl Mar:Mollerts European work on the relation of

thinning to dry matter reported on in the Journal of

ForestryA indicates that total leaf surface per acre can-

not be increased by thinning. Regardless of stand density,

except for very open stands, an acre of trees supports just

so much leaf surface when measured in dry weight of foliage.

Hence, photosynthetic activity and total gross growth is

about constant.

Formulation of spacing hypotheses to explain growth

The basic thought behind the hypotheses tested is that a

treets growth varies inversely to the competition which it

receives from neighboring trees. This, as explained earlier,

is brought about because of a reduction in crown area by

competition and perhaps also because of increased competition

for water and nutrients.

Just what the relations are have never been worked out

in quantitative terms. It is known that growth varies with

3/ Moller, C. M., 1J47. The effect of thinning, age, and site
on foliage, increment, and loss of dry matter. Jour. Forestry
45:393-404.



competition, but how shall this competition be expressed to

explain the growth? What is the role of dominance and how

shall it be expressed? In this study the underlying

assumption is that competition is directly proportional

to some function of the diameter of competing trees and

inversely proportional to some function of the distance

to competing trees. -

The effect of dominance, the second major factor con-

trolling crown area, is even more difficult to define and

visualize. To account for this, it is assumed that dominance

(in a particular stand) is some function of the diameter of

the tree studied. This is logical because in an even-aged

stand curves of height over dbh are fairly well defined: the

larger a tree is the taller it is. The larger, taller trees

are the dominants and codominants. This reasoning is slightly

fallacious since a tree may be larger in diameter because

it had abundant room to grow while it is ro taller than

smaller trees growing under more competition. In a uniformly

well-stocked stand this is probably of little importance.

To summarize, three factors have been considered in the

attempt to explain the growth of individual trees in this

even-aged,well-stocked stand:

1. Size of competing trees

2. Distance to competing trees

3. Size of the tree being studied (for its

definition of dominance)



In the absence of concrete knowledge of the role of

these factors any number of hypotheses might be formulated

to explain their effect on a tree s growth. A controlled

experiment presumably would involve the study of a single

competing treets effect on another's growth and the change

in growth as the competing tree was made larger or smaller

and the distance between trees increased or decreased. Then

the experiment would have to be repeated using different

sized subject trees. And repeated again with two, three,

and more competing trees. No such data exist, hence, a

tree's growth must be studied in the situation in which it

is found. Assumptions must be made as to which trees are

competitors, the function of distance, the function of size

of competitors, and the function of diameter of the subject

tree. Then using any one set of assumptions the total

competition must be computed and correlated with the growth

of the tree studied. Since total competition must be the

parameter the effect of any single tree can never be posi-

tively assessed. All that can be done is to correlate the

various measures of competition and to accept that measure

with the highest correlation as the one which best explains

the tree's growth. Competition can then be broken down to

an individual tree basis and one can see if the thing looks

logical, but it still can't be said that the effect of a

single tree has been isolated. It can only be known that

all the competing trees taken together explain the growth of

the subject tree.

-14-



Variations of two major hypotheses concerning competition

have been tested and are presented in the following sections.

None appears entirely satisfactory but the results are en-

couraging in that they indicate that the basic assumptions

are sound. Competition, and hence growth, is some function of

the three factors listed earlier.

Multiple correlations were run using 40 trees drawn at

random from the plot record sheets. The 12-year diameter

growth which occurred (expressed in two different ways) was

the dependent variable. Competition (expressed in a variety

of ways) was the independent variable. Competition ea-re- ~

from, the trees surrounding each of the subject trees. Of the

40 trees chosen for study, eight died during the growing

period. At first, they were included in the sample in hopes

that their death might be explained on the basis of intense

competition. It became evident, however, that correlations

could be greatly improved if these eight trees were omitted.

Hence, most of the results discussed are based on the 32 trees

which survived the growth period. Competing trees were in-

cluded if they were alive at the beginning of the period,

although many later died.

Area of overlap hypothesis

Essentially, this hypothesis states that trees require a

circular area to grow in, a circle whose diameter varies with

the dbh of the tree. Two trees which are so close together that

their circles overlap are competing with each other. The growth

of any tree is inversely proportional to the amount of over-

lapping from competing trees.

-15-
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Figure 3. Diameter growth (12-year) by dbh. Plotted points
indicate growth of trees studied. Average growth curve fitted
to 270 trees which survived the growth period. Full growth
curve is two standard deviations from regression above average
growth curve.

The dependent variable

The residual from a curve of diameter growth over dbh is

the growth variable to be correlated with the competition

measures. A free hand curve was fitted to the growth data

for all trees on the plot which survived the 12-year growth

period (Fig. 3). Residuals from this curve, or the difference

between actual and curved growth, were read for the trees

used in the correlations. The curve of diameter growth over

dbh has a Oorrelation coefficient of about .81. In other

words, such a curve alone accounts for 65 percent of the

variation in growth rate for the trees in the stand. Cor-

relations to be worked out test the hypothesis that those



trees which grow faster than the average of trees of the

same diameter have less competition and those that grow

slower have more.

Use of a growth curve based on dbh provides a reference

which largely accounts for dominance as a growth factor.

