

1207 Packard streat Ann arbor, Manigan May 26, 1939

Professor L. J. Young
Sohool of Forestry and Conservation University of Michigan ann Arbor: Michigen

Dar 31r:
Attached is my report entitied "Tho Results of Twanty Years of Management of the Ebor White Woodiot."

I trust that I have given you the infor mation that you expeoted.

Respootfully submitted,

ROBERT A. FARRINGTON

THE RESULTS OT THENIY TEARS OF MANGGLENT OF MTE EBER WHITE WOODLOT

By
 Robert A. Tarrington

Ann Arbor, Miohigen May 26, 1939

FOREWORD

During the past few years there has been an increasing recognition by the U. 3. Forest Service and other forestry agencies that the woodlots in the United States are an important forest resouree. The Soil Conservation Sexvice and other "New Deal" agencies have brought the problems of this type of forest management into the present day aonservation activities in a more aotive form than heretofore.

As soon as aotual work was attempted in the field, it became apparent that the existing data were not adequate basis for management of the woodlot. Although a ereat deal of work has been accomplished during the last three or four years, thore are fow records covering more than 10 years of past management.

The Eber White woodlot, a property of the University of Michigan, Sohool of Forestry and Conservation, Ann Arbor, M1 chigan, orfers an opportunity to study the results of woodlot management as it has been practiced by the school of Forestivy and Conservation during the past twenty-two years.

It is the purpose of this paper to report the silvicultural and innancial results of this period of management.

The Eber Whita woodlot has been managed by the School of Porestry and Conservation, University of Michigan, Ann arbox, Michigan, since 1917. The 43 aore woodlot has been divided into 10 compartments of 4.3 acres each. Two plots are cut each your and the entire area covered every 5 years.

This area is a typical woodlot of Southern Michigan. Previous to the University's acquisition in 1915 it had not been mistreated by fire or grazing and has not been so treated since. The stand is coxposed ohiefly of oak and hiokorywith smaller volumes of hard maple, basswoods black walnut, ash, cherry, elm, and ironwood. There are a number of big "wolf" trees 30 inches and over scattered through the stand. In general the stand is understooked, but thrifty.

The stand has been treated primarily by a modified single tree selection cuttings, with an aim to improving the stand as to species and diameter distribution. The "wolf" trees, overmature trees, and derective trees are being removed as rapidiy as possible with due regard to maintaining and improvin forest conditions for the best possible growth and reproduction.

The tables and graphs presented in this report show that:

1. The height growth decreases materially at about 20 inohes $6 . b . h$.
2. The merchantable holght indicates that there is an old stand of 30 inches and above and a much younger stand from 1 to 30 inches.
3. A diameter of about 26 inches is indicated as tho outting limit.
4. The species during the past 22 years have decreased in numbers, mostiy in least desirable species, whilo the inore desirable oaks and hickories have increased in numbers and volume.
5. Reproduction is adequate, and has boen stimulated due to outting practices.
6. Older veterens have also been stimulated in growth to sone extent.
7. It is indicated that production of 100 board feet per acre per year and $1 / 4$ cords per acre per year can be maintained.
8. In general the financial returns have not been profitable, but hearing in mind that unskilled, soft-ruscled labor is used at $\$.40$ per hour, it seems probable that a farmer could make a prorit of sbout $\$ 142.00$ per year exolusive of interest, taxes, or other costs.

This paper has also opened some questions as
to how much good is sone by removing material with no merohantable ralue: what part sprout reproduction plays and the possibilities of more dotalled studies during cutting as to height, cull, and age,
 EBER WHIT WOODLOT ${ }^{1}$

INTHODUCTORY

Historienl

The Eber White Woodlot of 43 acres was acquired by the School of Forestry and Conservetion in 1915. Prior to that time, it had been out over to some extent, probably for the better apecies, as indicated by stumps present at the time of acquisition. ${ }^{2}$ is far as can be ascertained, fire and grazing had not been a practice before 1915, and certainly has not been allowed since.

