

REGULATION OF THE GROWING STOCK AND CALCULATION OF THE CUT ON THE GOODMAN WORKING CIRCLE by BASAL AREA CONTROL

This dissertation is submitted as par tial fulfillment of the requirements for the degree of Master of Forestry in the University of Michigan

ACKNOWIEDGMENTS

Grateful acknowledgment and thanks to Professor D. M. Matthews of the School of Forestry and Conservation, University of Michigan, for his suggestions and help in preparing this dissertation.
Recognition is also due the United States Forest Service for providing the basic data made use of herein.

TABLE OF CONTENTS

Page
Introduction 1
Description of the Area- 3
The PIan- 6
Summary and Conclusion 51
Bibliography 53

Introdection

The future of American forests and of the lumber industry itself depends upon the inception and maintenance of sustained yield programs. Such programs necessitate the regulation of the growing stock by means of proper cutting plans which will remove only an amount of timber equal to the increment and will maintain the correct distribution of the remaining timber as to diameter and age classes.

Due to the existing lumber prices and logging methods, only certain areas can be handled on a sustained yield basis and still produce a suitable income. Areas having such possibilities are those which are accessible and near the markets and which, at the same time, have suitable site conditions to insure rapid growth following cutting. Most of the hardwood forests in northern Wisconsin and the Upper Peninsula of Michigan have the necessary characteristics as mentioned above and, since much mature vargin timber still remains, are at once adaptable to the practices which will result in continuous production.

The Goodman Working Gircle, with which this report is concerned, is of the herdwood type mentioned in the previous paragraph and is located in northern Wisconsin. In addition
to the natural attributes which obtain in this area due to location, several other factors make this Working Circle particularly well-suited to sustained yield. Before any plan can be formulated, rather extensive data mast be availabIe on the Goodman area, this data has been provided by the United states Forest Service. During the winter of 1935-1936 an extensive cruise was made of the timber concerned, thus allowing compilation of stand and stock tables for each of the timber types. In addition, a mill study was conducted and from this, excellent volume tables were produced, again by the forest service. When these tables are supplemented by Erowth figutes collected in this region by the Forest Service, sufficient data is present for the formulation of a fairly accurate cutting program leading to sustained yield.

Still another circumstance has made the Goodman Working Circle an excelitent area for management for continuous production. Although the area is for the most part privately owned, the owners (namely, the Goodman Company) favor sustained yield and; in addition to having cut velectieely for the past ten years, have cooperated in every manner possible in providing data so that a sustained yield plan might be developed for their timber lands. Thus, if a suitable plan can be produced, it is quite probable that it will be put into practice.

Description of the Area

The Goodman Working Circle is located in Florence, Forest, and Marinatte Counties in Wisconsin and consists of a total area of 151,910 acres of timber land typical of this region. One third of this area supports merchantable timber stands containing a total net volume of $355,840 \mathrm{M}$ bd. ft. The circle includes all of Townships 39 and 40 North, Range 16 East: most of Townships 36 and 38 North, Range 16 East, Townships 36, 39, and 40 North, Range I7 East, and Townships 39 North, Range 15 East; and part of Township 38 North, Range IT East, and Township 41 North, Range 16 East. As previausly noted, the Goodman Company is the principle land owner in this area, owning 42% of the area and 87% of the total sawtimber volume. The onited states Government owns 37% of the area and 5% of the sawtimber volume, while the remaining 21% of the area and 8% of the cewtimber volume is owned by various individuals, companies, and local government.

The site conditions on the working Circle are such as to favor timber-growing over all other forms of land use. The soil, for the most part, is a deep clay loam interspersed with numerous small rocks. Some sandy soils are found along the eastern edge and elsewhere in the area in seattered patches. Swamps occur throughout the circle but
represent a relatively small portion of the total area. These swamps are well-drained and contain deep peat? The topography can be classified as gently rolling with occasional low hills and ridges. The temperature range is great with long, cold winters and a short growing season with rather high average temperatures. Precipitation is abundant with frequent showers in the summer and heavy snowfall in the winter.

The timber stand remaining on the Goodman area, due to unregulated cutting, is less than half the original volume. (Except for the removal of the coniferous stand in the last of the lgth century, active cutting in this area did not start until 1908. At that time the Goodman Lumber Company began operations, taking from 15 to 21 million feet annually until 1927 . At this time the Goodman Company classified its lands under the newly enacted Forest Crop Law of the State of Wisconsin and reduced its cut to approximately 12 million feet per year. Up to 1936 (the time of the cruise) the company had cut selectively $I 7,515$ acres of sawtimber land, removing from 40 to 60 per cent of the volume. There 87% remains 24,093 acres of uncut sawtimber with a total volumes 35 5 of 214,186 bd. ft. As a result of the 20 years of clearcutting, and of occasional areas with poor site conditions, there are 22,239 acres of pole size stands, 29,244 acres of
sapling size stands, 22,423 acres of reproduction stands, 23,439 acres of highland brush, 7,171 acres of non-productive land, and, in addition, 5,286 acres devoted to agricultural, residential, and industrial uses.

The uncut sawtimber has been divided into four types which, with their acreages, are as follows: Mixed Hardwood type, I2,365 acres; Eastern Hemlock type, 3,539 acres; Eastern Hemlock-Mixed Hardwood type, 3,980 acres; and Northern White Cedar type, 3,920 acres. Sugar Maple, Eastern Hemlock, and Yellow Birch predominate in the first three types, while Northern White Cedar makes up most of the type bearing its name. In addition to the above acreages, there are 289 acres of miscellaneous minor types which do not come under the major type classification given above. The facilities for handing the timber on the Goodman Circle are rather well-developed. All of the timber cut by the Goodman Company is hauled to the town of Goodman, Wist consin where the company maintains its utilization plants. These include a sawmill, rotary veneer plant, dimension plant. dry kiln, and a wood distillation plant. Most of the pulpwood cut is shipped to paper mills in the towns of Marinette, Rhinelander, or Appleton, Wisconsin. The labor supply is: adequate and well-satisfied with the policies of the Goodman Company which, by the practice of selective cutting, has put employment on more permanent basis. Transportation
facilities are excellent, the area being served by two railroads: The Minneapolis, St. Paul and Sault Ste. Marie Railroad to the southe and the Chicago and Northwestern Railroad to the west.

The foregoing paragraphs show the excellence of the Working Circle as to location and facilities which would favor some method of sustained yield. The United states Forest Service has previously developed a management plan I as well as a financial plan for this area. One of the purposes of this paper is to critically analyze the Forest Service pian. This is most easily dona by developing a similar plan by different methods which have been used successfully in the past.

The Plan

The plan presented in this paper will deal only with the management of the sawtimber stands of which 24,093 acres are uncut and 17,515 ecres have been selectively cut during the last ten years. As the remaining stands.become large enough to produce sawtimber of suitable size, they may be added and the cut recalculated. Although considerable pulp, pole, and chemical wood exist on the area, sufficient data is not provided to allow such clasises to be included in the

1. U. S. Department of Agriculture, Timber Hanagement and Financial Plans for the Goodman Working Circle, United States Forest Service, 1938. Bromley, W. S., Stott, C. B., and others.
formulation of a plan by the method used. This is relativeIf unimportant since the circle depends mainly upon the saritimber cut to provide the necessary income.

