CAR CRASH TESTS
J. H. McElhaney
D. H. Robbins
A. W. Henke
V. L. Roberts

Highway Safety Research Institute
The University of Michigan
Ann Arbor, Michigan 48105

July 1, 1971

Final Report Subsection 7

Prepared For:
National Highway Traffic Safety Administration
U.S. Department of Transportation
Federal Highway Administration
Nassif Building
7th and E Streets, S.W.
Washington, D.C. 20591
Four 1966 Ford Galaxy 4-door sedans were crashed. The steering columns were removed to provide similar seating geometry for the right and left passengers. Two 50th percentile dummies rode in the front seat and a 3-year old child dummy rode in the back. The left front passenger was restrained with a standard 4-point lap belt and upper torso restraint system, while the right front passenger was restrained with a styrofoam knee block and an inflatable restraint system (airbag). The purpose of these tests was to compare car crash results with sled test results. The comparison was poor and these tests indicate that great care must be taken in the extrapolation of sled tests to predict injury reduction potential of candidate restraint systems in automobiles.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>i</td>
</tr>
<tr>
<td>FIGURES</td>
<td>ii</td>
</tr>
<tr>
<td>TABLES</td>
<td>iv</td>
</tr>
<tr>
<td>SUMMARY DATA SHEETS</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 INSTRUMENTATION AND TEST PROTOCOL</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Car Crash Facility</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Instrumentation Specifications</td>
<td>3</td>
</tr>
<tr>
<td>2.2.1 Transducers</td>
<td>3</td>
</tr>
<tr>
<td>2.2.2 Signal Conditioners</td>
<td>4</td>
</tr>
<tr>
<td>2.2.3 Recorders</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Calibration Procedures</td>
<td>5</td>
</tr>
<tr>
<td>2.4 Instrumentation Channels</td>
<td>6</td>
</tr>
<tr>
<td>2.5 Test Methods</td>
<td>7</td>
</tr>
<tr>
<td>2.6 Vehicle Speed Measurement</td>
<td>8</td>
</tr>
<tr>
<td>2.7 Car Preparation</td>
<td>9</td>
</tr>
<tr>
<td>3.0 RESULTS</td>
<td>10</td>
</tr>
<tr>
<td>3.1 Summary</td>
<td>10</td>
</tr>
<tr>
<td>3.2 Analyzed Data</td>
<td>10</td>
</tr>
<tr>
<td>3.3 Photometric Analysis</td>
<td>13</td>
</tr>
<tr>
<td>4.0 DISCUSSION</td>
<td>14</td>
</tr>
<tr>
<td>5.0 FIGURES</td>
<td>16</td>
</tr>
<tr>
<td>6.0 SUMMARY DATA SHEETS</td>
<td>43</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>HSRI Car Crash Test Facility</td>
</tr>
<tr>
<td>2</td>
<td>Overall View of HSRI Car Crash Test Facility</td>
</tr>
<tr>
<td>3</td>
<td>Winch Drive Assembly</td>
</tr>
<tr>
<td>4</td>
<td>Abort Brake</td>
</tr>
<tr>
<td>5</td>
<td>Bumper Crash Sensor</td>
</tr>
<tr>
<td>6</td>
<td>Tri-Axial Accelerometer Floor Mount</td>
</tr>
<tr>
<td>7</td>
<td>Umbilical Cord Patch Panel</td>
</tr>
<tr>
<td>8</td>
<td>Typical Dummy Configuration</td>
</tr>
<tr>
<td>9</td>
<td>Typical Dummy Configuration</td>
</tr>
<tr>
<td>10</td>
<td>Typical Dummy Configuration</td>
</tr>
<tr>
<td>11</td>
<td>Configuration After Test B3</td>
</tr>
<tr>
<td>12</td>
<td>Configuration After Test B4</td>
</tr>
<tr>
<td>13</td>
<td>Configuration After Test B5</td>
</tr>
<tr>
<td>14</td>
<td>Configuration After Test B6</td>
</tr>
<tr>
<td>15</td>
<td>Configuration After Test B3</td>
</tr>
<tr>
<td>16</td>
<td>Configuration After Test B4</td>
</tr>
<tr>
<td>17</td>
<td>Configuration After Test B5</td>
</tr>
<tr>
<td>18</td>
<td>Configuration After Test B6</td>
</tr>
<tr>
<td>19</td>
<td>Configuration After Test B6</td>
</tr>
<tr>
<td>20</td>
<td>Configuration After Test B6</td>
</tr>
<tr>
<td>21</td>
<td>Configuration After Test B6</td>
</tr>
<tr>
<td>22</td>
<td>Ford Tof Guard After Test</td>
</tr>
<tr>
<td>23</td>
<td>Test B6 - IORs Passenger Head Motion</td>
</tr>
<tr>
<td>24</td>
<td>Test B6 - IORs Passenger Head Motion</td>
</tr>
</tbody>
</table>