Reading from the curve in Figure 3, 16-inch trees averaged

about 2.7 inches diameter growth in the 12-year period, while

6-inch trees (those which survived the period) grew only

.5 inch. Why the difference? On the average the 16-inch

trees enjoyed a dominant position with much crown exposed

to full light well above the level of surrounding trees,

while the 6-inch tree was lucky if it had the very top of

its crown in a position to receive full light.

Use of a residual off such a growth curve in effect

nullifies this effect of -dominance. The 6-inch tree has as

good a chance of growing faster than the 6-inch average as

does the 16-inch tree of growing faster than the average for

its class.

Measuring competition

Development of the competition measure can best be

understood by reference to the diagrams in Figure 4. The

tree whose growth is being studied is shown at A. An

assumed area it would like to have to itself, if it is to

make full growth, is shown by the solid circle. B, C, and

D are competing trees and the areas they need for full

-17-



/B

/< 6
/ E

Figure 4. Illustration of length'of overlap, d i, used as a

measure of competition. Diameters of large circles are

1.2.(dbh)+5. Dbh of subject tree, A, is 8 inches.

growth are shown by the dashed circles. E is just far

enough from A so that the area it requires does not overlap

A'se circle. The heavy lines between A and B, C, and D

represent the length of overlap-- B, C, D are too close to

A by this amount.

(It is probable that competition is best represented

by the area of overlap. However, the expression giving this

area in terms of distance between centers of circles and

diameters of circles is extremely complicated. In fact, all

that is feasible is a graphical solution. Hence, the distance

between the edges of the overlapping circles has been used

for simplicity.)



Now if these overlap distances, or some function of them,

are to represent competition the first question needing an

answer is: How big are the required circles?

In the trials the assumption has been that the diameter

of the circle in feet is some constant times the tree's dbh

in inches plus another constant or, diameter of circle equals

a(D)+k, where D-_dbh, and a and k are constants. This is a

combination of the D times and D plus relationships widely

used as rules of thumb in thinning. The combination seems

logical in that if a D times constant could be solved for

experimentally the result would be of the form, k+aD. That

is, if the equation were not specifically restricted to

passing through the origin (k=0), it almost certainly would

not, and k would have some finite value.

In the trial correlations "an was arbitrarily set equal

to 1.6, 1.2, and .8 and "k" to 7, 3, and 5 feet. Six of the

nine possible combinations were tested.

In spite of the fact that the form as set up amounts to

a test of D plus and D times rules no particular brief is held

for them as such, although competition based on them is cor-

related with growth. Other functions of dbh, notably an

exponential function, might well be better. They have not

been tested.

The maximum distance at which two trees can compete with

each other becomes just less than ta(Do+D) + k, where Do= dbh

of the subject tree and D = dbh of competing tree. In other

-19-



words, at this maximum distance their circles are tangent.

For example, if fa"= 1.2 and ?tk"= 5, a 10-inch tree

requires a circle 17 feet in diameter, equivalent to

1.2 x 10 + 5. A 6-inch tree requires a circle 12.2 feet

in diameter. At J x 1.2 (10+6) + 5, or 14.6 feet between

the two trees, their circles are tangent.

For trees closer together than the maximum distance

the length of overlap becomes ba(Do+D) + kJ -d, where

d= distance between trees. This length of overlap in

the paragraphs to follow is designated dt. In the ex-

ample just cited, if the 10- and 6-inch trees were

actually 10 feet apart, dl would equal 14.6-10 or 4.6.

In reality dt is a coded value for the distance be-
any pair of

tween/trees. The length of the overlap, dt, increases as

the distance between subject and competing tree decreases.

It also increases with the size of the competing tree,

and with the size of the subject tree. This will be ex-

plained more fully later.

The sum of the overlap distances, Sdt, is the first

variable representing competition. The second variable

chosen is the sum of the squared distances, S(dt) 2 . This

is to give more weight to a single long overlap than to

several short overlaps whose sum might be equal to the

one long one. The third variable is SdtD, or the sum of

the products of overlap and corresponding tree dbh. In

Figure 4 note that trees B and D'have the same length of
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overlap, although B is a much larger tree than D. It seems

logical that because B is larger and higher in the scale of

dominance than D that it exerts more competition, even though

it is farther away. It is to give trees like B more weight

that the third variable, Sd'D,was adopted. For good measure

a fourth variable, s(dt) 2D, was added, the sum of the products

of the squared overlap distances and the size of the cor-

responding competing tree.

Remember that dt is a coded distancb between trees

depending on an assumed maximum distance at which trees will

compete with each other.

This index of competition has the effect of changing

when the size of the subject tree changes even if competing

trees keep their position. Figure 4 represents an 8-inch

subject tree and competition is computed from the assumption

that all trees closer than .6(D0+D) + 5 are competitors,

hence have a measurable overlap. Figure 5 shows the same

set-up except that the subject tree is a 14-inch tree. Note

how much greater is the competition. Tree E now becomes a

competitor and the effect of the other trees is increased.

This is not entirely illogical since a 14-inch tree ought

to require more room than an 8-inch tree. An inspection of

the d' variables when computed for 40 trees, however, showed

that on the average the large trees had much more competition

than the small ones. Competition was so much greater that

the relation to the dependent variable obviously changed over

the diameter range. Apparently this choice of variables more

than ffset the effect of dominance. Larger trees might have
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Figure 5. Illustration of changes in competition with change
in size of subject tree while distance to and size of competing
trees remain constant (see Fig. 3). Dbh of subject tree, A, is
14 inches.

more competition, by the assumed criteria, but it was less

effective since they were more dominant.

