

Times Roman

pr	сниккммоге
6 PT	ABCDEFGHUK
$8 \text { PT }$	ABCDEFGHIJKLMNOPQR
10 PT	ABCDEFGHIJKLMNOPQRSTUV
	Century Schoolbook Bold
	ABcorrcius.
8 PT	ABCDEFGHIJKLMNOPQRSTUVW
10 PT	ABCDEFGHIJKLMNOPQRS
	News Gothic Bold Reversed
8 PT	
$10 \mathrm{Pl}$	

Bodoni Italic
BOCEFHILKLMNOPORSTUVWXYZabcdefghijklmnopqrstuvwxyz;:",./2s01 23456789
6 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:'",/?\$0123456789
8 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:',./?\$0123456789
10 PT ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz;:'c,/² 0123456789
Greek and Math Symbols

4 PT		
6 PT		
8 PT		
10 PT		$\geq \pm^{\prime \prime}, . / \leq=⿻^{\circ}><\equiv$

White Black Isolated Characters

APPLIOATION OF BASAL AREA OONTROL TO AN UNDER-STOOKED STAND IN THE APPALAOHIANS by

Allan L. Hartong

A Thesis
Presented to the Faculty of the
School of Forestry and Conservation
Univeraity of Michigan

In Partial Fulfillment of the Requirements for the Degree of Master of Forestry

PAGE

1. AOKNOWLEDGEMENTS
2. INTRODUOTION
3. DESORIPTION OP THE AREA
4. OOLLEOTION AND INTERPRETATION OF ORUISE DATA
5. ESTIMATION OF FUTURE RATE OF GROWTH
6. PRELIMINARY INVESTIGATIONS AND DEOISIONS
7. DEVELOPMENT OF CONTROL TABLES
8. DEVELOPMENT OF CLASSIFIED STAND AND STOCK TABLES
9. ESTIMATION OF PRESENT CUT
10. ESTIMATION OF FUTURE OUTS
11. FINANOIAL OONSIDERATIONS
12. OALOULATION OF LUMBER SELLING PRIGES
13. OALOULATION OF LOG AND LUMBER PRODUCTION OOSTS
14. oaloulation of fuelwood values
15. VALUATION OF THE FOREST PROPERTY
16. CONOLUSION
17. REFERENOES

AOKNOWLEDGEMENTS

To Professor D. M. Matthews, the writer wishes to extend sincere thanks and appreciation for invaluable assistance and advice rendered in preparing this paper. Without his help and suggestions, the construction of this thesis would have been difficult at best. Oredit is due also to T. V.A.'s Department of Forestry Relations for furnishing copies of data collected by the writer while employed by that bureau.

INTRODUOTION

The purpose of this paper is to show how forest management may be applied to an under-stocked timber stand in the Appalachians. The whole theory of forest management is build upon the premise that the individual trees within a stand should have "room to grow, but none to waste." It follows quite naturally, therefore, that the most intelligent method of achieving a regulated forest condition is to allow only that number of trees upon a certain area which can effectively utilize the productive capacity of that area. This means that the member of individual stems (as expressed in the equare feet of their basal area) is the best criterion of the degree of stoaking which any particular area should be allowed to attain.

The procedure to be followed in this particular case is to determine the basal area that each of three different composition types can reasonably be expected to carry while maintaining optimum growth, and then restriot the removal of other than harvest and defective trees until the determined basal area has been attained.

DESORIPTION OF THE AREA

The area presented here for discussion is classified as a Yellow-Pine-Hardwoods Type, and is located in the southern Appalachian region. The speoies of pine found are shortleaf and Virginia, and the more important hardwoods, from the standpoint of stand composition, are as follows: chestnut, red, black, white and scarlet oaks; yellow poplar;
hickory; beech; gum and maple: The entire ownership consiste of 4,556 acres, 3,387 of which are wooded.

This area is owned by an institution, and, when purchased, was well stocked with a high proportion of old-growth yellow poplar and white oak. From all indications, the aite is far above average in quality, and the rugged terrain precludes the area's use for purposes other than the growing of trees. Contimuous practice of the so-called "high grading" method of logging, and recurrent fires, have changed the complexion of the stand to auch an extent that inferior species now dominate the area. Nearly one-fourth of all the trees are defective, and should be removed within the next ten years if their total loss is to be averted.

The present owners have expressed their desire to place the stand on a sound management basis, and have indicated a willingness to install adequate forest fire protection and such other protective and forestry measures as may be noeded. The institution own and operates a small portable sawnill, as well as a wood-working shop capable of producing a wide variety of forest products. This sort of a set-up will permit of a higher degree of utilization than is practicable on most nearby areas of a similar character, and will greatly enhance the possibilities of developing good forestry practices.

Until quite recently, the institution was completely independent of the competitive lumber market for supplying it's own needs for construction and maintenance materials and other forest products (furniture,

Abstract

poste, poles, ete.). Lately, however, the omers have become greatly concerned over their poorly-stocked timber resources, and their primary objective at the present time is to convert these resources, as quickly 2 possible, into such ia condition as will assure them of a perpetual cupply of raw materials.

COLLEOTION AND INTERPRETATION OF ORUISE DATA

Due to the present low value of the stand and the small amount of funds allocated for the purpose, a comparatively low intensity (2\%) of eruise was made. The cruise was made by tallying all trees $6^{\prime \prime}$ d. b. h., and up, on $1 / 5$-aere plots spaced 10 chains apart on parallel atrips spaced 10 chains apart. In addition, incremont boringe were made of the neareat merchantable ($10^{\text {N }}$ d. b. $h_{\text {e, }}$ and up, for pine, and $12^{\text {I }}$ d. b. $h_{0,}$ and up, for hardwoods) tree to the center of each plot.

In order to provide a means of distinguishing between the several stand components, the following classification of Condition Olasses and Types was established:

Condition Ola scon

0. Areas excluded from forest management in order to preserve aesthetic values.
I. Areas on which a out of approximately 2 M ft., b. mo, per acre can be made within the next 10 years.
II. Areas on which a cut of at least 2 Mft, , b. m., cannot be made until 10 years from now.
III. Areas on which a cut of at least $2 \mathrm{Mft} ., \mathrm{b}$. m., camnot be made until 20 years from now.

Typer
Pine. Areas with 75% or more of the merchantable volume in pine. Pine-Hardwood. Areas with less than 75%, but more than 25%, of the merchantable volume in pine.

Hardwood. Areas with 25% or less of the merchantable volume in pine.

While making the cruise, each of the foregoing condition classes and types were mapped as they were encountered. Upon completion of the oruise, the areas of the various portions of the stand were determined by a planimeter. The results are presented in Table I.

Table I
Acreage

Type	Forest Land				Scenic Woodland
	Condition Olass				Oondition Olass
	I	II	III	Total	0.
Pine	117	132	152	401	
Pine-Hardwood	260	453	298	1,011	
Hardwood	486	597	726	1,809	
Totals	863	1,182	1,176	3,221	166
Entire Woodland, Total					3,387
Open Land					1,169
Entire Property, Total					4,556

Gross volume computation was accomplished by applying the data recorded in the tally sheets to Tables II, III and IV. These tables were assembled by the Forest Resources Division, ITA Department of Forestry Relations, and the following form classes were used: 76 for chestnut oak,

Table II

HARDWOOD VOLUME TABLE

board feet int. $\frac{1}{4}$ " log rule
FORM CLASS 76

DBH.	Number of 16-Foot Logs									
	$\frac{1}{2}$	1	12	2	$2 \frac{1}{2}$	3	31	4	4 $\frac{1}{2}$	5
10	19	36								
12	29	51	71	90						
14	42	72	100	130	150	170				
16	57	100	140	170	200	230	260	280		
18	74	130	180	220	260	300	330	360	380	
20	92	160	230	280	330	380	420	450	470	490
22	110	200	280	340	400	460	510	550	580	610
24	130	240	330	410	490	560	620	670	700	730
26	150	280	390	490	580	670	740	800	840	870
28	. 180	330	450	570	680	790	870	940	980	1020
30	210	380	530	660	790	910	1000	1080	1140	1180
32	240	440	610	770	910	1040	1140	1240	1310	1350
84	270	500	690	870	1030	1180	1300	1400	1490	1540
36	310	560	780	980	1160	1330	1470	1580	1680	1740
38	350	630	870	1090	1290	1480	1640	1770	1880	1950
40	390	700	960	1200	1430	1650	1820	1970	2090	2160
42	430	770	1060	1330	1580	1830	2020	2180	2310	2390
44	470	840	1170	1470	1740	2010	2220	2400	2540	2630
46	520	920	1290	1610	1910	2210	2440	2620	2790	2890
48	570	1010	1410	1760	2090	2410	2670	2860	3050	3160
50	620	1100	1530	1910	2270	2620	2900	3120	3320	3430

HARDWOOD VOLUME TABLE BOARD FEET INT. $\frac{1}{4}$ "LOG RULE
 FORM CLASS 78

DBE	NUNBER OF 16-FOOT LOGS								
	(16)	(t,	$\underset{(2)}{2}$	$\begin{aligned} & 2 \frac{1}{2} \\ & (40) \end{aligned}$	$\begin{gathered} 3 \\ (48) \\ \hline \end{gathered}$	$\begin{gathered} 3 \frac{1}{2} \\ \text { (5) } \end{gathered}$	$\begin{gathered} 4 \\ (64) \end{gathered}$	$\begin{aligned} & 4 \frac{1}{2} \\ & (72) \end{aligned}$	$\begin{gathered} 5 \\ \hline 100) \end{gathered}$
10	40	50	70						
12	60	80	100						
4	80	110	140	160	180				
16	110	150	190	220	250				
18	140	200	240	290	320	370	400		
20	170	240	300	370	400	480	510		
22	210	300	370	460	500	590	630		
24	250	350	450	540	610	700	750		
26	300	430	530	640	730	830	890		
28	350	500	620	750	850	960	1040	1090	1140
30	400	570	710	870	980	1120	1210	1250	1300
32	460	660	810	1000	1120	1290	1380	1440	1490
34	520	740	920	1120	1280	1450	1560	1630	1700
36	590	840	1040	1270	1440	1640	1760	1840	1920
38	660	930	1160	1420	1610	1830	1980	2050	2150
40	730	1040	1290	1580	1790	2050	2210	2300	2400
42	810	1160	1430	1750	1980	2260	2450	2510	2650
44	890	1270	1570	1920	2180	2490	2690	2800	2920
46	970	1390	1720	2110	2390	2740	2940	3060	3200
48	1060	1510	1870	2300	2600	2970	3210	3340	3500
50	1160	1650	2030	2510	2820	3240	3490	3660	3830

Table IV

CONIFER VOLUME TABLE BOARD FEET INT. $\frac{111}{4 \prime}$ LOG RULE

FORM CLASS 80

D. BH	NUMBER OF 16-FOOT LOGS								
	(16)	(2)	$\underset{(32)}{2}$	$\begin{gathered} 2 \frac{1}{2} \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 4 \end{gathered}$		(4)	423)	$\left(\begin{array}{c}5 \\ (80)\end{array}\right.$
8	20	30	40	(45)	50				
10	40	50	70	80	80				
12	60	80	100	120	130	150	160		
4	80	120	140	160	180	210	220		
16	110	160	190	220	240	280	300		
18	140	200	250	280	310	360	380		
20	180	250	310	360	390	450	480		
22	220	310	380	450	480	560	590		
24	270	370	460	530	580	680	710		
26	320	440	540	630	690	800	840		
28	370	520	630	740	810	940	990	1120	1160
30	430	600	730	860	930	1080	1150	1290	1340
32	490	680	840	970	1060	1240	1320	1480	1530
34	550	770	950	1110	1210	1410	1500	1680	1730
36	620	880	1070	1250	1360	1590	1690	1890	1950
38	690	980	1190	1400	1520	1780	1890	2110	2190
40	770	1090	1320	1550	1690	1980	2100	2360	2140
42	850	1200	1460	1720	1870	2180	2320	2600	2700
4	940	1330	1610	1890	2060	2400	2550	2860	2970
46	1030	1430	1770	2080	2260	2630	2790	3150	3260
48	1120	1580	1930	${ }^{\prime} 2270$	2470	2870	3040	3430	3550
50	1220	1730	2100	2470	2690	3120	3300	3710	3850

78 for all other hardwoods and 80 for all conifers. Net sawtimber volumes were obtained by observing the following deductions for defect:

Virginia Pine	4%	Basswood	12%
Hemlock	5	Oucumber Tree	12
Shertleaf Pine	6	Oherry	6
Black and Southern Red Oak	7	Black Gum	10
Scarlet Oak	8	Hickory	5
Ohestnut Cak	10	Beech and Buckeye	10
Northern Red and White Oak	7	Maple	12
Post Oak	10	Yellow Poplar	5
Ash	5	Black Walmut	7

When tabulated, the distribution of volume was found to be as presented in Table V. (See page 10).

