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Controls on Permo-Carboniferous Precipitation over Tropical Pangea:

A GCM sensitivity study

Cheryl E. Peyser
Christopher J. Poulsen

Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA

Abstract

A series of Late Paleozoic climate model simulations was developed using the GENESIS

atmospheric general circulation model to investigate the role of Gondwanan deglaciation,

atmospheric CO 2 rise, and regional tectonism on continental precipitation over tropical

Pangea. The model results indicate that both deglaciation and CO2 rise from Ix to 8x

present-atmospheric levels could have caused substantial drying and warming at low-

latitudes, a result that is consistent with Late Paleozoic proxy records. Yet, the

atmospheric processes that led to drying differ between these cases. The deglaciation of

Gondwana causes the Southern Hemisphere winter cell of the Hadley circulation to

decrease by as much as 60% and to shift into the Southern Hemisphere, reducing the

convective precipitation over equatorial Pangea. In contrast, high levels of CO- have little

effect on the large-scale overturning circulation but increase continental temperatures,

leading to high evaporation rates and reduced available soil moisture, the source of

convective precipitation on land. In comparison to deglaciation and pCO2 , regional

uplift/erosion of the Central Pangean Mountains (CPMs) has a secondary effect on

tropical precipitation in GENESIS and can not explain the long-term aridification and

warming of western Pangea. We suggest that Late Paleozoic climate change over low-

latitude Pangea likely resulted from the combined effects of deglaciation of Gondwanan

ice sheets and a rise in atmospheric CO2 .
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1. Introduction

Low-latitude Pangea underwent profound climate change during the Permo-

Carboniferous marked by long-term drying. The occurrence of widespread peat-forming

forests, high-diversity paleoflora, paleosol composition and paleosol isotopic

geochemistry indicate that the paleoequator was tropical with "ever-wet", "ever-warm"

conditions in the Carboniferous (Cecil, 1990; Tabor and Montanez, 2002; Raymond and

Metz, 2004). Throughout the late Carboniferous and early Permian, however, these

conditions gave way to seasonally-dry climates. Peat-forming forests were replaced by

savannah-like flora (Cleal and Thomas, 2005); soil moisture decreased (Tabor and

Montanez, 2004); and, coal beds, paleosols, and fluvial facies gave way to eolian and

evaporite facies (Cecil, 1990; Rankey, 1997; Kessler et al., 2001; Tabor and Montaez,

2002; Ziegler et al., 2002). This drying trend is associated with a decrease in low-latitude

floral diversity (Ziegler et al., 2002; Raymond and Metz, 2004) and a shift from spore-

producing to seed-producing plants. In addition to long-term aridification, the Permo-

Carboniferous paleoequator also grew ~10C warmer (Tabor and Montaez, 2005) and,

in western Pangea, winds shifted from Easterlies to Westerlies (Soreghan et al., 2002;

Tabor and Montanez, 2002).

Several explanations have been given for the low-latitude Permo-Carboniferous

aridity trend, emphasizing primarily tectonic controls. Importantly, equatorial Pangea did

not experience appreciable latitudinal drift during this period (Scotese, 1999; Ziegler et

al., 2002; Loope et al., 2004), eliminating the possibility that continental drift into the

subtropics caused the drying. It has been suggested that the uplift of the Central Pangean
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Mountains (CPMs), a southwest-northeast trending mountain chain consisting of the

Appalachian-Mauretanide-Hercynian orogenic belts that straddled the Pangean

paleoequator, created a rain shadow over western Pangea (Rowley et al., 1985).

However, climate model simulations of the Carboniferous show the opposite effect; high

CPMs focus tropical precipitation on the equator by blocking the seasonal migration of

the Intertropical Convergence Zone (Otto-Bliesner, 1998, 2003). Alternatively, the drying

trend has been attributed to the development of mega-monsoons on Pangea, resulting in

equatorial aridity and marked seasonality (Parrish, 1993; Kessler et al., 2001). Ironically,

mega-monsoon intensification may have been brought on by erosion of the CPMs (Tabor

and Montafez, 2004). According to this idea, the lowering of the mountain range would

have allowed the Intertropical Convergence Zone (ITCZ) to seasonally migrate away

from the equator, producing seasonally-dry climates.