Hence, an adjusting set of assumptions was called for.

The average sized tree in the stand at the beginning of the

growth period (when competition was measured) was 8.3 inches.

If the average competing tree is 8.3 inches this can be

substituted for D in the maximum distance expression,

ia(Do+D) + k. For various values of Do the radius of the

circle which includes the average competing tree can be

computed. For example, if the maximum distance expression
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is .6(D+D) + 5, substitution of the average-sized competing

tree, 8.3, for D gives .6Do + 10. For 12-inch subject trees

this means that all trees 8.3 inches and larger within a

radius of .6 x 12 + 10, or 17.2 feet, are included as com-

petitors. For six-inch subject trees all trees within an

average of 13.6 feet are competitors. These radius figures

squared are proportional to the area of what is considered

an average circle. The squared figure divided by 10 and

rounded to the nearest whole number gives an area proportional

factor, designated F. The competition variables as computed

were divided by these factors, a different factor for each

sized subject tree and for each assumption of maximum com-

petition distance, ia(D0+D) + k. The factors are given in

Table 2.

The final observation equation now becomes:

Y: a + b1 Sdt/F + b2 S(dt) 2 /F + b3 SdtD/F + b4 S(dt) 2D/F

Y is the residual from the diameter growth over dbh curve. The

term naf is a constant to be solved for. The other symbols

have already been explained.

- It should be noted how purely arbitrary are the assumptions

made. Dozens of substitutions might be made while still stay-

ing within the general area-of-overlap hypothesis. The problem

becomes one of trying everything that looks reasonable, and a

lot of things that dontt, in an attempt to find out what the

controlling laws are (if there are any). It is essentially a

trial and error proposition.
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Table 2. Factors for adjusting competition to
size of subject tree

Subj ect
tree a=.8 a=1.2 a=1.6

dbh k= k=3 E k=5_ k=7 k=3 k=

Factor (F)
4 14 11 15 21 16 22
5 15 12 17 22 18 24
6 16 13 18 24 21 27
7 17 15 20 26 23 30
8 18 16 22 28 26 32
9 19 18 24 30 28 35

10 20 20 26 32 31 38
11 22 21 28 35 34 42
12 23 23 30 37 37 45
13 24 25 32 39 40 48
14 25 27 34 42 43 52
15 27 29 36 44 47 56
16 28 31 38 47 50 60
17 29 33 41 49 54 64
18 31 35 43 52 58 68
19 32 38 46 55 62 72

a and k are constants in the maximum
distance expression a/2(Do+D)+k

Correlation results

Results are inconclusive but encouraging. Table 3 gives

the prediction equations, and the coefficients of correlation

for the various assumed sizes of required circle. These

correlations are all based on samples of 32 trees which

survived the growth period. Diameters ranged from 4 inches

to 19 inches.
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Table 3. Prediction equations for the area-of-overlap
hypothesis

Assumed size
of circle
required

Prediction equation
Coefficient
of multiple
correlation

(1) .8D+7 Y = .508 + 1.1033Sdt/F - .0822Sd, 2 /F
-. 1876SdtD/F 4 .0123Sdt2D/F

(2) 1.*2D+3 Y t=.353 + 0.7595Sdt/F - .0§83Sdt2/F
-.1158SdtD/F + .0080Sd tD/F

(3) 1.2D+5 Yt: .710 + 0.8808Sdt/F - .0400Sdt2/F

-.1809SdtD/F + .0086Sd,2D/F

(4) 1.2D+7 Y t o 6 - 1.9015Sdt/F - .1586Sd, 2 /F

-. 2507Sd'D/F + .o006lSd 2 D/F

(5) 1.6D+3 Yt= .663 + 0.7389Sdt/F - .0552Sd, 2 /F

-.1208SdtD/F + .006lSdt2D/F

(6) 1.6D+5 Y?= .594 + 1.0433Sdt/F - .0683Sdt 2 /F
-.1332Sd'D/F + .o006lSd 2D/F

.464

.386

.473

.575

.391

.439

Four-variable multiple correlation in a sample this

small cannot be expected to give fully reliable results. In

these early trials, however, a test of methods and assumptions

was more of an objective than workable prediction equations.

For this purpose they serve sufficiently well.

The highest correlation, .575, is found when it is

assumed that a tree requires a circle whose diameter in feet is

equivalent to 1.2 times the dbh of the tree in inches plus 7.

For example, it is assumed that a 10-inch tree requires a 19-

foot circle for best possible growth in this stand. Restrictiom
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in this circle, as measured by the d, variables, is

significantly correlated with growth. None of the other

tests show a significant correlation when sample size and

numbers of variables are taken into account although they

all approach significance closely.

The coefficient of multiple correlation, .575, in-

dicates that for this particular assumption the dt variables

explain 33 percent of the variation, existing in the dependent

variable. Put this way, the prediction equation can hardly

be considered a useful tool in predicting growth of individual

trees. The expected error would still be high.