In spite of the recurrent fires that have devastate the area, present stocking of those trees below $6^{\prime \prime}$ d. b. $h_{\text {. is entirely satisfactory with }}$ one exception, and, if protected by the anticipated fire control system, should adequately meet all future requirements. The one exception is the 300 acres of the Pino-Hardwood Type in Condition Olass III, and this area is to be planted with chortleaf pine within the very near future.

EstImation of future rate of growth

Increment borings were tallied as radial growth for the last fiveyear period by measuring the distance between the last five growth rings to the nearest 0.05 inch. 254 trees were tallied with a total radial

Table V.
Bautimber Volume Summary-Total Area
(By International 1/4" Log Fule)

Forest Land

Type	Defective	Sound	Total Volume		$\begin{aligned} & \text { Total } \\ & \text { Trees } \end{aligned}$
			$\begin{aligned} & \text { fective } \\ & \text { ss I } \end{aligned}$	Sound	
Pine	89,679	142,271			
Pine-Hardwood	135,236	620,993			
Hardwood	538,915	1,468,712			
Totals	763,830	2,231,976	763,830	2,231,976	2,995,806
		Oondition	II		

Pine		47,374				
Pine-Hardwood:	41,279	69,424				
Hardwood	86,426	376,239				
Totel:	127,705	493,037	127,705	493,037	620,742	
Forest Land Total (All trees)	$1,565,087$	$4,837,534$	$6,402,621:$			

Total by Types (Includes All Oondition Olasses)

Pine	159,289	401,893	561,182
Pine-Hardwood	415,798	$1,341,983$	$1,757,781$
Hardwood	990,000	$3,093,658$	$4,083,658$
Forest Land Total (All trees)	$1,565,087$	$4,837,534$	$6,402,621$

Sconic Woodland (Oondition Olass 0)
All Types
67,614 863,583 931,197
growth of 252.50 inches. Dividing the total radial growth by the total number of trees, we obtain $252.50 / 254$ or 0.994 inches of average radial growth per tree. In order to obtain the average anmal rate of growth, we multiply 0.994 by 2 and divide by 5, and obtain $1.998 / 5$ or 0.3976 , say 0.4 , inch per year. It is believed advisable to use this rate of growth for the whole area rather than a separate rate of growth for each condition class, because the condition classes represent past methods of logging and intensity of burn rather than quality of site. Inaemach as the data used was obtained from trees with more than enough room in which to grow, and which, in a good many cases, have only recently recovered from the detrimental effects of a severe burn, it is believed that the estimated future rate of growth of 0.4 inches per year is as reasonable an estimate as can be made.

PRELIMTNARY INVESTIGATIONS AND DEOISICNS

The distribution of all the trees and volume, when reduced to a per acre basis, is found in Table VI. Inspection of this table (see pages 12 and 13) reveals that due to the very amall quantity of trees and volume per average acre, the only practical mothod in which a satisfactory management plan may be formulated is to deal with each of the nine combinations of condition olasees and types eoparately. The defective portion of the stand is not considered to be a reliable basis on which to make a decision regarding the maximum size that future harvest trees should be allowed to attain. Inspection of the data for the sound portion of the stand only, shows that the volume, in ft. b. m., per eq. ft. of basal area increases gradually up to $20^{\prime \prime}$ d. b. h. for pines, and up to $24^{\prime \prime}$ d. b. h.

Table VI

Volums and Tree Distribution per Average Acro

Defective Trees

$\begin{aligned} & \text { D. B. H., } \\ & \text { Inches } \end{aligned}$	Number of Trees	B. A. per dia. class, sq. ft. Pines	Vol., ft. b. m .	Volume, ft. b. m. per eq. ft. of BA
6	. 28	0.06		
8	. 25	0.09		
10	. 29	0.16	12	75
12	. 25	0.20	19	95
14	. 10	0.11	12	109
16	. 02	0.03	2	67
18	. 01	0.02	3	150
24	. 02	0.06	4	67
26	. 01	0.04	6	150
Totals	1.23	0.77	58	
		Hardwood		
6	. 51	0.10		
8	. 70	0.25		
10	. 89	0.49		
12	. 66	0.51	40	78
14	. 57	0.61	51	84
16	. 40	0.55	36	65
18	. 41	0.73	78	107
20	. 25	0.55	68	124
22	. 14	0.57	44	119
24	.11	0.35	35	100
26	. 06	0.22	32	145
28	. 03	0.13	19	146
34	. 02	0.13	7	54
Totals	4.75	4.99	410	

Table VI (Ooneluded)
Volume and Troe Distribution per Arerage Acre
Sound Trees
DBH, No. of B. A. per dia. Vol., ft. Vol. per sq. Vol. per Inches Trees olass, sq. ft. b. m. ft. of BEA. Tree

Pines

6	3.06
8	1.93
10	1.55
12	1.35
14	.92
16	.53
18	.18
20	.03

Totals 9.55
0.60

0.67	64
0.85	107
1.06	110
0.98	90
0.74	42
0.32	10

75
101
112
122
131
143
41.3
23.7
24.0
26.7
29.4
30.7

Hardwoods

6	5.70	1.12	
8	3.91	1.37	
10	2.40	1.31	2
12	2.13	1.67	133
14	1.83	1.95	178
16	1.47	2.05	222
18	.78	1.38	163
20	.40	0.87	117
22	.24	0.63	86
24	.19	0.60	87
26	.06	0.22	32
28	.05	0.21	23
30	.02	0.10	7
32	.03	0.17	28
Totals	19.21	13.65	1,078

2	
80	65.8
91	103.0
113	163.8
118	233.5
135	320.0
137	416.5
145	475.0
145	600.0
110	500.0
70	350.0
165	933.3

for hardwoods. Tho reduction of this ratio above $26^{\text {n }}$ for hardwoods indicates defect in those hardiood trees larger than $26^{\prime \prime}$, and it is therefore decided to set a maximum average haryest diameter of $20^{\prime \prime}$ for the Pine Type and $24^{\prime \prime}$ for the Hardwood Type. Since the Pine-Hindwood Type is expected to gradually inerease it's oomplexion towards that of the Pine Type, the harvest diameter set for the Pinemirarood Type is the same as for the Pine Type, 1. e.. $20^{\prime \prime}$.

The rolumo-per-tree colvmas in the "sound trees" part of the table were tabulated for the purpose of obtaining data with which to construct merchantable height-d. b. h. curres that are to be used in estimating future cute. Since the volume for chestmat oak were computed for a different form elass than was the remainder of the hardwood volumes, they are excluded from the hardwood volume-per-tree column.

In order to form a decision on the mumber of equare feet of basal area that each type should be allowed to carry when fully-atocked, the data presented in Tables VII and VIII on page 15 were obtained. These figures show the equare feet of basal area that various fully-stocked stand would contain if all of the trees on one acre were of a certain average diameter. For example, if we refer to the Yield Table for Second-Growth Southom Pines (Table VII) wo find that if one acre were fully-stocked with trees averaging 6.9 inches in diameter, the total basel area of the trees on that acre would be 146 square feet. Similarly, by referring to the yield table for Oak, which can reasonably be applied to all hardwoods, (Table VIII), we find that one fully-stocked acre of trees averaging 11.4 inches in diameter would contain 133 square feet

Table VII
Yield Table for Second-Grouth Southern Pines (1)*
(One Acre for each Diameter or size Olass)

Age,	Diameter
years in inchos anal area in	
equare foet	

20	6.9	146
25	8.2	162
30	9.5	169
35	10.6	172
40	11.7	174
45	12.7	174
50	13.6	174

90	19.9	174
95	20.6	174
100	21.2	174

Table VIII
Yield Table for High Forest of Oak on I., or best, quality of Locality (2)
(One Acre for each Size Olass)
Mean diamoter Basal area in in inches square feet

6.1	103
8.2	115
9.9	125
11.4	133
12.8	140
14.2	145
15.5	149
16.9	153
18.4	157
19.6	160
21.0	163
22.3	166
23.5	168

Refer to the list of references at the ond of this paper for the identification of numbers in parentheses.
of basal area. Now if we were to plot these various basal areas over their respective diameters, we would obtain a pair of curves from which the basal area of a fully-atocked acre for any given diameter could be read. These two curves have therefore been constructed; one for the pines and one for the hardwoods, and are found in Figure I on page 17.

By referring to these curves, and judging from their trends, it was decided that the Pine Type should be allowed to carry a stocking of 150 sq. ft. of basal area and the Hardwood Type 126 sq. ft. Inasmuch as the Pine-Hardwood Type is now composed primarily of hardwoode, with an expected increase in the proportion of pine, the basal area for this type was placed between the two foregoing types at 135 sq. ft.

Due to the present low degree of stocking on the area as a whole, it was felt that too short a cutting cycle would be neither feasible nor practicable. Conversely, too long a cutting cycle might result in the loss of trees now classed as sound but which will quite likely become defective if allowed to grow too long. Consequently, a cutting cycle of 10 years was selected.

Since the estimated future rate of growth was determined to be $0.4^{\prime \prime}$ per year, and the average maximum harvest diamoter was eot at $24^{\prime \prime}$ for the Hardwood Type and 20" for the other two types, the rotation for the former type would be $24^{\prime \prime} / 0.4^{\prime \prime}$ or 60 years and $20^{\prime \prime} / 0.4^{\prime \prime}$ or 50 years for the latter two.

Before we can proceed to formulate any decision regarding the treatment of each of the individual stand components, it is neoessary to break each of these components down to a per acre basis for further inspection. The nine different portions then appear as presented in Table IX which followe.

Table IX

Stand and Stook Tables
(Average Acre)

$\begin{gathered} \text { D. B. H., } \\ \text { Inches } \end{gathered}$	Number of Trees	$\begin{array}{r} \mathrm{Ba} \text { a } \\ \text { diame } \\ \hline m \end{array}$	ft. b. m.
	Total Defeotive	Total	Defective
	Condition Olass I		
Hardwood Type (representing 486 acres)			

6	8.2	0.4	1.61	0.08		
8	6.9	0.3	2.41	0.10		
10	5.1	1.6	2.78	0.87	12	
12	4.7	0.8	3.69	0.63	287	47
14	4.7	1.1	5.03	1.18	455	96
16	4.4	0.6	6.14	0.84	626	83
18	3.0	0.3	5.30	0.53	595	62
20	2.1	0.9	4.58	1.96	533	238
22	1.5	0.7	3.96	1.85	561	250
24	0.8	0.3	2.51	0.94	342	109
26	0.4	0.1	1.48	0.37	213	53
28	0.5	0.2	2.14	0.86	279	125
32	0.2		1.12	0.63	182	46
34	0.1	0.1	0.63	0.63	46	46
Totals	42.6	7.4	43.33	10.84	4,131	1,109

Tablec IX (Oontinued)
Stand and Stock Tables
(Average Aore)

D. B. H., Inches	Number of Trees	$\begin{array}{r} \text { Bae } \\ \text { diame } \\ \hline \end{array}$	Area per B8, $89 . f$	Volu	
	Total Defective	Total	Defeotive	Total	Defective
Condition Olass I					

Pine-Hardrood Type (representing 260 acres)

6	5.7	0.4	1.09	0.08		
8	6.7	1.0	2.34	0.35		
10	6.7	0.7	3.65	0.38	180	26
12	7.8	1.0	6.13	0.79	606	67
14	4.3	0.4	4.60	0.43	504	46
16	4.3	0.9	6.10	1.26	721	145
18	1.3	0.4	2.30	0.71	299	89
20	0.6		1.31		147	
22	0.4		1.06		129	
24	0.4		1.26		176	
26	0.3	0.3	1.11	1.11	147	147
- Totals	38.5	5.1	30.95	5.11	2,909	520
Pine Type (representing 117 aores)						
6	10.5	1.5	2.06	0.29		
8	7.5	1.0	2.62	0.35		
10	8.9	4.5	4.85	2.46	235	94
12	6.0	2.5	4.71	1.96	494	181
14	4.0		4.28		506	
16	2.5	1.0	3.49	1.40	423	166
18	1.0	1.0	1.77	1.77	153	153
20	0.5	0.5	1.09	1.09	172	172
Totals	40.9	12.0	24.97	9.32	1,983	766

Table IX (Oontinued)

Stand and Stook Tables

(Average Acre)

$\begin{gathered} \text { D. B. H., } \\ \text { Inches } \end{gathered}$	Number of Trees	Basal Area per diam. clase, sq. f	Volum	b. m.
	Total Defective	Total Defective	Total	Defective
Oondition Olass II				

Hardrood Type (representing 597 aeres)