The Permo-Carboniferous also witnessed the deglaciation of the Gondwanan ice sheet.

The Late Paleozoic glaciation began around 330 Ma and consisted of two major phases,

the final of which ended rapidly in the early Permian (mid-Sakmarian) (Isbell et al.,

2003.) and probably coincided with increases in atmospheric pCO 2 (Royer et al., 2006;

Montanez et al., in review). Geological and oxygen isotopic evidence indicates that Late

Paleozoic ice volume was as great as or greater than the Pleistocene glacial maxima

(Crowley et al., 1991; Joachimski et al., 2006). The association between icehouse

intervals and tropical (ever-wet, ever-warm) conditions has long been recognized. To

explain this association, Ziegler et al. (1987) proposed that high pressure systems created

by glaciated poles constrained the ITCZ to the equator. Cecil et al. (2003) suggested a

similar mechanism, driven by orbitally-controlled glacial-interglacial cycles, to account
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for Carboniferous cyclothems. However, Carboniferous climate model simulations

indicate that polar ice has only a small effect on low-latitude precipitation (Otto-Bliesner,

2003).

In this contribution, we use an Earth system model, GENESIS version 2.3, to

investigate the controls on Pangean tropical precipitation. Through a series of sensitivity

experiments, we quantify the influence of the CPMs, Gondwanan continental ice mass,

and pCO2 on tropical precipitation. Our model results indicate that the uplift and/or

erosion of the CPMs have little influence on tropical precipitation. In contrast, the

deglaciation of Gondwana and increase in atmospheric CO2 could have led to substantial

decreases in tropical precipitation, though for very different reasons. The mechanism for

equatorial drying in each case is investigated.

2. Tropical precipitation

In contrast to extratropical regions, tropical precipitation is largely controlled by the

large-scale Hadley circulation. In the modern climate, the highest precipitation rates are

associated with the upwelling branch of the Hadley cell, a region of low pressure and

low-level convergence (i.e., the ITCZ). The location of the ITCZ is largely determined by

surface heating rates through solar insolation, a fact that is born out by the seasonal

migration of the ITCZ. This surface heating is also responsible for spawning the

convective updrafts that induce high rates of precipitation. On longer timescales,

however, the mean location of the ITCZ is sensitive to interhemispheric temperature

contrasts, and tends to shift towards the warmer hemisphere (Broccoli et al., 2006).

The Hadley overturning is driven by diabatic heating in the tropics and cooling in the

subtropics. Subtropical cooling occurs through infrared radiative cooling to space and by
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energy transports to the extratropics through transient eddies (e.g., Pierrehumbert, 1995;

Trenberth, 2003). The intensity of the Hadley overturning is sensitive to the tropical

heating gradient; enhanced tropical heating or subtropical cooling increases the Hadley

overturning (e.g., Hou and Lindzen, 1992; Kim and Lee, 2001).

In this context, long-term drying of tropical Pangea might be expected to result from

either displacement of the Hadley cells or a decrease in overturning intensity. However,

either of these large-scale circulation changes requires an increase in tropical heating

gradients. Alternatively, the drying may be unrelated to the large-scale circulation.

3. Methods

The Late Paleozoic experiments presented here were completed using GENESIS, an

earth system model that has been used extensively for paleoclimate studies. The

GENESIS version 2.3 consists of an AGCM coupled to multi-layer models of vegetation,

soil or land ice, and snow (Pollard and Thompson, 1995; Thompson and Pollard, 1997).