Further, it cannot be assumed that full growth would

result if trees were no closer than .6 times the sum of their

diameters plus 7 feet, in spite of the fact tnat this is the

underlying reference point for computing competition, com-

petition which turned out to be significantly correlated to

growth. Actually no trees studied were free of competition

or even close to it by these requirements. All that can be

said is that growth is related to this measure of competition

over the range of competition studied. Whether or not the

equation can be used to predict growth with zero competition

is not known. That the trees in this well-stocked stand are

competing strongly for space is evident from the part of the

stand map reproduced in Figure 6. This is the same part of

the plot that is shown in Figure 1, but with the desired

circular growth areas drawn in. Small wonder that the equation

can't quite be sure how much is "full" growth i
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In spite of the fact that even the best equation is too

poor for growth prediction purposes, it is well to analyze

it carefully to learn how it operates and to set the stage

for the hypothesis discussed in the next section.

All four variables taken together explain 33 percent of

the variation in Y, deviations from a growth curve. The

diameter growth curve, used as the reference point for the

residuals, explained 65 percent of the variation in the

original growth rates, hence competition accounts for

.33 x (1-.65) or 12 percent of the total variation, and

altogether 65+12, or 77 percent has now been accounted for.

Coefficients of partial correlation show that the

arbitrary choice of competition functions actually wasn't

too bad. All four variables are.of sufficient importance

to be included in an equation of this type--but that is not'

to say that better ones can't be found. S(d')2 and Sd'D

account for somewhat more variation than do the other two

variables (Table 4).

The equations in Table 3 can be simplified for plotting

by substituting appropriate values for F and D. First, an

equation may be written for any sized subject tree by substi-

tuting the proper value of F from Table 2 and clearing.

Equations derived from equation (4), Table 3, have been

written for 8- and 12-inch subject trees (Table 5). Next,

an equation for a particular sized competing tree may be

written by substituting its dbh for D whenever D occurs in



Table 4. Summary of correlation coefficients
for equation (4), Table 3

Remaining
Variables R2 Variable r2

Sdt/F, Ed 2/F, SdtD/F, SD'2D/F .331 -- --

Sdt/F, Ed I/F, Sd'D/F .189 Sd, 2D/F .175

Sd'/F, Sdt2/F, Sd'2D/F .100 Sd'D/F .257

Sd'/F, Sd'D/F, Sdt2D/F .085 Sd,2/F .268

Sd2 /F,dSd'D/F, Sd, 2D/F .159 Sd'/F .205

Sd'D/F, Sd' D/F .139 Sd/F, Sd'2/F .223

R= coefficient of multiple correlation
r= partial correlation coefficient
Squared coefficients are equivalent to amount of variation
explained by the chosen variables.

a specific subject tree equation. This gives an equation

in d'. Since dt is a coded value of distance the equation

may be written in terms of distance directly by clearing

the formula (Ja(Do+D) + k] -d, now that all terms in the

bracket are known. The result is a set of equations for

each sized subject tree, each equation in the set being

for a particular size of competing tree. Each equation

predicts Y for the subject tree in terms of distance be-

tween it and the competing tree. It should be noted that

the constant term, "a", in the subject tree equation drops

out in the individual competing tree equations. The com-

peting tree equations are for one tree only and the "a" term
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Table 5. Growth Prediction Equations for
8- and 12-inch trees

SubJect Compet-
tree ing tree
dbh dbh Prediction equation

All All Y t =.756 +l.9O14878d t/F - .1585998 td'v) 2 /F

-250680Sd tD/F + .0160248 (d 2 D/F
8All Y .756 + .0679l0Sd 0056648(d?) 2

-0089 53Sd tD + . 000572$ (d t) 2D

6 Y t =-.310 + .0546d -- .00223d 2

8 Y tz= 9362 + o.0398d - v 00109d2

10 Y'= -.367 + .0196d + .00006d2

12 Y t= -. 318 - .0061d + . 00120d2

14 Y t=- "204 - r.0373d + . 00234d 2

12 All Y1= .756 t .O51392Sd' .0042865(d) 2

-.006775SdID + .000433s d')2D

6 Yt=-".344 + .0494d - .00169d2

8 Y t=- .350 + . 0340d - . 00082d2

10 Yt= .312 + 90146d + .00004d 2

12 Y t = -.223 -- . 0090d + . 00091d2

14 'f=-.075 - .0368d.+ .00178d 2
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in the subject tree equation applies only to the sums of

all competing trees.

With the equations in this form they may be shown

graphically (Fig. 7). This puts the relationships out

where they can be more easily visualized and incidentally

shows up glaring weaknesses in the equations. The down

bend at the end of the 6-inch curves is illogical; the

curve should level off at some distance but not fall.

And of course the sharply defined minimum in the 14-inch

curves is hardly plausible. According to the curve a

14-inch competing tree has less effect on a subject tree

when it is 2 feet away than it does when it is 10 feet

away.

Throughout almost the entire range of the curves, the

effect is to subtract from the average growth; that is, the

predicted deviation from the growth curve is minus. It

should be remembered that after values are read from the

curves for the competing trees around a subject tree the

values must be summed, and a", which is 0.756 inches, added

to get total effect on the subject tree. The large relative

size of "a" is of course another indication of the poor

correlation existing between the dependent variable and

the chosen independents.

For the portion of any of the curves which show a plus

deviation in growth, the anomaly apparently exists that the

more competing trees there are at that distance the

higher will be the predicted growth of the subject tree.
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Figure 7. The effect of distance to and size of competing tree
on growth of subject tree. This is a partial graphical pre-
sentation of equation 4, Table 3.

Trees, however, just did not occur that way in the samples

so that this situation is beyond the range of the data. It

points up perhaps that the growth curve residual, as such,

is not a good dependent variable.