Page Numbers:
- Figure 1: 16
- Figure 2: 17
- Figure 3: 18
- Figure 4: 19
- Figure 5: 20
- Figure 6: 21
- Figure 7: 22
- Figure 8: 23
- Figure 9: 24
- Figure 10: 25
- Figure 11: 26
- Figure 12: 27
- Figure 13: 28
- Figure 14: 29
- Figure 15: 30
- Figure 16: 31
- Figure 17: 32
- Figure 18: 33
- Figure 19: 34
- Figure 20: 35
- Figure 21: 36
- Figure 22: 37
- Figure 23: 38
| Figure 24 | Test B6 - IORS Passenger Head Motion | 39 |
| Figure 25 | Test B6 - Belted Passenger Head Motion | 40 |
| Figure 26 | Test B6 - Belted Passenger Head Motion | 41 |
| Figure 27 | Test B6 - Belted Passenger Head Motion | 42 |
TABLES

TABLE 1. COMPARISON OF PEAK ACCELERATIONS 11

TABLE 2. COMPARISON OF PEAK BELT LOADS 12
<table>
<thead>
<tr>
<th>Data Sheet</th>
<th>Test Code</th>
<th>Measurement</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B3</td>
<td>Head Accelerations</td>
<td>44</td>
</tr>
<tr>
<td>2</td>
<td>B4</td>
<td>Head Accelerations</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>B5</td>
<td>Head Accelerations</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>A-407</td>
<td>Head Accelerations</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>B3</td>
<td>Chest Accelerations</td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>B4</td>
<td>Chest Accelerations</td>
<td>49</td>
</tr>
<tr>
<td>7</td>
<td>B5</td>
<td>Chest Accelerations</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>B6</td>
<td>Chest Accelerations</td>
<td>51</td>
</tr>
<tr>
<td>9</td>
<td>A-323</td>
<td>Chest Accelerations</td>
<td>52</td>
</tr>
<tr>
<td>10</td>
<td>B3</td>
<td>Belt Loads</td>
<td>53</td>
</tr>
<tr>
<td>11</td>
<td>B4</td>
<td>Belt Loads</td>
<td>54</td>
</tr>
<tr>
<td>12</td>
<td>B5</td>
<td>Belt Loads</td>
<td>55</td>
</tr>
<tr>
<td>13</td>
<td>B6</td>
<td>Belt Loads</td>
<td>56</td>
</tr>
<tr>
<td>14</td>
<td>A-402</td>
<td>Belt Loads</td>
<td>57</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

The authors wish to acknowledge the contribution of Mr. Jean Brindamour, Mr. Marvin Dunlap, Mr. Donald Erb, Mr. Robert Pontius and Mr. Dennis Raney to the success of this program.
1.0 INTRODUCTION

This report describes a series of 4 car crash experiments carried out as a final phase of Contract FH-11-6962 with the National Highway Traffic Safety Administration. The purpose of these tests was to provide data to allow a comparison between the sled testing results obtained on the HSRI impact sled and actual car crashes. To this end, four 1966 Ford Galaxies were crashed utilizing restraint system configurations that were identical to those used on sled tests described in previous reports on this contract (i.e., BioM-71-2). These sled tests were performed with a 1966 Ford Galaxy buck. A series of 126 frontal and 22 1/2º oblique tests were performed on various restraint systems, including inflatable occupant restraint systems (IORS) and standard lap and upper torso belt systems.

The major difference between sled tests and actual, but contrived, car crashes is the deceleration pulse. For head-on frontal crashes that are essentially one dimensional in terms of vehicle or sled deceleration, mathematical models can well predict these differences (see, for example, HSRI report number Bio M-71-4 on the above contract). An oblique sled test is still one dimensional in terms of the sled phase, but an oblique car crash involves 3 components of linear deceleration and 3 components of angular deceleration. Therefore, the question, "How well do sled tests predict the results of actual car crashes?" is both important and timely.
2.0 INSTRUMENTATION AND TEST PROTOCOL