6	10.5	0.9	2.06	0.18		
8	8.3	1.2	2.90	0.42		
10	5.5	1.1	3.00	0.60	18	3
12	6.11	1.5	4.80	1.18	387	$97 ?$
14	4.7	0.8	5.02	0.85	476	75
16	2.7	0.4	3.76	0.56	415	41
18	2.5	0.9	4.41	0.44	550	173
20	0.9	0.2	1.96	1.59	314	56
22	0.5	0.1	1.32	0.26	143	17
24	0.6	0.2	1.89	0.63	259	54
26	0.3	0.2	1.11	0.74	140	95
Totals	42.6	7.5	32.23	7.45	2.702	611

Pine-Hardwood Type (representing 453 acres)

6	10.1	1.5	1.98	0.29		
8	7.0	1.7	2.44	0.59		
10	7.8	1.8	4.25	0.98	171	33
12	6.1	1.3	4.80	1.02	427	90
14	4.1	0.9	4.38	0.96	418	82
16	3.4	0.8	4.74	1.11	541	90
18	0.8	0.4	1.41	0.71	168	92
20	0.7	0.4	1.51	0.86	178	108
24	0.1	0.1	0.31	0.31	33	33
30	0.1		0.49		53	
Totals	40.2	8.9	26.31	6.83	1,989	528
Pine Type (representing 132 acres)						
6	17.0	1.1:	3.34	0.22		
8	14.1	1.8	4.92	0.63		
10	11.8	0.8	6.44	0.44	446	22
12	6.5	1.8	5.10	1.41	5011	124
14	6.2	1.8	6.63	1.92	691	195
16	2.0	0.3	2.79	0.42	279	37
18	0.6	0.3	1.06	0.53	136	67
22	0.3	0.3	0.79	0.79	82	82
Totals	58.5	8.2	31.07	6.36	2,135.	527

Table IX (Ooncluded)

Stand and Stook Tables

(Average Acre)

$\begin{aligned} & \text { D. B. H., } \\ & \text { Inches } \end{aligned}$	Number of Trees Total Defective		$\begin{array}{r} \text { Bae } \\ \text { diam. } \\ \hline \text { Total } \end{array}$		Volum Total	ft. b. m. Defective
	Condition Olass III					
	Hardwood Type (representing 726 acres)					
6	9.8	0.7	1.92	0.14		
8	6.0	0.8	2.09	0.28		
10	2.8	0.9	1.53	0.49	3	
12	1.5	0.2	1.18	0.16	75	12
14	1.8	0.5	1.92	0.53	128	42
16	0.8	0.1	1.12	0.14	123	13
18	0.9	0.3	1.59	0.53	105	52
20	0.2		0.44		58	
22	0.1		0.26		27	
Totals	23.9	3.5	12.05	2.27	519	119

Pino-Hardwood Type (representing 298 acres)

6	4.8	0.7	0.94	0.14		
8	2.7	1.0	0.94	0.35		
10	1.9	0.2	1.04	0.11	35	7
12	1.9	0.2	1.50	0.16	130	14
14	0.4	0.2	0.42	0.21	24	12
16	0.8	0.2	1.12	0.28	96	19
24	0.4	0.4	1.26	1.26	87	87
						1322
Totals	12.9	2.9	7.51	372	139	

Pine Type (representing 152 acres)

6	16.2	3.18	
8	5.4	1.88	
10	1.7	0.93	67
12	0.8	0.63	87
14	1.3	1.39	158
Totals	25.4	8.01	312

We now have a clear picture of each of the nine different components of the stand, and are able to tell how the mumer of trees, square feet of basal area and beard feet of volume vary from size class to size class within each component. We are also able to determine the distribution of the defective portions of the stand threughout each individual group.

Although the data, as presented in this form, gives a much better pieture of stand composition than when presented for the stand as a whole (on either a total or per-acre basis), auch an arrangement does not lend itself readily as a useful tool with which to manage the stand. It is difficult to tell just what portion of the stand should constitute the present harvest out, what thinnings should be made, if any, and what may be expected in the way of future cuts.

Since the stand is now in an unregulated condition, the distribution of the various size classes as they would appear in the anticipated fully-stocked and regulated stand is a better base to use in determining the present harvest and future cuts. But if we were to present the anticipated stand in the same manner as the present components of the stand have been presented, we would still have an unwieldy arrangement of data. Now since the estimated future rate of growth, cutting cycle and maximan harvest diameter have been determined, a series of eyclic age groups" may be set up, each of which would carry an equal proportion of the diameter range from the average minimam diameter of the trees tallied in the cruise ($6^{\prime \prime}$) to the maximum harvest diameter. The number
of oyclic age groups that is to be assigned to each of the three types is merely the number of outting cycles required to raise trees from $6^{\prime \prime}$ to harvest size. This number may be found by subtracting $6^{\prime \prime}$ fron the average maximum harvest diameter, and dividing the result by the product of the ramber of years in the cutting oyele and the estimated future rate of growth. For the Hardrood Type, the number of cyclic age groups nould be $\left(24^{n}-6^{n}\right) /(10 \times 0.4)$ or 4.5 , ay 5 , and for the Pine-Hardwood and Pine Types it would be $\left(20^{n}-6^{n}\right) /(10 \times 0.4)$ or 3.5 , say 4. As stated in the introduction to this paper, basal area is the best criterion of the degree of stocking which any partieular area should be allowed to attain. Since each cyclic age group would carry a certain range of diameters, it would also have an average diameter for which the corresponding basal area of that diamoter (in a fully-stocked theoretical stand) may be read from the curves on page 27 . As soon as the theoretical basal area for each of these average diameters have been totaled, we can immediately obtain the percentage of actual basal area that each average diameter, and, therefore, each cyclic age group should carry. These percentages can then be applied to the total basal area of that portion of the actual stand carrying trees from $6^{\prime \prime}$ to the harvest diameter, in order to obtain the actual basal area that should be applied to each of the age groups. It has previously been determined that the Hardwood Iype should carry 126 eq. ft. of basal area; the PineHardwood Type, 135 sq . ft. f and the Pine Type, 150 sq . ft. (Eee paragraph 2, page 16). Therefore, since the Hardwood Type contains five age groups in covering the diameter range from $8^{\prime \prime}$ to $24^{\prime \prime}$, it would take seven age groups to cover the diameter range from $0^{\prime \prime}$ to $24^{\prime \prime}$, and the total actual basal area as shown in the Hardwood Type Control Table
(Table X on page 25) would be $5 / 7$ of 126 or 90 sq. ft. A similar procedure is followed in determining the actual basal areas for the PineHardwood and Pine Types. By dividing the actual basal area assigned to each age group by the sq. ft. of basal area of the average diameter of that age group (as read from a basal area table), we obtain the number of trees that should be assigned to each age group. Volumes were obtained from the upper curves of Figures II and III on pages 36 and 37 by reading the corresponding merchantable heights for the average diameter of each age group, and then converting those heights to the appropriate volumes as given in the volume tables on pages 7 and 8.

By referring to Table X on page 25, we now have a picture of how the three different types will appear when the anticipated fully-stocked and regulated condition has been reached.

DEVELOPMENT OF OLASSIFIED STAND AND STOOK TABIES

The control tables which have just been developed may also be used in constructing "classified stand and stook tables" for the various stand components. These olassified stand and stock tables are to be set up as the first step in bringing about a regulated forest condition, and the percentages of basal area for the various age groups in each type (with exceptions to be discussed later) will therefore be the same as those found in the control tables.

Due to the variations in stocking between the three condition classes, each condition class will necessarily be treated in a different maner.

Table X

Oontrol Tables

(Average Acre)

Age
Group
$\frac{D_{0}}{}$ Be He, Inches
Average

Theoretical* Percent Act. BA, No. of Vol., ft.
$B A$, sq. ft. $B A \quad$ sq. ft. Trees
b. $m_{\text {. }}$
Hardwood Type

I	$6-10$
II	$10-14$
III	$14-18$
IV	$18-22$
V	$22-26$

$$
\begin{array}{r}
8.0 \\
12.0 \\
16.0 \\
20.0 \\
24.0
\end{array}
$$

Totals

I	$6-10$	8.0
II	$10-14$	12.0
III	$14-18$	16.0
IV	$18-22$	20.0

Totals

I	$6-10$	8.0
II	$10-14$	12.0
III	$14-18$	16.0
IV	$18-22$	20.0

Totals

117
143
158
166
114
137
151
162
166
730

Pine-Hardwood Type

\section*{| 584 |
| :--- |
| Pine Type |
 584}

15.6
18.8
20.7
22.2
22.7
100.0
Type

153	22.6	22.60	64.8	2,592
174	25.8	25.80	32.9	3,948
174	25.8	25.80	18.5	4,070
174	25.8	25.80	11.8	4,602
675	100.0	100.00	128.0	15,212

20.1	18.09	51.8	
24.5	22.05	23.1	2,310
27.0	24.30	17.4	3,828
28.4	25.56	11.7	4,680
100.0	90.00	104.0	10,818

14.0
16.92
18.63
19.9
20.4
90.00
91.0

13,338

40.3	
21.6	2,160
13.4	2,948
9.2	3,680
6.5	4,550
91.0	13,338

$100.0 \quad 90.00 \quad 104.0 \quad 10,818$
$100.0 \quad 100.00 \quad 128.0 \quad 15,212$
*It should be remembered that each of the individual figures presented in the Theoretical Basal Area column represents one full acre, and that. the total of these figures represents five (or four in the Pino-Hardwood and Pine Types) fully-stocked acres. It should be remembered further that the figures presented in this column are ahown merely for the purpose of determining the appropriate items to be placed in the Percent Basal Area column.

Oondition Olass I will have a harvest cut (as determined by the method now being developed) and all defective trees removed from it during the first cutting oycle. Oondition Classes II and III will permit only the removal of defective trees during the first outting aycle in what will actually amount to a salvage outting. During the second cutting cycie, it should be possible to remove a harvest crop from Condition Olase II, as well as a second harvest from Condition Class I, but Oondition Olass III will not be able to furnish a harvest cut until the beginning of the third cutting cycle.

Since Oondition Claes I is the only condition class to which the control tables may be applied directly, the construction of the classified stand and stock tables for that condition class will be discussed first. The age groups in both the control tables and classified stand and stock tables are spaced according to the length of the cutting oycle, and therefore, the highest-mumbered age group in each type will contain the basal area, number of trees and volume which will constitute the harvest cut.

By reforring to Table IX on page 18 (stand and stoak table for the Hardwood Type of Condition Class I), and using both sound and defeotive basal area, number of trees and volume, we are now able to set up a classified stand and stock table for that component as show in Table XI on page 27.

Table XII

Olassified Stand and Stock Table
(Average Acre)
Condition Olass I-Fardwood Type

I	15.6	6.76	20.2	2.3	$6-12$	7.8	13	
II	18.8	8.15	8.9	1.8	$12-14$	13.0	689	132
III	20.7	8.96	6.2	0.8	$14-18$	16.3	932	120
IV	22.2	9.62	4.6	1.5	$18-22$	19.6	$1.157!$	400
VI	22.7	9.84	2.7	1.0	224	25.8	1.340	$457($
Totals 100.0	43.33	42.6	7.4			4.131	1,109	

The number of trees and volume to be assigned to each age group were determined as follows:

Age Group III BA	No. of Trees	Vol., ft. b. m.
BA required 8.96		
Balance from $18^{\prime \prime}$ class		
BA - 5.30-3.04 or 2.26	3.0-1.7 or 1.3	595-341 or 254
$16^{\prime \prime}$ class 6.14 8.40	4.4	626
BA from 14' class 0.56		
\% BA from $14^{\prime \prime}$ clase-0.56/5.03 or 11.1\%		
No. of trees from $14^{\prime \prime}$ clase-. 1111×4.7	0.5	
Volumo " " - . 111×455		52
Totals	6.2	932

Age Group II

BA required 8.15		455-52 or 403
Balance from 14" class	4.7-0.5 or 4.2	
$\mathrm{BA}-5.03-0.56$ or 4.47 4.47		
BA from 12' class 3.68		
\% BA from 12" clase-3.68/3.69 or 99.7\%		
No. of trees from $12^{1 \prime}$ clase-. 997×4.7	4.7	
Volume " \| N -.997 X 287		286
Totals	8.9	689

Age Group I

Belance of trees and volume
Balance from $12^{\prime \prime}$ olass
10" class

Average diameters were determined by dividing the eq. ft. of basal area by the mumber of trees, and locating the quotiont in a basal area table. The defective trees and volume to be assigned to each age group were computed on the same proportions of basal area in each age group as were the total trees and volume.

Olassified stand and stock tables for the Pine-Hardwood and Pine Types were constructed in a similar manner, and may be found in Table XII on page 29.