Sea-surface temperatures and sea ice are computed using a 50-m slab oceanic layer with

diffusive heat flux, and a dynamic sea-ice model (Flato and Hibler, 1992). The AGCM

grid is independent of the surface grid: the AGCM resolution used here is spectral T31

(~3.75°) with 18 vertical levels; the surface model grid is 2x2. The AGCM timestep is

30 minutes. A land-surface transfer model accounts for the physical effects of vegetation

(Pollard and Thompson, 1995). Up to two vegetation layers (trees and grass) can be

specified at each grid point, and the radiative and turbulent fluxes through these layers to

the soil or snow surface are calculated. A six-layer soil model extends from the surface to

4.25 m depth, with layers thickening with depth. Physical processes in the vertical soil

column include heat diffusion, liquid water transfer, surface runoff and bottom drainage,
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uptake of liquid water by plant roots for transpiration, and the freezing and thawing of

soil ice. A three-layer snow model is used for snow cover on soil, ice-sheet and sea-ice

surfaces, including fractional cover when the snow is thin.

We conducted a series of sensitivity experiments to evaluate the influence of

Gondwanan glaciation, the elevation of the Central Pangean Mountains, and atmospheric

pCO2 on low-latitude continental precipitation (Table 1). Four Late Paleozoic

experiments were completed with continental ice sheets of 0.0 (NOICE), 22.8 (ICEA),

47.2 (ICEB), and 59.1 (ICEC) x 10 9 kms (Fig. 1), and mean heights of 1500m. These

experiments include a Central Pangean Mountain belt with mean elevations of 1000m

and an atmospheric pCO2 of 355ppm. Two additional experiments were completed with

mean belt elevations of 500 (LOMTN) and 2500m (HIMTN). A final experiment was

conducted using the NOICE topography and ice-sheet extent but with atmospheric pCO2

set to 2800ppm (8xCO2 ). Throughout this study, the NOICE experiment will be used as

the control.

All other boundary conditions were identical between experiments. The experiments

include paleogeography and topography for the Sakmarian; a reduced solar luminosity

(1330.3 Wm-2 ) based on solar evolution models; Sakmarian CO2 levels (355 ppm) (Tabor

et al., 2004); pre-industrial concentrations of CH 4 (0.650 ppm) and N20 (0.285 ppm); and

a circular orbit with an average (23.5°) obliquity similar to modern. The ocean diffusive

heat flux was set to a value that provides the best simulation for the modern climate. The

experiments were integrated for 30 model years; the results shown here have been

averaged over the final 10 years of the experiments.
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4. Results

4.1 Influence of Gondwanan ice sheets

In the NOICE case, mean-annual surface temperatures range from < -20C at the

poles to > 25°C over tropical Pangea (Fig. 2). Low-latitude summer temperatures reach

as high as 35 and 37C in the subtropics of northwestern and southeastern Pangea,

respectively. As demonstrated by Crowley et al. (1989) and Kutzbach and Gallimore

(1989), seasonal temperature contrasts on the Pangean supercontinent are large, reaching

more than 30°C at 30S and 50C near 60S. The sea-ice margin reaches to almost 60N

in the Northern Hemisphere and to 70S in the Southern Hemisphere.

The addition of Gondwanan continental ice (ICEA) causes significant cooling in the

Southern Hemisphere, as much as 20° C over the ice sheet. The cooling extends into the

Southern Hemisphere mid- and low latitudes; surface temperatures decrease by as much

as 30 C near the equator. Even so, the influence of the Gondwanan ice sheet is largely

limited to the Southern Hemisphere; annual surface temperatures in the Northern

Hemisphere generally decrease by no more than 10 C (Fig. 3A). In response to cooling,

the sea-ice extent expands equatorward by up to 100 in the Southern Hemisphere.

