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Early rotation in the Pennsylvania Salient

(US Appalachians);

Evidence from calcite-twinning analysis
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Abstract

Calcite twinning analysis of Paleozoic limestones from 42 sites reveals that the change

in regional strike along the frontal edge of the Pennsylvania salient is accompanied by an

equal magnitude rotation of paleostress directions of about 60 degrees. The rotation,

recorded by results from 22 reliable sites, shows no discernable difference between sites

of Cambro-Ordovician and Siluro-Devonian age and is not present in foreland sites.

Scatter in the data attributed to grain-scale rotations and compaction overprinting,

reduced by data cleaning methods as well as by the use of more advanced contouring and

data averaging methods, reveal a main layer-parallel north-northwesterly oriented stress

field as well as a subordinate secondary transpressional event, sinistral in the southern

part of the salient. Comparison of paleostress directions within the rotated arc reveal

minor rotations in the southwest region of the salient with the bulk of rotation

accommodated by the northern salient limb. We propose a model in which these rotations

result mostly from dextral transpression of thrust sheets inpinged on a northerly-

bounding, rigid cratonic block. This created a structural anisotropy that guided the post-

rotational formation of folds in place, producing the current configuration of the salient.

The formation of curved but unrotated folds is responsible for both the lack of tangential

extension and compression as well as for the divergent evolution of kinematic directions

described by previous workers.
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Introduction

A feature of most, if not all, fold-thrust belts in the world is the presence of

curved segments, with a degree of curvature that may range from tens of degrees to as

much as 1800. Orogenic curvature was already noted a century ago (Hobbs, 1914) and in

the mid-1950's Carey introduced the term 'orocline' to describe this common geometry

(Carey, 1955). Originally, orocline was used to describe a straight belt that later became

curved (secondary curvature), but the term is used today to describe both originally

curved segments (primary curvature) as well as secondary curvature of belts (Eldredge et

al., 1985; Marshak, 1988; Hindle and Burkhard, 1999). Current interpretations for curved

belts range from primary curvature, progressive rotational displacements, secondary

curvature, or combinations, based on kinematic, paleomagnetic and modeling studies

(e.g., Spraggins and Dunne, 2002; Sussman et al., 2004). The origin of secondary

curvature has been variably attributed to indentation by a microplate or to changing stress

fields (e.g., Weil et al, 2000).

The Pennsylvania salient, one of the more striking features of the Appalachian

mountain belt in map view, accomodates the change in orientation of structural features

from a south-southwesterly direction in the central Appalachians to an easterly direction

farther north near the New York-Pennsylvania border (Figure 1). The evolution of the

Pennsylvania salient remains a topic of active discussion (e.g. Fairview, in press; Wise, in

press), in large part due to seemingly conflicting kinematic and paleomagnetic data on the

curvature of the belt. Paleomagnetic results indicate a prefolding rotation of 20-30°

between inner segments of the salient limbs, based on multiple magnetizations (Kent,
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1988; Stamatakos and Hirt, 1994; Stamatakos et al., 1996). Kinematic data show a

consistent, parallel early shortening direction that diverges clockwise in the northern and

counter-clockwise in the southern salient limbs over time (Nickelsen, 1979; Geiser and

Engelder, 1983; Gray and Mitra, 1993; Zhou and Jacobi, 1997; Younes and Engelder,

1997), in contrast to the pure-bending model typically associated with oroclinal

evolution. Conflicting paleomagnetic and kinematic scenarios have prompted new

hypotheses (Gray and Stamatakos, 1997; Wise, in press) that also attempt to explain other

characteristics, such as the observed lack of tangential compression or extension that

would be expected with bending.

Calcite twinning analysis provides an independent approach to test the various

hypotheses, in particular, as it preserves the early evolution of the belt, prior to regional

folding. Results presented here show typical pre-folding, layer-parallel deformation that

are sensitive indicators of orogenic evolution, as shown in other studies (e.g., Engelder,

1979a and b; Ferrill and Groshong, 1993a and b; Harris and van der Pluijm, 1998;

Kollmeier et al., 2000).

Deformation experiments on limestones have shown that the bulk orientation of

calcite twinning in a sample is dependent on the orientation of the remote stress field

(Groshong, 1974; Teufel, 1980; Groshong et al., 1984), which can be extracted from

natural samples through data inversion techniques (Spang, 1972; Evans and Groshong,

1984). Calcite twinning requires a low critical resolved shear stress of-10 MPa (Jamison

and Spang, 1976; Wenk et al., 1987) and is a strain-hardening process, with further

twinning resisted as beds tilt during subsequent deformation. As a consequence, typical

deformation conditions recorded are those of the early stress field under horizontal
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compression, producing layer-parallel shortening fabrics (Jamison and Spang, 1976). A

paleostress direction for a sample is derived from a statistical analysis of optimal

compression directions for individual twinned calcite grains. This paper focuses on

dynamic results from a detailed study along the Pennsylvania salient, which constrains

the origin and relative timing of curvature in the belt.

Calcite-twinning Analysis

The analysis of calcite deformation twins (Figure 2) as an indicator of

paleostress/strain has yielded reliable results both in experimental (Groshong, 1974;

Teufel, 1980; Groshong et al., 1984) and in field studies (Engelder, 1979a and b; Ferril

and Groshong, 1993a and b; van der Pluijm et al., 1997; Harris and van der Pluijm, 1998;

Kollmeier et al., 2000). Paleostress directions are extracted from a twinned calcite sample

by optical determination of the host grain's c-axis and the pole to the e-twin plane within

the host (Turner, 1953). This information, along with fixed angular relations between the

e-twin pole and grain's c-axis, yields the most favorable orientation of a compression and

extension axis for each twinned grain (Figure 3). An aggregate of twinned grains is

subsequently analyzed for a dominant (or average) compression direction (Spang, 1972).

The analysis can involve routines that invert for the stress tensor (Evans and Groshong,

1994) or traditional contouring analyses using individual axes in an aggregate, both

resulting in paleostress directions that reflect the regional stress field. In this study, site

directions are analyzed in a geographic as well as in a stratigraphic framework, in order

to unravel the syn- and post-twinning deformation history of the host rocks. Since

deformational calcite twinning is a strain-hardening process (Teufel, 1980) , it typically
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records early horizontal compression during layer-parallel shortening (see also, Chinn

and Konig, 1973; Engelder, 1979b; van der Pluijm et al., 1997). Similar to other

techniques, such as paleomagnetism, this approach can therefore give insight into

tectonic rotations, relative timing and direction of compression. If multiple, discrete

deformation events occurred, they may be recorded as superimposed populations when

the deformations are oriented at a moderate to high angles to one another (Friedman and

Stearns, 1971; Teufel, 1980). In these cases, the events can be extracted by discriminating

between twins of a dominant compression direction (expected values, or "EVs") and

twins of a subordinate compression direction (residual values, or "RVs"), which are

determined on the basis of the feasibility of producing the observed twin with a candidate

compression direction (Groshong, 1972; Evans and Groshong, 1994).