Olassified Stand and Stock Tables
(Average Acre)

Oondition Olass I-Pine-Hardwood Type

$\begin{aligned} & \text { Age } \\ & \text { Group } \end{aligned}$	$\underset{B A}{\text { Percent }}$	Act. BA, sq. ft.	$\frac{\text { Mumbe }}{\text { Total }}$	$\frac{\text { of Trees }}{\text { Defective }}$	$\frac{D_{\cdot} \cdot B_{0}}{\text { Range }}$	$\frac{H_{0}, I n_{0}}{\text { Average }}$	$\frac{\mathrm{Vol}}{\text { Total }}$	$\frac{f t . b_{0} m_{0}}{\text { Defective }}$
I	20.1	6.21	17.8	2.0	6-10	8.0	146	21
III	24.5	7.58	9.6	1.1	10-14	12.0	704	78
III	27.0	8.36	6.9	1.0	14-16	14.9	953	143
IV	28.4	8.80	4.2	1.0	16 f	19.6	1,106	278
Totals	100.0	30.95	38.5	5.1			2,909	520
Oondition Olass I-Pine Type								
I	22.6	5.64	19.8	3.4	6-10	7.3	46	19
II	25.8	6.41	10.3	4.9	10-12	10.7	453	201
III	25.8	6.41	6.7	1.2	12-14	13.2	729	55
IV	25.8	6.41	4.1	2.5	14 ¢	17.0	755	491
Totals	100.0	24.87	40.9	12.0			1,983	766

Only the defective trees are to be removed from Oondition Olass II during the first cutting oycle. Therefore, the basal area, number of trees and volume, as found ten years hence on the Hardwood Type, for example, will appear as shown in Table XIII.

As atated before, present stocking of trees under $6^{\prime \prime}$ appears to be adequate, and referring to the Hardwood Type control table*, we find that 10 years from now we may reasonably expect to find 40.3 trees with a basal area of 14.04 sq . ft. and averaging $8^{\prime \prime}$. The total basal area, therefore, will be $43.95 \neq 14.04$ or 57.99 kq . ft. Since age group I would be fully stocked, the basal area of 43.95 sq. ft. for the other

[^0]Table XIII

Stand and Stook Table

(Average Acre)

Oondition Olass II-Hardwood Type

(10 years hence)

D. B. H., Inches	No. of Trees	BA per diam. class, eq. ft.	$\begin{gathered} \text { Vol., ft. } \\ b_{0} m_{\bullet} \end{gathered}$
10	9.6	5.24	384
12	7.1	5.58	426
14	4.4	4.70	484
16	4.6	6.42	690
18	3.9	6.89	936
20	2.3	5.02	690
22	1.6	4.22	736
24	0.7	2.20	378
26	0.4	1.48	256
28	0.4	1.71	300
30	0.1	0.49	87
Totals	35.1	43.95	5,367

four age groups cannot be proportioned over those age groups in the same manner as was done previously, because age group I would contain 14.04/57.99 or 24.2 percent of the basal area whereas it should contain only 15.6 percent if the Hardwood Type control table is to be used. It is therefore necessary to lower the percentages of basal area to be assigned to the other four age groups. The amount that each should be lowered is obtained by subtracting 15.6 from 24.2 and dividing by 4 , or 8.6/4 is 2.15. Age group II percentage would then become 18.8-2.1 or 16.7, age group III-20.7-2.1 or 18.6, age group IV-22.2-2.2 or 20.0 and age group V-22.7-2.2 or 20.5. We now have the proper percentages that should be assigned to age groups II through V, and can proceed to construct a classified stand and stock table for the Hardwood Type of Oondition Olass II in the same manner as were the tables for Oondition

Olass I constructed. The classified stand stock tables for the PineHardwood and Pine Types of Oondition Olass II would, of course, also be constructed in a similar manner.

Since a harvest cut is not to be removed from Condition Olass III until 20 years from now, we should find both age groups I and II to be fully-stocked by that timo. Adjustment of the percentages for age groups III, IV and V in the Hardwood Type (and III and IV in the Pine-Hardwood and Pine Types) would then be made on the same basis as in Condition Class II. Classified stand and stock tables for Condition Olass II, 10 years henoe, and Oondition Olass III, 20 years hence, would then appear as presented in Tables XIV and XV on pages 32 and 33, respectively.

ESTIMATION OP PRESENT CUT

The volume of timber that may safely be removed from the otand during the first outting oycle (within the next 10 years) may be easily calculated from the classified stand and stock tables. For the Hardwood Type of Condition Clase I, the total cut per acre during this period would be the volume, ft. b. mes in age group V plus the defective Volume of age groups II, III and IV, or $1,340 \not \&(132 \neq 120 \nless 400)$ is 1,992 board feet. (See Table XI on page 27) Since there are 486 acres in this component (see Table I on page 5), the total cut for the . Hardwood Type of Condition Olass I would be $1,992 \times 486$ or 968 Mift.g b. m. Similarly, the respective cuts for the Pine-Hardwood and Pine Types in this condition class would be 350 M and 121 M , respectively, giving a total of $1,439 \mathrm{M}$ for Condition Class I. Condition Clasees II

Table XIV
Classified Stand and Stock Tables-Condition Class II
(Average Acre)
(10 years hence)

Age	Percent	Act. BA,	No. of		b. ${ }^{\text {c }}$
Group	BA	sq. ft .	Trees	Pange Average	b. m.

Hardwood Type

I	24.2	14.04	40.3	$6-10$	8.0	
II	16.7	9.68	15.2	$10-12$	10.8	723
III	18.6	10.79	9.0	$12-16$	15.5	1,103
IV	20.0	11.60	6.9	$16-20$	17.6	1,540
V	20.5	11.88	4.0	$20 \nmid$	23.3	2,001
Totels	100.0	57.99	75.4			5,367

Pino-Hardwood Type

I	33.5	18.09	51.8	6-10	8.0	
II	20.1	10.85	15.8	10-14	11.2	868
III	22.5	12.15	9.5	14-18	15.3	1,315
IV	23.9	12.91	6.0	$18 \nmid$	19.9	1,865
Total:	100.0	54.00	83.1			4,048
Pine Type						
I	31.6	22.59	64.8	6-10	8.0	
II	22.8	16.30	25.6	10-12	10.8	1,413
III	22.8	16.30	15.5	12-16	13.9	1,815
IV	22.8	16.30	9.2	16 \%	18.0	2,205
Totals	100.0	71.49	115.1			5,433

Table XV

Olassified Stand and Stock Tables-Condition Class III

(Average Acre)
(20 years hence)

Age	Percent	Act. BA,	No. of	D, B, H., In
Group	$B A$	sq. ft.	Trees	Rol., ft.
Range Average	b. m.			

Hardwood Type

I	18.0	14.04	40.3	$6-10$	8.0	
II	40.6	31.62	40.3	$10-14$	12.0	4,030
III	12.7	9.97	9.3	$14-16$	14.0	1,027
IV	14.1	11.00	7.2	$16-20$	16.7	1,296
V	14.6	11.40	3.9	$20 \not f$	23.1	1,901
Totals	100.0	78.03	101.0			8,254

Pine-Hardwood Type

I	24.2	18.09	51.8	6-10	8.0	
II	54.5	40.62	51.8	10-14	12.0	5,180
III	10.0	7.46	6.2	14-18	14.9	805
IV	11.3	8.42	3.8	$18 \nrightarrow$	20.2	1,238
Totals	100.0	74.59	113.6			7,223
Pine Type						
I	21.2	22.60	64.8	6-10	8.0	2,592
II	47.8	50.90	64.8	10-14	12.0	2,776
III	15.5	16.51	15.5	14-14	14.0	1,854
IV	15.5	16.51	9.9	141	17.5	2,036
Totals	100.0	106.52	155.0			9,258

and III will permit the removal of only the defective trees, and by obtaining the appropriate defective volumes and acreages of these two condition olasees, we find that they will yield a total of 674 M and 155 M , respectively. This will give a total of $2,268 \mathrm{M}$ for the whole area, or approximately 230 Mft ., b. m. per year during the first cutting cyole. These calculations are shown in Table XVI on page 35. In addition, it will also be possible to obtain approximately 180 standard (128 oubie feet) cords of fuelwood per year during the first cutting cycle.

EsTIMATION OF FUTURE OUTS

Since the area has been subjected to recurrent fires, it is expected that those trees $12^{\prime \prime}$ and under will respond to adequate forest fire protection to the extent of one additional log-length of merchantable height per tree. In order to facilitate the calculation of what this will mean in the way of estimating future cute, four curves of merchantable height over d. b. h. have been plotted; two for pines, and two for hardwoods. Data plotted on the lower of each of these two sets of curves were obtained from the volumo-per-tree columns of the stand and stock tables for sound trees in Table VI on page 13. Data for the upper curves were obtained by adding 16 feet to each of the points on the lower eurves. The curves were plotted to only $20^{\prime \prime}$ for pines and $26^{\prime \prime}$ for hardwoods, because the merchantable heights tend to flatten out at those diameters. These curves may be found in Figures II and III on pages 36 and 37, respectively.

Comparison of Present Merchantable Height with Anticipated (New) Merchantable Height Hardwood

Inamuch as the primary objective of this plan is to achieve full atocking as quickly as possible, no thinnings are to be made in future outs until the total basal area of each component approaches the basal area as set up in the control tables. Should the basal area threaten to become considerably greater than that set up in the control tables, then, of course, thimings would be made in order to prevent overstocking with a resultant decrease in the rate of growth.

Once a certain number of trees has been asaigned to a certain age group, that number of trees will remain assigned to a single age group until rotation age is reached. For example, we find that age group IV of the Hardwood Type of Condition Class I now contains 4.6 sound trees and 1.5 defective trees per acre. (See Table XI on page 27). Since the defective trees are to be removed during the first cutting cycle, there will be $4.6-1.5$ or 3.1 trees left in age group IV. In ten years, these 3.1 trees will have advanced to age group ∇, and will constitute the harvest out for that component during the second cutting cycle. (See Hardwood Type at end of first cutting cycle, in Table XVII, and refer to age group V). In order that this progreseion from age group to age group may be more easily visualized, classified stand and stock tables for the various stand components at different future periods are presented in Tables XVII, XVIII and XIX on the pages which follow. The expression (N) after some of the average diamoter figures indicates those trees which have recovered from fire damage, and, therefore, have their volumes computed from the upper curves of the merchantable heightd. b. h. curves. It should be noted that the trees in Condition olasses II and III are not considered to have recovered as quiakly as have those in Condition Olass I due to greater intensity of past fires.

Table XVII

Olassified Stand and Stook Table-Condition Class I

(Average Acre)
At ond of first cutting cyele (10 years hence)

Hardwood Type

I	23.5	14.04	40.3	$6-10$	$8.0(\mathrm{~N})$	
II	23.9	14.30	17.9	$10-14$	12.1	1,074
IIII	21.2	12.69	7.1	$14-11$	18.1	1,704
IV	17.3	10.40	5.4	$19-20$	18.8	1,296
V:	14.1	8.48	3.1	$20 \neq$	22.4	1,147
Totals	100.0	59.91	73.8			
					5,221	

Pine-Hardrood Type

I	33.7	18.09	51.8	$6-10$	$8.0(\mathrm{~N})$	
II	23.2	12.41	15.8	$10-14$	12.0	948
III	22.1	11.86	8.5	$14-18$	16.0	1,275
IV	21.0	11.24	5.9	$18 \nmid$	18.7	1.416
Totals	100.0	53.60	82.0			3,639

I	46.0	22.60	64.8	$6-10$	$8.0(\mathrm{~N})$	2,592
II	22.4	11.02	16.4	$10-12$	11.1	1,312
III	12.9	6.36	5.4	$12-16$	14.7	648
IV	18.7	9.19	5.5	$16 \neq$	17.5	1,375
Totals	100.0	49.17	92.1			5,927

Table XVII (Continued)

Olassified Stand and Stock Table-Oondition Class I

(Average Acre)
Immediately after second harvest cutting (10 years henoe)

| Age | Percent | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Group | Act. BA, No. of | D. B. H., Inches | Vol., ft. |
| eq. ft. | Trees | Fange Average | b. m. |

Ha rdwood Type

I	16.4	7.33	21.0	$6-10$	$8.0(\mathrm{~N})$	
II	32.0	14.30	17.9	$10-14$	12.1	1,074
III	28.3	12.69	7.1	$14-? ?$	18.1	1,704
IV	23.3	10.40	5.4	$19-20$	18.8	1,296