As stated in the title, the management plan is to be developed by means of the Basal Area Control method. This method is based upon the relationship between the basal area of a given forest and the basal area in yield tables for the same site and type. By the use of this relationship a control table can be built up which will in effect be an alIage yield table for the forest in question and thereby allow calculation of the cut.

The advantages of the Basal Area Control method become quite apparent upon the consideration of the actual use and results of the method. One of the prime advantages of this method is its simplicity, both in calculation and Tater in: use. The only data needed are stock and stand tables, volunmet tables, growth data, and a suitable yield table. The calculations are relatively simple, making use, for the most part, of arithmetical procedures. The method is also advantageous because it is realistic. The results of the method give a true picture of the stand and make evident the reasons for taking the recommended cut. Thus it can be used readily in illustrating the procedure to one who is not trained in forestry but who is interested in a sustained yield program. The method is also accurate since it is based upon accurate principles. The results given are
purposely conservative and the cut recommendea can be removed without any denger of over-cutting.

The procedure fallowed in the Basal firea Contirol methad can be outlined as fellows:
(I) A suitable rotation and cutting cycle are chosen.
(2) A Field table which is applicable to the forest type is selected.
(3) Dismeter limits corresponding to the ages used are then determined.
(4) The normai hasal area in each age class is calculated and these figures transformed into per cent (of totay basel area).
(5) These per cents are applied to the actual basal area of the forest thus giving the basal area in each age class.
(6) Then must be calculated the number of trees necessary in each age class to supply the required basal area in that cIass.
(7) The volume in each class is determined by the application of figures representing bi, fta per exuare foot of Verseal area.
(8) Thinmings are calculated, in the process of which the following steps are utilized:
(a) The number of trees in each age cIass is reduced to that of the following age classes with allowance in the Iatter for mortailty and breakage.
(6) The basel area amd volume ta be removed from each age ciass: are celculated, using the lowest diameter class in each age class as a basis for the thinnings in that cIasse (9) The remaining stand (after the cut) is reduced sufficiently to aIlow for mortality and breakage.
(IO) The growth is calculated, Reynold's method being recommended and used in this case.
(II) The stand is reclassified as it will appear at the beginning of the next cut, the same methods being followed In reclassification as in the first cIassification.

In order to iIIustrate ciearIy the technique of appiyIng the Basal Area Control method to a stand, a demonstration must be carried out showing the complete procedure. The stand in the following demonstration is based on the average stand per acre of the 24,093 acres of uncut santimber as 2. shown in the Stock and stand Table (Table 2).

Before any calculations can be performed it is necessary to decide upon a rotation and a cutting cycle. A rotation of 160 years was chosen as most closely approaching the matural rotntian Experience figures show that in the Northern Hardroods, the forest becomes mature at approximateIy 140 to 180 Years. This is borne out by the yield table used for this 3.
type. This yield table shows that after the age of 160 years

[^0]
Table 1
 4.
 Yield Table for Northern Hardwoods
 (Medium Site)

Age	Av. Diam.	No. of trees per aore	Basal area per acre	Volume per aore in bd.ft. (Soribner)
40	5.6	480	82	300
60	7.8	295	97	1600
80	9.5	220	109	3500
100	10.9	12.2	155	119
120	13.5	13.8	120	128
140	16.1	105	136	5350
160	17.4	95	149	10300
180			11500	

4. Gevorkiantz, S. R., and Duerr, W. A., A Yield Table for Northern Hardwoods in the Lake States, Journal of Forestry, April, 1937, p. 342.

Is reached, the axerage annual growth in bid. ft. per acre is reduced.

A cutting eycle of twenty years was selected due to the fact that the bramce between the rate of growth (which decreases as the cutting cyrcle is lengthemed) and the cost of logging (which also decreases as the cutting cycle is lengthened) is best obtained by a cycle of 20 years.

SInce the totation is to be I60 years, the size of an arerage tree I60 years old must next be determined. This Ifmit was set at 24 inches, paturity boing indicated at this size by the temency of the bd. f't per square foot of basal area to decrease in Iarger diameters. This decrease shows that above 24* in diameter, decay and disease are entering the stand te. such an extent that maximg production is no longer obtained.

Because no yield table data are available for stands under 40 years of age, a Imit must also be set as to D. B. H. at 40 yearg. Six inches was selected as the average diameter of a tree 40 years old. Thus, no trees under this size are included in the Stock and Stand Table (Table 2).

After the Iimits of the stand are set it is possible to proceed to classify the stand on the basis of a rotation of I60 years and a cutting cycle of 20 years. The first step is to obtain from the yield tabIe for even-aged stands the normai basal area per acre which will exist in each of the six remaining age cIasses (TabIe 3, CoIumn 2). These

Table 2
5
Stook \& Stand Table

$\begin{gathered} 1 \\ \text { D. B. H. } \end{gathered}$	2 No. of Trees	3 Basal Area per Acre	4 Volume	5 Bd. Ft. per Sq. Ft. of Basal Area
6	33.69	6.603		
8	24.71	8.624		
10	21.94	11.957	403	34
12	17.09	13.416	705	53
14	13.67	14.613	1121	77
16	9.36	13.067	1225	94
18	7.18	12.687	1364	108
20	4.41	9.618	1145	119
22	2.78	7.339	913	124
24	1.90	5.970	737	123
26	1.18	4.354	546	
28	. 59	2.525	333	
30	. 32	1.571	223	
32	.13	.727	98	
34	. 08	. 504	77	

5. U. s. Department of Agriculture, op cit, Appendix, p. 45.
figures are compiled by calculating, for a given age class, the average basal area per acre for an even-aged stand of the same age. Thus, in the 40-60 age class the average basal area per acre from the yield table will be $\frac{82}{} \frac{p I n}{2} 97$ or 89.5 sq. ft. per acre. However, since there are eight age classes on an average acre ($\frac{160}{20}$), only one-eighth of the Dasal area on an acre will be of trees 40 to 60 years old. Therefore, the basal area of the even-aged stand divided by the number of age classes equais $\frac{89.5}{8}$ or II. 2 whicit is the amount of basal area of trees 40-60 years oId on an average all-age acre. This same calculation can be carried out for each age class, thus for the $60-80$ class: $\frac{97 \text { pius Ieg }}{2 \times 8}$ equals 12.9 square feet per acre: and for the $86-100$ alass 109 plus 119 equals 14.3 square feet per acre. The resuit of this calculation as applied to the other age classes is shown in Column 2, Table 3.

To get these basal area figutes into a usable form they mast be transformed into per cent. Column 3 of Table 3 shows the percentage which the basal area in each class represents of the total. These per cents are then applied to the total actual basal area (in the forest) for an average acre of all-age timber 160 years old, excepting the $0-40$ year class. The results obtained indicate the basal area which exists in each of the six age classes used (Column 4, Table 3).