2.1 CAR CRASH FACILITY

A car crash test facility has recently been constructed by The University of Michigan Highway Safety Research Institute. Design of this facility was initiated after a careful study, including site visits of seven other facilities both in the U.S. and abroad. The facility is located on the Willow Run Airport property. The facility is secured with an eight-foot chain-link fence and is accessible only from private roads (Figure 1). A 670-foot paved flat roadway approach to the barrier has been provided (Figure 2). A continuous cable and gasoline-drive winch, similar to that used by General Motors at their car crash facility, is used as the main drive (Figure 3). The maximum speed is 90 mph, limited by the bearings on the guide trolley. The maximum payload is at least 8000#. A large stationary abort brake of the industrial disk and caliper type is provided. Attachment to the vehicle is through a one-half inch diameter steel cable and a maximum deceleration of 3 G's is attainable (Figure 4). Provision for operating fixed and movable barriers and poles has been included. The cable drive direction may easily be reversed so that roll-over and car-to-car crashes at velocities higher than those that could be accommodated in front of the barrier can be performed. A large catch field has been provided for this purpose.

Instrumentation is housed in a large van which can be located appropriately for the test configuration. Currently, 42 channels of FM tape recording and 28 channels of visicorder are provided. Data is transmitted to the instrumentation van via umbilical cords. High speed camera coverage
(nominally 1000 fps) includes side, oblique, overhead and undercarriage. For the undercarriage view, an 8' x 8' x 8' deep camera pit has been constructed immediately in front of the barrier. Both on-board and fixed camera coverage is routinely provided.

2.2 INSTRUMENTATION SPECIFICATIONS

2.2.1 TRANSDUCERS. The following transducers were used:

1. Kistler Piezotron Model 818 Accelerometer (Dummy Heads)
 Type: Piezoelectric with integral impedance converter
 Range: ±250 G
 Sensitivity: 10 mv/g
 Freq. Response: 1 to 5000 Hz (+5%)
 Resonant Freq.: 30,000 Hz

2. Setra Model 104 (Dummy Chests)
 Type: Capacitance with integral impedance converter
 Range: ±500 G
 Sensitivity: 10 mv/g
 Freq. Response: 0 to 7000 Hz (+3%)
 Resonant Freq.: 7000 Hz
 Damping: 0.7 of critical-gas damped

3. Statham Model A69TC-100-350 Accelerometer (Vehicle)
 Type: Temperature compensated, unbonded strain gage
 Range: ±100 G
 Natural Freq.: 1800 Hz
 Damping: 0.7 (±0.1) of critical at room temperature

4. Lebow Model 3371 Belt Load Cell
 Type: Strain gage
 Range: 3500 pounds, with 50% overload capacity
 Sensitivity: 2.2906 mv/V/3500 pounds
2.2.2 SIGNAL CONDITIONERS. The following signal conditioners were used:

1. Honeywell Model 120 D. C. Amplifier
 Type: Solid state, direct coupled, wideband differential
 Gain: 10 - 1000
 D.C. Gain Linearity: better than ±0.2% of full scale
 D.C. Gain Accuracy, Calibrated Gain Ranges: better than ±0.5%
 Freq. Response: ±2% D.C. to 10 KHz
 Used with Piezotron Accelerometer

2. Honeywell Model 105 Bridge Balance (Gage Control) Unit
 Type: Same as above
 Freq. Response: ± D.C. to 10 KHz within ±0.5%
 Used with Lebow Belt Load Cells

3. Setra Model SCM Amplifier
 Type: Solid state, direct coupled, wideband differential
 Gain: 0 - 5
 D.C. Gain Linearity: better than ± 0.2% of full scale
 D.C. Gain Accuracy: better than ± 0.5%
 Freq. Response: ±2% D.C. to 20 KHz
 Used with Setra Accelerometer

2.2.3 RECORDERS. The following recorders were used:

1. Honeywell Model 1612 Visicorder Light-Beam Oscillograph
 Galvanometer response:
 M-3300 (15 channels): ±5%, 0 to 2000 Hz
 M-1650 (4 channels): ±5%, 0 to 1000 Hz
 M-1000 (1 channel): ±5%, 0 to 600 Hz
2. Honeywell Model 7600 F.M. Tape Recorder/Reproducer

Tape Speeds: 1 7/8 to 120 ips
Freq. Response: ±1.0 db 0 - 5000 Hz (at recording speed used - 30 ips)
Harmonic Distortion: 1.2%

3. CEC Model VR-3300 F.M. Tape Recorder

Tape Speeds: 1 7/8 to 60 ips
Freq. Response: ±0.5 db 0 - 10000 Hz (at recording speed used - 30 ips)
Harmonic Distortion: 1.5%

2.3 CALIBRATION PROCEDURES

Transducers: The calibration sensitivities of the transducers are checked to insure that there has been no appreciable deviation from manufacturers specified sensitivity.