As the ice sheet grows, its influence on surface temperature increases. In comparison

to the NOICE case, global mean-annual temperatures in the ICEB and ICEC experiments

are 8 and 11C cooler (Table 2), and the tropics cool by as much as 6 and 8C over

Pangea (Fig. 3B-C). Substantial cooling occurs throughout the Northern Hemisphere

(Fig. 3B-C) and annual sea-ice margins expand to 50 and 550 in both hemispheres. In all

three ice-sheet cases, reduced surface temperatures primarily result from an increase in

surface albedo (Table 2) due to the specification of continental ice and an increase in
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snow and sea-ice cover, and a reduction in the natural greenhouse effect due to a decrease

in tropospheric water vapor (Table 2).

Precipitation rates and distribution on low-latitude Pangea are linked to the location

and strength of the ITCZ. In the NOICE case, seasonal precipitation rates are highest in

the summer hemisphere due to the seasonal migration of the ITCZ (Fig. 4), and result

predominantly from atmospheric convection. In the mean annual, the tropical

precipitation distribution is asymmetric with the Southern Hemisphere receiving more

(Fig. 5A). This asymmetry can also be seen in the large-scale zonal circulation (Fig. 6A);

the mean-annual Hadley cells are displaced southward, meeting in the low-latitudes of

the Southern Hemisphere.

Tropical precipitation rates and distribution on Pangea are sensitive to the extent of

the Gondwanan ice sheet. The addition of Gondwanan continental ice enhances tropical

precipitation, particularly in the Northern Hemisphere, reducing the hemispheric

asymmetry observed in the NOICE experiment (Fig. 5). In the ICEB and ICEC cases,

zonal-average seasonal precipitation maxima increase by more than 1.0 mm day-' and

shift northward by up to 40 (Fig. 5). Much of the increase in precipitation occurs over

western equatorial Pangea (Fig. 7). The large-scale zonal circulation is also affected by

the Gondwanan continental ice. In addition to shifting northward, the mass transport of

the southern cell more than doubles, while that of the northern cell decreases (Fig. 6).

This response of the large-scale zonal circulation can be readily understood in terms of a

heat engine that converts heat energy into mechanical energy by exploiting the

temperature gradient between the heat source and sink. In such an engine, the magnitude

of the temperature gradient determines the work that can be performed. Likewise, by
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altering the low-latitude temperature gradient through Southern Hemisphere cooling, the

addition of a large ice mass over Gondwana influences the Hadley circulation. During

June-July-August, when maximum heating is in the Northern Hemisphere, the low-

latitude temperature gradient is increased and the adiabatic processes that drive the

Hadley circulation are enhanced, increasing mass transport in the northern Hadley cell. In

contrast, during December-January-February, Southern Hemisphere cooling reduces the

low-latitude temperature gradient and the adiabatic processes that drive the Hadley

circulation, decreasing mass transport through the southern Hadley cell (Fig. 6).

The onset and/or intensification of monsoonal circulation in the earliest Permian has

figured prominently in explanations for the long-term aridification of tropical Pangea

(e.g., Kessler et al., 2001). In the NOICE case, monsoonal circulation is well established

in the Southern Hemisphere. During austral summer, a prominent surface pressure low

forms over southeastern Pangea, resulting in a strong cyclonic circulation. In austral

winter, a surface high forms and winds are anticyclonic (Fig. 8A-B). Surface flow over

western equatorial Pangea reverses direction with the monsoon. During the summer

monsoon, Westerlies flow across western equatorial Pangea and into the monsoonal

region. These winds become Easterlies during the winter monsoon. In comparison to the

Southern Hemisphere, monsoonal circulation is less well developed over the Northern

Hemisphere. A surface low centered at 25N forms during boreal summer but engenders

relatively weak cyclonic flow (Fig. 8B).

The Southern Hemisphere monsoonal circulation is strongly modified by continental

ice over Gondwana. In the ICEB and ICEC experiments, the continental ice sheet

intensifies the winter subtropical high and its associated anticyclonic flow in the Southern
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Hemisphere. In contrast, as the continental ice area expands, the summer subtropical low

weakens in the ICEA experiment, and is replaced with a surface high in the ICEB

experiment (Fig. 8). This reduction in the Southern Hemisphere summer monsoon alters

surface wind patterns over low-latitude Pangea; the well-developed Westerlies in the

NOICE experiment are replaced by weak Easterlies (Fig. 8).