It is now necessary to determine the number of trees

in each age class. This can be done by calculating the number of trees of certain diameters (and therefore certain basal areas) required to complete the necessary amount of basai area as given in Column 4, Table 3. Starting with the I40-I60 class, 20.57 square feet of basal area are required. From the stand and stock TabIe (Table 2) the trees in the 24" and $22^{\prime \prime}$ diameter class, when added. give a basal area of 5.97 plus 7.34 or I3. 31 square feet and I. 90 pIus 2.78 trees. This Ieaves 20.57 minus $13.3 I$ or T. 26 square feet of basal area to be taken from the zow diameter class. Since there are 4.41 trees in the 20* class, the number of trees placed in the 140-160 age class would be 20n2 $\times 4.41$ or 3.33 trees. Thus in the 140-160 ciass the 9.6\% basal area is $13.3 I$ plus 7.26 which equals the required 20.57 square feet; and in this class there are I. 90 plus 2.78 plus 3.33 or 8.01 trees with a diameter range of 80 to 24 inches.

Preaneliag to the 120-\$ro age class, a basal area of 19.53 square feet is required (Table 3, Colum 4). Since only 7.26 square feet of basal area from the 20" class ware placed in the $140-160$ age class, 9.62 minus 7.26 or 2.36 square feet of basal area and the remainder of the minus
trees, $4.41_{\times} 3.33$ or 1.08 trees are placed in the $120-140$ age class. Adding the basal area of the 18" trees to that of the remaining $20^{\prime \prime}$ trees gives a total of I2. 69 pIus 2.36
or 15.05 and leaves 19.53 minus 15.05 or 4.48 square feet of basal area to be taken from the 16" class, the total basal area in the $120-140$ age class then being 12.69 plus 2.36 plus 4.48 or the required 19.53 square feet. The number of trees in this age class will then be:

From the 20" class - - 1.08
From the 18" class - - 7.18
From the $16^{\prime \prime}$ class $\frac{4.48 \text { (B.A. required from 16") }}{13.07 \text { (B. A. in } 16^{\prime \prime} \text { class) }} \times 9.3 \frac{3.2 I}{11.47}$ Therefore there are 11.47 trees in the 120-140 ags class with a diameter range of $I 6$ to 20 inches. When this calculation is performed for the other age classes a figure is obtained which in each case represents the number of trees in the class. (Column 5, Table 3). When these are totaled, the result should equal the total number of trees in the 6"-24" diameter classes in the Stock and Stand Table (Table 2).

The volume in each age class can easily be obtained by multiplying the bd. ft. per square feet of basal area in each diameter class (Column 6, Table 2) by the amount of basal area of each diameter class in the age class. In the 140-160 age class there will be:

From the $24^{\prime \prime}$ diameter class - - 737
From the $22^{\prime \prime}$ diameter class $-\ldots . .^{\prime}$. 913
From the 20" diameter class - (119 x 7.26) $\ldots-\frac{-865}{2515}$
a total of 2515 bd . ft . In the $120-140$ age class there will be:

From the 20* dianoter class - (1745 mirus 865) - - 280
From the 18^{*} digmeter class - - - - - - - - - - $\mathbf{1 3 6 4}$
From the $16^{\prime \prime}$ diameter class (94×4.48) $\ldots-\cdots \frac{481}{2065}$
a total of 2065 board feet. This calculation can be carried out for each age class and the total board foot volume determined (Column 7, Table 3).

It is now possible to determine the cut which will be taken from an average acre during the first cycle. This cut will be made up of three timber cIasses: (1) Overmature timber: (2) Mature timber: (3) Thinnings. The overmature timber includes aII trees over 24 inches in diameter, these having a total volume of 1277 bd. ft. The mature $t i m b e r$ is that in the I40-I60 age class which has a total volume of 2515 bd. ft. In order to obtain the amount of thinnings which wilI be taken, another caIculation must be performed. The general method is to reduce the number of trees in each age class to that of the next oldest age class by taking out the poorest and in most cases the smallest trees in the class. However, allowance must be made for breakage during logging and mortality during the 20-year period. Experience figures place this loss at 10%, i.e. the stand will be reduced by 10% during the 80-year periad. It is therefore necessary to reduce thinnings by this amount, this being most easily done by dividing the number of trees in each age cIass by . 90 (Column G. U. S. Department of Agriculture, op Cit, p. 42.

8, Table 3). This gives the number of trees which must be Ieft in any given age class in order to allow for a mortality of IO\% during the following 20 years. The figures thus obtained are then subtracted from the actual number of trees in the preceding age cIass and the difference is the mumber of trees to be removed by thinning (Column 9, TabIe 3). In calculating the volume to be removed in each age cIass, the bd. ft. per equare foot of basal area for the lowest diameter cIass in the age class is used. When this figure is multiplied by the amount of basal area to be removed in the cIass, the result is the volume which will be taken as thinnings (Column I\&, TabIe 3). This volume represents a conservative figure for thinnings as it is probable that the trees removed in each age group will have an average volume higher than that of the lowest diameter class in the group. However, the use of a conservative figure eliminates the danger of over-estimating the cut which, if it happened, would be mialeading in the financial calculations.

The total cut from the uncut sawtimber stands during the last half of the first cycle will equal the sum of the mature timber, overmature timber, and thinnings which is:

The cut is therefore 4575 bd. ft. per acre. Since the uncut
sawt imber stands will be cut over in 10 years, an area of $\frac{24093}{10}$ or 2,409 acres will be cut each year. The annual cut will then be $2,409 \times 4,575$ or $11,020 \mathrm{~m}$ bd. ft.

It is now neceasary to calculate the cut for the second and following cycles. The remaining stand per acre after the first cycle cut is shown in TabIe 5, CoIumn 1 and 2. Because of breakage and mortality these figures must be redaced by 10% as shown in Columns 3 and 4 of the same table. Although this figure was used previously to determine the proper thinnings, it has not been appiied to the remaining stand. In order to calculate the second cycle cut, the growth of the stands in the 20-year intervening period must be determined. This is done by means of growth figures furnished by the Forest 7
Service as shown in Table 4, which gives the average growth in diameter for each species for a 20 -year period. In order to obtain a usable figure for the average acre the figure for each species must be weighted by the number of trees of that species occurring on the average acre. The figures for each species thus obtained are then added and that sum divided by the total number of trees in the average acre. This figure represents the average growth for the stand and can be applied to the average stand per acre.