Site Description

Location. The area is located in the SE 1/4, SE $1 / 4$, Soction 30, T. 2 S., R. 6 R., Mohigan P. M. In regard to the City of Ann Arbor, it is adjacent to the western boundary of the oity limits, and south of ind adjacent to west Liberty Street. Soule .evenue extends to the gate on the eastern end. (See Figure 1):

1. A property of the University of michigan, School of Forestry and Conservation, Ann Arbor, 4 chigan.
2. The condition of the stumps also indicated that previous cuttine had been done many years before.
3. Veatch, s. O. U. S. Bureau of Chemistery and Soils, 1934.

Soil. The soil is classified in the Detailed Soi 1 survey of Rashtenaw County ${ }^{3}$ as a mami sllt loam." According to the saxie report, this type is representative of well drained clay soils of the uplands. In general it is a moraninal soil found on more or less rolling terrain. The moisture conditions are usually good and other factors make this desirable and produotive soil for farming purposes. It is a good forest soil. local arainage being an important factor affecting the species and growth.

The profile is described as follows: $0-5$ inches, a gray-brown silt loam; 5-10 inches, a grayish yellow, more or less leached layer; 10-24 inches, yellow brown, more clayey, plastic and impervious when wet, coarsely granular when dry; parent material a blue-gray clay, massive, compact, moderately atony and gritty.

Although the soil survey of the County has called this a silt loam, three samples given a mechanical analysis in the soils leboratory at the University of Mohigan indicate a "sandy loam" texture. The following is a sumary of the analysis: Top soil a sandy loam; Clay and silt 30% Ganas Coarser materiallo 11% Top sofl a muck phase of a clay losm: 34\% 45% 21\%

Stand Description
The stand is typlcal of many Southern Wichigan woodiots on this site. It is ocmposed ohiefly of oaks and hickories, with smaller volumes of ash, hard maple, welnut, ironwood, basswood, elly, and oherry. Douglas fix, Sootch pine, and white pine have been planted on the north side of the western half of the woodlot where there were some open areas with but scant means of getting natural reproduction.

In addition to the main timber stand there is a moderately heavy herbacesoue cover. In the more open spots grasses are found. Keeds and flowers such as bloodroot, adder's tongue, hepatica, and trillium are ebundent. some raspbery, blackberry, and gooseberry are found, and grapevines and green brier vines have been removed in spots where it was becoming detrimentel to the timber trees or their reproduction.

In general, the tree canopy is well closed. although enough lient comes through the openings to maintain reproduction. Tables I, II, and III show the actual timber stand condition in more detail, and will be further discussed in later paces. Stand Treatment

The original plan of stand treatnent was based upon a ten year cutting perioa. At the end of 5 years, after compartments 1 through 5
had been cut once, it was decided to change to a y year eutting period. Because of this change, the last half of the area, compartments 6 through 10 , were receiving their ifrst cutting while compartments 1 through 5 were receiving their second outting.

The fundemental philosophy underlying the treatinent of the stand are: *

1. The encouragement of desirable speoies and exclusion of weed or undesirable speoies.

2: The improvement of the quality of the trees, both as to cloaning of the boles and the elimination of ovemature, diseasea, and mechanically defective trees.
3. The maintenance of forest conditions adventageours to growth and naturel reproduction.
4. The maximum production of forest products.

The treatient of the stand is based primarily upon the single tree seleotion method. 5 The past cuttings have used this method conbined with improvement outting. At the present time there has been no diameter limit set, but according to a.b.h.--height relationships shown in figures 2 and 3 , about 28 inches is indicated. Slash has been lopped and scattered.
4. This poliey was not entirely carried out wille Ppofessor Roth was in charge of the cuttings, as his polioy was to rotaln the old mature trees, partly for aesthetlo reasons, as long as possible.
5. Hawley, R. C. The Practice of silviculture. New York: John $1 /{ }^{2}$ iley and Sons, Ino., 1889, pp. 69-90.