Oriented samples were collected with a portable, gas-powered diamond coring

drill from coarse-grained limestones of the Cambro-Ordovician Beekmantown Group and

Siluro-Devonian Keyser, Helderberg, and Tonoloway formations. Beside these units'

common occurrence, this stratigraphic sampling strategy offers a test of the Gray and

Stamatakos (1997) model that invokes a hidden detachment between these units. Thin

sections from oriented samples were optically analyzed on a universal-stage microscope

to determine the crystallographic orientations of twin sets and their host calcite grains

(Figure 3). To ensure the most accurate possible measurement of the stress field, we

confirm that samples are not biased by containing dominantly crystallographically-

similarly oriented grains. As well, we only measure twin sets that are straight and

continuous within grains, to ensure the most accurate results. Using the dynamic analysis

of Turner (1953), we determine the compression axes given the orientation of a grain's c-
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axis and the twin plane, and derive strain data for each sample using the technique of

Groshong (1972). The latter is used to discriminate between expected values (EVs) and

residual values (RVs), as suggested by Groshong et al. (1984), in order to clean the data

and identify superimposed deformation phases, if any exist. Using the resultant spatial

stress distribution we evaluate whether compression was layer-parallel and compare

individual site data to geometric models of formation of curved mountain belts.

Results

Calcite twinning analysis of 23 Cambro-Ordovician and 17 Siluro-Devonian sites

along the frontal edge of the salient (Figure 1) were quality-evaluated and reduced to

provide reliable paleostress directions for 13 Cambro-Ordovician and 15 Siluro-Devonian

sites. Reliable paleostress directions were also obtained for 2 sites of Mississippian age in

the foreland. Cambro-Ordocivian sites exhibit a dominant population (EVs) of

compression directions that are generally orthogonal to regional strike and a residual

population (RVs) of subvertical compression directions. Siluro-Devonian sites similarly

exhibit a dominant population (EVs) of compression directions orthogonal to regional

strike, but also record a small residual population (RVs) of compression directions that

are subparallel to strike. We examine in detail only the primary orthogonal signal in both

sets of sites as separating the residual populations yields insufficient data for a rigorous

analysis of superimposed deformation, but will comment on the likely significance of

other populations.

Within the dominant population, most compression axes lie roughly within or

near the bedding plane (Figure 4), confirming that twinning records a pre-folding, layer-
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parallel-shortening fabric. Where tested, directions from oppositely dipping limbs give

coherent directions after bedding correction (i.e., positive fold test). Small deviations

from parallelism between compression directions with unfolded bedding are expected due

to grain-scale rotations during progressive folding, as previously documented in

Adirondack calcite twinning (Harris and van der Pluijm, 1998) and Pennsylvania salient

paleomagnetic studies (Stamatakos & Hirt, 1994). Whereas the data from sites along the

salient show significant scatter, they clearly indicate a fanning pattern of paleostress

directions matching changes in regional strike when examined in map view (Figure 5). It

is also important to note that this trend is evident in both the Cambro-Ordovician and the

Siluro-Devonian data sets, indicating that these units behaved as a structurally coherent

package.

We plot paleostress directions as a function of position along the curvature of the

salient in order to quantify the observed rotations (Figure 6). Distance along the front is

measured from the southwest in a series of linear segments that approximate the along-

front distribution of sampling sites (sites that do not fall along the frontal trend of the

salient, such as CO-23 and all paleomagnetic sites, are included by projection

perpendicular to regional strike). The absence of a difference between Cambro-

Ordovician and Siluro-Devonian samples is also clear in this data representation. While

there is considerable scatter, the rotational pattern is evident in the raw data and

significant at the .001 level with a standard error of the slope of 0.049 and a t-value of

4.3. A moving-average analysis of these data with a conservative interval of n=3 (Figure

7) reduces the inherent scatter in the data and confirms the trend in the raw data set.

These moving intervals correspond to 10-40 km segments along the thrust front, yielding
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a dataset that we compare to representative measurements of regional strike taken every

25 km along the thrust front. Note that regional strike representations show a proportional

but lesser scatter than the original calcite data (Figure 6b) and a similar scatter to the

moving-averaged calcite data (Figure 7). An excellent match between the slopes of linear

best-fits to field and laboratory datasets is observed. By multiplying the best-fit slope of

regional strike measurements against the 300 km of sampled frontal distance we obtain a

measure of the full curvature of the salient of about 60 degrees. Best-fits to the raw and

the moving-averaged data show an equal rotation of paleostress directions of 60-65

degrees along the thrust front, statistically identical to full strike rotation. Analysis of two

new sites within the foreland, complementing previously published data (Engelder, 1979a

and b), shows no comparable rotation of compression directions in unfolded foreland

carbonates, in agreement with regional trends described by Craddock and van der Pluijm

(1990) and Craddock et al. (1993).

Discussion

Three populations of compressional directions are observed from calcite twinning

analysis in the region: a dominant set of directions roughly orthogonal to regional strike

found in both Cambro-Ordovician and Siluro-Devonian sites, a residual set of subvertical

directions in Cambro-Ordovician sites, and a residual set of strike-parallel directions

restricted to Siluro-Devonian sites.

In the primary population of compressional directions roughly orthogonal to

regional strike, no distinction is found between Lower and Middle/Upper Paleozoic units,

which contrasts with previous hypotheses requiring a detachment between these
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sequences (e.g. Gray and Stamatakos, 1997). As shown in Figure 7, the close

correspondence of compression directions with regional strike distinct from observations

in the foreland shows that primary, oroclinal bending is responsible for the 60 arcuation

of the Pennsylvania salient. The scatter in our data is partly inherent in the structure, as

shown by the similar scatter in regional strike, but also influenced by grain-scale rotations

(Harris and van der Pluijm, 1998) and other superimposed processes.

The small subvertical population evident only in Cambro-Ordovician rocks is

attributed to vertical stresses due to overburden during burial or compaction that were not

sufficiently large to produce twinning in overlying Siluro-Devonian rocks. The strike-

subparallel population occasionally evident in Siluro-Devonian rocks may record

localized transpressional stresses. However, the lack of a widespread residual signal

indicates the absence of a second regional compression regime that was significantly

different in orientation from the first. This contrasts with recent observations from

calcite-twinning analysis in the Cantabrian orocline (Kollmeier et al., 2000).

The evidence for the transfer of stresses sufficient for twinning into very weakly

deformed continental interior cover rocks (Craddock et al., 1993; van der Pluijm et al.,

1997) has important consequences for this study. Because compression directions derived

from calcite-twinning analysis predate folding and thrusting in the region, they are

therefore the earliest indicator of compression and orogenic evolution (early docking).