4.2 Effect of Central Pangean Mountains

In a series of sensitivity experiments using GENESIS v.1.02, Otto-Bliesner (1998,

2003) demonstrated that the Central Pangean Mountains played an important role in

promoting conditions for tropical coal formation by impeding the northward migration of

the ITCZ in July. Our sensitivity experiments show a similar influence of tropical

mountains on tropical precipitation. In comparison to those of NOICE (intermediate

CPM) and LOMTN, mean-annual continental precipitation rates in HIMNT are higher

between 6°S and the equator, and lower between 10 to 20S and 0 to 20N (Figs. 9 and

10). These differences are consistent with high-elevation CPMs acting as an impediment

to the ITCZ. Because the CPMs strike southwest-northeast, they affect the ITCZ

migration during both boreal and austral summers. In June-July-August (December-

January-February), high CPMs block the northward (southward) migration of the ITCZ in

western (eastern) Pangea, reducing precipitation in this region. Reducing the elevation of

the CPMs removes the obstacle to ITCZ migration. In the LOMTN case, continental

precipitation is relatively high between 10 and 20S, and between 5 and 20N (Figs. 9

and 10).

Although the presence and height of the CPMs influence tropical precipitation on

Pangea, the sensitivity to the CPMs is relatively small relative to atmospheric CO 2 and
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the Gondwanan ice sheet. Moreover, changes in CPM elevation have only a local effect

on surface temperature (Table 2). Elevated CPMs lead to an expansion of the Northern

Hemisphere summer monsoonal region and a contraction of the Southern Hemisphere

winter monsoonal region; however surface wind patterns show little change over low-

latitude Pangea (Fig. 11).

4.3 Influence of atmospheric CO2

On the basis of stable isotopic composition of soil-formed minerals, fossil plant

matter, and shallow water brachiopods, atmospheric pCO2 has been estimated to have

increased from present atmospheric levels (PAL) in the Asselian and early Sakmarian to

nearly 8x PAL by the late Sakmarian (Montaiez et al., in review). To estimate the

influence of the Late Paleozoic pCO2 rise, we compare climate simulations with lx and

8x PAL CO2 . In response to elevated pCO2 , global average surface temperatures rise by

9.6°C (Table 2). In contrast to the perennial sea-ice in the NOICE experiment, sea ice is

limited to winter in the Southern Hemisphere high-latitudes. Mean-annual surface

temperatures increase by 12-15C on low-latitude Pangea, about 7C more than low-

latitude ocean temperatures (Fig. 12). The enhanced continental warming is most likely

the result of a feedback with soil moisture; a rise in surface air-temperature increases

evaporation, decreasing soil moisture (Fig. 13), and promoting sensible heating (i.e.,

surface air temperature increase) at the expense of latent heating.

Simulated tropical precipitation rates also show a large sensitivity to the pCO 2

increase. In contrast to marine precipitation rates which increase slightly, continental

precipitation rates decline by as much as 40% at low latitudes (Figs. 9 and 14). The

reduction in continental precipitation, like surface temperature, is directly linked to the



12

decrease in soil moisture. Soil moisture serves as a source of condensate and as a source

of the latent heat that fuels convective updrafts. As a result, the decline in soil moisture

reduces the source and the dynamical conditions that promote convective precipitation. It

is interesting to note that the large reductions in tropical precipitation with higher pCO2

are not caused by changes in the large-scale zonal circulation. The Hadley circulation in

the 8xCO2 case is similar to that of the NOICE case (compare Figs. 6A and 15).

CO2 has a small, but potentially important, effect on monsoonal circulation (Fig. 16).