Totals	100.0	44.72	51.4	4,074

Pinoeflardwood Type

I	36.4	13.92	39.9	6-10	8.0(N)	
II	32.5	12.41	15.8	10-14	12.0	948
III	31.1	11.86	8.5	14-18	16.0	1,275
IV						
Totals	100.0	38.19	64.2			2,223
Pine Type						
I	54.4	20.77	59.5	6-10	8.0(N)	2,380
II	28.9	11.02	16.4	10-12	11.1	1,312
III	16.7	6.36	5.4	12-16	14.7	648
IV						
Totals	100.0	38.15	81.3			4,340

Table XVII (Oontimued)

Olassified Stand and Stock Table-Condition Olass I

(Average Acre)

At ond of second outting arcle (20 years hence)

Hardwood Type

I	15.6	14.04	40.3	$6-10$	$8.0(\mathrm{~N})$	
II	18.3	16.48	21.0	$10-14$	$12.0(\mathrm{~N})$	2,100
III	28.1	25.28	17.9	$14-18$	$16.1(\mathrm{~N})$	3,938
IV	21.0	18.91	7.1	$18-17$	22.1	3,266
V	17.0	15.31	5.4	$? ? \nmid$	22.8	2,448
Totals	100.0	90.02	91.7			11,752

Pine-Hardwood Type

I	20.1	18.09	51.8	$6-10$	$8.0(\mathrm{~N})$	
II	34.8	31.37	39.9	$10-14$	$12.0(\mathrm{~N})$	3,990
III	24.5	22.04	15.8	$14-18$	$16.0(\mathrm{~N})$	3,476
IV	20.6	18.55	8.5	$18-22$	20.0	2,550
						10,016

Pine Type

I	22.6	22.60	64.8	$6-10$	$8.0(\mathrm{~N})$	2,592
II	46.7	46.68	59.5	$10-14$	$12.0(\mathrm{~N})$	7,140
III	20.4	20.40	16.4	$14-16$	$15.1(\mathrm{~N})$	3,608
IV	10.3	10.29	5.4	$16 \nmid$	18.7	1,350
Totals	100.0	99.97	146.1			14,690

Table XVII (Ooncluded)

Olassifiod Stand and Stock Table-Condition Olass I
 (Average Acre)

Immediately after third harveat outting (20 years honce)

Age	Percent	Aot. BA	N	D. B. H., Inches	
Group	BA	sq. Pt.	Trees	Fange Avo	

Hardwood Type

I	16.4	7.54	21.6	$6-10$	$8.0(\mathrm{~N})$	
II	23.2	10.52	13.4	$10-14$	$12.0(\mathrm{~N})$	1,340
III	28.7	13.00	9.2	$14-18$	$16.1(\mathrm{~N})$	2,024
IV	31.7	14.39	5.4	$18 \nsucc$	22.1	2,484

Totals 100.0	45.45	49.6
	Pine-Hardrood Type	5,848

I	35.9	8.05	23.1	$6-10$	$8.0(\mathrm{~N})$	
II	42.9	13.67	17.4	$10-14$	$12.0(\mathrm{~N})$	1,740
III	21.2	16.32	11.7	$14-18$	$16.0(\mathrm{~N})$	2,574
IV						
Totals	100.0	38.04	52.2			4,314

Pine Type

I	27.2	11.48	32.9	$6-10$	$8.0(\mathrm{~N})$	1,316
II	34.4	14.53	18.5	$10-14$	$12.0(\mathrm{~N})$	2,220
III	38.4	16.28	13.0	$14 \not \subset$	$15.1(\mathrm{~N})$	2,860
IV						
Totals	100.0	42.29	64.4			6,396

-43-

Table XVIII

Classified Stand and Stook Tablo-Oondition Olass II

(Average Acre)
Immodiately after first harvest outting (10 years hence)

Age	Percent	Aot. BA,	No. of	D. B. H. . Inches	Vol.g pt.
Group	BA	sq. ft.	Trees	Pange Average	b. m.

Hardwood Type

I	35.5	14.04	40.3	$6-10$	$8.0(\mathrm{~N})$	
II	24.5	9.08	15.2	$10-12$	10.8	723
III	27.2	10.79	9.0	$12-16$	15.5	1,103
IV	12.8	5.07	3.0	$16 \not f$	17.6	720

Totals $100.0 \quad 39.58 \quad 67.5 \quad 2,546$

Pine-Hardwood Type						
I	49.4	18.09	51.8	6-10	8.0(N)	
II	21.0	10.85	15.8	10-12	11.2	868
III	29.6	7.66	6.0	12 ¢	15.3	900
IV						
Totals	100.0	36.60	73.6			1,768
Pine Type						
I	55.1	22.59	64.8	6-10	8.0(N)	
II	32.0	13.09	14.9	10-12	10.8	596
III	12.9	5.27	5.0	12 ¢	13.9	600
IV						
Totals	100.0	40.95	84.7			1,196

Table XVIII (Continued)

Olassified Stand and Stock Tablo-Oondition Olass II
(Average Aore)
At ond of second cutting eycle (20 years hence)

I	15.6	14.04	40.3	$6-10$	$8.0(\mathrm{~N})$	
II	35.1	31.62	40.3	$10-14$	$12.0(\mathrm{~N})$	4,030
III	20.1	18.17	15.2	$14-16$	$14.8(\mathrm{~N})$	2,432
IV	20.7	18.68	9.0	$16-20$	19.5	2,700
V	8.5	7.64	3.0	$20 \nmid$	21.6	1,110
Totals	100.0	90.15	107.8			10,272

Pine-Hardwood Type

I	19.9	18.09	51.8	$6-10$	$8.0(\mathrm{~N})$	
II	44.7	40.62	51.8	$10-14$	$12.0(\mathrm{~N})$	5,180
III	22.0	19.91	15.8	$14-18$	$15.2(\mathrm{~N})$	3,476
IV	13.4	12.19	6.0	$18 \nmid$	19.3	1,200
Totals	100.0	90.81	125.4			9,856

I	22.6	22.59	64.8	$6-10$	$8.0(\mathrm{~N})$	2,592
II	50.9	50.90	64.8	$10-14$	$12.0(\mathrm{~N})$	7,760
III	17.8	17.80	14.9	$14-16$	$14.8(\mathrm{~N})$	2,384
IV	8.7	8.74	5.0	$16 \neq$	17.9	1,250
	Totals	100.0	100.03	149.5		

Table XVIII (Ooncluded)

Olassified Stand and Stock Table-Oondition Olass II

(Average Acre)
Impediately after second harvest outting (20 years honce)

II	17.7	7.54	21.6	$6-10$	$8.0(\mathrm{~N})$	
II	24.6	10.52	13.4	$10-14$	$12.0(\mathrm{~N})$	1,340
III	25.9	10.99	9.2	$14-18$	$14.8(\mathrm{~N})$	1,472
IV	31.8	13.49	6.5	$18 \nmid$	19.5	1,950

$\begin{array}{llll}\text { Totals } & 100.0 & 42.54 & 50.7\end{array}$
Pine-Hardwood Type

I	22.1	8.05	23.1	$6-10$	$8.0(\mathrm{~N})$	
II	37.4	13.67	17.4	$10-14$	$12.0(\mathrm{~N})$	1,740
III	40.5	14.74	11.7	$14 \neq$	$15.2(\mathrm{~N})$	2,574
IV						
Totals	100.0	36.46	52.2			4,314

Pine Type

I	28.6	11.48	32.9	$6-10$	$8.0(\mathrm{~N})$	1,316
II	36.2	14.53	18.5	$10-14$	$12.0(\mathrm{~N})$	2,220
III	35.2	14.10	11.8	$14 \not \subset$	$14.8(\mathrm{~N})$	1,888
IV						
Totals	100.0	40.11	63.2			5,424

Table XIX
Olassified Stand and Stook Tablo-Oondition Olase III
(Average Acre)
Immediately after first harvest outting (20 years honce)

I	34.7	14.04	40.3	$6-10$	$8.0(\mathrm{~N})$	
II	26.0	10.52	13.4	$10-14$	$12.0(\mathrm{~N})$	1,340
III	24.5	9.94	9.3	$14-14$	14.0	1,027
IV	14.8	6.08	4.0	$14 \nmid$	16.7	760

Totals $100.0 \quad 40.58 \quad 67.0 \quad 3,127$

Totals	100.0	36.33	71.8	2,185

I	28.8	11.48	32.9	$6-10$	$8.0(\mathrm{~N})$	1,316
II	36.6	14.53	18.5	$10-14$	$12.0(\mathrm{~N})$	2,220
III	34.6	13.79	11.8	$14 \nmid$	14.0	1,416
IV						
Totals	100.0	39.80	63.2			4,952

By the ond of the third cutting cycle (30 years from now) all of the stand components should not only be fully stocked, but should very nearly approach the stand composition as eet up in the control tables for the various types.

We can now estimate the cuts that might be expected during the second and third cutting cyoles. (In the following calculations, $8^{\prime \prime}$ trees from the Pine Types are considered merchantable, because if they are removed as thinnings they would be treated as saw loge.) For the Hardwood Type of Oondition Olass I, we find that 5,221-4,374 or 847 ft. , b. $m_{0,}$ per acre may be removed from each of 486 acres during the second outting cycle. This will amount to 556 M for the Hardwood Type, and, making similar calculations for the other two types, it is determined that $1,109 \mathrm{M}$ may be removed from Condition Olass I. For Oondition Olass II, the total would be $3,279 \mathrm{M}$, and since Oondition Olass III is not to be cut again until 20 years hence, the total cut during the second cutting cycle would be the sum of the outs removed from Condition Classes I and II or $1,109 \mathrm{M} \neq 3,279 \mathrm{Mis} 4,388 \mathrm{M}$. To be more realistic, It may be stated that an annual cut of approximately 400 M may be reasonably expeoted during the second cutting oycle. Making similar calculations for the third cutting oyole, we find that the antioipated anmal cut has risen to approximately 1,800 M. These calculations are shown in Tables XX and XXI on pages 48 and 49, respectively.

Should it be possible that all of the conditions upon which this plan is based hold true, we might expect to obtain an annual cut of approximately $2,500 \mathrm{M}$ when the entire area has beoome fully-stocked and regulated.

Table XX

Oalculations of Socond Harrest Cut

(10 years hence)

Type	Volume, ft. b..m. (Per Average Acre)	Acre		$\begin{aligned} & \text { per Typ } \\ & \text {-.b. m. } \end{aligned}$
	Oondition Olass I (refer to Table XVII)			
Hardwood	5,221-4,074 or 1,147	x 486	is	556 M
Pine-Hardwood	3,639-2,223 or 1,416	X 260	is	368 M.
Pine	5,927-4,340 or 1,587	X 117	is	185 M

Total from Oondition Olass I
1,109 M
Condition Olass II (refer to Table XVIII)*

Hardwood	$5,367-2,546$	or 2,821	X	597	is	$1,680 \mathrm{M}$
Pine-Hardwood	$4,048-1,768$	or 2,280	X	453	is	$1,030 \mathrm{M}$
Pine	$5,433-1,196$	or	4,237	\mathbf{X}	132	is
	569 M.					

Total from Oondition Olass II $\quad \mathbf{3 , 2 7 9 ~ M}$
Total Becond HarvestiOut $4,388 \mathrm{M}$

[^1]Table XXI

Oaloulations of Third Harvest Out

(20 years hence)

Type	Volume, ft. b. m. (Per Average Acre)	Acreage		61. per Type ft. b. m.
	Oondition Olass I (rofer to Table XVII)			
Hardwood	11,752-5,848 or 5,904	X. 486	is	2,870 M
Pine-Hardwood	10,016-4,314 or 5,702	x 260	is	1,480 Mí
Pine	14,690-6,396 or 8,294	X 117	is	969 M

Total from Oondition Olase:I
5,319 M
Condition Olass II (refer to Table XVIII)*

Hardwood	$10,272-4,762$	or 5,510	X	597	is	$3,290 \mathrm{M}$
Pine-Hardwood	$9,856-4,314$	or 5,542	X	453	is	$2,510 \mathrm{M}$
Pine	$13,986-5,424$ or 8,562	X	132	is	$1,130 \mathrm{M}$	

Total from Oondition Olass II 6,930 M
Condition Class III (refer to Table XIX)*

Hardwood	$8,254-3,127$	or 5,127	X	726	is	$3,720 \mathrm{M}$
Pine-Hardwood	$7,223-2,185$	or 5,038	X	298	is	$1,500 \mathrm{M}$
Pine	$9,258-4,952$ or 4,306	X	152	is	655 M.	

Total from Condition Olase III
5,875 M
Total Third Harvest Out
18, 124 M

[^2]
FINANOIAL CONSIDERATIONS

Thus far, only that aspect of forest management pertaining to desirable stocking has been dealt with. Termination of a preliminary management plan may quite reasonably be made at this point if the owners of a forest property are interested only in determining what action should be taken in order that their timber holdings may produce the largest amount of growth possible. But in the vast majority of cases, the growing of trees is, or should be, a business, although it is quite apparent that not all owners of forest properties are aware of that fact. No genuine management plan can therefore be considered complete until the financial aspects of that plan have been determined.