The sensitivities of these piezoelectric accelerometers, which are used in the crash test dummies, are checked with a Kistler Model 894K Shock Calibration System. This system compares, on peak-reading voltmeters, the output of the test accelerometer and an NBS-traceable load cell onto which the accelerometer is dropped. Accuracy of the load cell and associated peak meters is checked against a NBS-traceable standard accelerometer prior to calibration of the test accelerometers.

2. Statham Model A69TC Accelerometer

This strain-gage accelerometer, used to monitor sled deceleration, is calibrated by comparing its output with that of an NBS-traceable standard accelerometer. The two accelerometers are mounted piggy-back on a common carrier block and impacted. Their outputs are displayed, via the sled umbilical and the signal conditioning system, on the oscillograph. The excitation voltage of the Statham is adjusted until its output agrees with the standard accelerometer. This excitation voltage becomes the standard for subsequent use of the accelerometer.
 Same as Item 2.

 Calibration sensitivity of these load cells is checked by applying a known load to a length of seat-belt material on which the cell is mounted. The output signal is compared with that obtained when a shunt resistor is paralleled with one leg of the transducer's bridge. The resistor value is that which has been specified by the manufacturer to produce a transducer output equal to the output produced by a known load.

2.4 INSTRUMENTATION CHANNELS

The following channels were instrumented with appropriate transducers, signal conditioners and recorded on FM tape recorders during the car crash:

Channels

1-3 Tri-Axial Head Accelerometer
 Dummy No. 1 (50% male, standard belt)

4-6 Tri-Axial Chest Accelerometer
 Dummy No. 1

7-10 Seat Belt Load Cells
 Dummy No. 1

11-13 Right Vehicle Tri-Axial Accelerometer

14 Timing Pulses and Contact Switch

15-17 Tri-Axial Head Accelerometer
 Dummy No. 2 (50% male, IORS)

18-20 Tri-Axial Chest Accelerometer
 Dummy No. 2

21 AP Head Accelerometer Dummy No. 3 (3-year-old)

22 SI Head Accelerometer Dummy No. 3
Channels

<table>
<thead>
<tr>
<th>Channel</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>AP Chest Accelerometer, Dummy No. 3</td>
</tr>
<tr>
<td>24</td>
<td>Sl Chest Accelerometer, Dummy No. 3</td>
</tr>
<tr>
<td>25-27</td>
<td>Left Vehicle Tri-Axial Accelerometer</td>
</tr>
<tr>
<td>28</td>
<td>Timing Pulses and Contact Switches</td>
</tr>
</tbody>
</table>

2.5 TEST METHODS

The following test matrix was used:

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Speed MPH</th>
<th>Barrier Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Programmed</td>
<td>Actual</td>
</tr>
<tr>
<td>B3</td>
<td>30.5</td>
<td>30.36</td>
</tr>
<tr>
<td>B4</td>
<td>30.5</td>
<td>30.36</td>
</tr>
<tr>
<td>B5</td>
<td>30.5</td>
<td>30.38</td>
</tr>
<tr>
<td>B6</td>
<td>40.5</td>
<td>40.47</td>
</tr>
</tbody>
</table>

All cars were 1966 Ford Galaxy 4-door sedans except B6 which was a 4-door hardtop. Test B3 and B4 were identical to provide a preliminary check of reproducibility. Three anthropometric dummies were used in each test. The right front and left front passengers were 50 percentile #850 Sierra anthropometric dummies with the new 1050 pelvis and General Motors rubber necks. The steering wheel, shaft, brake, and accelerator pedals were removed so that the driver side and front passenger side of the vehicle presented the same geometry. A standard 4-point lap and upper torso belt restraint system was used on the left, or driver's, side while an inflating occupant restraint system (IORS) supplied by Eaton Corporation was used on the right front.
passenger side. This IORS utilized a 10 cubic foot bag inflated by compressed
gas. A styrofoam block was installed on the right side to catch the dummy's
knees and prevent submarining. A standard 3-year-old Sierra child dummy rode
in the back seat restrained either with a Ford Tot Guard or an American Safety
Engineering Child Safety Seat. Inflation of the IORS was initiated by contact
switches on the front bumper of the car in order to provide comparison with
recent IORS sled tests with similar contact switches (Figure 5).