This allows us to constrain the onset of deformation as post-Middle Carboniferous in age,

because rocks of this age exhibit layer-parallel twinning deformation. Evidence for

synfolding magnetizations during the early Permian (Stamatakos et al., 1996) brackets

the timing of oroclinal deformation between late Carboniferous and early Permian times
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(i.e., Alleghenian), suggesting late Carboniferous oroclinal rotation. Furthermore,

because compression directions from calcite-twinning analysis represent the earliest

tectonic signal, all deformation due to subsequent orogenic processes are recorded by the

myriad of deformation features seen in the area, such as joint patterns and folding (e.g.,

Nickelsen, 1979; Gray and Mitra, 1993; Wise, in press). Our work recognizes

compression in the earliest time followed by rotations that are not preserved in other

deformation features, with the exception of primary paleomagnetic signals (Kent and

Opdyke, 1985; Miller and Kent, 1986a,b; Kent, 1988; Stamatakos and Hirt, 1994). While

these data (Table 2) display a similar trend of rotation as the calcite-twinning data (Figure

6b), the magnitude of rotation appears to be less than that documented in this study.

Nonetheless, these data document a similar change in magnetic direction for this segment

of the orocline, commensurate with a change in strike that falls within the calcite data

range. It is implicit that other paleomagnetic and structural data with syndeformational

acquisition only preserve a partial record of deformation.

We attempt to integrate all available data into a single evolutionary model for the

belt (Figure 8). The acquisition of primary magnetization is associated with the

deposition of clastic and carbonate rocks in Paleozoic times along the passive margin of

Laurentia. Upon collision of Laurentia with Africa, calcite in units as young as mid-

Carboniferous become twinned in a dominantly uniform, parallel stress field, a pattern

also preserved in foreland carbonates. Strain-hardening locks the initial stress direction as

a passive marker in carbonate strata. Next, vertical axis rotations of ~60 displace both

the primary magnetic signal and paleostress directions recorded in calcite, providing the

bulk of rotations evident in present day. When folding begins prior to the early Permian,
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regional folds with curved axial surfaces form in their present orientation, following the

structural anisotropy imposed by the earlier rotation. Primary curvature explains both the

absence of tangential compression or extension (Wise, in press) and limited rotation that

is preserved in remagnetized rocks (Gray and Stamatakos, 1997). At the same time,

kinematic patterns diverge from their original parallelism to follow the regional pattern of

folding. During folding in the early Permian, a secondary (re-) magnetization progresses

from the hinterland to the foreland, producing a post-folding magnetization in hinterland

folds, a pre-folding magnetization in the, as of yet unfolded, but rotated foreland, and a

syn-folding pattern in between (Stamatakos and Gray, 1997). As this fold-related pattern

or remagnetization postdates rotation, the past interpretations requiring complicated

deformation scenarios are significantly simplified.

Finally, foreland sites from this study and others (Engelder, 1979a and b) suggest

convergence to the northwest (present-day coordinates), implying a dextral strike-slip or

transpressional regime in the northern segment of the salient and a left-lateral

transpressional regime for the southern segment of the Appalachian belt in late

Carboniferous times. While residual strike-parallel compression directions in northern

salient localities can be attributed to their dextral strike-slip regime, residual directions in

the southern part of the salient are more complex. The residual population is more clearly

evident in southern localities and shows more scatter, and together with the pattern of

along-strike folding that characterizes the region (doubly-plunging anticlines and

synclines) supports the concept of a strong transpressional regime for this southern

segment of the salient. Comparison of compression directions from within the orocline to

those in the foreland yields a close match with the southern limb, implying that this limb
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was pinned while the northern segment of the salient accommodated most of the rotation

in agreement with previously paleomagnetically-determined rotations in the salient (Van

der Voo, 1993, p.79). We attribute this pattern to the northerly cratonic presence of

Precambrian rocks, the Adirondacks and Reading Prong, which acted as a barrier to

northward movement, creating today's Pennsylvania salient. We speculate that lateral

variations in wedge thickness as documented by previous workers (Macedo and Marshak,

1999) may also have played a part in the earlier vertical-axis rotations, controlling the

development of the structural anisotropy along which folding progressed to produce the

curvature in the salient visible today. This influence of basin location and geometry has

implications not only for the entire Appalachian chain, showing a series of salients and

reentrants, but also to oroclinal belts elsewhere where primary rotations remain to be

documented.

Conclusions

Calcite-twinning analysis provides an independent dataset to examine the

evolution of the Pennsylvania salient. We have documented a 600 rotation of paleostress

directions within the salient, compared to a dominantly uniform stress field preserved in

the neighboring foreland and other mid-continental sites. The traditional definition of an

orocline is difficult to apply to the salient. Strictly speaking, rotation is of secondary

origin, yet the main rotation precedes regional folds, which are curved but unrotated.

Instead the belt is better described by a temporally separate evolutionary model of

rotation and folding that is able to incorporate new and previously available data. Since

convergence directions in the foreland more closely match those of the southern limb of
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the salient, we suggest that most of the rotation was accommodated in the northern limb

as previously suggested by paleomagnetic studies. Furthermore, the north-northwest

convergence implies a dextral transpressional regime in this northern segment of the

salient and a sinistral regime for the southern segment of the Appalachians. We propose

that the rigid cratonic promontory of the Adirondacks and Reading Prong caused

rotations, while additionally affected by the lateral variations in sedimentary thickness

discussed by others. The Pennsylvania salient, therefore, accommodates the difference in

style of Alleghenian deformation between the impinged northern segment and the more

mobile southern and central segments of the Appalachians.
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Fig u re 1. Generalized map of study area, where the Pennsylvania salient follows the
outline of the Valley and Ridge province. Stars indictate sampling sites for this study, and
province boundaries are schematic.
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Figure 2. Representative photomicrograph showing twinned calcite grains in plane-
polarized light, characterized by single or multiple twin sets and thin twins indicating
low-temperature conditions. Width of view is approximately 1 mm.
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Twinned Calcite Grain
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c: Crystallographic c-axis
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g: Twinning glide direction
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Figure 3. a) A calcite grain with a single e-twin and the compressive (C) and tensile (T)
stress axes oriented most favorably to produce twinning (oriented 450 to the e-twin
plane). The geometric relation of e-twins to c-axis is fixed. b) The same arrangement as
shown in Figure 3a illustrated in a lower-hemisphere equal-area projection, relating the
stress orientations to the crystallography. c) All three possible e-twin planes and their
poles are represented.