In order to calculate the grent method. This method is approximately correct mathematically and is accepted by many foresters for such calculations. The

[^1]> Table 4 Growth Data

Speoies	Growth in 10 years	Growth in l5 years	Growth in 20 years
Sugar Maple	1.5	2.2	3.0
East. Hemlook	1.7	2.3	3.1
Yellow Biroh	1.1	1.7	2.3
Basswood	1.9	2.8	3.7
Elm	1.2	1.7	2.3
Red Maple	1.5	2.2	3.0
Ash	1.5	2.2	3.0
North. Cedar	1.7	2.5	3.4
Balsam Fir	2.0	2.7	4.0
North White pine	1.8	2.7	3.6
Bl. and Wh. Spruce	1.8		3.6

Table 5
Growth Caloulations For Second and Following Cycles

1	2	3	4	5	6	7	8	9
D.B.H.	No. of trees	$\begin{gathered} \text { Mortal- } \\ \text { ity } \end{gathered}$	No. of trees minus mort.	Radial Growth	Move two classes	Move one class	Total yr. hence	- Basal Area
6	33.69	3.37	30.32	1.52	17.77	12.55		
8	24.71	2.47	22.24	1.52	11.58	10.66	12.55	4.38
10	15.61	1.56	14.05	1.52	7.31	6.74	28.43	15.50
12	14.10	1.41	12.69	1.52	6.60	6.09	18.32	14.39
14	11.20	1.12	10.08	1.52	5.24	4.84	13.40	14.32
16	6.79	. 68	6.11	1.52	3.18	2.93	11.44	15.97
18	7.18	. 72	6.46	1.52	3.36	3.10	8.17	14.42
20	1.08	. 11	.87	1.52	. 50	.47	6.28	13.70
22							3.83	10.11
24							. 50	1.52
26								
			102.92				102.92	104.31

theory behind the method, is that on the average, the igit to the left of the decimal point of any growth figure indicates the number of diameter classes all of the trees in a given diameter class will advance, while the figure to the right of the decimal point gives the proportion of teees in the diameter class which will advance one more class than the left hand digit indicates during the period for which the growth figure is calculated. Thus in the average stand per acre remaining after the first cycIe cut, the weighted average growth 1 igure is $\begin{gathered}\text { in this } \\ \text { region }\end{gathered} .03$ inches. The Forest Service has discovered that^all diameter classes will grow approximately the same amount following a cut which removes in the neighborhood of 50% of the volume, so that it is not necessary to obtain a separate figure for each class, and therefore the above figure applies to all diameter classes. Then, according to Reynold's method all of the trees in a diameter class will move at least three one-inch classes while 3\% will move four one-inch classes in the 20 -year period. However, eince the data in the Stand and Stock Table is given in twoinch diameter classes, diameter growth can not be used but instead, radial growth, i. e. one-half of the diameter growth. mast be utilized. The growth figure appiied to each diameter alass will advance at least one two-inch diameter class, while 52% of the trees will advance two two-inch diameter classes. The results of the application of this figure to the remaining atand are shown in Columns 6 and 7 of Table 5. The total
numier of treas in each diameter class as shown in CoIumn 8 It obtained.by adding the nuber of trees in the preceding diameter cIass which move one diameter class to the number of trees in the second preceding class which move two diameter classes.

The result of the preceding calculation gives the stand as it will appear 20 years in the future. By using the Basal Area Control method it is possible to recIassify the stand and again calculate the cut as shown in Table 6. Since the stand is 20 years oIder, the $40-60$ class will have become the $60-80 \mathrm{class}$, the $60-80 \mathrm{cIass}$ tinill $0-100 \mathrm{cIass}, ~ e t c .$, and, since there was previously no data for the $0-20$ class and 20-40 class, there is no data for the $40-60$ class as it appears in the stand 20 years in the future. The cIassification is therefore done on the basis of five age classes with basal area taken from the yield table as shown in CoIumn 2, Table 6.

The same procedure as previously outlined is followed in building up the new control table and obtaining the volume to be removed. Since there will be no overmature timber, the cut will be made up of mature timber and thinnings. The former as given in Column 7, Table 6, is 277% bd. ft. The thinnings are calculated by subtracting the number of trees needed in each class, as previously determined (CoIumn 8, Table 3). from the actual number of trees in the preceding age class (Column 5, Table 6). This procedure will thin the stand

Control Table for Second
and Following Cyoles
$\operatorname{llast~}_{3}$

Net Volume No. of tr

area

pasal area \% B.A. x -

$$
0-40
$$

$$
40-60
$$

$$
60-80
$$

$$
80-100
$$

$$
100-120
$$

$$
120-140
$$

$$
140-160
$$

12.9
16.
17.
$17.63 \quad 36.57 \quad 8^{\prime \prime}-10^{17} 450$
$450 \quad 31.62 \quad 14.45$

36.57	$8^{\prime \prime}-10^{\prime \prime}$	450	31.62	14.45		$10^{\prime \prime}$
25.42	$10^{\prime \prime}-14^{\prime \prime}$	1057	22.12	8.51	4.64	158
17.51	$14^{\prime \prime}-16^{\prime \prime}$	1764	16.91	4.76	$14^{\prime \prime}$	5.09
13.56	$16^{\prime \prime}-20^{\prime \prime}$	2372	12.75	4.66	$16^{\prime \prime}$	6.51
$\frac{9.86}{102.92}$	$20^{\prime \prime}-24^{\prime \prime}$	$\frac{2772}{8415}$	8.90			691

down to the same stocking as was present following the preViousput. Thus, approximately the sameamount will be removed by each cut beginning.with the second cutting cycle, this being 2772 plus 1159 or 4096 bd. ft. The annual cut during the Iast half of the second and following cycles will therefore be $\frac{24}{10} \mathbf{0 . 9 3} \times 393 I$ or 9480 M bd. ft. There is a possibility of an increased cut in the later cycles due to the effect of continued management on the forest. Hovever, this increase cannot be calculated until after the results of the selective cut have become known.

The previous illustration presents the Basal Area Control method as applied to an average acre of the 24,093 acres of uncut sawtimber stands. This is more or Iess a guiding calculation to determine the feasibility of sustained yield management on this area and at the same time obtain an approximation of the cut which can be removed during the Iast Kalf of each cutting cycIe. In order to obtain the true cut which can be removed, the previous calculations must be carried out separately for each of the four major types present. Such aalculations will establish different cutting practices in each of the four types, this being necessary because each presents a stand of different composition and stocking.

The results of the application of the method to each of the types are shown in Tables 7 to 22. In the Mixed Hardwood, Fantern, Hemiock, gind Fastern Hemlock-Mixed Hardwood types the same yeeld table methods are used. However, the Northern

White Cedar type requires sIfght variations in handing, although the basic method remains the aame. The Northern Fiardwoods yield table can no longer be used because the strad is for the most part made up of Northern White. Cedar and its associated species. It is therefore necessary to oblain a yield tale which wiII fit this forest type. AIthough it was impossible to Iocate a yield table for this specific type, a suitable substitute was found in a yield table for 8. red spruce, which tas somewhat the same siIviculturai characteristics. Since proportional distribution of basal area mong the age cIasses is aII that is required from the yield table, no great error would be encountered even though the Field table is not directly applicable to the stand in question. It was also necessary to place new limits on this type, since growth habits are different. The minimum limit, i.e. the minimum size of trees 40 years old, was set at two inches, while the maximum size of trees $\mathbf{I} 60$ years old was placed at 20*. The overmature timber was then considered as all that over 20" in diameter. The rest of the calculations were carried out as shown in the demonstration.