This experimental design allowed a direct comparison of the three
restraint systems employed, in addition to providing data directly comparable
to sled tests. For a complete discussion of the sled tests referred to
subsequently in this report the reader is referred to:

Restraint Systems"
Systems"

2.6 VEHICLE SPEED MEASUREMENT

The vehicle impact velocity was determined photometrically and as a
check the longitudinal impact velocity was determined from a speed trap
consisting of two tape switches placed in front of the barrier, 5 feet
apart. A digital electronic counter with an accuracy of ±1 microsecond
was switched on by the first switch when the vehicle wheel passed over the
switch and switched off by the second switch. The photometric analysis
compared quite well with the speed trap data and, since it yielded a com-
plete velocity profile, was used in the analysis reported here.
2.7 CAR PREPARATION

The aim of the car preparation was to reproduce as nearly as possible the sled test configuration with which comparisons were to be made. A 1966 Ford Galaxy buck was used in these sled tests. Therefore, the doors and roof were removed from the vehicles to be crashed. Reinforcing members were added to the roof and door frames to provide essentially the same stiffness and mass as was removed. A simulated mesh door was provided that was open enough for film coverage. This simulation provided essentially the same boundary conditions for the air bag as a car door with the window down. The front seat was reinforced and welded in place as in the sled tests. The steering wheel, column, and pedals were removed to provide the same interior geometry for both front passengers. Two tri-axial accelerometers were installed just behind the front seat on the floor, one on the right side of the car and one on the left (Figure 6). An umbilical cord patch panel and outrigger were installed in the trunk (Figures 7 and 11). Figures 8 through 10 show the typical test setup.
3.0 RESULTS

3.1 SUMMARY

The speed control and drive winch performed exceptionally in their first series of tests. Speed control was well within acceptable tolerances. The instrumentation and recording devices worked well and all data was obtained for the first three tests of the series. In the fourth test, the piezotron accelerometers (dummy heads) failed to function properly, probably due to a heavy thunder shower that had previously wet the umbilicord and junction box. This type of accelerometer is notoriously sensitive to small impedance changes in the conditioner wiring. Due to this experience, these accelerometers are being replaced with Setra capacitance type transducers which are much more reliable under car crash conditions. Fortunately, it was possible to obtain the dummy head accelerations through photometric analysis. This technique has been significantly extended by researchers at HSRI (refer to HSRI Report Bio M-71-5, "Door Crashworthiness Criteria").

Table 1 presents a comparison of peak accelerations for the left and right front passengers with IORS and standard belt restraints.

Table 2 presents a comparison of peak belt loads for the car crashes or representative sled tests.

3.2 ANALYZED DATA

The recorded data, consisting of tri-axial accelerometer signals, was played back at a reduced speed 1/16 of the recording speed. These signals were filtered according to SAE-J211 recommended practice and then entered
<table>
<thead>
<tr>
<th>TEST NUMBER</th>
<th>TEST TYPE</th>
<th>NOMINAL SPEED (mph)</th>
<th>IORS Head Accelerations (g's)</th>
<th>50% Dummy Head Accelerations (g's)</th>
<th>STANDARD BELTS Head Accelerations (g's)</th>
<th>50% Dummy Head Accelerations (g's)</th>
<th>CHEST Accelerations (g's)</th>
<th>CHEST Accelerations (g's)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3</td>
<td>Barrier, Frontal</td>
<td>30</td>
<td>41 10 40 43</td>
<td>12 10 42 43</td>
<td>95 50 43 110</td>
<td>10 70 22 72</td>
<td>S-I L-R A-P RES</td>
<td>S-I L-R A-P RES</td>
</tr>
<tr>
<td>B4</td>
<td>Barrier, Frontal</td>
<td>30</td>
<td>30 9 23 32</td>
<td>12 18 44 45</td>
<td>65 37 40 76</td>
<td>13 11 51 52</td>
<td>S-I L-R A-P RES</td>
<td>S-I L-R A-P RES</td>
</tr>
<tr>
<td>B5</td>
<td>Barrier, Oblique</td>
<td>30</td>
<td>28 15 14 51</td>
<td>17 7 26 27</td>
<td>72 62 40 95</td>
<td>24 8 38 39</td>
<td>S-I L-R A-P RES</td>
<td>S-I L-R A-P RES</td>
</tr>
<tr>
<td>B6</td>
<td>Barrier, Frontal</td>
<td>40</td>
<td>12* 33* 49* 51*</td>
<td>35 13 55 64</td>
<td>18* 9* 82* 83*</td>
<td>42 25 63 63</td>
<td>S-I L-R A-P RES</td>
<td>S-I L-R A-P RES</td>
</tr>
<tr>
<td>A323</td>
<td>Sled, Frontal</td>
<td>30</td>
<td>14 55 85 125</td>
<td>18 42 112 120</td>
<td>- - - -</td>
<td>- - - -</td>
<td>S-I L-R A-P RES</td>
<td>S-I L-R A-P RES</td>
</tr>
<tr>
<td>A402</td>
<td>Sled, Frontal</td>
<td>30</td>
<td>- - - -</td>
<td>- - - -</td>
<td>92 30 15 100</td>
<td>14 27 45 103</td>
<td>S-I L-R A-P RES</td>
<td>S-I L-R A-P RES</td>
</tr>
<tr>
<td>A292</td>
<td>Sled, Frontal</td>
<td>30</td>
<td>20 18 23 39</td>
<td>8 10 33 37</td>
<td>- - - -</td>
<td>- - - -</td>
<td>S-I L-R A-P RES</td>
<td>S-I L-R A-P RES</td>
</tr>
<tr>
<td>A309</td>
<td>Sled, Frontal</td>
<td>40</td>
<td>49 10 26 57</td>
<td>17 - 42 46</td>
<td>- - - -</td>
<td>- - - -</td>
<td>S-I L-R A-P RES</td>
<td>S-I L-R A-P RES</td>
</tr>
<tr>
<td>A220</td>
<td>Sled, Oblique</td>
<td>30</td>
<td>20 15 15 23</td>
<td>20 25 30 39</td>
<td>- - - -</td>
<td>- - - -</td>
<td>S-I L-R A-P RES</td>
<td>S-I L-R A-P RES</td>
</tr>
<tr>
<td>A246</td>
<td>Sled, Frontal</td>
<td>30</td>
<td>- - - -</td>
<td>- - - -</td>
<td>60 10 59 77</td>
<td>15 20 40 46</td>
<td>S-I L-R A-P RES</td>
<td>S-I L-R A-P RES</td>
</tr>
</tbody>
</table>