(From Kollmeier et al., 2000)
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Figure 4. Equal-area lower-hemisphere plots of sample results used in this study

(unusable and residual results are not shown). Contoured compressive stress axes (small

solid circles) are shown as well as the principal stress and strain axes computed using the

Strain99 program after the method of Groshong (1972). All data are represented in

present-day field coordinates with bedding included. Other symbols: open square -G3,
open triangle - 92, open circle - al; filled square - e3, filled triangle - e2 , filled circle -

el.
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Fi ure 5. Geographic distribution of tilt-corrected paleostress azimuths (dip-independent)
represented by the long direction of bars plotted with respect to geographic north. Bars
are shaded according to sample age; dark gray for Cambro-Ordovician, black for Siluro-
Devonian, and light gray for all younger, foreland sites. Sites beginning with the "TE"
designation are from Engelder (1979a and b). The PA salient is represented by the
distribution of limestone units; light grays represent Cambro-Ordovician strata, while
blacks represent Siluro-Devonian strata. Site locations are denoted by circled stars - RV
sites are labelled but do not have plotted directions, while other unusable sites carry no
designation.
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Figure 6a. Calcite stress direction as a function of distance along the thrust front.
Cambro-Ordovician sites and Siluro-Devonian sites are distinguished by different
symbols, and show no credible difference in rotation. The trendline shown is a simple fit
to the combined dataset. Standard error of the slope is 0.049, with a t-value of 4.3,
indicating significance of the data set at the .001 level (see text for details).

25



225

o Paleozoic calcite data Baselined Rep. Strike

* Baselined Rep. Strike y = 0.21x + 123

200 A Paleomagnetic results R2 = 0.88

175 -

SAA A Oo
L4 Paleozoic calcite data

y = 0.21x + 123
O O R2 =0.48

125 o
O

100
0 50 100 150 200 250 300

Distance along front from SW (km)

Figure 6b. As above, but including measurements of representative strike and
paleomagnetic data for comparison. The trendline through baselined strike is shown and
coincides with the trendline of raw data. Paleomagnetic data is summarized in Table 2.
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Figure 7. Moving window average analysis of combined calcite paleostress directions,
using n=3 (diamonds) as a function of distance along thrust front. Representative strike
along the thrust front is plotted schematically with a y-axis shift of 990 for comparison
(squares). Best fit lines for both data are shown and fully overlap. The arbitrary value of
990 is used solely because it causes the y-intercepts to coincide and allows for a better
visual comparison of the slope.
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Figure 8. Conceptual model of the evolution of the Pennsylvania salient. After initial
collision locks the original paleostress direction through calcite-twinning, vertical axis
rotations displace these directions along with primary magnetic signals clockwise in the
north and counter-clockwise in the south, with a larger magnitude of rotation in the north.
Rotations are induced by lateral variations in stratigraphic thickness as well as
impingement upon a rigid cratonic block to the north. Folding and remagnitization occur
last, with the present-day salient developing in place along previously defined structural
anisotropies.
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Site Lat Lon Azimuth Source

Bloomsburg, PA 41.0 -76.45 186 Stamatakos & Hirt, 1994
Watsontown, PA 41.1 -76.80 183 Stamatakos & Hirt, 1994
Milton, PA 41.0 -76.85 183 Stamatakos & Hirt, 1994
Mt. Union, PA 40.4 -77.85 157 Stamatakos & Hirt, 1994
Cumberland, MD 39.7 -78.70 147 Stamatakos & Hirt, 1994
Hancock, MD 39.7 -78.40 165 Stamatakos & Hirt, 1994
Danville, PA* 40.9 -76.7 178 Stamatakos & Hirt, 1994
Round Top, MD* 39.6 -78.3 166 Stamatakos & Hirt, 1994
D-I* 39.7 -78.1 165 Kent, 1988
J-L, Q-S* 40.9 -76.5 178 Kent, 1988
0, P* 41.0 -76.7 182 Kent, 1988

Table 2. Summary of paleomagnetic data presented in Figure 6b. Latitude and longitude
are taken from Stamatakos & Hirt, 1994, Table 1, if available. Sites designated "*" have
estimates of latitude and longitude based on the other six sites as well as Stamatakos &
Hirt, 1994, Figure 1. Azimuth is taken from Stamatakos & Hirt, 1994, Table 3, modified
from stratigraphic declination to lie in the southern quadrants.
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Appendix I.

Addendum to Manuals for Calcite Twinning Strain Analysis and Interpretation by
John H. Harris, M.Sc. December, 96 and
John M. Kollmeier, M.Sc. December, 99.

Philip Ong

Contents

Introduction
I. Sample collection and preparation
II. Optical determination of the c-axis and pole to e-plane of calcite
III. Strain analysis using the CSG22 program
IV. Interpretation and modification of strain analysis
V. Paleostress estimates using calcite twinning data (no additions)

Introduction

This addendum follows up on appendices written by both Harris and Kollmeier,

previous U of M calcite-twinning analysis (CTA) students. It provides both clarifying and

synthesizing comments building on the previous instructions in an attempt to produce a

complete instruction set for CTA, and thus must be used in the context of the previous

work.

I. Sample collection and preparation

In this project, only one thin section was made for each site (as opposed to

orthogonal sections), with the results showing sufficient accuracy. Care was taken to take

into account all rotations of the data from collection in the field to microscope analysis.

Namely, this involves: 1) taking the care to polish sample cores as near to orthogonal to

the core as possible, so as produce a thin section exactly perpendicular to the core; and 2)
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measuring any discrepancy between alignment of the core trend direction and the long

axis of the slide in order to correct for it later through data rotation.

II. Optical determination of the c-axis and pole to e-plane of calcite

Before any measuring is done, the microscope should be cleaned and checked that

all the parts are in alignment, in particular the two polarizers and any of the many

graduated mounts of the universal stage. Any misalignment will cause a systematic error

in the data collection.

When measuring the c-axis, the correct extinction angle for a calcite grain is

almost always the one in which the twin lamellae make an acute (small) angle with the

optical vertical. If more than one twin set exists in the grain, then the optical vertical will

lie somewhere within the acute angle between the two twin sets at the proper extinction.

Developing a consistent method utilizing this fact can save many hours of scope-work.

III. Strain analysis using the calcite strain gauge CSG22 program

The program described in previous work seems to be the same used in this

project, except that the version used here is named "Strain99.exe". Unlike previous

workers, no rotations were done using this program due to warnings of possible bugs.

Instead, all the data was exported and manipulated using one of many stereonet

programs, the best of which has been SSWIN because of its interface and versatility.
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IV. Interpretation and modification of strain analysis

We adopt the terminology used by Kollmeier, naming both expected values (EVs)

and residual values (RVs). Distinction between the two populations greatly helped this

project, as it eliminated a lot of "stray" data. The key is to make use of the sample(s) with

the highest percent RVs to determine two coexisting populations within the same site,

and then categorize the dominant (EV) populations of all other sites within that context.