The area of 45 acres was dutded into 10 compartments of 4.3 aeres oach. Under the present plan two compartments are cut each year. Exeept for 1917-18-19, a Aiameter tally was teken of trees mout" and "left." zaxcept for these sane yeurs, there has been little done in the way of helght or age measurements. There are two plots of two square rods each, established for reproduction counts, but according to the available records have been but spasnodically examined.

The data taken have been computed at more or
less inregular intervals due to the press of other work. The stand data were summarized by the number of trees and basal area eut and left and by species and 1 inch diumeter classes (1.0 inches and up). The height and age data had been sumuarized by species and inch olasses also. The repoduction date had beon translated from field talles to numerals and toteled by species.

Upon atterpting to assemble these data taken during the past 22 years, random chooks on the surmaries disclosed that there were errors in the mathematics and in the translation from the
6. Diameter breast high (4.5 feet above the grome) to the nearest inch (limits of . 5 and .5 e. G., the 6 inch class would include actual ainaeters ranging erom 5.6 to 6.5 inches, $0 . b$.$) .$
dot and dash field tallios: and that the age and height data taken had beea seeregated on 1 inch classes usine different limits than had the other data. In view of these onditions, it seemed necessary to recompute all data from the beginning. This was done, and at tho present time there are available in the files summries for each outting of each oompartment as to the number of trees "before cutting" "cut" and "after outting," by 1 inch diameter classes unc species. iny questionable fleld data has boon translatod by Professor L. J. Young, and all mathematical work has been cheoked by cross addition. It is relt that these data to date have been accurately computed and surmerized. ${ }^{7}$

The final computations and sumaries are besed upon two 21.5 acre areas comprising compartinents 1 through 5, and 6 through 10 respeotively. It was considered best to present the data in this manner inasmuch as compartments 6 through 10 were recolving their first treatnent when the others wore receiving their second, as has been explained on a previous page.
7. Computations and fiela ata are illed in Professor Young's oftlce at the School of Forestry and Conservation.

SIIVICULTURAL BHBULG
The first consideration is the results of the silvicultural treatment, because if management cannot control the silviculture of the stand, no one need bother about the ifnancial consfderations. The tables presented in this report are self" oxplanatory. A few of the outstanding points will be discussed in the following pages.

DLametar Breast Mich-Meicht Data

Inasmuch as dianeter figures were the only measurenonts of the stand availuble, and all conversion to cubic foot, board root volumes would have to be done byeana of a combination of dianeters and hefghts, the first work was to take onough total and merchartable height data to construct a d.b.h.--heisht curve.

Theso data wero taken with a steel diametor tape and a Forest Service hypsoneter. Most nolghts were taren by using a 50 foot distance from the tree and takine hafi or the hypsoneter reading. Beginning at the east gate, measurements were tajen on about every tree 3 is was encountered, covering the bulk of the south half of the aroa from east to west, as well as sone representation fron the westem halx. In this way, the natural representation of the specios as well as the size of speczes were ralxiy detributed.

A two-man orew was used, one man taking the total and merohantable ${ }^{8}$ heights, the other man taking the d.b.h. and making all reoordings. the distance from the tree to the height observer was measured each time with a steel tape.

It wes first planned to make a curve for each species, but inasmuch as many species such as walnut and cherry were not represented sufficiently to make good ourves, it wes finally dooided to use a composite volume table whieh was available through the Lake states Forest Experiment Station. ${ }^{9}$ Both merchantable board foot volume based upon the merchantable height and a total cubio foot volume based upon the total helght ware avallable and seemed reliable. Aocordingly, two oomposite d.b.h.--height ourves besed on total and merchentable heights respeotively were constructed.

Figure 2 mows the a.b.h.--total height relationship. The ohief item of note is the sharp decrease in height developnent at about 20 inches.