*Obtained through photometric analysis
<table>
<thead>
<tr>
<th>Test Number</th>
<th>Test Type</th>
<th>Nominal Speed (mph)</th>
<th>Load (lbs) Lap Belt Left</th>
<th>Load (lbs) Lap Belt Right</th>
<th>Load (lbs) Shoulder Belt Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3</td>
<td>Barrier, Frontal</td>
<td>30</td>
<td>1275</td>
<td>1550</td>
<td>1975</td>
</tr>
<tr>
<td>B4</td>
<td>Barrier, Frontal</td>
<td>30</td>
<td>1350</td>
<td>1675</td>
<td>1950</td>
</tr>
<tr>
<td>B5</td>
<td>Barrier, Oblique</td>
<td>30</td>
<td>1325</td>
<td>1750</td>
<td>2175</td>
</tr>
<tr>
<td>B6</td>
<td>Barrier, Frontal</td>
<td>40</td>
<td>4000</td>
<td>1950</td>
<td>2690</td>
</tr>
<tr>
<td>A323</td>
<td>Sled, Frontal</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A402</td>
<td>Sled, Frontal</td>
<td>30</td>
<td>1625</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A292</td>
<td>Sled, Frontal</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A309</td>
<td>Sled, Frontal</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A220</td>
<td>Sled, Oblique</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A246</td>
<td>Sled, Frontal</td>
<td>30</td>
<td>1410</td>
<td>1150</td>
<td>1760</td>
</tr>
</tbody>
</table>
into an analog computer to compute the vector resultant and severity index. Recording of these computed quantities was done on a Brush Model 206 recorder. The slower speed playback insured that the recorder was capable of responding to signals well above the cutoff frequency of the filters. Summary Data Sheets 1 through 9 show these computations for the car crash tests B3, B4, B5 and B6. In addition, typical sled test data analyzed in the same way is presented. Summary Data Sheets 10 through 14 show the belt loads for these car crash tests, along with a typical belt load time history for a sled test.

3.3 PHOTOMETRIC ANALYSIS

HSRI has pioneered in the development of advanced methods of analyzing high speed movie data. Fortunately, it was possible to bring this technology to work and obtain the head accelerations that were lost in test B6. The films for car crash B6 were analyzed on a Vanguard film analyzer and computer cards punched with the head displacement data. Differentiation and smoothing routines were used to obtain the linear and angular displacement, velocity and acceleration of the heads. In addition, the displacement, velocity and acceleration of the vehicle were determined. Figures 22 through 27 show the results of these analyses.
4.0 DISCUSSION

While it is impossible to draw statistically meaningful conclusions from four data points, the results of these tests indicate that severe difficulties exist in extrapolating even gross sled test results to actual car crash situations. These problems go far beyond the effects of different crash pulse shapes. They include the unrepeatability of dummy joint settings and positions and the so-called ringing of the dummies' head and chest to which the accelerometers are attached, which leads to vastly different acceleration signals. The dummy heads used in this test series had a natural frequency of 960 Hertz and a very low damping constant. This frequency is within the bandwidth of the data as presented. Thus, the head accelerometer outputs are quite dependent on local conditions that are essentially uncontrollable with the currently available dummies. A large amount of data is currently being examined at HSRI with the aim of carefully documenting the unrepeatable nature of sled and car crash testing. This will be reported at some future date as it is outside the provisions of this contract. Tests B2 and B3 were virtually identical in all major respects. The same model cars were crashed at virtually identical speeds. The same type of restraints were used, the same dummies and instrumentation were used, yet the recorded accelerometer traces supposedly indicative of the injury reducing potential of the restraint systems were very different.