Additionally, bulk analyses on RV populations with a small number of measurement

were used, with the knowledge that they carry a larger error, to confirm the presence of

multiple populations within the data. While analysis of n>17 or optimally n>20 provides

the most satisfactory trade-off in measurement versus error, analysis of n<17 was found

to be accurate within 20-25 degrees on a few test cases, and in this context can still be

used to distinguish between populations with high angle or nearly orthogonal trends. The

presence of these orthogonal populations in this dataset also leads the question of whether

two compression events are really necessary to produce orthogonal populations - further

study of this phenomenon would be welcome in order to quell any doubts.

Further data cleaning can be done by plotting and contouring the compression

axes for each measurement and comparing the results against the bulk stress tensor

produced by the Strain99 program. In cases where compression axes showed no pattern,

the result was deemed inadequate and dismissed. There are several sites in which the

contour patterns seem to produce better results than the output tensor - I speculate that

contouring has not been widely incorporated into the procedure before because of the

lack of software and computing power to make it an easy task - and in the future, perhaps

contouring results can be better incorporated into the analysis.
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We interpret a lot of scatter in the data to be due to grain-scale rotations. In

principle, data swaths that lie along great circles at high angle to bedding might be

extrapolated to result from rotations given a single compression event, which with care

might be extracted through manipulation of the data. This might render some sites with

steep to overturned bedding more informative, as together with progressive unfolding,

they may yield the results of a steady compression direction acting on steadily tilting

beds.

V. Paleostress estimates using calcite twinning data

No additions.
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Appendix II.

AMS analysis of carbonates of the Pennsylvania salient.

Philip Ong

Introduction

In addition to calcite-twinning analysis, the anisotropy of magnetic susceptibility

(AMS) was measured using a Kappabridge machine on a minimum of 6 specimens for

every site sampled (results on the following pages). Each specimen is measured in 15

different orientations and fit using a least-squares regression to yield both specimen and

site averages. In addition, we measured the bulk susceptibility of representative

specimens on an SI2 machine both at room temperature and in liquid nitrogen in order to

constrain the magnetic mineralogy.

AMS measurements provide fabrics for 35 sites along the frontal edge of the salient.

Most often the minimum susceptibility axis corresponds to the direction yielded by

calcite twinning analysis and is taken as the tectonic transport direction, although

occasionally intermediate or maximum axes display a closer match. The ratios of low-

temperature to room-temperature measurements of bulk magnetic susceptibility show

variation around 1 on positive susceptibility measurements, suggesting magnetite of

varied grain size as the primary magnetic carrier. Inferred transport directions after

bedding correction show a similar pattern of rotation with change in regional strike along

the length of the salient.

These results are not readily used because of the difficulty in consistently determining

the proper magnetic axis that would correspond to a shortening direction obtained from

calcite. Complications include inversion of axes by diamagnetic calcite and complex
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magnetic mineralogies that vary from sample to sample, even within sites, that render

generalizations across samples and sites impossible. All conceived plots of the data -

Flinn, P' vs T, P' vs K, T vs K, for example - yielded no clear pattern that might have

helped the endeavor. Substantial future work on the mineralogy of these rocks would put

the following results in context and allow for a correlation between AMS results and

calcite-twinning results. In addition to the results presented here in tabular form, these

data are available in electronic format along with a number of different plots of analyses

and processing programs.
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Sample T P' K kl k2 k3 kl/k2 k2/k3 kmax kint kmin

Al-1
A1-2
Al -3
A1-4
A2-1
A2-2
B1-1
B1-2
B2-1
B2-2
B3-1
B3-2
C1-1
C1-2
C2-1
C3-1
C4-1
C4-2
D1-1
D1-2
D2-1
D2-2
D3-1
D3-2
E1-1
E1-2
E2-1
E2-2
E3-1
E3-2
F1-1
F2-1
F2-2
F3-1
F4-1
F4-2
G1-1
G1-2
G2-1
G2-2
G3-1
G3-2

0.309
0.136

0.1
0.11

-0.055
0.541
0.535
0.616
0.77

0.324
0.781
0.805

-0.349
-0.49

-0.901
-0.375
-0.004
-0.379
0.178

-0.031
-0.185
-0.189
-0.155
0.314
0.666
0.496
0.598
0.432
0.716
0.658
0.176
-0.06

-0.062
0.909

-0.126
0.365

-0.674
0.066
0.566
-0.54
0.197
0.593

1.036
1.044
1.038
1.036
1.043
1.052

1.03
1.032
1.023
1.023
1.037
1.033
1.086
1.096
1.041
1.043
1.032
1.039
1.044

1.03
1.049
1.045
1.042
1.043
1.037
1.038
1.034
1.034
1.034
1.039

1.03
1.03

1.029
1.027
1.029
1.025
1.019
1.012

1.03
1.032
1.037
1.051

117.93
156.09
163.09
152.78
169.49
146.97
214.22
193.95
155.81
147.76
248.86
232.05

90.45
84.87

68
47.23
61.12
70.92
52.22
56.75
69.9

60.75
51.75
44.04

148.94
131.83
130.93
137.66
141.47
146.35
43.56
53.16
53.42
75.21
67.89
66.86
25.03
35.54
49.61
48.71
49.25
34.59

1.0157
1.0205
1.0179
1.0172
1.0215
1.0199
1.0114
1.0119
1.0079
1.0099
1.0124
1.0107
1.0453
1.0519
1.0231
1.0233
1.0158
1.0211
1.0203

1.015
1.0253
1.0232
1.0217
1.0185
1.0131
1.0151
1.0128
1.0139
1.0118
1.0141
1.0136
1.0153
1.0145
1.0082
1.0149
1.0107
1.0105

1.006
1.0112
1.0176
1.0167
1.0189

1.0035
1.0018
1.0011
1.0012
0.9991
1.0086
1.0049
1.0061
1.0054
1.0024
1.0086
1.0078
0.9901
0.985

0.9893
0.9947
0.9999
0.9952
1.0024
0.9996
0.9969
0.9971
0.9977
1.0042
1.0074
1.0059
1.0063
1.0046
1.0073
1.0079
1.0016
0.9993
0.9993
1.0071
0.9987
1.0029
0.9961
1.0003
1.0052
0.9946
1.0022
1.0091

0.9808
0.9777

0.981
0.9816
0.9795
0.9715
0.9837
0.9821
0.9867
0.9877
0.979

0.9816
0.9645
0.9631
0.9876
0.982

0.9843
0.9837
0.9773
0.9854
0.9778
0.9797
0.9805
0.9774
0.9796

0.979
0.9809
0.9815
0.9809

0.978
0.9847
0.9854
0.9862
0.9847
0.9864
0.9864
0.9933
0.9937
0.9836
0.9878
0.9811
0.972

1.012157449
1.0186664

1.01678154
1.015980823
1.022420178
1.011203649
1.006468305
1.005764835
1.002486573
1.007482043
1.003767599
1.002877555
1.055751944
1.067918782
1.034165572
1.028752388