This completes the cadeulations for the uncut sawtimber stand. The next and final set of calculations pertains to the 17,515 acres of selectively cut stands. These stands
9. Mejer, W. H., Yields of Second-Growth Spruce and Fir in the Northeast, U. S. Department of Agriculture, Technical Bulletin 142, 1929.
vall not be out until the beginaing of the aecond oyoile, ton years hence. It is necessary, therefore, to calculate the growth of these stands for the next ten years before classifying by basal area. Reynoldrs method is again brought into use as shown in Table 24. The stand as predicted forward ten years is then classified on an ate class basis, following the same methods as previously used. The calculations and results are shown in Tables 23 to 27.

This completes the computations, and the cutting plan can be outlined as given in Table 28. A slight discrepancy is apparent between the cut in the first half of any cycle and that in the last half. This is due to the fact that a larger area (2,409 acres) is cut during the last ten years of each cycle than during the first ten years (1752 acres). If the difference between these cuts is sufficient to cause difficulty in planning the mill and woods operation as to labor, depres ciation, etc, the situation can be improved by acquiring sufficient area, with approximately the same stocking as selectively cut stands, to balance the cut. If so desired, this purchase program could be minimized by disposing of a small portion of the uncut stands, thereby obtaining sufficient revenue to purchase the required stands and balance the cutting budget through eat each cycle.

The total cut as calculated by the use of the Basal Area Control method can now be compared with the total cut calculated by the method used by the Forest Service. This comparison
is shown in rable 28. The results obtained by the two different methods agree very closely, the maximum variance beIng only 5\%...It is not exident in the Forest Service report What method was used in determining the numier of trees and Volume to le, removed from each diameter class. However, it is undoubtediy an accurate method and, since the results obtiained by the Basal Area Control method show such slight Variation from the Forest Service figures, it would seem that either method is sufficiently accurate to allow its use in developing sustained yield plans.

In all the calculations heretofore presented, an attempt Is made to use conservative figures, therby avoiding an overestimation of the cut. result, the cut predicted by these methods can be said to be the absoIute minimum which can be expected. This fact, coupled with the possibility of increased cuts due to the reaction of the stand to continued management, indicates that the cut in all probability will be Iarger than previously determined. Because of this possibility, the cutting budget must, especially after the second cycle, be taken only as a guide. It is necessary that data be collected coninuously and the stand inspected frequently to determine the possibility of increased cuts and therefore more profitable operation. At the same time, the growing yield production is to be continued; in short, over-cutting mast not be indulged in.

Table 7 10.

Stock \& Stand Table

10. U. S. Department of Agrioulture, op cit, Appendix, p. 84.

Table 8
Control Table for Last Half of First Cyole

1	2	3	4	5	6	7	8	9	10	11	12
Age olass	$\underset{\substack{\text { Normal basal } \\ \text { area }}}{ }$	\% of total basal area	\% B.A. x actual B.A.	No. of trees	Diam. range	Net Volume	No. of trees	No. of trees to be out	$\begin{aligned} & \text { Approx. } \\ & \text { diam. } \end{aligned}$	Basal area removed	$\begin{aligned} & \text { Volume } \\ & \text { removed(bd.ft.) } \end{aligned}$
0-40											
40-60	11.2	12.8	11.82	45.38	$6^{\prime \prime}-10^{n}$	18	50.42	21.16	$10^{\prime \prime}$	11.52	18
60-80	12.9	14.7	13.58	21.80	10"-12"	704	24.22	4.18	10"	2.28	89
80-100	14.3	16.3	15.07	15.87	12"-14"	1052	17.62	3.09	$12^{\prime \prime}$	2.43	146
100-120	15.4	17.6	16.27	11.50	14"-18"	1616	12.78	1.49	$14^{\prime \prime}$	1.59	139
120-140	16.5	18.8	17.38	9.01	18"-20"	2035	10.01	1.50	$18{ }^{\prime \prime}$	2.65	301
140-160	$\frac{17.4}{87.7}$	$\frac{19.8}{100.0}$	$\frac{18.30}{92.42}$	$\frac{6.76}{110.32}$	20"-24"	2382	7.51	6.76	$20^{\prime \prime}-24^{\prime \prime}$	18.30	2382

Overmature	1314
Mature	2382
Thinnings	693

> Table 9
> Growth Calculations For
> Second and Following Cyoles


```
Table 10
Control Table for Second and Following Cyoles
```

1 Age class	$\begin{gathered} 2 \\ \begin{array}{c} \text { Normal basal } \\ \text { area } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ \text { \% of total } \\ \text { basal area } \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ \text { \% of B.A. } x \\ \text { actual B.A. } \end{gathered}$	$\begin{gathered} 5 \\ \text { No. of } \\ \text { trees } \\ \hline \end{gathered}$			$\begin{gathered} 8 \\ \text { From Table } 8 \\ \text { No. of trees } \\ \hline .90 \\ \hline \end{gathered}$	\square	10 Approx. diam.	11 Basal area removed
0-40										
40-60										
60-80	12.9	16.9	15.22	32.73	$8^{\prime \prime}-10^{\prime \prime}$	413	24.22	15.11	10"	8.24
80-100	14.3	18.7	16.84	19.19	10"-14"	1200	17.62	6.41	$12^{\prime \prime}$	5.03
100-120	15.4	20.1	18.11	13.23	14'-18"	1775	12.78	3.22	$16^{\prime \prime}$	4.50
120-140	16.5	21.6	19.47	10.13	18"-20"	2277	10.01	2.62	18'	4.63
140-160	$\frac{17.4}{76.5}$	$\frac{22.7}{100.0}$	$\frac{20.46}{90.10}$	$\frac{7.92}{83.20}$	20"-24"	$\frac{2640}{8305}$	7.51	7.92	20"-24"	20.46

Cut		
Mature	2640 bd. ft.	
Thinnings	$\frac{1469}{4109}$	" "

EASTERN HEMLOCK TYPE

Table 11
Stock \& Stand Table ${ }^{11 .}$
$\begin{array}{lllll}1 & 2 & 3 & 4\end{array}$

D. B. H. No. of trees	Basal Area per aore	Volume	Bd.ft. per Sq. ft. of basal area	
6	35.20	6.90		
8	28.90	10.09		
10	25.80	14.07	515	37
12	19.10	15.00	825	55.0
14	17.60	18.82	1488	79.0
16	10.50	14.65	1335	91
18	8.50	15.01	1539	103
20	4.70	10.26	1195	117
22	2.70	7.13	858	120
24	1.90	5.96	737	124
26	1.80	6.64	865	
28		1.30	1.47	254

32
34
$\frac{.10}{158.10}$
$\frac{.63}{130.91}$
$\begin{array}{r}84 \\ \hline 10272\end{array}$