The arbitrarily chosen independent variables turned

out to be significantly correlated to growth but when the

equations are reduced to their elemental form it becomes

obvious that what must be the basic relationships have not

been properly expressed. Hence, the very fact that cor-

relation exists, even with these shortcomings, is evidence

that there is a relation between growth and the factors of

dominance, size of and distance to competing trees. It

remains to express all the factors properly.



Competition curve hypothesis

In the hypothesis just explained it was shown how the

final equation, when reduced to individual tree form, failed

to yield curves of logical shape (Fig. 7). That fact

suggests the desirability of starting with a curve form

which appears logical, adopting such variables as are

needed to describe it, and then running test correlations.

That has been the approach in the competition curve

hypothesis. It is assumed that a curve of competition

over distance is fairly simple in form, a form which may

be guessed at, and that a family of curves all of the same

general form and each representing a different sized com-

peting tree may be drawn. Various curve forms were chosen

as being possibly descriptive of the curve family.

The method has not been entirely successful and cor-

relations are no higher than for the overlap hypothesis.

However, it is felt that it has merit'because of its less

complicated approach and because it is somewhat more easily

justified biologically. Failure to achieve better correla-

tion supposedly results from failure to choose the correct

equation forms.

The dependent variable

If competition is to be greatest when trees are close

together and lessen as distance between trees increases and
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finally to disappear at some distance, it must be inversely

proportional to growth. In fact, competition can never be

measured, we only measure its effect on growth. The problem

is to choose some function of growth which is directly pro-

portional to competition in order to fit the hypothesized

curve forms which will be discussed later.

The diameter growth over dbh curve again is the start-

ing point (Fig. 5). If thousands of trees from this same

stand could have been plotted they would form a scatter of

dots which would have a more or less well defined "top". A

curve drawn along this top edge of the scatter would represent

the growth of trees which had all the room they needed to

grow in--assuming the correctness of the hypothesis that

deviations from average growth is due to more or less than

average growing space.

How shall such a curve of "full growth" be drawn? The

standard deviation from regression was computed for each

2-inch diameter class along the curve and points plotted

at two standard deviations above the basic curve. The points

defined fairly well a curve of "full growth". This curve,

it is assumed, is close to one which might be drawn along

the top edge of a scatter of dots (Fig. 3).

The amount by which a tree fails to make full growth

measured as a percent of full growth is called competition.

For example, full growth for a 10-inch tree is 2.95 inches.



For a tree that makes 2.00 inches growth, competition is

(2.95 - 2.00)/2.95, or 32 percent.

As in the overlap hypothesis, the use of a changing

reference with change in dbh is assumed to level the

difference in dominance between trees of different sizes,.

The superiority of such a dependent variable over

deviations from a growth curve is evident. The curve of

average growth must change from stand to stand as average

stocking or spacing changes (age and site remaining con-

stant). Hence, where deviation from a specific growth

curve is the dependent variable, it is questionable if

prediction equations (even if perfected) could be applied

to stands other than the one for= which they were computed.

In contrast a curve of full growth, if identified by age

of the stand and site quality, ought to be a uniform

reference point for any stand. Failure of a tree to make

full growth, expressed as percent, should be a perfectly

general dependent variable.

It is by no means certain that the curve of full growth

constructed as described does in reality describe growth

under optimum conditions. Further work should include

study and accurate definition of such a curve.

Measuring competition

It might easily be imagined that a competing tree exerts

maximum competition on another when it is zero, or one, foot
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away from the subject tree. Its effect should fall off slowly,

then more and more rapidly as distance between the trees is

increased until at some distance its effect disappears (Fig. 8).

If this competing tree is, for example, a 10-inch tree, a

14-inch tree ought to exert more competition but with its

curve having essentially the same form and with competition

becoming zero at some distance greater than that for the

10-inch tree. Similarly, a 6-inch tree ought to have less

effect than a 10-inch tree. Further, it seems logical that

the difference between the 10-and the 14-inch trees ought to

be greater than the difference between the 6- and 10-inch

trees (Fig. 9).

A curve like that in Figure 8 is an exponential form,

Y= a + bdP, where Y= competition, d= distance, and p is

some exponent. The curve has a maximum at d= 0 (the sign

of b becomes minus). Now, if a family of curves is to be

defined (Fig. 9), each curve in the family representing a

competing: tree of different dbh, the function just given

should be multiplied by dbh or, Y= a + b1 D + b2Ddp where

D equals dbh. If the difference between curves is to

progressively increase with increasing dbh, D must be

raised to a power, or, Y= a + b1Dp + b2D dp. By substitut-

ing different values for D a family of curves may be drawn.

As pointed out before, no individual tree information

exists. Hence, it is necessary to work with all competing

trees around a subject tree and to correlate the sum total
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for a single tree. - for trees of varying dbh.

of their effect with the growth (competition) of the subject

tree. This suggests that the number of trees competing also

be used as a variable, called N. The observation equation

becomes:

Y= a+ b1 N + b2 SDp + b3SDpdp

Before outlining the attempts made to solve this equation,

it is well to point out the obvious advantages of the hypothe-

sis as illustrated in Figure 9. If such a family of curves

could be constructed it would show how much reduction in full

growth is caused by any sized tree at any distance. Adding

the effects of all the trees close enough to compete would

result in a percentage figure which is the reduction from full



growth caused by competition. Further, the curves would

immediately show the distance beyond which a tree is no

longer a competitor.