The increase in CO2 enhances the Northern Hemisphere summer monsoon over western

Pangea. This subtle intensification induces westerly flow over western equatorial Pangea

(Fig. 16B).

5. Discussion

Our results suggest two possible explanations for long-term drying in equatorial

Pangea. Both Southern Hemisphere deglaciation and increased atmospheric CO 2 lead to

tropical drying consistent with paleofloral changes (Cleal and Thomas, 2005; Ziegler at

al., 2002; Raymond and Metz, 2004), the distribution of eolian and evaporite deposits

(Cecil, 1990; Rankey, 1997; Kessler et al, 2001), and 6180 and stratigraphic trends in

paleosols (Tabor & Montafiez, 2002, 2004). However, the mechanism responsible in each

case is different. The retreat of the Gondwanan ice sheet weakens the southern Hadley

cell and causes it to shift southward. This reorganization of large-scale atmospheric

circulation occurs as a result of the reduced temperature gradient that accompanies

Southern Hemisphere warming as the ice sheet retreats. In the case of atmospheric CO 2.

an increase in tropical surface temperature leads to high evaporation rates and a reduction

of soil moisture, thus removing the source for convective precipitation.
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Regional tectonism has previously been identified as a cause of long-term

aridification in western Pangea. Our model results indicate that the CPMs can influence

regional precipitation by altering the seasonal location of the ITCZ. In the zonal average,

high CPMs block the northward migration of the ITCZ, reducing tropical precipitation

rates in the Northern Hemisphere (Fig. 9). However, this reduction in precipitation

mainly occurs over eastern tropical Pangea (Fig. 10A), little change occurs in western

Pangea. We note that the regional precipitation anomalies are dependant on the

orientation of the CPMs; if the CPMs had trended northwest-southeast, it is likely that

their uplift would cause drying over western Pangea. But, more to the point, the CPMs

have a small influence on precipitation relative to CO2 and continental ice sheets and

almost no influence on surface temperature and wind patterns. In sum, regional tectonic

change was likely only a secondary control.on tropical precipitation and climate.

In addition to causing low-latitude drying, both deglaciation and elevated CO 2

increase low-latitude surface temperatures over Pangea. Tabor and Montanez (2005)

report a paleotemperature increase of up to 13C over western Pangea from 22±3 to

35±3°C. Mean-annual temperatures over western Pangea are approximately 28-30C in

the NOICE experiment. Assuming that CO2 levels were not significantly lower than 355

ppm and that other greenhouse gases were not significantly lower than modern, cooling

due to the influence of continental ice on Gondwana may be required to explain the low

paleotemperatures of 22C. We note that in the ICEB experiment, mean-annual

temperatures over western Pangea are 22-24°C. Likewise, the highest estimated

paleotemperatures may require increases in CO2 or other greenhouse gases. In the 8xCO2

experiment, mean-annual temperatures over western Pangea range are 40-42C.
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Both ice sheet retreat and increased atmospheric CO2 induce Westerlies over western

equatorial Pangea, as observed from geologic data (Soreghan, 2002). During glacial

periods with extensive continental ice, low-latitude flow is predominantly westward. The

contraction of continental ice allows a summer monsoon to develop over the Southern

Hemisphere, inducing eastward flow over western equatorial Pangea during December-

January-February (Fig. 8). In contrast, an increase in CO2 intensifies the Northern

Hemisphere summer monsoon over western Pangea, causing eastward flow over western

equatorial Pangea during June-July-August (Fig. 11).