Figure 3 shows the d.b.h.--merchantable height rolationship. This ourve of average values is very interesting. When first plotting this curve, the present trend was indicated, and upon taking
8. Merchantable height limits are to an 8 inch top, or to the highest clear length (exclusive of small limbs not injuring the log value), or as limited by obvious defect.
9. Besed upon forest survey data from thia region.
additional data on merchentable heights of trees 20 inches and over, the average points came into line even more strongly, proving conclusively that this is the actual condition in the stand. In short, there seem to be two age groups comprising the stand. One is made up mostly of white oak from 30 inches and up, many of which are over 300 years of age as indicated by stump rings. This rather spures, old stand is onnposed of "woll trees" having heavy side branches at low hoight, causing a very low board foot or merchantablo volume in comparison to their diameters. The trees fron 10 to 30 inohes represent a younger stand averaging close to 110 years of age or better, which has developed in a denser stand and consequently show more clear length. This conclusion also seems to be apparent even from an ocular exanination.

Cubic Volume Table

Having established average total hoights, the oublo foot volum table (Table IV) for mixed hardwoods was altered to formulate a looal volume table. This was accomplished by interpolating volumes according to the total height read from the d.b.h.--total height curve. These values were plotted, and the final volunes read from this curve. (See table VI, and figures 8 and 4).

The board foot volume table was made up in much the seme maner except that fincl values were interpolated rather than read from a ourve. Merchantable heights were used instad of total heleht, and due to the exceptionally large diameters (to 45 inches) it was necessary to extend the original table data by neang of a curve. (Fig 5). The adjusted table is given in table VI.

Basal Area

Basal area was computed by applying a basal area table based upon the formula: the area in square feot equals $.00545 D^{2}$, when D is the diameter In inches.

Construction of Iinal Tablos
Having oonstructed looal volume tablea as indicated above, it wes only nesessary to apply the ${ }^{\text {a }}$ values to the proper diameter class. It does not sesm pertinent to reproduce those detailed tables in this report. The data contained therein are sumarized in Table I of this report, showing the number and percentage of trees betore treatment in 1917 and after treatment in 1937, both for all trees and those 10 inches and over; and in Tables II and III showing the basal area, cubic foot volume and board foot volume by size elasses. ${ }^{10}$
10. Size elasses: Reproduction 1-3 inches; Small poles 4-7 inohes; Large Poles $8-11$ inches; Standards 12-22 inches; V eterans 23 inches and over.

The most prominent points of interest from the data presented in this table is the difference in numbers and percentages of trees 10 inches and over in comparison with the total nuaber of trees 1 inch and over. Ironwood which heads the list of total trees has not enough trees 10 inches and over to be able to cormute the percentages. the oaks and hickories comprise the bulk of the trees 10 inches and over. In compartments $1-5$ the total number of trees has decreased over a 20 year period, the less desirable species such as ironwood being included in this decreasa, while the more desfrable oak, hickory and black walnut have increased. The humber of trees over 10 inches have increased by about 7.6 percent. In compartment 6-10 the total nurber or trees has increased over a 15 year period, mostly with less desirable species, while oak, hickory and other desirable species have actually decreased. Tho getual mumber of trees over 10 inches have increased a neglegible amount also in the less desirable species, and the percentage has decreased. Discussion of "Stand Data" (Table II and III)

There has been a gradual decrease in the
number of trees cut in compartment 1-5, as well as a gradual decrease in the total number of trees. this seens to be indicative that this area i.s responding to the treatment given it. The area comprising
compartments 6-10 also shows constant decrease In the number of trees out, and a gradual increase In the total number of trees, showing that there has been sowe regeneration of the stand (no artificial reforestation species wore included) 2lthough this increase is not composed of the most desirable species. However, it seems hopeful that this area will restook in time to dosirable trees, and in the meantime, less desirable trees will furnish a oover for the area, increase the organic matter whioh will improve soil conditions, and in general pay for their own place in the stand. as far as the total woodlot is ooncerned, it is probably slightiy understooked, although it should be borne in inf that the wolf trees on the western half ospecially, cover an area usually ocoupied by two or three nomal trees. In general compartments 1-5 are better stooked than compartments 6-10, although compartments 9 and 10 are most poorly stooked and pull the average down oonsiderably.