On most going operations, this will mean the calculation of production costs and eelling prices in order that the operator may determine his profit or lose. On areas which are to be purchased or sold, it will involve the valuation of the property, through atumpage appraisal, in order that the buyer (or seller) may obtain (or sell) the property at a fair price to himeelf. In all instances, however, the possibilities of increasing the potential income from a forest property should be thoroughly investigated through the examination of present (or contemplated) production costs and cutting practices, and comparison of these data with those of alternate methods which might be used.

The property under consideration in this particular case presents a unique situation. The financial arocess or failure of any plan
applied to the property would not be regarded in the same light as would be properties that are acquired solely for the purpose of making the maximum amount of profit obtainable from the raising and harvesting of the trees thereon. This is true, because the owners of this institution consider the business of growing trees entirely incidental to the financial soundness of the institution itself, and will quite likely retain title to all of the land they now own regardless of the fact that their timber-growing enterprise may, or may not, show a profit. Nevertheless, for the purpose of illustration, it is desirable to show what profit may be expected, if any, and how a value may be placed on the property.

In this effort the writer is hampered, because neither selling prices of the lumber produced, nor production costs of that lumber, are available for this particular piece of property. However, data prepared by R. A. Oampbell (3) for Forest Resources Division, TVA Department of Forestry Relations in making stumpage appraisals on TVA reservoir properties, may be applied with reasonable accuracy, since the stand construction and density, topography and character of operation on this property are very similar to those for which the data were prepared.

OALOULATION OF LUMBER SELLING PRIOES

Due to the complexity of the stand with which we are dealing, it is necessary to obtain weighted selling prices in order that true sale values for the finished product may be obtained. Table XXII (soe page 52)

-52

In Dollare per M bof. for luber prectueed

[^3]from reference (3) is used as the basis for determining these selling prices. It should be remembered that the institution plans to use all of the lumber it produces in it's own building plant, and that the selling prices are used merely as a means of determining whether or not the operation could be conducted at a profit if the lumber produced was sold on the open market. By obtaining average weighted d. b. h. sor each species from the original stand and stoak tables, and by using Table XXII, Tables XXIII and XXIV for the selling prices of the present cut were constructed. The latter two tables may be found on the pages which follow. The average weighted selling prices were thus determined to be $\$ 40.00$ per M for Condition Olass I, $\$ 35.50$ for Oondition Olass II, and $\$ 33.50$ for Condition Olass III. Selling prices were computed for each condition class only instead of for all of the various stand components in order to facilitate future calculations. It should be noted that Basswood selling prices were used for Misc. species, because Basswood forms a very large proportion of that group. The price for Scarlet Oak-(S) was used for Hickory, because no value is given for Hickory. Since Hiokory is such a very low value species when used as lumber, it was felt that the lowest value in the table, 1. e., the value of Scarlot Oak-(s), would be comparable to the value that would be placed on Hickory if it could be sold.

Now since this plan is based upon a good many conditions, any or all of which are subject to change, it is not desirable to predict estimated future cuts beyond the end of the second eutting oycle, 1. e., 20 years from now. Neither is it desirable to predict what eelling prices and production costs will be beyond the ond of that

Table XXIII
Calculations of Selling Prices for Present Out
(Per M ft., b. m.)
Condition Olass I-Harvest Trees

| Species and Average Selling Price from of of Ave. Weighted | | |
| :---: | :---: | :---: | :---: | :---: |
| Weighted d. b. h. | Table XXII | Specien Selling Price |

Hardrood Type

White Oak (Virgin) (28")	\$54.00	X	. 216	or	\$11.68
Ohestnut Oak (Outover) (26")	44.50	X	. 528	or	23.50
Fediand Black Oaks ($26^{\prime \prime}$)	46.00	X	. 057	or	2.62
Searlet Oak ($26^{\prime \prime}$)	36.00	X	. 143	or	5.15
Yellow Poplar (Virgin) (24*)	52.00	\mathbf{x}	. 056	or	2.91
Totals			1.000		\$45.86

Pine-Hardwood Type

Shortleaf Pine (20")	\$37.75	x	. 282	or	\$10.64
Virginia Pine ($18^{\prime \prime}$)	31.50	X	. 038	or	1.20
White Oak (Outover) ($18^{\prime \prime}$)	40.00	X	. 102	or	4.08
Ohestrut Oak (Virgin) (22")	43.00	x	. 523	or	22.49
Red and Black Oaks ($20^{\prime \prime}$)	41.50	X	. 055	or	2.28
Totals			1.000		\$40.69

Pine Type

Shortleat Pine ($16^{\prime \prime}$)		\$35.25	X	. 226	or	- 7.97
Red and Black Oaks ($20^{\prime \prime}$)		41.50	X	. 230	or	9.55
Scarlet Oak ($16^{\prime \prime}$)		31.50	x	. 117	or	3.69
Beech (14")		34.00	X	. 307	or	10.43
Gum (18")		35.50	X	. 120	or	4.26
Totals				1.000		\$35.90
Type	Ave. Weighted Selling Price of Type	$\begin{aligned} & \text { \% of } \\ & \text { Type } \end{aligned}$	Ave. Price	Weighted of Harv		ing rees
Hardwood	\$45.86 X	. 418	or	\$19.1		
Pine-Hardwood	40.69 X	. 346	or	14.08		
Pine	35.90 X	. 236	or	8.4		
Totals		1.000		\$41.7		

Table XXIII (Oontinued)
Oalculations of selling Prices for Present Out
(Per M ft., b. m.
Oondition Olass I-Defective Trees

Species and Average Weighted d. b. h. Selling Price Prom \% of	Ave. Weighted
Species Selling Price	

Hardwood type

White Oak (Cutover) (20')	\$41.00	X	. 045	or	\$ 1.85
Ohestnut Oak (Virgin) (18 ${ }^{\text {¹ }}$)	40.50	X	. 415	or	16.82
Red and Black Oake ($20^{\prime \prime}$)	41.50	X	. 037	or	1.54
Yellow Poplar (Outover) (22")	44.00	X	. 062	or	2.73
Hickory (Scarlet Oak-8) (16")	25.00	x	. 054	or	1.35
Maple (12 ${ }^{\text {I }}$)	34.00	X	. 017	or	0.58
Beech (16")	35.50	X	. 307	or	10.89
Cum ($14^{\text {n }}$)	32.50	X	. 045	or	1.46
Misc. (Basswood) (16")	45.50	X	. 018	or	0.82
Totals			. 000		\$38.04

Pine-Hardwood Trpe

Shortleaf Pine ($12^{\prime \prime}$)	\$32.75	X	. 299	or	\$ 9.79
Chestnut Oak (Virgin) (14")	37.50	X	. 131	or	4.91
Red and Blaak Cake (16")	37.50	\mathbf{X}	. 183	01	6.85
Scarlet Oak (14")	29.00	X	. 116	or	3.36
Yellow Poplar (Outover) (16")	40.50	X	. 072	or	2.99
Hickory (Scarlet Oak-s) (14*)	23.50	X	. 100	or	2.35
Grum ($16^{\text {¹ }}$) ${ }^{\text {a }}$	34.00	X	. 099	or	3.37
Totals			1.000		\$33.62