The magnitude of tropical climate change due to deglaciation is dependent on the ice

sheet extent. According to the model results, reductions in precipitation are small if the

ice sheets were relatively small and confined to high-latitude regions (e.g., annual

decrease of 0.2 mm day at 10N in the ICEA case). However, the melting of larger ice

sheets could lead to substantial decreases (e.g., annual decrease of 2.6 mm day' at 10N

in- the ICEB case). The extent of the Perno-Carboniferous ice sheets is uncertain. Various

methods have been used to determine their size. Cyclothems (Soreghan and Giles, 1999)

and oxygen isotopes (Joachimski, 2006) suggest sea-level changes of 100m or greater,

implying ice sheet volumes that were at least as large as those of the Pleistocene

glaciations. Parrish et al. (1986) found evidence of glacial deposits reaching as far as

30°S, again indicating continental ice volumes comparable to or greater than those of the

Pleistocene glaciations (Crowley et al., 1991). Moreover, simulations of Gondwanan

glaciation predict large ice sheets extending to 45S (Hyde et al., 1999). In contrast,

weathering profiles and soft-sediment stratigraphy from Antarctica indicate that areas

previously viewed as a glacial epicenter may have been ice-free or located along ice
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margins, suggesting that Permo-Carboniferous ice coverage was less extensive than

previously thought (Isbell et al., 2003). Until additional data is available to put tighter

constraints on the extent of Permo-Carboniferous glaciation, it is not possible to quantify

the exact influence of the Gondwanan ice sheets on low-latitude climate. Based on our

model results, if the continental ice on Gondwana had approached our ICEB

reconstruction, its retreat could have caused the decrease in tropical precipitation seen in

the geologic record. However, we emphasize that the ICEB and ICEC reconstructions

were developed for the purpose of these sensitivity studies and are highly idealized.

Most likely, a combination of effects involving deglaciation and atmospheric CO2 rise

were responsible for the Permo-Carboniferous drying trend over low-latitude Pangea.

Our model results and proxy records of climate and CO2 support this view. In a recent

summary of Phanerozoic CO2 levels, Royer (2006) reports an anti-correlation between

Permo-Carboniferous glaciation and pCO2 (i.e., low pCO2 during Gondwanan

glaciation). Moreover, as discussed above, to simulate low-latitude paleotemperatures

requires a combination of pCO2 increase and deglaciation.

6. Conclusions

This study uses the GENESIS atmospheric general circulation model to examine the

sensitivity of Permian climate to continental ice extent, atmospheric CO 2 concentration,

and tropical mountain elevation. We have identified two mechanisms capable of causing

long-term aridification of equatorial Pangea: retreat of continental ice on Gondwana and

increasing atmospheric CO2 . In both cases, drying is accompanied by warming and a

reversal of low-latitude wind patterns consistent with the geological record. The

uplift/erosion of low-latitude mountain ranges proves to be a secondary factor in altering
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tropical climate. On the basis of geologic proxy records of CO 2 and climate and

comparisons of model-predicted and proxy paleotemperatures, a combination of

deglaciation and increased atmospheric CO 2 concentrations was likely responsible for the

Permo-Carboniferous tropical climate changes observed over low-latitude Pangea.
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Table 1. List of Late Paleozoic climate model experiments.
Experiment Ice Sheets Paleogeography Atmospheric pCO2

CNTRL None 1000m tropical mountains 355 ppm
ICEA Small extent 1000m tropical mountains 355 ppm
ICEB Intermediate extent 1000m tropical mountains 355 ppm
ICEC Large extent 1000m tropical mountains 355 ppm

LOMTN None 500m tropical mountains 355 ppm
HIMTN None 2500m tropical mountains 355 ppm
8xCO 2  None 1000m tropical mountains 2800 ppm

Table 2. Mean-annual global averages for the Late Paleozoic climate model experiments.
Experiment Surface albedo Greenhouse effect Surface temperature

CNTRL 0.302 180 13.2
ICEA 0.318 177 11.0
ICEB 0.354 168 5.2
ICEC 0.373 162 1.8

LOMTN 0.301 181 13.4
HIMTN 0.302 180 13.0
8xCO2 0.274 193 22.8
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Figure Captions

Figure 1. Late Paleozoic geography. An early Permian land-ocean distribution is used in

all experiments. The continental ice-sheet extents are shown in white for the B) ICEA, C)

ICEB, and D) ICEC experiments. The Central Pangean Mountain topography is

contoured (500m interval) in A.