The basal area out has decreased slightly from the first outtings through the fourth cutting of compartments 1-5; while in compartments 6-10 there has been a sharp decrease from 9.3 square feet in the first out to 4.4 square peet in the
secona and 5.6 in the thixd. There has been a stoady inerease in the mount cut of standards and veterana, thu: pointing to the removal of "wolf" trees and more satisfactory distribution of graller stook.

The large pole class is not as well stook as the other olasses, and cutting has been 11ghter as should be expected. In spite of the cutting, the standards and voterans have held their original basal area and in most oases have inoreased, especially the standards, indicating a satisfactory feed in from belcv, good growth rate, and no over outting. The smaller olassea have remained falrly constant.

Both ouble foot volume and board foot volume (trees 10 inches and over) point to a decrease in volume of the veterang and an inorease in the standard class. This oondition seems very desirable, as it again points to the removal of "wolf" trees and a satiafactory growth and feading in feom bolow in the standard chass. Just what influence the deficiency in large poles will have in the future is a conjecture, but by careful outting to favor this olass, it may be possible to maintain as good growth am in the past, is not better.

It should be noted that heavier cutting, especially in the veteran class was begun in the fifth outs made on compartments 1 and 6, and 2 and 7 in 1937 and 1936 respectively. Although it seems like good business to harvest the larger trees before their cull gets too large, there will undoubtediy be a drop in the next out until the eifects of the shock of a heavier out are outgrown. A slight effeot of this sort was refleoted in the second cuts after the initial treatment whieh began in 101%.

Growth

Table VII gives the growth data based upon the stand data in tables II and III. Basal area and oubic foot volumes are very comparable as would be expected. In general outting has stimulated the lower and upper clasees as evidenced by the inoreases in growth percentages. The stimulation of reproduction is rore maxked in compartnents 6-10. There was a marked inerease in all parts of the woodlot during the second period of growth (first period for compartments 6-10), which was probably due to a pavorable combination of climatic conditions (this has not been verified).

The cefielency in the large poles is again apparent, and in the light of growth percentages, it presents a more formidiable detriment to the future stand. When board foot Folumes are examined, a more optomistio note is sounded, as the old, overmature trees have been stimulated and the standards have boon making about 3 percont per fear growth. When the "wolf" brees are replaced by thrifty standards production will inorease. The whole stand averages close to 10 peraent over a 5 year period or about 2 percent compound interest mean annual growth. Both growth percentages figured as simple increases or compounded are given in table VII, and for such a short growth period, there is no appreciable difference between the methods.

The reproduotion quadrats in compartment 3 indicate that there were close to 6000 seedlings per acre of aceoptable species (less then 3 feet high) in 1929. The stand data also inaiente plentiful "reproduction" 1-3 inches d.b.h. Production from 1917 through 1938

The preceding discussiong and tables have demonstrated the changes and results of the silvioultural treatment given this woodlot. The
figures as given are gross values. In a stand of this type, containing many overmature trees, it would be expeoted that a large oull peroentage would have to be taken into account. Based upon the author's experience and opinions voiced by Mr. Murray of the School of Porestry and Conservation, 20 percent oull seems like a oonservative figure for sawlogs. On this basis, the net volume per aere at the present time would be 4881 board feet (scribner). Murray's strip crulse of January, 1936 showed 4690 board feet per aore. In 1932, 6 M board feet were reported as out. The estimate according to this data would have prodieted 8431 board feet gross volume. There was no record as to whether the 6 if reported out was gross figure, or whet rule was used. In 1937 the estimate was for 5246 board feet net, the actual amount recorded was 2850 board feet. It is noted that this year was an extremely high cull year. Again in 1938 a net volun of 4131 board feet was predicted. The actual volume scaled was 4220 board feet. It is not possible to check the total volume of material removed during the past 22 years as the data are not complete. Total gross protuction from 1917 through 1938 could have been 81 M , or a net production of 64.8 M , amounting to a
production of approximately 70 board feet per acre per year. According to my interpretation of the growth data in Table VII, it seems conservative to expect to maintain at least 100 board feet per acre per year or an annual cut of about 4.5 Her year.