[^2]Table 12
Control Table for Last Half of First Cyole

1
2

Age olass	Normal basal area	\% of total basal area	$\begin{aligned} & \% \text { B.A. X } \\ & \text { actual B.A. } \\ & \hline \end{aligned}$	No. of trees	Diam. range	Net Volume	$\frac{\text { No. of trees }}{.90}$	No. of trees to be out	$\begin{gathered} \text { Approx. } \\ \text { diam. } \\ \hline \end{gathered}$	Basal area removed	```Volume removed(bd.ft.```
0-40											
40-60	11.2	12.8	15.09	58.66	$6^{\prime \prime}-8^{\prime \prime}$		65.30	22.05			
60-80	12.9	14.7	17.33	32.96	8"-12"	590	36.61	7.86	10"	4.28	158
80-100	14.3	16.3	19.22	22.59	12"-14"	1192	25.10	2.86	12"	2.25	124
100-120	15.4	17.6	20.75	17.77	$14^{\prime \prime}-16^{\prime \prime}$	1731	19.73	2.63	$14^{\prime \prime}$	2.81	222
120-140	16.5	18.8	22.16	13.62	$16^{\prime \prime}-20^{\prime \prime}$	2190	15.14	3.29	$16^{\prime \prime}$	4.59	418
140-160	$\frac{17.4}{87.7}$	$\frac{19.8}{100.0}$	$\frac{23.34}{117.89}$	$\frac{9.30}{154.90}$	$20^{\prime \prime}-24^{\prime \prime}$	$\frac{2789}{8492}$	$\frac{10.33}{172.21}$				922

Gut
Overmature 1780 Bd.Ft.
Mature 2789 "
Thinnings $\frac{922}{5491} "^{\prime \prime}$

Table 13

Growth Caloulations For

Second and Following Cycles

1	2	3	4	5	6	7	8	9
D.B.H.	No. of trees	```Mortal- ity```	```No. of trees minus mort.```	Radial Growth	$\begin{aligned} & \text { Move } \\ & \text { two } \\ & \text { classes } \end{aligned}$	$\begin{aligned} & \text { Move } \\ & \text { one } \\ & \text { class } \end{aligned}$	$\begin{aligned} & \text { Total } \\ & 20-\mathrm{yr} \\ & \text { hence } \end{aligned}$	Basal area
6	35.20	3.52	31.68	1.53	16.68	15.00		
8	28.90	2.99	26.01	1.53	13.79	12.22	15.00	5.24
10	17.94	1.79	16.15	1.53	8.56	7.59	28.90	15.75
12	16.24	1.62	14.62	1.53	7.75	6.87	21.38	16.79
14	14.97	1.50	13.47	1.53	7.26	6.21	15.43	16.50
16	7.21	. 72	6.49	1.53	3.44	3.05	13.96	19.48
18	8.50	. 85	7.65	1.53	4.05	3.60	10.31	18.21
20							7.04	15.37
22							$\begin{array}{r} 4.05 \\ 116.07 \end{array}$	$\frac{10.69}{118.63}$

Table 14

Control Table for Seoond and Following Cyoles

1 Age class	2 Normal al area	```3 % of total basal area```	```4 % B.A. x aotual B.A.```	5 No. of trees	6 Diam. range	$\begin{gathered} 7 \\ \text { Net } \\ \text { Volume } \\ \hline \end{gathered}$	8 From Table 12 No. of trees .90	\qquad No. of trees to be cut	10 Approx. diam.	11 Basal area removed	```12 Volume removed(bd.ft)```
0-40											
40-60											
60-80	12.9	16.9	19.94	41.97	$8^{\prime \prime}-10^{\prime \prime}$	544	36.61	16.87	10"	9.20	341
80-100	14.3	18.7	22.06	27.25	10"-14"	1296	25.10	7.52	10"	4.10	152
100-120	15.4	20.1	23.74	19.70	14"-16"	2112	18.73	4.56	$14^{\prime \prime}$	4.87	385
120-140	16.5	21.6	25.49	15.64	$16^{\prime \prime}-18^{\prime \prime}$	2530	15.14	5.31	$16^{\prime \prime}$	7.41	675
140-160	$\frac{17.4}{76.5}$	22.7	$\frac{26.80}{118.03}$	$\frac{11.51}{116.07}$	18"-22"	$\frac{3155}{9634}$	10.33				

EASTERN HEMLOCK-MIXED HARDWOOD TYPE

3,980 Aores

> Table 15
> Stook \& Stand Table

1	2	3	4	5
D.B.H.	No. of trees	Basal area per aore	Volume	Bd. ft. per sq. ft. of basal area
6	22.96	4.50		
8	21.95	7.66		
10	23.53	12.82	478	37
12	18.41	14.46	817	57
14	15.56	16.62	1334	80
16	11.28	15.73	1478	94
18	8.98	15.86	1719	108
20	4.65	10.15	1198	118
22	3.16	8.35	1019	122
24	2.30	7.23	888	123
26	. 92	3.40	434	
28	. 46	1.97	259	
30	. 65	3.19	424	
32	. 18	1.01	126	
34	$\frac{.09}{135.08}$	$\frac{.57}{123.52}$	$\frac{70}{10244}$	

12. U.S. Department of Agrioulture, op oit, 1938, Appendix p. 26 .

Table 16
Control Table for Last
Half of First Cyole

1	2	3	4	5	6	7	8 :	9	10	11	12
Age class	Normal basal area	\% of total basal area	\% B.A. x aotual B.A.	$\begin{aligned} & \text { No. of } \\ & \text { trees } \\ & \hline \end{aligned}$	Diam. range	$\begin{aligned} & \text { Net } \\ & \text { Volume } \end{aligned}$	$\frac{\text { No. of trees }}{.90}$	No. of trees to be cut	Approx. diam.	Basal area removed	Volume removed(bd.ft.
0-40											
40-60	11.2	12.8	14.52	49.26	$6^{\prime \prime}-10^{\prime \prime}$	91	54.75	19.16			
60-80	12.9	14.7	16.67	27.08	10' $-12^{\prime \prime}$	734	30.10	4.76	10"	2.60	96
80-100	14.3	16.3	18.48	20.09	12'-14"	1293	22.32	2.64	12^{n}	2.07	118
100-120	15.4	17.6	19.96	15.71	14"-16"	1786	17.45	2.33	14"	2.49	199
120-140	16.5	18.8	21.31	12.04	16"-20"	2311	13.38	2.48	$16^{\prime \prime}$	3.46	325
140-160	17.4	$\frac{19.8}{100.0}$	$\frac{22.44}{113.40}$	8.60	20'-24"	$\frac{2722}{8937}$	9.56				738

Cut	
Overmature	1313 bd.ft.
Mature	$2722^{\prime \prime}{ }^{n}$
Thinnings	$\frac{738}{4743}{ }^{n}{ }^{\prime \prime}$