Four different substitutions were made for the pts

in the equation and multiple correlations run. In all

four attempts D2 was used in the b2 term. In the b3 term

the substitutions were:

(1) D~1d2, equivalent to d2/D

(2) D d3, equivalent to d3/D

(3) D~ d2, equivalent to d2 /YD~

(4) D2 d2

Competing trees were chosen on the basis of one of the

assumptions made in the earlier hypothesis. All trees within

a distance of .6(Do+D) + 5 of the subject tree were called

competitors but here an average sized tree, 8.3 inches, was

substituted for Do so that the maximum distance became

.6D + 10, depending on the size of the competing tree.

Correlation results

The results were just good enough to keep an investi-

gator thinking that the elegant solution lay just around

the corner. And indeed it might. There are dozens of

possible solutions. The necessity of working with sums

makes it impossible to graph out the relations so that prior

knowledge of the curve form is impossible.
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The prediction equations and their coefficients of

multiple correlation are:

(1) Y'= 1.79 + 6.133N + .049SD2 - .213S(d 2 /D) R= .55

(2) Y'= -1.79 + 4.666N + .054SD2 - .012S(d 3 /D) R= .54

(3) Y= 1.19 + 2.480N + .049SD2 - .000S(d 2r?) R= .52

(4) Y'= 2.23 + 5.121N + .056SD2 - .0655(d 2 /VD) R= .54

These equations were fitted to data for 40 trees includ-

ing eight trees which died during the growth period. No. (1)

was reworked to include only the 32 surviving trees with the

result:

(5) Y'= 1.48 + 3.305N + .048SD 2 - .167 S(d 2 /D) R= .60

The correlation coefficients are all significant at the

five percent level. However, even the best equation explains

only about 30 percent (equivalent to R2) of the variation

existing in the dependent variable--competition as a function

of growth.

Figure 10 shows equation (1) converted to a family of

curves according to the original objective. One was substi-

tuted for N so that the equation for one tree becomes

Y'= 6.133 + .0493D2 - .2126d2/D.

(The constant 1.79 must only be added after the effect of all

competing trees are summed.) By substituting a given value

for D, an equation in d alone may be written. This is what

is plotted. The limits of the data used are shown by the

solid portion of the curves while the dotted part shows the
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Figure 10. Curves of competition over distance for trees of
varying dbh. This is a graphical presentation of equation
(1), page 39.

complete curve to the point where it crosses the abscissa.

It will be noted that the distance at which the curves cross

is illogically great. It is difficult to believe that a

14-inch tree will compete with another tree up to a distance

of 32 feet, or that a 10-inch tree is a competitor up to

23 feet.

The problem would seem to be to choose an equation form

which would cause the curve to drop faster--to increase the

effect of increasing distance. The other three forms chosen

were attempts to correct this defect, but none were so suc-

cessful as the one described.
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Another defect in the equations as solved was that

distance had entirely too little effect. Coefficients of

partial correlation showed that the b3 term was explaining

only about 3 percent of the total variation after the effect

of number of trees and diameter was accounted for. This is

in contrast to the overlap equations where the two terms

containing only distance (in its coded form) accounted for

about 19 percent of the total variation after allowing for
of

the effect/the variables containing diameter and distance.

The plan was to solve the equation for the maximum

effective distance (the crossing of the curve on the dis-

tance axis) and if that differed from the distances actually

chosen to solve the equation again for the ne limiting

distances. And then to repeat the process until the limits

of the data used corresponded to the solution. However, it

is felt that this is not worthwhile until a more logical

curve form is hit upon.

The hypothesis, I feel, holds promise but needs much

more trial. The most obvious next step is to try other

curve forms. Another probable need is to introduce the

size of the subject tree as a variable. The curves as shown

apply to subject trees of any diameter. In the overlap equa-

tions the size of the subject tree is more directly accounted

for.
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Conclusions and suggestions for further study

The inevitable conclusion from the study is that a

satisfactory explanation of individual tree growth based on

spacing has not yet been found. The presence of even poor

to moderate correlation, however, is evidence that a rela-

tion exists and waits only to be discovered.

Several possible defects exist in the data and in the

analysis that may account for failure to get better results.

The data are from a well-stocked, uniform stand. Perma-

nent sample plots are usually chosen for these very character-

istics. All trees were crowded and even though the competition

measures computed seemed to vary greatly from tree to tree,

still the range is not nearly so great as would exist in a

stand varying from poor to good stocking. The dependent

variable was also affected. Growth rates deviated from those

which were expected on the basis of tree diameter, from one-

half to three-fourths inch on the average. Perhaps, we

should be trying to explain variations two or three times

that great, at least in an exploratory study designed to

find out what the relations are as we'll as to evaluate them.

It is possible that the growth rates taken from the

sample plot sheets are too crude for careful analysis. Trees

were measured to the nearest tenth-inch, but, in converting

growth rates to the forms used in the dependent variables,
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curves were read to the nearest hundredth-inch. In the lower

diameters where expected growth rates are small, errors of

.05 inch (possible in tenth-inch classes) are serious, especial-

ly when expressed in percent, as was done in the competition

curve hypothesis.