However, dummy displacement time histories for the two similar car crashes and comparable sled tests were quite similar as determined photometrically. But photometric analysis is equivalent to filtering the data. For the 1000 frames per second rates used in these tests, photometric analysis of the type developed at HSRI is equivalent to filtering with a 20 Hertz first
order filter. It is for this reason that the head accelerations for test
66 which were determined photometrically are not directly comparable with
the head data for the other tests since this data was filtered with a 1650
Hertz first order filter. Great care must therefore be exercised in using
accelerometer data to predict the injury reducing potential of automotive
occupant restraint systems.

There is one important aspect of these tests that bears emphasis. No
child seat test data is presented. This is because the rear seat back and
the rear seat cushion repeatedly came loose in the crash. This extra
loading on the ASE seat and the Ford Tot Guard caused structural failure
of the child seat structures (Figure 21). The child dummy experienced
severe loading due to this very real problem. It is too much to expect a
child seat to restrain the child occupant and the adult seat as well.
5.0 FIGURES
FIGURE 4. ABORT BRAKE
FIGURE 8. TYPICAL DUMMY CONFIGURATION
FIGURE 9. TYPICAL DUMMY CONFIGURATION
FIGURE 10. TYPICAL DUMMY CONFIGURATION.
FIGURE 13. CONFIGURATION AFTER TEST B5
FIGURE 20. CONFIGURATION AFTER TEST B6
FIGURE 21. FORD TOT GUARD AFTER TEST
Figure 22. IORS Passenger Head Motion

TEST # B-6

TIME, msec.
Figure 23. IORS Passenger Head Motion
FIGURE 25. BELTED PASSENGER HEAD MOTION
TEST # B-6

FIGURE 26. BELTED PASSENGER HEAD MOTION
TEST # B-6

FIGURE 27. BELTED PASSENGER HEAD MOTION
6.0 SUMMARY DATA SHEETS
Impact Velocity 30.36 mph
Barrier Type Flat Frontal
SUMMARY DATA SHEET 2
HSRI CAR CRASH FACILITY
THE UNIVERSITY OF MICHIGAN
Test No. B4
Dummy 50%

IORS HEAD

Superior-Inferior Acceleration Filtered Class 1000

Left-Right Acceleration Filtered Class 1000

Anterior-Posterior Acceleration Filtered Class 1000

Resultant Head Acceleration Filtered Class 1000

Car Deceleration Longitudinal 5 g/s/division Filtered Class 60

Severity Index
Impact Velocity 30.38 mph

SUMMARY DATA SHEET 3

Barrier Type 22.5° Oblique

HSRI CAR CRASH FACILITY

THE UNIVERSITY OF MICHIGAN

Test No. 85

Dummy 50%

Superior-Inferior Acceleration Filtered Class 1000

Left-Right Acceleration Filtered Class 1000

Anterior-Posterior Acceleration Filtered Class 1000

Resultant Head Acceleration Filtered Class 1000

Car Deceleration Longitudinal 5 g/s/division Filtered Class 60

Severity Index
Impact Velocity 30 mph
Barrier Type Flat Frontal

SUMMARY DATA SHEET
Test No. A-407
THE UNIVERSITY OF MICHIGAN

STANDARD BELTS
HEAD
50% Dummy

STANDARD BELTS
HEAD
95% Dummy

Superior-Inferior
Acceleration
25 g's/division
Filtered
Class 1000

Left-Right
Acceleration
25 g's/division
Filtered
Class 1000

Anterior-Posterior
Acceleration
25 g's/division
Filtered
Class 1000

Resultant Head
Acceleration
25 g's/division
Filtered
Class 1000

Sled Pulse
10 g's/division
Filtered
Class 60

Severity Index
312.5/division
<table>
<thead>
<tr>
<th>Parameter</th>
<th>IORS CHEST</th>
<th>STANDARD BELTS CHEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superior-Inferior Chest Acceleration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5 g's/division</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left-Right Chest Acceleration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5 g's/division</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anterior-Posterior Chest Acceleration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5 g's/division</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resultant Chest Acceleration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5 g's/division</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car Deceleration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitudinal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 g's/division</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Impact Velocity: 30.38 mph