Table 17
Growth Calculations For
Second and Following Cyoles

1	2	3	4	5	6	7	8	9
D.B.H.	No. of trees	Mortality	No. of trees minus mort.	Radial growth	Move two classes	Move one olass	$\begin{aligned} & \text { Total } \\ & 20-y r . \\ & \text { hence } \end{aligned}$	Basal area
6	22.96	2.30	20.66	1.56	11.58	9.08		
8	21.95	2.20	19.75	1.56	11.07	8.68	9.08	3.17
10	18.77	1.88	16.89	1.56	9.45	7.44	20.60	11.05
12	15.77	1.58	14.19	1.56	7.94	6.25	18.51	14.52
14	13.23	1.32	11.91	1.56	6.67	5.24	15.70	16.79
16	7.82	.78	7.04	1.56	3.94	3.10	13.18	18.40
18	8.98	. 90	8.08	1.56	4.53	3.55	9.77	17.25
20	1.51	. 15	1.36	1.56	. 76	. 60	7.49	16.33
22							5.13	13.53
24							. 76	2.39
			99.88				99.88	113.43

Table 18

Control Table for Second

and Following Cyoles

1 Age class	$\begin{gathered} 2 \\ \substack{\text { Normal basal } \\ \text { area }} \\ \hline \end{gathered}$	3 \% of total basal area	$\begin{gathered} 4 \\ \text { \% B.A. } \\ \text { a } \\ \text { aotual B.A. } \end{gathered}$	$\begin{gathered} 5 \\ \begin{array}{c} \text { No of } \\ \text { trees } \end{array} \end{gathered}$			$\begin{gathered} 8 \\ \text { From Table } 16 \\ \text { No. of trees } \\ \hline .90 \end{gathered}$	$\begin{gathered} 9 \\ \text { No. of trees } \\ \text { to be cut } \end{gathered}$	Approx. diam.	\qquad	$\begin{aligned} & 12 \\ & \text { Volume } \\ & \text { removed (bd.ft) } \end{aligned}$
0-40											
40-60											
60-80	12.9	16.9	19.16	35.63	$8^{\prime \prime}-10^{\prime \prime}$	690	30.10	13.31	10"	7.25	268
80-100	14.3	18.7	21.21	23.10	12"-14"	1478	22.32	5.65	$12^{\prime \prime}$	4.44	253
100-120	15.4	20.1	22.79	17.45	14"-16"	2071	17.45	4.07	14"	4.35	348
120-140	16.5	21.6	24.50	13.30	16"-20"	2699	13.38	3.74	$16^{\prime \prime}$	5.22	491
140-160	$\frac{17.4}{76.5}$	$\frac{22.7}{100.0}$	$\frac{25.77}{113.43}$	$\frac{10.40}{99.88}$	$20^{\prime \prime}-24^{\prime \prime}$	$\frac{3108}{10046}$	9.56				1360

| Cut | | |
| :--- | :--- | :--- | :--- |
| Mature | | |
| Thinnings | $\frac{1360}{4}$ | Bd.Ft. |
| | | " " |

NORTHERN WHITE CEDAR TYPE 3,920 Aores

Table 19
Stook \& Stand Table

13. U. S. Department of Agrioulture, op oit, 1938, Appendix p. 27.

Table 20

Control Table for Last

Half of First Cyole

1	2	3	4	5	6	7	8	9	10	11	12
Age class	Normal basal area	\% of total basal area	$\%$ B.A. x aotual B.A.	No. of trees	Diam. range	$\begin{aligned} & \text { Net } \\ & \text { Volume } \end{aligned}$	$\frac{\text { No. of trees }}{.90}$	No. of trees to be out	$\begin{gathered} \text { Approx. } \\ \text { diam. } \\ \hline \end{gathered}$	Basal area removed	$\begin{aligned} & \text { Volume } \\ & \text { removed (bd.ft.) } \end{aligned}$
0-40						,					
40-60	19.42	12.67	16.02	288.60	$2^{\prime \prime}-6^{n}$						
60-80	24.84	16.21	20.52	78.56	$6^{\prime \prime}-8^{\prime \prime}$						
80-100	26.37	17.20	21.77	44.35	$8^{\prime \prime}-10^{\prime \prime}$	470	49.28				
100-120	27.20	17.73	22.45	29.95	10"-12"	879	33.28	6.72	10"	3.66	181
120-140	27.62	18.01	22.79	20.89	12"-16"	1359	23.23	6.17	$12^{\prime \prime}$	4.84	253
140-160	$\frac{27.83}{153.28}$	$\frac{18.18}{100.00}$	$\frac{23.01}{126.56}$	$\frac{13.23}{475.58}$	16"-20'	$\frac{1682}{4390}$	14.72				434

Overmature 676 bd. ft.
Mature 1682 n
Thinnings $\quad \frac{434}{2492} \quad \begin{array}{ll}\text { n } \\ \text { n }\end{array}$

Table 21
Growth Caloulations For
Second and Following Cfoles

1	2	3	4	5	6	7	8	9
D.B.H.	No. of trees	Mortal ity	- No. of trees minus mort.	Radial growth	Move two classes	Move one olass	Total yr. hence	$\begin{gathered} 20-\begin{array}{l} \text { Basal } \\ \text { area } \end{array} \end{gathered}$
2	175.91	17.59	158.32	1.63	99.75	58.57		
4	91.12	9.11	82.01	1.63	51.65	30.36	58.57	5.10
6	66.67	6.67	60.00	1.63	37.80	22.20	130.11	25.50
8	45.67	4.57	41.10	1.63	25.90	15.20	73.85	25.77
10	29.85	2.99	26.86	1.63	16.92	9.94	53.00	28.88
12	20.77	2.08	18.69	1.63	11.78	6.91	35.84	28.14
14	17.60	1.76	15.84	1.63	9.98	5.86	23.83	25.47
16	1.87	. 19	1.68	1.63	1.06	. 62	17.64	31.17
18							10.60	18.72
			404.50				$\begin{array}{r} 1.06 \\ 404.50 \end{array}$	$\frac{2.31}{191.06}$

```
            -44-
Table 22
Control Table for Second
```


and Following Cycles


```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Cut} \\
\hline Mature & 2795 \\
\hline Thinnings & 916 \\
\hline
\end{tabular}
```


SELECTIVELY CUT STANDS

17,515 Aores

Table 23

Stock \& Stand Table ${ }^{14 .}$

1	2	3	4	5
D.B.H.	No. of trees	Basal area per acre	Volume	Bd. Pt. per sq. ft. of basal area
6	28.84	5.65		
8	20.61	7.19		
10	16.96	9.24	331	36
12	12.22	9.58	549	57
14	9.88	10.56	889	84
16	7.58	10.58	1101	104
18	5.22	9.22	1145	124
20	3.85	8.40	1165	139
22	2.15	5.68	852	150
24	1.47	4.62	736	159
26	.47	1.74	290	
28	. 18	. 77	134	
30	. 08	. 39	74	
32	. 02	. 11	22	
34	$\frac{.02}{109.55}$	$\frac{.12}{83.85}$	25	