1.01590159
1.02602492

1.017857143
1.015406162
1.028488314
1.02617591

1.024055327
1.014240191
1.00565813

1.009146038
1.006459306
1.009257416
1.004467388
1.006151404
1.011980831
1.016011208
1.015210647
1.001092245
1.016221087
1.007777445

1.01445638
1.005698291
1.005968961
1.023124874

1.01446817
1.009711624

1.023144372
1.024649688
1.020489297

1.0199674
1.020010209
1.038188369
1.021551286
1.02443743

1.018952062
1.014883062
1.030234934
1.026691117
1.02654225

1.022739072
1.001721345

1.01293279
1.015848827
1.011690556
1.025683004
1.014410392
1.019533647
1.017760539
1.01754207

1.027419685
1.02837893

1.027477017
1.025894587
1.023535405
1.026914059
1.030572597
1.017162588
1.014105947

1.01328331
1.022748045
1.012469586
1.016727494
1.002818887
1.006641844
1.021960146
1.006883985
1.021506472
1.038168724

61,32
64,29
61,21
59,19
59,59
40,38
261,0
76,6
343,80
40,73
88,80
63,83
84,29
77,28
86,20
81,14
89,3
91,11
64,31
58,29
74,31
73,31
77,28
77,30
225,29
59,2
176,51
193,43
181,48
195,40
53,15
58,25
62,14
76,4
61,4
59,17
239,11
222,10
42,8
234,7
59,20
289,49

177,34 301,39
181,40 310,37
167,35 306,48
161,32 303,52
183,19 281,24
186,47 296,18
1,10 169,80
337,57 170,33
74,0 164,10
255,14 163,9
252,9 343,3
261,7 171,2
246,60 350,8
248,61 345,4
221,63 349,18
315,67 175,18
183,60 357,30
201,60 355,27
157,6 257,59
152,7 254,60
176,20 294,52
173,16 286,55
175,16 292,57
179,19 297,53
94,50 330,25
153,59 327,31
72,11 334,36
81,21 333,39
72,17 328,38
79,28 324,37
292,62 150,23
304,41 170,39
312,55 160,32
343,42 171,48
323,64 153,25
303,55 159,29
139,41 341,47
328,57 126,32
294,65 135,23
355,77 143,11
299,55 160,28
50,25 156,31
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Sample T P' K k1 k2 k3 k1/k2 k2/k3 kmax kint km in

H1-1
H1-2
H1-3
H2-1
H3-1
H4-1
11-1
12-1
13-1
13-2
14-1
14-2
J1-1
J2-1
J2-2
J3-1
J4-1
J4-2
K1-1
K2-1
K3-1
K3-2
K4-1
K4-2
L1-1
L1-2
L2-1
L2-2
L2-3
L3-1
M1-1
M1-2
M2-1
M2-2
M3-1
M3-2
N'4-1
N'4-2
N'5-1
N'5-2
N'6-1
N'7-1
01-1
01-2
02-1
02-2
03-1
03-2

0.044
-0.337
-0.201
0.284
0.132
0.497
0.399
0.162
0.536

-0.659
0.222
0.136
0.357
0.571
0.372
-0.52

-0.258
-0.081
-0.843
-0.043
-0.138
-0.127
-0.855
-0.698
-0.549
-0.606
-0.233
-0.672
-0.708
0.004

-0.082
0.158

-0.299
-0.068
0.048
-0.06

-0.848
-0.557
-0.517
-0.381
0.589

-0.594
0.649
0.563

-0.454
-0.246
0.266
0.594

1.069
1.053
1.049
1.076
1.077
1.059
1.018
1.016
1.012
1.029
1.022
1.021
1.034
1.036
1.042
1.044
1.036
1.035
1.056
1.055
1.049
1.052
1.062
1.059
1.051
1.055

1.09
1.066
1.066
1.061
1.087
1.079
1.068

1.07
1.077
1.081
1.055
1.042
1.011
1.024
3.259
1.025
1.032
1.036
1.032

1.04
1.035
1.027

141.62
189.17
140.65
137.78
87.28

144.32
220.11
208.99
211.39
169.85
142.96
141.31
137.25

69.7
122.12
131.75
62.02
66.12

171.12
125.67
128.04
127.66
134.49
160.27

17.54
20.91
25.13
26.05
42.19
29.34

354.97
297.59
237.4

291.46
280.2

267.52
7.59

11.43
36

27.96
-0.36

20.19
80.65
81.12

128.51
130.84
88.49
98.37

1.0328
1.0283
1.0257
1.033

1.0356
1.023

1.0077
1.0073
1.0047
1.0165
1.0099
1.0097
1.0144
1.0136
1.0177
1.0242
1.0193
1.0179
1.0317
1.0271
1.0248
1.0263
1.0351
1.0333
1.028

1.0304
1.0465
1.0366
1.0369
1.0296
1.043

1.0359
1.0362
1.035

1.0369
1.0401
1.0309
1.0232
1.0062
1.0129

-0.4621
1.0138
1.0117
1.0136
1.0175
1.0209
1.0156

1.01

1.0006
0.9941
0.9966
1.0064
1.0028
1.0089
1.0023
1.0008
1.002
0.994

1.0016
1.0009
1.0038
1.0063
1.0049
0.9928
0.9968
0.999
0.986
0.999

0.9976
0.9977
0.9844
0.9873
0.9912
0.9897
0.9927
0.9865
0.9858
0.9998
0.9972
1.0035
0.9931
0.9981
1.0007
0.9979
0.9863
0.9927
0.9982
0.9971

-1.1239
0.9954
1.0064
1.0062
0.9953
0.9967
1.0029
1.0049

0.9666
0.9775
0.9777
0.9606
0.9616
0.9681
0.9899
0.9919
0.9933
0.9895
0.9885
0.9894
0.9818
0.9801
0.9774

0.983
0.9838
0.9832
0.9822
0.9739
0.9775
0.976

0.9805
0.9794
0.9808
0.9799
0.9607
0.977

0.9773
0.9706
0.9599
0.9606
0.9707
0.9669
0.9624
0.9619
0.9827
0.9842
0.9956

0.99
-1.414
0.9908
0.9819
0.9801
0.9872
0.9824
0.9815
0.9851

1.032180692
1.034402978
1.029199278
1.026430843
1.032708416
1.013975617
1.005387609
1.006494804
1.002694611
1.022635815
1.008286741
1.008792087
1.010559872
1.007254298
1.012737586
1.03162772

1.022572231
1.018918919
1.046348884
1.028128128
1.027265437
1.028665932
1.051503454
1.046591715
1.037126715
1.041123573
1.054195628
1.050785606
1.051836072
1.029805961

1.0459286
1.032286996
1.043399456
1.036970243
1.036174678
1.042288806
1.045219507
1.030724287
1.008014426
1.015845953
0.411157576
1.018485031
1.005266296
1.007354403
1.022304833
1.024280124
1.012663276
1.005075132