Pine Type

		$\begin{array}{r} 331.50 \\ 28.00 \end{array}$	$\begin{array}{lll} \mathrm{x} & .614 & \text { or } \\ \mathrm{x} & .140 & \text { or } \\ \mathrm{x} & .082 & \text { or } \\ \mathrm{x} & .164 & \text { or } \end{array}$			$\begin{array}{r} \$ 19.35 \\ 3.92 \\ 2.95 \\ 5.41 \\ \hline \end{array}$
```Shortleaf Pine (10") Virginia Pine (12") Ohe stmut Oak (Virgin) (12") Beech (12")```						
Totals				1.000 \$31.67		
Type	Are. Weighted selling Price of Type	$\begin{aligned} & \text { \% of } \\ & \text { Type } \end{aligned}$		Averag Price		eighted Defective
Hardwood	\$38.04 X	. 558		or		\$21.22
Pine-Hardwood	33.62 X	. 207		or		6.96
Pine	31.67 x	. 235		or		7.44
Total:		1.000				\$35.62

Table XXIII (Concluded)

## Oalculations of Selling Prices for Presont Out

(Per Mft., b. m.

## Oondition Olase I-All Trees

Tree Condition	Average Woig Solling Price Tree Condit		\% of Tree Oondition	Ave. Weighted Selling Price of All Trees
Sound (Harvest)	\$41.72	X	. 733	\$30.55
Defoctive	35.62	X	. 267	9.51
Total for Oondit	On Oless I		1.000	\$40.06 say \$40.00

Table XXIV
Calculations of Selling Prices for Present Out
(Per M ft., b. $\mathrm{m}_{\boldsymbol{\prime}}$ )
Oondition Olass II-Defective Trees

## All Types

Species and Average Weighted d. b. h.
Shortleaf Pine ( $12^{n}$ )
Virginia Pine ( $12^{n}$ )
White Oak (Outover)
Ohestmut Oak (Virgin)
( $18^{n}$ )

Red and Black Oaks (16")
Hiakory (Scarlet Oak-s) (14")
Maple (16")
Beech (18")
Searlet Oak ( $14^{\text { }}$ )
Yellow Poplar (Outover) (14")
Gum: (16")
Misc. (Basewood) (12")
Totals
Total for Oondition Olase II

Selling Price from \% of Ave, Weighted Table XXII Species Selling Price

$\$ 32.75$	X	.124	or	$\$ 4.06$
28.00	X	.009	or	0.25
37.00	X	.027	or	1.00
40.50	X	.370	or	15.00
37.50	X	.085	or	3.19
23.50	X	.140	or	3.29
39.00	X	.054	or	2.11
37.00	X	.021	or	0.78
23.50	X	.033	or	0.78
39.00	X	.021	or	0.82
34.00	X	.091	or	3.09
41.50	X	.025	or	1.04
		1.000		$\$ 35.41$
			say	$\$ 35.50$

## Table XXIV (Ooncluded)

## Oalculations of Selling Prices for Present Out

(Per M ft., b. m.
Oondition Olass III-Defeetive Trees

## All Types

Species and Average Weighted d. b. h.

Shortleaf Pine (12")
Ohe stnut Oak (Virgin) ( $16^{\text {" }}$ )
Red and Blaok Dake (14")
Scarlet Oak ( $12^{\text {I }}$ )
Hickory (Scarlet Oak-s) (16")
Beoch (16")
Gum ( $14^{\mathrm{n}}$ )
Totals
Total for Condition Olase III

Selling Price from \% of Ave. Weighted Table XXII Species Selling Price

$\$ 32.75$	$\mathbf{x}$	.170	or	$\$ 5.56$
39.00	$\mathbf{X}$	.294	or	11.48
35.00	$\mathbf{x}$	.110	or	3.85
28.00	$\mathbf{x}$	.023	or	0.64
25.00	$\mathbf{x}$	.215	or	5.37
35.50	$\mathbf{x}$	.158	or	5.60
32.50	X	.030	or	0.98

$1.000 \$ 33.48$
say $\$ 33.50$
period, because they are far more difficult of estimation than are estimates of future cuts. About the only way that future eelling prices can be estimated is to assume that each individual species will remain at more or less the same level, but that the average weighted selling price of the hardwood portion of the stand will be increased somewhat due to the removal of inferior apecies and general stand improvement. Since:Virginia (serub) pine forms only a very small portion of the total pine volume, it is assumed that shortleaf pine selling prices will be reasonably accurate for future pine cuts.

It was decided that the most practical method of setting an average weighted eelling price on the hardwood portion of the stand for future cuts, would be to determine the present average weighted selling price and d. b. h., and then compare that selling price at
that d. b. h. with the present selling prices of the various species at that d. b. h. Accordingly, the calculations as presented in Table XXV, which follows, were carried out, and it was found that the average weighted selling price of the hardwood trees in Condition Olass I is $\$ 41.50$ per M.

Table XXV
Galculation of Present Average Veighted Selling Prices for Hardwoode

$$
\text { (Per M ft., b. } \mathrm{m}_{\bullet} \text { ) }
$$

Oondition Olass I-Harvest Trees (refer to Table XXIII)

Type	Selling Price of Hardwood Trees in Ty		$\begin{aligned} & \text { \% of } \\ & \text { Type } \end{aligned}$		Weighted ling Price
Hardwood	\$45.86	X	. 346	18	\$19.20
Pine-Hardwood	$\frac{\$ 40.69-(\$ 10.64+\$ 1.20)}{1.000-(.282+.038)} \text { or } \$ 42.45$	X	. 418	is	14.70
Pine	$\frac{\$ 35.90-\$ 7.97}{1.000-.226} \quad$ or $\$ 36.10$	X	. 263	1s	9.50
Total for Harv	est Trees		1.000		\$43.40

Hardwood
$\$ 38.04 \times$. 558 is $\$ 21.22$

Pine-Hardwood	$\frac{\$ 33.62-\$ 9.79}{1.000-.299}$	or \$ $\$ 4.00$	X	. 207	is	7.04
Pine	$\frac{\$ 31.67-(\$ 19.35 \neq \$ 3.92)}{1.000-(.614+.140)}$	$\text { or } \$ 34.17$	X	. 235	is	8.03
Total for Defe	Trees			. 000		6.49


Tree Oondition	Average Weig Solling Pric Tree Condit		$\%$ of Tree Condition	Ave. Weighte Price of Al	Selling Trees
Sound (Harvest)	\$ $\$ 33.40$	X	. 733	\$31.80	
Defective	36.49	X	. 267	9.75	
Total for Oondit	n Olass I		1.000	\$41.55	y $\$ 41.50$

The average weighted $d$. $b$. $h$. of the hardwood trees to be included from Condition Class I in the present out was determined to be $20^{\prime \prime}$ from the original atand and stock tables. (See Table XXVI below). Now referring to Table XXII, we find that $20^{\prime \prime}$ Virgin Oheatmut Oak has a selling price of $\$ 41.50$ per $M$, and since this value is somewhat above most of the other values for hardwoods, it is believed that the value of Virgin Ohestmat Oak may be used as the selling price for hardwood trees in Oondition Olass I during the second and third cuts. Similar calculations show Virgin Yellow Poplar (S) and Outover Yellow Poplar (s) to be the appropriate future selling prices for Condition Classes II and III, respectively. These latter two values run somethat lower than does the one for Condition Olass $I$, but it is believed that they will be applicable, since stand improvement is not likely to occur as quickly on Oondition Classes II and III as on Oondition Olass I.

GALOULATION OF LOG AND LMMBER PRODUOTION COSTS

The first step in determining production costs is to calculate average weighted diameters and volume percents for the pines and hardwoods separately. For the present cut, they were computed from the original stand and stock tables, and are presented in Table XXVI, which follows.

## Table XXVI

Average Weighted Diameters and Volume Percents for the Present Out
Oondition Are. Weighted Diames In.
Olass $\frac{\text { Volume Percent }}{\text { Hardwood Pine }}$ Tardwood Pine

$I$	20	14	.883	.117	1.000
II	16	12	.867	.133	1.000
$I I I$	16	12	.830	.170	1.000

For the second and third outs, it was assumed that the trees found in the Pine Types of the three condition classes would be representative of the pine portion of the stand, and that those found in the PineHardwood and Hardwood Types would reasonably represent the hardwood portion. Necessary computations were made, and the results are presented in Table XXVII, which follows.

Table XXVII
Average Weighted Diamoters and Volume Percents for Future Outs
Oondition Class $\frac{\text { Ave. Woighted Diamo, In. }}{\text { Hardwood Pine }} \frac{\text { Volume Percent }}{\text { Hardwood Pine }}$ Totals

Second Cut-10 years hence

I (See Table XVII)	20	16	.833	.167	1.000
II (See Tables XIV \& XVIII)	20	16	.826	.174	1.000

Third Out-20 years hence

I (See Table XVII)	18	14	.818	.182	1.000
II (See Tables XIV \& XVIII)	14	12	.837	.163	1.000
III (See Tables XV \& XIX)	16	14	.888	.112	1.000

Inspection of Table XVII at once reveals a serious decline in average weighted diameters for the third cut. This is due in part to the preponderance of the younger and smaller-sized trees which occupy more than their allotted share of the area as set up in the control tables. It is due also to the inclusion of this smaller-sized material as part of the harvest cut. A large share of the trees which should be marked for cutting during the third cutting cycle will, in reality, constitute nothing more than thinnings made for the purpose of preventing over-stocking. Removal of the ee trees will, of course, increase production costs and decrease selling prices to such an extent
that the unit profit will be appreciably decreased. But since the institution's owners desire to produce the maximan amount of lumber possible, and since this is only an illustrative case, we may proceed to treat hardwood trees, $10^{\prime \prime}$ and up, and pine trees, $8^{\prime \prime}$ and up, as merchantable, and carry out further calculations accordingly.

By map inspection, and making due allowance for actual field conditions as based upon the writer' personal knowledge of the area, the average slope was determined to be $30 \%$. Average skidding distances, and round-trip hauling distances from loading point to the mill, were then determined, and may be found in Table XXVIII, which follows.

Table XXVIII
Average Bkidding and Round-Trip Hauling Distances
Condition Average Skidding Average Bound-Trip Hauling Distance, Miles
Olass Distance, Feet Well-Graded Gravel Road Hard Surface Road
$I$
II
III
1,000 950 750
1.5
1.5
3.0
3.0

The hourly rates for a lit ton truck as prepared by Campbell, and obtained from reference (3), are show in Table XXIX on page 62. It is believed advisable, however, to develop the machine rate in the manner described by Matthews in reference (4). The aetual machine rate used was therefore calculated by the latter method, and is presented in Table XXX on page 63. Reference to Table XXX shows the total fixed cost per hour to be $\$ 1.02$; and this figure is used as the truak "atand-by" charge in calculating the loading, unloading and delay cost.

Table XXIX
hoURLY RATES
$\frac{\text { Voods }}{\text { Per } 8} \mathrm{hr}$.
Day
$\frac{\text { Highway }}{\text { Fixad }}$
Hourly Cost

$$
\begin{array}{rr}
\$ 4.00 & 50 \\
2.00 &
\end{array}
$$

(b) Industrial compensation, insurances soc. sec. $40 \%$
$.48 \quad .04$
6.48
.54
2. Other direct costs
(a) Gas © 1.C gal. por hro ${ }^{\circ}$ 25\%. 2.00
(b) $0 i 1$ and greasing .063
(c) Repairs - labor and supplies3/ 1.20
(d) Tiresl/
(e) Supervision and overhead
2.40
1.00 .12
7.10
B. Ownership Cost $4 /$

1. Investment a $\$ 900$ without tires -30C tracie in value $=\$ 600$
to be deprociated in 2 yrs. - $\$ 300$ 250 days
1.20
2. Intercst $6 \%$ of averaje value

Average Value $=\frac{\$ 900 \nmid 300}{2}=\$ 600$
Interest per dey $=\frac{\$ 600 \times .06}{250}$
3. Liconse $\$ 30 \neq$ Insurance $\$ 40=\$ 70 \div 250$ days .14 $\frac{.28}{1.62}$ - 20

Total cost per dey $\$ 15.20$
Woods Orerating cost per hro 1.90*
1.90* $\quad .86$

Highway Fixed Cost per Hr. (Rounded off)
$1 /$ Basic data for this part was takon from table 2 of "Roof'er Operation--ain South Carolina" study by Forest Products Laboratory adjusted to $1 y 43$ prices by Garver and Kirkland.
2/ It is assumed that without this helper that the skidder would be tied up during loading time and it is more oconomical to use a helper el 50¢ (65\&) per hour than skidder $\$ 1.00$ unless large logs are being loaded which require a orose haul. In the latter case a separate loading charge should be made. 3/ These costs are from the WPB publication entitiod, "Hauling Cost Control-.In the Pulpwood Industry," Deoember 1942.
4 Basic data from reference given in footnoto 3/ above and reference 15. Table 2 data using depreciated equipment was considered inappropriata.

* Add approximately $15 \&$ per hr . for 108 trailer but increase average vo? umo hauled per load from 1 Mb . f. to 1600 bd. ft. - Int. rule.

Table XXX

Hourly Rates for a $2 \frac{1}{k}$ Ton Truck (refer to Table XXIX)
Fixed cost per hour

Operating labor- $\frac{\$ 4.00}{8}$ or	$\$ 0.500$
Industrial compensation, insurance,	
soc. sec. $8 \%-\frac{\$ 0.32}{8}$ or	0.040
Depreciation- $\frac{\$ 2.40}{8}$ or	0.300
Interest $06-\frac{\$ 0.14}{8}$ or	0.018
License and Insurance- $\frac{\$ 0.28}{8}$ or	0.035
Supervision and Overhead- $\$ 1.00$ or	
	0.125

Total fixed cost per hour

Operating cost per hour:

Tires- $\frac{\$ 2.40}{8}$ or	$\$ 0.300$
Repairs: Labor and Supplies- $\frac{\$ 1.20}{8}$ or	0.150
Gas- $\$ .00$ or	0.250
Oil and greasing- $\frac{\$ 0.50}{8}$ or	0.063

Total operating cost per hour
say $\$ 0.76$
$\$ 1.781$
Total running cost per hour

The total rumaing cost per hour of $\$ 1.78$ is used in determining the hauling cont. It is believed that Campbell's purchase price of $\$ 900$ for a $1 \frac{1}{8}$ ton truak, as used in calculating the depreciation on the investment could more reasonably be estimated to be $\$ 1,500$ under present conditions, and the depreciation item has therefore been
increased to $\$ 0.30$ per hour as found in Table $X X X$. Other data used in calculating production costs were also obtained from reference (3), and may be found in Tables XXXII and XXXIII and Figure IV on pages 66, 67 and 68, respectively. By using Tables XXX, XXXII and XXXIII and Figure IV, it is now possible to calculate production costs as illustrated for the present cut from Oondition Olase I in Table XXXI, which follows.

Table XXXI
Oalculation of Production Oosts (Present Out)
(Refer to Tables XXVI and XXVIII)
Oondition Olass I

## Pine Trees

Felling and Bucking-3.6 hrs. X $\$ 0.65 \times 1.25$. 2.93
Skidding (Tractor)-1st 250' 0.7 hrs.-0.7 hrs.
Balance of haul-750' 0.28 per 250'-0.84 $1.54 \mathrm{hrs} . \times \$ 2.05 \times 1.25 \quad 3.94$

Loading, unloading and delay- 0.8 hrs . $\mathrm{X}(\$ 1.02 \nmid \$ 0.65) \times 1.25 \quad 1.52$

Hauling- $\$ 1.78 \times\left(1.5 \mathrm{mi} . \times 5 \mathrm{~min} \mathrm{~m}_{0} \neq 1.5 \mathrm{mi} . \times 9 \mathrm{~min}\right) \times 1.25 \quad 0.71$ $60 \mathrm{~min} . X 1.1 \mathrm{M}$

Milling-6.3 hre. $\times \$ 0.80 \times 1.25$
6.30

Greses cost per M:
$\$ 15.40$
Margin 20\%
3.08

Direct cost of production for pine trees, per M \$18.48
Table XXXI (Ooncluded)
Oalculation of Production Costs (Present Out)
(Refer to Tables XXVI and XXVIII)
Oondition Olass I
Hardwood Trees

Felling and Bucking-3.8 hrs. X $1.10 \times \$ 0.65 \times 1.33$	\$ 3.62
Skidding (Tractor)-1st $250^{\prime}$ ( $0.4 \mathrm{hrs.-0.4} \mathrm{hrs}$.   Balance of haul-750' 0.16 per $250^{\prime} \frac{-0.48}{0.88 \mathrm{hrs} .} \times \$ .05 \times 1.33$	2.39