It is possible, of course, that fundamental errors exist

in setting up the hypotheses for test. Genetic differences

between trees may partially obscure other factors affecting

growth. Some trees are simply better growers. Spacing and

dominance may not control crown area and,hence, photosyn-

thetic area as closely as supposed, though it seems hard

to believe. A study of the relationship is perhaps required.

It might give some clue to the functions of spacing needed to

explain growth.

As for the analysis itself, the most obvious handicap

is the necessity for solving the problem by trial and error.

How to account for dominance? for distance between trees?

for size of trees? The methods used were undoubtedly crude,

certainly very arbitrary.

One idea suggests itself as a means of learning more of

the effects of these factors. Future analyses should be

based on much more extensive data, so that separate cor-

relations could be run for groups based on diameter of

subject tree. Then within each subject-tree diameter group,

competing trees should be grouped by diameter, each group

with its own set of variables. A study of the constants
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derived from such a solution ought to throw light on the

effects of dbh.

The final conclusion is that here is a most challenging

study. Solution of the problem would yield information and

knowledge fundamental to scientific management. It undoubt-

edly requires a silviculturist thoroughly grounded in silvics

and plant physiology, plus a statistician of real ability.

The problem is beyond one or the other working alone and

equally unsolvable to one who is only half proficient in

both fields.
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Sub ect tree om etin Trees

No. dQuad o. db Dist.

128 12 NE 119*
118
117*

SE 116
122
121*
126
123

SW 127
125*
136
139*
135

NW 134
133
132
131
130*
129

NE 239
SE 236

235
234
233
328

SW 326
325
324*

NW 243
242
240
238*

5
5
4
6
6
7
13
10
9
7
9
5
9
8
6
7
7
7
7

7
16
8
7
5
6
10
9
5
6
6
6
4

17
15
19
19
17
8
7

20
6
16
14
16
19
18
20
18
16
14
14

18
9
10
10
15
19
8.
14
14
15
10
18
12

237 16

Sample of basic data as taken from stem map.
Competing trees include all trees within 20 ft.
of subject tree, separated by quadrants in which
they occur. Starred trees (*) died during growth
period. "Distance" is distance between competing
tree and subject tree.



subj e c t dt=T[a2 (Th kFT
ee Competing trees a=1,6a=. = .8

db oe qua No. dlh st._ -5 - -lFT=5Tr

9 257N1E 256* 5 12 4 2 3 1 1
255 6 14 3 1 2
253 11 14 7 5 5 3 1. 1

SE 300 6 6 11 9 10 8 6 7
301 5 13 3 1 2.
299 8 14 5 3 3 1

SW 295* 5 12 4 2 3 1 1
296 7 16 2 1
294 8 16 3 1 1
259 9 7 12 10 11 9 7 7
260 7 8 10 8 9 7 5 5
258* 5 5 11 9 10 8 6 8

NW 263 5 14 2 1
262 8 14 5 3 3 1
261 18 14 13 11 9 7 5 4

d 95 65 73 46 30 34
S (dt) 2  823. 501 555 320 172 206
SdtD 811 585 609 403 265 273
s(dt) 2D 7687 4895 4787 2783 1473 1539

Sam~ple page of data showing organization for computation
of d? variables used in area-of--overlap hypothesis. Only

those trees are recorded which are closer than the maximum
distance expression: a/2 (Do+D)+k. Competing trees marked*
died during growth period.



subject Dia. z-2.00 Sd! dd2 Sd'D Sd,2D
Tree Growth F

No. d (in.) y y t Y-Y t X X2 3 4

158 4.4 0.3 2.17 1.78 +.39

265
93

218

328
240
122
255
284

314
239
317
298

197
268
294
235
185

259
257
183
213

5.0
5.3
5.5

5.6
5.8
6.1
6.2
6.5

6.6
6.9
7.2
7.4

7.6
8.0
8.4
8.5
8.5

8.8
8.9
8.9
9.5

0.0
0.2
0.1

0.0
0.1
1.0
0.8
0.7

0.6
0.7
0.5
0.3

0.9
0.5
1.5
0.1
1.8

0.8
2.1
1.2
1.3

2.7

2.8

1.9
3.8
3.1
1.9

2.4
3.0
2.6

2.4

1.78
1. 90
1.74

1.61
1.65
2.46
2.23
2.04

1.91
1.92
1.63
1.37

1.92
1.40
2.28
0 . 85-
2.55

1.46
2.73
1.83
1.76

2.03
2.58
1.93

1* 52
1.74
2.06
1.67
2.26

2.24
1.90
1.85
2.19

1.94
1 * 84
2.38
1.18
1.95

1.60
1.86
1.90
1.79

-. 25
-. 68
-. 19

+.09
-.09
+.40

+. 56
-.22

-.33
+.02
-. 22

-.82

-.02
-.44
-.10
-. 33
-.60

-.14
i-.87'