A cull percentage should also be applied to cubic volume, as this amount is lost due to rotten wood, wood left on the ground, and not utilizing to the 2 inch limit that the cubic foot table is based upon. After the 10 percent oull factor has been applied, it has been found that a factor of 66 is satisfactory to convert cubic feet to cords. ${ }^{11}$

The converting factor to convert board feet to cubic feet is B, i.e., there are about 6 board feet in a cubic foot.

On this basis the actual recording of 20.5 cords out in 1937 was predicted 4s 18.9, and the actual cordage of 1938 of 13.5 standard cords would be predicted as 13.6. ${ }^{12}$
11. Also sugcested by Cevorkiantz of the Lake States Forest Experiment Station.
12. The computations for the 1937 and 1938 data are given:
Gross volune, bd. ft. $\quad 1937$

1938
Gross volune, bd. ft. 5154
6558 20 percent cull
Net bd. f't. val. Gross cubic ft. vol. Cubic feet of bd. ft. 10 percent cull Net Cubic vol. Cords (divide by 66)

1031
4123
I684
687
100
897
$\Longrightarrow 13.6$
1312
5246
2260
879
138
1246
18.9

For the whole area from 1917 through 1937, the gross cubic foot volume of peeled wood 4 inches and over (d.b.h., o.b.) is 22691 oubic feet. Following the procedures outlined above, this area would have theoretioally produced 162 cords of wood and 64.8 of logs.
netually, there have not been many logs removed for lumber due to high cull und dififculties of marketing such small quantities, whereas the market for cordwood is usually good. is far as can be ascertained, there is no record or the actual production of products for the entire period. If the results of the past few years were taken as indicative of the whole period the cordwood production would be much too low and the timber production too high, as some years no timber has been taken out. Conservatively, the cordwood taken out will average 15 cords per year, and over the period from 1917 through 1937 would give a net volume of 255 stendard cords and 24 M . The most difficult problem when estimating volumes is the cull percent of any one cutting. It is hoped that the 20 percent cull will prove a good average, as it is known that some years it is high and others it is low.

FINANCLA RESULTE

There is not a great deal that can be sald as to financial results. Acoording to a record of the 1932 outtings of compartments 1 and 6 , it cost 132.44 to produce 11.5 stendard cords of wood, and $\$ 110.00$ were realized, plafnly a loss of $\% 22.44$. It was claimed thet 6 of logs were out in this year, the cost of which was included in the cordwood costs except $\$ 13.65$ for log hauling. The return was $\$ 180.00$ or $\$ 30.00$ per . . This aggregated the income to $\$ 290.00$, with costs of ${ }^{W} 146.09$, showing a net profit of $\$ 43.81$ or $\$ 5.10$ per acre. It is not known whether the return for the logs was estimated or whether the case was actually received. In any event, $\$ 30.00$ seems like a high price. This yoar $\$ 15.00$ per 14 at the landing was received.

The reoord of the 1938 cut is as follows. The total costs to produce 13.5 standard cords of wood and 3950 board feet of logs was $\begin{gathered}\text { then } \\ 241.20 .\end{gathered}$ Returns from cordwood at $\$ 11.25$ per standard cord and logs at $\$ 15.00$ per H aggregated $\$ 194.63$, causing a loss of approximately 42.75 , or ${ }^{3} 4.97$ per acre.

It should be remembered that the costs of these products include all cultural work done such as cutting out many trees below 4 inches which have no monetary value. The labor used is unskilled, physically soft students for most part, paid at the rate of 4.40 per hour. Undoubted ly, a farmer who knows his business could produce the sume products at about one-thire to one-half as auch or about 3.00 per standard cord and $\$ 5.50$ per ${ }^{\text {P. }}$.