Figure 2. Mean-annual (A), June-July-August (B), and December-January-February (C)

surface temperature (C) for the control (NOICE) experiment.

Figure 3. Mean-annual surface temperature differences (C). The differences represent

A) ICEA - NOICE, B) ICEB - NOICE, and C) ICEC - NOICE. Note that the contour

interval is not constant.

Figure 4. Mean-annual (A), June-July-August (B), and December-January-February (C)
average precipitation rates (mm day') for the control (NOICE) experiment. The seasonal
migration of the precipitation maxima can be seen in B and C, and coincides with the
position of the ITCZ. Note that the contour interval is not constant.

Figure 5. Zonal-average continental precipitation (mm day'). The zonal precipitation is

shown for mean-annual (A), June-July-August (B), and December-January-February (C)
averages. Results are for the NOICE, ICEA, ICEB, and ICEC experiments.

Figure 6. Annual-mean zonal streamfunction (109 kg s'). The streamfunction is shown

for NOICE (A), ICEA (B), ICEB (C), and ICEC (D) experiments. Solid (dashed) lines
represent (counter) clockwise overturning circulation. The expansion of continental ice in
the ICEB and ICEC experiments causes the overturning intensity in the southern cell to
increase by 100% or more. The contour interval is 20 x 109 kg s.

Figure 7. Mean-annual (A), June-July-August (B), and December-January-February (C)
average precipitation rates differences (mm day') between the ICEC and NOICE
experiments (ICEC - NOICE). The addition of a large ice sheet on Gondwana causes the
ITCZ to shift northward into the Northern Hemisphere during JJA.

Figure 8. December-January-February (left) June-July-August (right) sea-level pressure
(mb) and winds (m2s-2). SLP and winds are illustrated for the NOICE (A-B), ICEA (C-
D), ICEB (E-F), and ICEC (G-H) experiments.

Figure 9. Zonal-average continental precipitation (mm day'). The zonal precipitation is
shown for mean-annual (A), June-July-August (B), and December-January-February (C)
averages. Results are from the NOICE, HIMTN, LOMNT, and 8xCO, experiments.

Figure 10. Mean-annual (A, D), June-July-August (B, E), and December-January-

February (C, F) average precipitation rates differences (mm day'). The left column
shows differences between the HIMTN and control (NOICE) cases (HIMTN - NOICE).
The right column shows differences between the LOMTN and control (NOICE) cases
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(LOMTN - NOICE). Note that high CPMs tend to block the seasonal migration of the
ITCZ, reducing precipitation off the equator.

Figure 11. December-January-February (left) and June-July-August (right) sea-level
pressure (mb) and winds (m2 s-2). SLP and winds are illustrated for the LOMTN (top) and
HIMTN (bottom) experiments.

Figure 12. Mean-annual surface temperature difference (°C) between the 8xCO 2 and
control experiment (8xCO 2 - NOICE).

Figure 13. Mean-annual soil wetness difference (%) between the 8xCO 2 and control
experiment (8xCO 2 - NOICE). The increase in CO 2 results in higher temperature and a
large decrease in soil moisture at low latitudes.

Figure 14. Mean-annual (A), June-July-August (B), and December-January-February (C)
average precipitation rates differences (mm day') between the 8xCO 2 and control
experiment (8xCO 2 - NOICE). High pCO 2 causes drying over low-latitude Pangea.

Figure 15. Annual-mean zonal streamfunction (109 kg s-1) for the 8xCO 2 experiment. The
overturning circulation in the 8xCO 2 experiment is similar to the NOICE experiment
(compare with Fig. 7). The contour interval is 20 x 109 kg s'.

Figure 16. December-January-February (A) and June-July-August (B) sea-level pressure
(mb) and winds (m2s-2) for the 8xCO 2 experiment.
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