14. U. S. Department of Agrioulture, op oit, 1938, Appendix p. 23a.

Table 24
Growth Calculations For
First Half of Second Cyole

1	2	3	4	5	6	7	8	9
D.B.H.	No. of trees	Mortality	No. of trees minus mort.	Radial growth	$\begin{aligned} & \text { Move } \\ & \text { one } \\ & \text { classes } \end{aligned}$	Move zero classes	$\begin{aligned} & \text { Total } \\ & 20-\mathrm{yr} \\ & \text { is hence } \end{aligned}$	Basal area
6	28.84	1.44	27.40	.79	21.65	5.75	5.75	1.13
8	20.61	1.03	19.58	. 79	15.48	4.10	25.75	8.99
10	16.96	. 85	16.11	. 79	12.72	3.39	18.87	10.28
12	12.22	. 61	11.61	. 79	9.18	2.43	15.15	11.90
14	9.88	. 49	9.39	. 79	7.42	1.97	11.15	11.92
16	7.58	. 38	7.20	. 79	5.69	1.51	8.93	12.47
18	5.22	. 26	4.96	. 79	3.92	1.04	6.73	11.89
20	3.85	. 19	3.66	. 79	2.89	. 77	4.69	10.23
22	2.15	. 11	2.04	. 79	1.61	. 43	3.32	8.77
24	1.47	. 07	1.40	. 79	1.11	. 29	1.90	5.97
26	. 47	. 02	. 45	. 79	. 36	. 09	1.20	4.43
28	. 18	. 01	.17	. 79	. 13	. 04	. 40	1.71
30	. 08	. 00	. 08	. 79	. 06	. 02	. 15	. 74
32	. 02	. 00	. 02	.79	. 02	. 00	. 06	. 34
34	. 02	. 00	. 02	.79	. 02	. 00	. 02	.13
36			04.09				$\frac{.02}{104.09}$	$\begin{array}{r} .14 \\ 101.04 \end{array}$

Table 26
Growth Calculations For
Third and Following Cycles
(first half)

Table 27

Control Tlable for Third
and Following Cyoles
(ifirst half)
1

Age class
Normal bas- \% of total \% B.A. al area
her No. of
$0-40$
40-60
60-80

80-100	14.3	22.5	19.95	30.42	$8^{n}-12^{n}$	951	27.22	12.80	10^{n}	6.98	251
100-120	15.4	24.2	21.46	19.19	12"-16"	1890	17.62	6.17	$12^{\prime \prime}$	4.85	276
120-140	16.5	26.0	23.05	14.09	16"-20"	2723	13.02	4.97	$16^{\prime \prime}$	6.94	722
140-160	$\frac{17.4}{63.6}$	$\frac{27.3}{100.0}$	$\frac{24.22}{88.68}$	$\frac{9.82}{7 / 3.52}$	$20^{\prime \prime}-24^{\prime \prime}$	$\frac{3546}{9110}$	9.12				1249

Cut

Mature	1249 bd. ft.		
Thinnings	$\frac{3546}{4795}$	" "	"

First Cycle (last half: 1937-1946)
annual Cut
Basal Area Control Lethod
$\frac{103640 \mathrm{~K}}{10}$ or $10,364 \mathrm{~m} \mathrm{bd}$. ft.
Forest Service Lethod

$$
\frac{108720 \mathrm{H}}{10} \text { or } 10,872 \mathrm{M} \mathrm{bd} . \mathrm{ft} .
$$

Second Cycle (first half, 1947-1956)
Annual Cut
Basal Area Control liethod $\frac{91,700 \mathrm{M}}{10}$ or $9,170 \mathrm{Mbd}$. ft.

Forest Service Method

$$
\frac{93920 \mathrm{M}}{10} \text { or } 9,392 \mathrm{M} \text { bd. ft. }
$$

Second and following Cycles (last half)
Annual Cut
Basal Area Control Method

$$
\frac{98,640 \mathrm{M}}{10} \text { or } 9,864 \mathrm{M} \text { bd. ft. }
$$

Forest Service Kethod (2nd cycle only)

$$
\frac{101,680 \mathrm{w}}{10} \text { or } 10,168 \mathrm{k} \mathrm{bd} . \mathrm{ft} .
$$

Third and Following Cycles (first half)
Annual Cut
Basal Area Control Method

$$
\frac{84,000 \mathrm{M}}{10} \text { or } 8,400 \mathrm{Nba} . \mathrm{ft} \text {. }
$$

Sustained yield, hased upon regulation of the growing stock by proper cutting practices, will ultimately solve the problems of American forestry. This type of production is especially suited to certain areas which combine optimum site conditions with a good location and a suitable timber stand. The Goodman Working Circle, located in the Northern Hardwood Region of northern Wisconsin, fulfills the requirements for an area yich is to be managed for continuous production.

In order to obtain sustained yield, a plan must be formulated which will control the cutting so as to maintain the growing stock at a sufficient level. Because of its simplicity, realism, and accuracy, the Basal Area Control method is well-adapted to the development of a plan of regulation. This method, as has been shown in the preceding demonstrational calculation, is based upon the relationship between the basaI - area existing in the actual forest which is to be managed, and the basal area in a normal forest as determined from Field tables.

The Basal Area Control method relies upon comparatively simple arithmetical calculations. The prodedure which is followed may be summed up in several general steps, as given on pages 8 and 9 . In order to obtain the correct total cut, these steps must be applied to each of the four major types recognized in the uncut sawtimber stands on the Goodman area, and also to the selectively-cut stands on the area. The
latter must be predicted ahead ten years before classification, since cutting will not begin until ten years in the future.

After completion of the indicated calculations, a outting budget may be drawn up for a number of years in the future. The budget in this case agrees very closely with that developed by Forest Service methods. The figures which this budget presents (as calculated by the Basal Area Control method) will, due to conservatism in calculations and also to the response of the forest to continued management, represent the minimum cut to be expected. By carefuI examination following the first few cuts it will probably be possibIe to take Larger cuts than fndicated by the cutting bugget, and at the same time maintain a sufficient timber reserve. Thus, the case for sustained yield will be stronger than shown herein.

BIBLIOGRAPFY

Gevorkiantz, S. R., and Duerr, W. A., A Yield Table for Northern Hardwoods in the Lake States, Journal of Forestry, April, 1937, p. 342.

Mathews, D. M.. Management of American Forests, Mc-Graw-Hill Book Company, Inc., New York, 1935.

Meyer, W. H., Yields of Second-Growth Spruce and Fir in the Northeast, U. S. Department of Agriculture, Technical Bulletin 142, 1929.
U. S. Dep artment of Agriculture, Timber Management and Financial Plans for the Goodman Forking Circle, United States Forest Service, 1938 .

[^0]: 2. U. S. Depertment of AgricuIture , op cit, Appendix, p. 45.
 3. Gevorklantz, S. R., and Duerr, W. A., A Yield Table for Northern Hardwoeds in the Lake States, Journal of Forestry, ANㅡㄴ, 1937, po 342。
[^1]: 7. ©. s. Department of Agriculture, op cit, p. 44.
[^2]: 11. U. S. Department of Agrioulture, op cit, 1938, Appendix p. 25.