What would have hampened under more normal oonditions is pretty much conjecture, but assuming the produation of 162 long cords of wood and 64.8 M of lugs over a 20 year period with a sale price of $\$ 11.25$ per cord and 15.00 per F , the gross return would have been $\$ 2794.50$. Assuring costs of $\$ 3.00$ per cord and $\$ 5.50$ per N, total cost of production would be \$842.40. Net incore with no deductions for taxes, interest, or protection would be $\$ 97.61$ ner year or $\$ 2.27$ per acre per year. Assumine a 255 cord production and 24 M , the total incone would have boen 3228.75 . Total cost of production would be 807.00 . Net income without other expenses taken out would be \$2421.75 or $\$ 121.09$ per year and $\$ 2.82$ per acre per year.

It seems reasonable to expect that as soon as the stand reaches a stable regulation, higher production can be maintainod. If production of 100 board feet and $1 / 4$ cord per acre per year can be maintained, and it seers possible after studying Tables II, III, and VII, the net incone oxelusive of taxes, interest, and protection, will be 3.31 per acre per year, or 142.33 per year. Should the narket for oordwood and logs stay in the same relationship as the present time, it would be most profitable to use all material for cordwood.

CONCLUEICNS
The summarization oi the number of trees cut and left during tho past 22 years is rellable in so far as the field data are reliable. The basal area figures are reliable in so fer as the arithmetic is not in error. The cubic foot volumes compare favorably with basal area in percentages, and both oubic and board foot values are influenced by the nature of the originel volume table used. Time pernitting, there are a number of questions which this paper brings up. There should be closer study made of height at time of cuttings, cull in various size and age trees, and a volume table built up for this stand. (Measurements takon on a percentage of the area by hypsometer
are always open to question for such a small area). Fore concrate study should be made as to the extent of seed and sprout reproduction. Inesmuch as so much time is expended upon the cutting of very small material, a further study might be made as to the neod of doing this, i.e., whether conditions for germination and growth of reproduction would not be favored by the leaving of the smaller material which will die naturally in the course of time.

It is felt that the data as presented are reasonably accurate and will prove of interest to those who are interested enough to compare and apply them to their own problems. The financial hypothesis will probably be reworked in many different ways by various people usine their own figures. The figures presented here are a basis from whioh to work, however, and should not be entirely worthless.

Finally it seems conclusive to say that the farm woodlot is worth a great deal to the farmer and that he should be taught to the best of our ability, how to manage his forest property.

Coment Natas	
LAder* ${ }^{\text {e }}$ tongre	Syythroni wa mariana
Ash, white	Traxinus mbrioana
A最, blatis	
Baemood	Tila amerieama
Deech. bine	Carplius cevolinitna
B2atiteryy	
Bloodroot	
Tutternat	Juglan eluewa
Chexry, blaok	Prunue merotina
Doenwod Couglat fir	Comus florica and others Fbudo-tsuga-taxitolia
gln american	Ulmus smericana
Cooseberry	Ribes app.
Green briex	Sonilax hiaplde
Hipatieta	Hepatiea trilobu
䀎0kory	Carya spp.
Ironwood	Oetry Virgulang
Maple, hard	Laex saeoharux
Maple, red or mort	bateramm
Oak, black	guereus velutine
Osk, northern red	¢ucraxa boxasili
Oake. white	guerove albe
Pren, geoton	Elnus \%ytvestris
Fins, white	Einus Strobu\%
Maspberry	Rubus spp.
Walnut, black	Tundan nig\%

 4
Hatorical 4
Site Deseription 4
Location 4
Soi.2= 5
Stend Description 6
stand Treatuent 6
Racords and Computations 8
 10
DLametor swoast THe-riakgh Data 10
Cuble Valusa Table 18

Reasal Aroa 13
Construetion of FInal Sables - 13
Diacussion of Change of Speoiea Data 14
Discusaion of stana Data 14
arowth 17
Production from 1917 through $1958--18$
Buwavoral Re8uLT 28
colvosensxons 84
LT35 07 3540213 MRwKIOM 86
APPBMIIX CODNEMES 37
Table
I. Distribution of spocies 28
II. Stand Data Sumary (Compartments 1-5) - - 29
III. Stand Data Summary (Compartments 6-10) - - 30
IV. Mixed Hardwoods, oubic volume - - - - 31
V. Mixod Hardwoods, board foot volume - - 32
VI. Adjusted Volune Table (cubic and ba. ft.) 33
VII. Growth Data 34
F1gures