-.07
-.03

2.3

2.2
1.0
1.4

1.0
1.5
1.4
1.7
1.5

3.2
1.5
3.4
2.5

1.7
2.4
2.1
2.5
2.2

3.0
2.4
2.2
1.8

1.8

1.6

2.2
3.3
1.5
2.7

2.4
1.2
2.3

1.6

25.8 30.4

13.7
4.0
9.0

5.0
13.3

8.8
14.9
12.2

23.4
7.5

29.2
17.8

16.7
20.4
13.6
31.7
20.2

27.0
18.5
18.9
16.1

17.5
7.8

15.4

14.9
17.2
12.7
17.0
12.8

22.6
14.2
23.7
17.7

14.3
19.7
14.5
31.6
17.6

23.5
20.3
17.1
18.9

397

103
32

112

87
159
76

144
112

173
65

200
121

136
168
89

413
164

207
160
140
181

14591 10.1

128 11.9

3.01 2.44 x-.57

2.72 2.15 +..57

16.1 14.0

14.9 14.8 151

114
357
20

107

12.8
13.0
13.31
13.4

1.67
3.53
2.81
1. 57

1.76
2.32
1.90

I.61
2.59
2.09
1.81

2.05
2.57
2.20

4- .06
-*94
+1.72
-. 24

-.33
-.25
-.30

25.7
23.6
17.8
25.7

28.0
7.0

23.4

21.5
19.6
15.7
24.6

24.4
8.5

21.8

258
138
202
260

330
48

265

112.15.7
100 15.7
237 15.8

.66 18.9 1.28 2.04 -.76 18.2 15.9 194

Observations set up for couputation of extensions needed for
solution of normal equations. The d' variables are based onthe maximum distance expression, .6(Do+D)+7. Y is the
residual from the growth over dbh curve plus 2.00. The con-
stant, 2.00, is added to avoid negative values for Y. It issubtracted from the constant "a" in the prediction equation
to give the predicted deviation directly. Y1 is the predicted
value of Y from the prediction equation.



sx1  65.5

Sx 568.1

sx3  582.2

sx4  5,430.

SY 63.72

2x 146.85

SX 1 X2  1,284.32

SX1X3  1,268.60

Sx1X4  11, 960.3

SX1 Y 129.732

SX22  11,742.21

SX2x3  11, 408.36

Sx2 S4 113,529.7

tSX 2 Y 1,105o140

SX3 2  11,484.64

sx3X4 112,253.2

SX3 Y 1,127.487

SX42 1,171,721.

SX 4 Y 10,340.53

Sy2 136.6432

X1

X2 =

X3 M

x4

Y

- 134. 070312

- 1,162.829688

- 1.91919690625

11,114.531250

- 130.426875

-10,1085.o550312

-10,335.869375

-96,399.468750

- 1, 131.229125

-10,592.401250

-- 98, 792.062500

1,1x59.305750

-921,403.125000

10,812.487500

- 126.882450

2.046875

17.753125

18.*193'750

169*687500

1.9 91250

= Sxlx2 -

=Sx1x3 -

= Sx 1 x 4 -

Sx 1 y =

Sx 2
2 _

SX')X4-

-Sx 2y -

Sx 3 x4 =

Sx 3 y

=Sy 2
-

12. 779688

121 .490312

76.909375

845. 768750

-0.694875

1,656.o659688
1, 072.490625

17,130.231250

-2 6.089125

892.238750

13,461.137500

-31.818750

250,317.875000

-471.957500

9.760750

Extensions computed from observational data
Corrected for departure from mean.

on preceding page.



t

Normal Equations;

Ibi

TI1bi

III bj

IV bl

Sx 1
2  + b 2 SjXl 2
xx2+ b 2 Sx 22

Sxlx 3 + b2 Sx 2 x3

1~l4 + b2 Sx2 X4

+

4;

b3 Sxlx3 + b4 SxIx = SXY

b3 Sx 2 x3  b4 Sx 2 x4  Sxy

b 3 Sx 2  + b4 Sx x=Sxy

b 3 Sx3 x 4 + b4 x4
2 = Sx4 y

I b 1 12.779688 +

II bl 121.490312 +

b2 121.490312 + b3 76.909375 -

b4 845.768750= -0.694875

b 2 1, 656.659688 + b 3 1,072.490625 -t

b 4 17,1330.231.250. =-26.089125

b2 1,072.490625 + b3 892.238750 +

b4 13,461.137500 = -31.818750

b 2 17,1330.231250 ± b 3 13,4619137500 +

b4 250,31.7.875000 = -471.957500

III b 76,.909375 +

ITT b1 845.768750 +
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Regression Equation

Variable Coeffficient IV Check

xl +l.901487 _&g5.768750 +,b8288

x2-0.158599 17,1130.231250 -2,716.3754f6

x3-0.2506~0 13,461.137500 -3,374.'-37949

x .+0.016024 250, 317.75000 +4-,011. 09:3629

SUMS.l- -4719957500 --- 471.9636
(cont.)

Equation Comput~.tion Means Computation

Y of R O. a

-o .694S75

-26.OE9125

-31. sLs750

-471.957500

+9.760750

-1.321296

+4.137709

+7.976324

-7.562647

+3.230090

2,0446875

17.753125

13. 193750

169. 687500

+3 . 92106

-2 .G15628

-4.56o~o9

+2.719072

"765259

Check on solution off normal equations. Computation off cor-
relation coef'ficient. Computation off constant, "au, in
prediction equation. (See Ezikiel, "Methods off CorrelationAnalysis", second edition, Appendix 1, p. 46 7)

R 2
= 3.230090/9.760750

.330926

R= *575

a = 1.991250-(-.765259) = 2.756509

Prediction equation:

(z+2.00)1 = 2.756509 = 1.90147x1 - 0015599x2 - 0.250680X3

+0 .016024X4 3

Y"'_z' = 0.756509 + 1918x - 0.15599x 2 - 0.2506g0x3
+ o.O16O24iX 4 19l47.
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