Loading, unloading and delay- $\frac{0.8 \mathrm{hrs} . \frac{x(\$ 1.02 \nmid \$ 0.65)}{1.0 \mathrm{M}} \times 1.33}{1.3}$	1.73
$\frac{\text { Hauling- } 1.78 \times(1.5 \mathrm{mi} . \times 5 \mathrm{~min} \cdot \neq 1.5 \mathrm{mi} . \times 9 \text { min. }) \times 1.33}{60 \mathrm{~min} . \times 1.0 \mathrm{~m}}$	0.83
Milling-6.2 hrs. X \$0.80 X 1.33	6.60
Grose cost per M	\$15.17
Margin 25\%	3.79
Direct cost of production for hardwood trees, per M	\$18.96

## All Trees



It should be noted that production costs have been inereased $25 \%$ and $33 \%$ for pine and hardwood, respectively, due to price increases and lowered labor and machine efficiencies since the production tables were released. (See reference 3). Production cost figures were rounded off to the nearest $\$ 0.25$ per $M$ in order to keep them in the same plane with the selling prices.
-66-
Tab/c TXXII
PINE PRODUCTION COST FACTORS PER MB.F. I/-PRELIMINARY


$3 /$ Factors used to vary men-hour values according to the character of the operation, e.g., if sale is
 if alling principaliy scrub pine, , increase hrs. sbown by $20 \%$.
These cost itame are relatively constent for oceh oporation - varying more by d.b.h. classes than
by jobs. soe Applicable Renge Factor colven for ugual 1 imits of variations.
 6 add 200 for lopping pure serub pine.
V since most culls are hardioods, the hardwood costs are shown. (Pine cull disposal costs are approxiantely (to nearest d.b. class) and deteraine proportion of cull troe vol. to total volume oxelusive of culls. cull disposel oosts cen be roduced if cull bave small tope or are largely hollow.
Tab/e XXXIII
HARDWOOD COST FACTORS PER



By making similar calculations for the other condition classes and cuts, sawtimber values for the various cuts from the whole area were determined. These values may be found in Table XXXIV, which follows.

Table XXXIV

## Sawtimber Values

(Annual Gross Income)


Second Cut
(10 years hence)
$\begin{array}{rrrrrrrrr}\text { I } & \$ 40.75 & - & \$ 18.50 & \text { or } & \$ 22.25 & X & 111 & M\end{array} \$ 2,470$
Totals $\quad 439 \mathrm{M} \$ 8,800$
Third Cut
(20 years hence)
I. $\$ 39.25$ - $\$ 19.75$ or $\$ 19.50$ X $532 \mathrm{M} \$ 10,380$
II 33.75 - 23.25 or $10.50 \times 693 \mathrm{M} 7.270$ III 33.50 - 21.00 or $12.50 \times 588 \mathrm{M} \quad 7.350$

Totala
$1,813 \mathrm{M} \quad \$ 25,000$

OALOULATION OF FUELWOOD VALUES

The past policy of the institution has been to sell fuelwood to it's employees at cost. For the puxpose of including potential fuelwood
as a part of the forest property's value, however, it may be well to determine what value, if any, the fuelwood would have if produced. From the original stand and stook tables, it was found that Condition Clase I contains an average of 0.6 standard (128 cu. ft.) cords per acre, Condition Class II-0.4 cords, and Condition Olass III-0.7 cords. Reviaion of an appropriate table from reference (3) to meet conditions existing on this particular piece of property resulted in the construction of Table XXXV, which follows.

Table XXXV
Man-Hours Required per Oord of Puelyood from Hardwood Tops and Oull Trees
Vol. of Oords Skidding 100 ft . 1/ All Other Production Pactors, Out per Acre

0.1	1.3	8.6
0.6	1.3	8.1
1.3	1.3	7.6

Margin $10 \%$ :

1. Add 0.5 hr . for each added $100^{\prime}$ of akidding distance. Use hourly rate of $\$ 2.05$ for tracter and driver.

2/ Use hourly rate of $\$ 0.65$ per hr .
Use hourly truck rate of $\$ 1.78$
Average truck load-1.9 cords
Travel time-5 min. per round-trip mile on hard-surface road, 9 min. per round-trip mile on well-graded gravel road.

By using Table XXXV, and referring back to Table XXXI, we can now calculate the cost of fuelwood production for Oondition Olass I as found in Table xCXVI on page 71.

Table XXXVI

## Oost of Puelnood Production

(Per standard cord)
Oondition Olass I

Other Factors-8.1 hrs. X $\$ 0.65 \quad 5.26$
Hauling- $\frac{1.78 \times(1.5 \mathrm{mi} \cdot \times 5 \mathrm{~min} .11 .5 \mathrm{mi} . \times 9 \mathrm{~min})}{60 \mathrm{~min} \times 1.9 \text { cords }} \quad 0.33$
Gross cost per cord \$17.49
Margin 10\% - 1.75
Direct cost of production per cord for Condition Olass I $\$ 19.24$

We can see at once that the cost of production for fuelwood is unreasonably high, and unless the wood could be sold to the employees for $\$ 19.25$ per cord (very unlikely), the inetitution would lose money on the operation. If the wood could be sold as pulpwood at the mill, there is definitely no chance of making a profit, for the seiling price of rough hardwood pulpwood is $\$ 8.10$ per cord. (See reference 5). Assuming that the institution's owners can be shown that fuelwood can be produced only at a loss as the operation is now conducted, the value of the fuelwood will be disregarded in evaluating the forest property as a whole.

Further inspection of Table XCXVI reveals the excessively high skidding cost to be the main reason for the high fuelwood production cost. Reduction of the skidding cost would call for a reduction in
the skidding distance and the use of skidding equipment with a lower machine rate. The former could be accomplished through the construction of additional roads, provided, of course, that the unit saving effected through the medium of a shorter skidding distance would be greater than the unit oost of road construction. Specific illuetration of how such a balance between akidding cost and road construction cost could be achieved is not considered to be within the soope of this paper, because road construction costs for this particular area are not immediately available. Should the owners be interested in producing the fuelwood at a profit, it would certainly pay them to investigate the possibilities of attacking the problem along the line just discussed. A change in the present method of operation so as to reduce fuelwood production costs, would, of course, reduce sawtimber production costs, and would measureably increase the value of the property.

## VILUATION OF THE FOREST PROPERTY

The simplest way to place a value on the property is to calculate the present worth of the property in terms of the annual net incomes that are anticipated from the various cuts. The local construction superintendent has estimated that fixed-per-acre costa will be approximately $\$ 3.00$ per acre per year for the pirat ten yeare and \$2.00 per acre per year thereafter if the present plan of operation is adhered to. Net annual income for the present cut (See Table XXXIV) would thus be $\$ 4,101-(\$ 3.00 \times 3,221$ aeres $)$ or $\$ 4,101-\$ 9,663$ is $-\$ 5,562$.

For the second cut, the net annual income would be $\$ 8,800-(\$ 2.00 \mathrm{X}$ 3,221 aeres) or $\$ 8,800-\$ 6,442$ is $\$ 2,358$, and for the third and all future outs the income would be $\$ 25,000-\$ 6,442$ or $\$ 18,558$.

For the first and second cute, the formula for the present value of a terminable series of annual incomes is used. (Soe reference 6). This formula is written as: $\omega_{0}=\frac{a\left(1.0 p^{n}-1\right)}{.0 p \times 1.0 p^{n}}$, in which; 00 is the present value, $a$ is the anmual net income, $n$ is the period of years, (10 in this case), and $p$ is the rate of interest. Since this is not a commercial venture, a safe (3\%) rate of interest will be used. The formula, as written, may be used for calculating the present value of the net anmual incomes expected during the first outting cycle, but must be discounted to the present by dividing by $1.0 \mathrm{p}^{10}$ for the incomes to be received during the second cutting cycle, since those incomes will not commence until 10 years from now. The value for the third and all subsequent cuts is obtained by using the formula for the capitalization of a permanent annual income (See reference 6) in which $0_{0}=\frac{a}{0 p}$. The terme used in this latter formula correspond to those used in the former. The value obtained by the capitalization formala must also be discounted to the present, but is divided by $1.0 p^{20}$ since the net annual incomes received during the third and all subsequent cutting cycles will not commence until 20 years from now. Setting these three formulas up, we now have the following:

Present Worth $=$ Present Income $X \frac{\left(1.0 p^{n}-1\right)}{00 \times 1.0 p^{n}}$
$\neq \frac{\text { Socond Income } \times \frac{\left(1.0 p n_{-1}\right)}{0 p \times 1.0 p}}{1.0 p_{1}^{2}}+\frac{\text { Third Income }}{00 \mathrm{Op} \times 1.0 p^{2}}$

It should be noted at this point that the average annual income of the third cut is assumed to remain at the same level to infinity, because it is not desirable to predict the outs that may be expected more than 20 years in the future.

When the appropriate values are inserted in the foregoing formulas, we shall obtain the present worth of all future incomes. From this value, however, must be subtracted those expenses peculiar to the forest property itself; namely: taxes, cost of fire protection and cost of planting.

The tax rate in the county in which the institution is located is 3\%, regardless of the degree of stocking. The assessed valuation of the forest property is a flat $\$ 10.00$ per acre. Therefore, the average anmal tax for the property is 3,221 aores X $\$ 10.00 \times .03$ or $\$ 966.30$. When capitalized at $3 \%$, total taxes will be $\$ 966.30 / .03$ or $\$ 32 ; 221$.

Adequate forest fire protection is estimated by the State Department of Conservation to cost $\$ 0.10$ per acre per year. Therefore, the annual cost of this expense would be 3,221 acres $X \$ 0.10$ or $\$ 322.10$, and, when capitalized at $3 \%$, the total cost would be $\$ 10,737$.

The cost of planting 300 denuded aeres will not include the cost of planting atook, since this is to be furnished by TVA. Approximately 300,000 trees are to be planted, and it is estimated that 400 trees will be planted per man-day ( 8 hour day). Assuming an hourly rate of $\$ 0.65$, this cost would be $300,000 / 400 \times 8 \mathrm{hrs}$. X $\$ 0.65$ per hr. or $750 \times \$ .20$ is $\$ 3,900$.

The value of the property can now be calculated as follows:

$$
\begin{aligned}
& \text { Value }=-\$ 5.562 \frac{\left(1.03^{10}-1\right)}{.03 \times 1.03^{10}}+\frac{\$ 2,358 \frac{\left(1.03^{10}-1\right)}{.03 \times 1.03} 10}{1.03^{10}}+\frac{\$ 18.588}{.03 \times 1.03^{20}} \\
& \text {-(Taxes } \neq 0 \text { ost of Fire Protection } \not \subset 0 \text { ost of Planting) } \\
& =\$ 5.562 \times 8.53+\frac{\$ 2.358 \times 8.53}{1.3439}+\frac{\$ 18.588}{.03 \times 1.8061} \\
& -(\$ 32,221 \neq \$ 10,757 \neq \$ 3,900) \\
& =-\$ 47,500 \neq \$ 14,950 \nrightarrow \$ 42,500-\$ 46,858 \\
& =\$ 357,450-\$ 94,358 \\
& =\$ 263,092
\end{aligned}
$$

OONOLUSION

The value of any property is based upon the anticipated use of that property, and if a property has no plan for it's use, then it has no value. If the particular plan of management presented in this paper is followed, it has been determined that the present worth of the forest property is approximately $\$ 260,000$. The mere fact that the property shows a positive value indicates that the use of this plan is justified from the economic standpoint alone. This is not to say that the property would not have a higher value if some other plan were to be devised for it's use. On the other hand, it should be remembered that this property has been evaluated under particularly favorable circumstances, i. e., the ownership is financially able to carry the negative profit which the operation will net it during the next 10 years.

Should the owners decide to adopt this plan of management, and should they decide to obtain the largest profit possible from their forest property, it would certainly pay them to invertigate the possibilities of changing their present plan of logging operation so as to reduce logging coste.

Since this plan is considered to be only preliminary, a more intensive cruise should be made within the next 10 years, and certainly within the next 20 years. Such a cruise would serve as a check on the anticipated rate of growth, stocking and sawtimber volume as estimated at the present time. It is quite likely that the results of the "check" cruise would vary at least somewhat from the estimated future conditions, and revision of the present plan, or construction of a new plan, would, of course, be well worth-while.

It is recognized that most forested areas with similar stocking are not nearly as favorably situated financially as is this area, and it may quite reasonably be argued, therefore, that this plan has little, if any, real merit to justify it's composition. The writer believes, however, that the vast areas of non-agricultural land which are now idle, but which could be made to produce timber if adequately protected and encouraged, will eventually be put to their beat economic use, and that a plan of this type would then prove to be quite useful.

## REPERENOES

1. Volume, Yield and Stand Tables for Second-Growth Southern PinesMiscellaneous Publication \#5O, U. S. D. A.-1929.
2. A Manual of Porestry-Volume III (Forest Management)-Sir William Schlich-1911.
3. Forest Management Handbook-Part II-B by R. A. Oampbell, T. V. A. Department of Forestry Relations-1944.
4. Cost Control in the Logging Industry-D. M. Matthews-1942.
5. Maximum Prices for Pulpwood-R. M. P. R. 387, O. P. A.-Amendment 2, March 11, 1944.
6. Management of American Foreste-D. M. Matthewe-1935.


THE UNIVERSITY OF MICHIGAN

FO RENEW PHONE 764-1494
DATE DUE

pinits ionea
COVER
No. R-129



[^0]:    See Age Group I of Table $X$, Hardwood Type, on page 25.

[^1]:    The first harvest out from Condition Olass II is included in the total second harvest cut from the whole area.

[^2]:    The second harvest cut from Oondition Olass II, and the first harvest cut from Oondition Olass III, are included in the third harvest out from the whole area.

[^3]:    
    K. A. C.
    Revieed-7/23/4
    arduoede to allom for Ron Orea pricee. Ilelde Appelachion
    
    Hrct-b mop pe cepares ypase
    crozrine peompun ening yes on
    