1.03517484
1.016982097
1.019331083
1.047678534
1.042845258
1.042144407
1.012526518
1.008972679
1.008758683
1.004547751
1.013252403
1.011623206
1.022407822
1.026731966
1.028135871
1.009969481
1.013214068
1.016069976
1.003868866
1.025772667

1.02056266
1.022233607
1.003977562
1.008066163
1.010603589
1.010001021
1.033309045
1.009723644
1.008697432
1.030084484
1.038858214
1.044659588
1.023076131
1.032268073
1.039796342
1.037425928
1.003663376
1.008636456
1.002611491
1.007171717
0.794837341
1.004642713
1.024951624
1.026629936
1.008205024
1.014556189
1.021803362
1.020099482

246,11
256,4
77,4
83,7
249,7
266,20
283,29
283,38
281,19
1,49
4,68
349,68
300,47
91,27
284,44
285,41
255,9
74,8
327,53
304,64
336,66
342,59
336,61
338,57
75,7
82,10
72,10
74,5
76,4
70,8
86,21
91,18
88,4
86,3
77,10
69,17
48,23
43,26
249,9
232,21
40,17
280,28
96,29
116,36
266,1
249,19
137,41
155,47

128,67
160,54
170,40
183,54
148,57
162,35
42,41
45,35
31,45
118,22
274,0
94,6
67,30
262,63
105,46
34,20
130,74
267,82
125,35
67,14
243,1
247,3
228,10
228,12
168,22
278,80
172,44
168,36
188,80
170,50
259,69
245,70
312,84
338,79
273,80
245,73
140,7
139,11
345,34
323,4
141,30
22,22
211,36
233,31
175,37
139,46
252,26
263,16

340,20
349,36
342,50
348,35
344,32
20,48
170,36
162,34
175,39
223,33
184,22
187,21
175,28
359,4
15,0
143,42
347,13
165,2
222,11
162,21
153,24
155,31
133,27
131,30
328,67
172,3
332,44
337,53
345,9
334,38
356,2
358,8
178,4
176,10
167,3
338,1
245,66
250,61
146,54
64,68
284,54
145,53
339,40
351,38
357,53
354,38
5,38
6,38
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Sample T P' K
P1-1 -0.757 1.05 250.02
P1-2 -0.942 1.053 245.68
P2-1 -0.795 1.06 258.81
P2-2 -0.62 1.059 247.86
P3-1 -0.616 1.06 253.56
P3-2 -0.817 1.056 242.03
Q1-1 0.444 1.018 378.79
Q2-1 -0.16 1.012 385.75
Q3-1 -0.091 1.02 346.42
Q4-1 0.937 1.013 246.3
Q4-2 0.834 1.014 222.41
Q4-3 0.59 1.016 194.39
R1-1 -0.2 1.048 34.33
R1-2 -0.192 1.047 41.7
R2-1 -0.068 1.04 40.05
R2-2 -0.466 1.034 38.86
R3-1 -0.398 1.048 43.08
R3-2 -0.121 1.045 45.02
S1-1 0.286 1.035 22.3
S1-2 -0.132 1.042 19.19
S2-1 0.627 1.048 20
S2-2 0.358 1.046 17.68
S3-1 0.38 1.031 10.89
S3-2 0.388 1.035 14.23
T1-1 -0.034 1.035 199.84
T1-2 -0.023 1.033 191.93
T2-1 -0.103 1.035 234.65
T2-2 -0.04 1.028 222.41
T3-1 0.265 1.033 230.72
T3-2 0.085 1.034 227.56
UI-1 0.059 1.048 30.92
U1-2 0.148 1.045 44.39
UI-3 0.048 1.048 32
U2-1 -0.097 1.078 32.53
U3-1 0.044 1.044 26.59
U3-2 -0.223 1.047 37.99
V1-1 -0.461 1.139 39.01
V1-2 -0.625 1.133 41.77
V2-1 -0.381 1.14 65.62
V2-2 -0.445 1.149 68.11
V3-1 -0.494 1.129 59.35
V4-1 -0.55 1.15 32.41
MC1-2A -0.245 1.009 76.18
MC1-3A -0.332 1.012 60.47
MC1-4A -0.066 1.017 57.38
MC1-4B -0.365 1.015 59.44
MC1-5A -0.235 1.013 61.28
MC1-6A -0.261 1.015 54.17
MC1-7A 0.68 1.101 365.6

k1 k2 k3
1.0282 0.9886 0.9832

1.03 0.9857 0.9844
1.0338 0.9858 0.9804
1.0328 0.9887 0.9786
1.0334 0.9885 0.9781
1.0318 0.9863 0.9819
1.0072 1.0025 0.9903
1.0062 0.9994 0.9944
1.0101 0.9994 0.9905
1.0039 1.0036 0.9925
1.0047 1.0036 0.9917
1.0062 1.003 0.9908
1.0249 0.9967 0.9783
1.0245 0.9969 0.9786
1.0201 0.999 0.981
1.0187 0.9949 0.9864
1.0259 0.9938 0.9803
1.0229 0.9981 0.979
1.0152 1.0031 0.9817
1.0216 0.998 0.9804
1.0175 1.0091 0.9734
1.0194 1.0051 0.9754
1.0132 1.0038 0.983
1.0148 1.0043 0.9809
1.0173 0.9995 0.9832
1.0163 0.9997 0.984
1.0178 0.9987 0.9835
1.0139 0.9996 0.9865
1.0147 1.0028 0.9825
1.0164 1.0009 0.9828
1.023 1.0007 0.9763

1.0211 1.002 0.9769
1.0234 1.0006 0.9761
1.0389 0.9971 0.964
1.0212 1.0005 0.9783
1.0247 0.9964 0.9789
1.0736 0.9795 0.9469
1.0723 0.9745 0.9532
1.0732 0.9825 0.9443
1.0784 0.9787 0.9429
1.0691 0.9797 0.9511
1.0804 0.9742 0.9454
1.0048 0.9993 0.996
1.0066 0.9987 0.9947
1.0085 0.9996 0.9919
1.0079 0.9983 0.9938
1.0069 0.999 0.9941
1.0082 0.9887 0.9931
1.0343 1.0197 0.946

k1/k2
1.040056646

1.04494268
1.048691418
1.044604025
1.045422357
1.046132009
1.004688279
1.006804082
1.010706424
1.000298924
1.001096054
1.003190429
1.028293368
1.027685826
1.021121121
1.023922002
1.032300262
1.02484721