Barrier Type: 22.5° Oblique

SUMMARY DATA SHEET

Test No.: B5

Dummy: 50%

THE UNIVERSITY OF MICHIGAN

IOR S CHEST

Superior-Inferior
Acceleration
12.5 g's/division
Filtered
Class 180

Left-Right
Acceleration
12.5 g's/division
Filtered
Class 180

Anterior-Posterior
Acceleration
12.5 g's/division
Filtered
Class 180

Resultant Chest
Acceleration
12.5 g's/division
Filtered
Class 180

STANDARD BELTS CHEST

Car Deceleration
Longitudinal
5 g's/division
Filtered
Class 60
Impact Velocity 40.47 mph
Barrier Type Flat Frontal
SUMMARY DATA SHEET
THE UNIVERSITY OF MICHIGAN

Test No. B6
Dummy 50%

IORS CHEST
Superior-Inferior Acceleration
12.5 g/s/division
Filtered
Class 180

STANDARD BELTS CHEST
Superior-Inferior Acceleration
12.5 g/s/division
Filtered
Class 180

Left-Right Acceleration
12.5 g/s/division
Filtered
Class 180

Anterior-Posterior Acceleration
12.5 g/s/division
Filtered
Class 180

Resultant Chest Acceleration
12.5 g/s/division
Filtered
Class 180

Car Deceleration Longitudinal
5 g/s/division
Filtered
Class 60
Impact Velocity: 30 mph
Barrier Type: Flat Frontal
SUMMARY DATA SHEET 9
HSRI SLED TEST
THE UNIVERSITY OF MICHIGAN

Test No.: A323
Dummy: 50%

Superior-Inferior Acceleration
12.5 g's/division
Filtered
Class 180

Left-Right Acceleration
12.5 g's/division
Filtered
Class 180

Anterior-Posterior Acceleration
12.5 g's/division
Filtered
Class 180

Resultant Acceleration
12.5 g's/division
Filtered
Class 180

Sled Pulse
10 g's/division
Unfiltered

Unfiltered

80 msec
Impact Velocity 30.30 mph SUMMARY DATA SHEET 10 Test No. B3
Barrier Type Flat Frontal HSRI CAR CRASH FACILITY Dummy 50%
THE UNIVERSITY OF MICHIGAN

Belt Loads

Left Shoulder Belt
250 pounds/division
Filtered
Class 60

Right Lap Belt
250 pounds/division
Filtered
Class 60

Left Lap Belt
250 pounds/division
Filtered
Class 60

Car Pulse
5 g's/division
Filtered
Class 60
Impact Velocity 30.36 mph

SUMMARY DATA SHEET
HSRI CAR CRASH FACILITY
THE UNIVERSITY OF MICHIGAN

Test No. 84
Dummy 50%

BELT LOADS

Left Shoulder Belt
250 pounds/division
Filtered
Class 60

Right Lap Belt
250 pounds/division
Filtered
Class 60

Left Lap Belt
250 pounds/division
Filtered
Class 60

Car Pulse
5 g's/division
Filtered
Class 60
Impact Velocity 30.38 mph
Barrier Type 22.5° Oblique
SUMMARY DATA SHEET
HSRI CAR CRASH FACILITY
THE UNIVERSITY OF MICHIGAN

Test No. B5
Dummy 50%

BELT LOADS

Left Shoulder Belt
250 pounds/division
Filtered
Class 60

Right Lap Belt
250 pounds/division
Filtered
Class 60

Left Lap Belt
250 pounds/division
Filtered
Class 60

Car Pulse
5 g's/division
Filtered
Class 60
Impact Velocity 40.47 mph
Barrier Type Flat Frontal

SUMMARY DATA SHEET
HSRI CAR CRASH FACILITY
THE UNIVERSITY OF MICHIGAN

Test No. B6
Dummy 50%

BELT LOADS

Left Shoulder Belt
500 pounds/division
Filtered
Class 60

Right Lap Belt
500 pounds/division
Filtered
Class 60

Left Lap Belt
500 pounds/division
Filtered
Class 60

Car Pulse
5 g's/division
Filtered
Class 60
Impact Velocity 30 mph
Barrier Type Flat Frontal

SUMMARY DATA SHEET
1
HSRI SLED TEST
THE UNIVERSITY OF MICHIGAN

BELT LOADS

Test No. A402
Dummy 50%

Left Shoulder Belt
250 pounds/division
Filtered
Class 60

Right Lap Belt
250 pounds/division
Filtered
Class 60

Left Lap Belt
250 pounds/division
Filtered
Class 60

Sled Pulse
10g's/division
Filtered
Class 60