1. Map of Eber White Woods $-\ldots-\ldots-$ - -35
2. Composite D.B.H.--Height Curve $-\cdots--36$
3. Composite D.B. स.--Merchantable Height Curve37
4. Bxtansion of Board Foot Volune Data Curve - 38

Table 1
Distribution of Speeles Date (Based on Sotal Mumber of Trees)

y meludee some elm porhaps.
3) melualos sed ana blaok ook.

Y/ mneludos bisek and white ash
Y Tncludes soft maple, buttormut, aspen, and sone doguood, but exoludes any arti llotal plentings:

Stand Data Summary

Stand nata Gumary

3) From Forost Survoy Dath, Lalres Statee Foroat Bxyortinand ptathion.

8f Troos 30 inchoa and up.

Table IV

Mixed Hardwoods

Total cubic-root volumes of hardwood trees, by total-height and d.b.h. class

Inches		Cubic feet				
6	1	3	4	5		
8	4	6	8	10		
10	7	10	14	17		
12	13	16	20	25	32	
14	19	22	28	36	44	
16		29	37	47	58	
18		37	46	59	75	92
20		45	57	73	93	115
22		54	69	80	113	143
24		65	82	106	136	172
26		76	98	126	163	205
28		80	115	149	191	239
30		104	135	173	821	276
32		119	152	198	252	316
34		135	171	224	286	358

1/ Volume is that of ster, top, and branches, inside bark, between stump and a top diameter of 2 inches. Stump height is 1 foot for trees up to 18 inches in d.b.h., 2 feet for trees 18 inches and larger.

> Table V
> Board-foot volumes // of hardwood trees by marchantable/ helght and d.b.h. class
(S. R. Gevorkiantz)

DBH	童-108 trees	$\begin{aligned} & 1-108 \\ & \text { treos } \\ & \hline \end{aligned}$	2-10g troes	3-10g trees
Inches	Ba.it.	Ba.ft.	Bd. ${ }^{\text {Et. }}$	Ba.et.
10	18	30	50	
12	29	45	80	100
14	42	70	115	150
16	58	90	155	210
18	75	120	210	280
20	95	155	275	365
22	118	185	340	455
24.	142	240	415	555
26	169	290	495	665
28	198	340	585	775
30	230	390	675	895
32	233	445	775	1025
34	299	500	875	1155
35			930	1225
36			980	1295

1/ Scribner scale.
2/ Merchantable height is expressed in 16.5 -fot logs. stump height is 1 foot for trees up to 18 inciss in d.b.h.. 2 feet for trees 18 inches and larger

Values from extended eurves

D.B.H.	logs	$3 \operatorname{logs}$
37	1030	1370
38	1090	1445
39	1140	1520
40	1200	1600
41	1265	1680
42	1325	1765
43	1390	1850
44	1450	1935
45	1520	2010
46	1500	2115

$-32-$

Table VI
Adjusted Volune Tabled/

[^0]2/ These values applied directly to number of trees.

Table VIZ
Growth Dete (Total for 5 yoare)
(Par Aore)

$\frac{1}{2}$ The percentage is Based tpon the volume loft afters cutate te 500 foot 1 s loft after cutting and 750 seet 2 s sound at the ond of 5 yeare the grovth 2f is 250 foet or 50% (of the original 500 reot.)
3/ $10^{\text {m }}$ and upe
I/ Based on Compound interost $1.0 p^{23}=\frac{V \text { now }}{V}{ }^{2}$ yoars ago
561.0
1503.48

TOTAL HEIGHT-FEET

MERCHANTABLE HEIGHT - FEET

the university Of michigan

TO RENEW PHONE 764-1494

DATE DUE

[^0]: 1/ From Porest Survey Volume Tables, Lake States Porest Experiment Station. Adjusted as indicated by average heights of area to be used on.