1.012062606
1.023647295
1.008324249
1.01422744

1.009364415
1.010455043
1.017808904
1.016604981
1.019124862
1.014305722
1.011866773
1.015486063
1.022284401
1.019061876
1.022786328
1.041921573
1.020689655
1.028402248
1.096069423
1.100359159
1.092315522
1.101869827
1.091252424
1.109012523
1.005503853
1.007910283
1.008903561
1.009616348
1.007907908
1.019722868
1.014317937

k2/k3
1.00549227

1.001320601
1.005507956
1.010320867

1.01063286
1.004481108
1.012319499
1.005028158
1.008985361
1.011183879
1.011999597
1.012313282
1.018808137
1.018700184
1.018348624
1.008617194
1.013771295
1.019509704
1.02179892

1.017951856
1.03667557

1.030449047
1.021159715
1.023855643
1.016578519
1.015955285
1.015455008

1.01327927
1.020661578
1.018416768
1.024992318

1.02569352
1.025099887

1.0343361
1.022692426
1.017877209
1.034428134
1.022345783
1.040453246
1.037967971
1.030070445
1.030463296
1.003313253
1.004021313
1.007762879
1.004528074
1.004929082
0.995569429
1.077906977

kmax
100,10
99,5
278,12
281,9
110,6
107,7
131,67
106,12
73,61
342,83
293,43
307,29
101,1
96,6
96,14
91,11
278,1
283,1
358,6
22,16
269,3
358,9
53,13
24,26
270,4
272,6
256,0
260,7
262,5
266,8
261,16
262,14
267,13
257,2
82,4
85,5
240,15
241,18
237,10
238,12
242,17
239,16
29,33
52,1
227,22
234,2
57,7
59,8
239,10

kint kmin
328,75 192,11
1,62 192,28
18,38 173,50
14,18 166,69
16,32 210,57
356,71 200,18
286,21 20,9
359,53 205,35
296,22 198,18
95,3 185,7
84,43 189,15
95,56 209,15
192,38 10,52
190,36 357,54
213,61 359,25
189,36 347,52
186,50 8,40
193,30 16,60
88,3 203,84
289,11 168,70
0,25 171,65
90,8 222,78
313,37 159,50
276,32 145,47
78,86 180,1
49,82 182,5
350,84 166,6
31,80 169,8
57,84 171,2
61,81 176,4
141,60 359,24
143,64 358,22
154,59 4,28
163,61 348,29
208,84 351,5
192,73 353,16
4,64 144,21
9,62 143,20
335,41 136,47
342,46 137,41
355,53 141,32
350,51 138,34
144,33 267,40
318,72 142,18
88,62 324,17
103,60 332,20
204,82 326,4
236,82 329,0
146,14 4,73
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Sample T P' K Sape P Kk k2 k3 kl/k2 k2/k3 ka it kikmax kint kmin

MC2-1A
MC2-1IB
MC2-2A
MC2-2B
MC2-3A
MC2-5A
MC2-6A
SDI-1A
SDI -2A
SDI1-3A
SDI 1-4A
S D 1-5A
SDI-5B
SDI-6A
SD2-1IA
SD2-1IB
SD2-2A
SD2-3A
SD2-3B
SD2-4A
SD3-1A
SD3-1IB
SD3-2A
SD3-3A
SD3-4A
SD3-4B
SD4-1A
SD4-1 B
SD4-2A
SD4-3A
SD4-4A
SD4-5A
SD5-1A
SD5-2A
SD5-3A
SD5-3B
SD5-4A
SD5-5A
SD6-1IA
SD6-1IB
SD6-2A
SD6-3A
SD6-4A
SD6-4B
SD6-5A

-1
0.635

-1
0.664
0.666

-0.277
-1

0.003
0.445

0.66
0.146
0.166
0.003
0.079

-0.328
-0.076
0.034

-0.016
-0.405
0.348
0.771
0.57

0.555
0.166

-0.361
-0.028

0.47
0.216
0.677
0.906

-0.044
0.232

-0.379
-0.634
-0.187
-0.258
-0.144
-0.622
0.274
0.357
0.583
0.608
0.299
0.187
0.476

1.02
1.059
1.042
1,059
1.072
1.054
1.017

1.01
1.021
1.012
1.012
1.007

1.01
1.025
1.031
1.021
1.022
1.017
1.037
1.031
1.134
1.121
1.125

1.03
1.052
1.046
1.076
1.043

1.04
1.046

1.04
1.048
1.016
1.085
1.082
1.095
1.083
1.079
1.093

1.09
1.084
1.088
1.091
1.058
1.063

5.54
7.14
5.28
6.16
6.23
6.37
6.41

16.42
19.7

29.79
28.89
34.13
29.9

16.61
17.67
20.55
14.98
21.02
22.84
20.95
27.01
18.78
28.81
57.61

384.86
335.49

30.5
36.05
50.22
28.06
49.31
36.47
51.15

116
142.65
151.49
149.98
132.47
285.97
317.96
347.95
319.77

32.74
33.74

368.66

1.0115
0.9889
0.9889
1.0052
1.0204
0.955
0.995

0.9971
0.9903
1.0016
0.9989
0.9972

1.005
0.9914
1.0164
1.0105
1.0106
0.9992
1.0203
1.01 33
0.9383
0.9391
0.9377

1.014
0.9957
0.9938
1.0297
0.9978
1.0003
0.9825
0.9936
1.0215
1.0025
0.9943

1.042
1.0493
0.9844
1.0438
0.9924
0.9953
1.0307
1.0316
0.9568
0.9713
1.0246

0. 9943
1.0156

1.024
1.0206
1.0127
1.0249
1.0025
1.0029
1.0073

1.012
0.9989

1
1

1.0115
0.9967
0.9994
1.0002
0.9924
0.9951
1.0034
1.0406
1.0431
1.0419
1.0016
1.0037
1.0084
1.0106
0.9859
0.9937
1.0096
0.9916
1.0034
0.9997
1.0127
0 .9946
0.9916
1.0143
0.9847
0.9987
1.0027
1.0144
1.0157

1.031
1.0235

1.009

0. 9943
0.9675
0.988

0.9678
0.9669
0.9801
1.0025

1
1.0024
0.9952
1.0022
1.0028
0.995

0.9872
0.9869
0.9901
0.9892
1.0083
0.9846
0.9833
1.0212
1.0177
1.0204
0.9845
1.0006
0.9776
0.9597
1.0163

1.006
1.0079
1.0148
0.9751
0.9978
0.993

0.9634
0.9591
1.0013
0.9714

1.009
1.002

0 .9549
0.9528
1.0121
1.0052
0.9663

1.017298602
0.973710122
0.965722656
0.984910837
1.007603436
0.931798224
0.992518703
0.994216771
0.983123201
0.98972332

1
0.9972

1.005
0.980128522
1.019765225
1.011106664

1.01039792
1.006852076
1.025324088
1.009866454
0.901691332
0.900297191
0.899990402
1.012380192
0.992029491
0.985521618
1.018899664
1.01207019

1.006641844
0.973157686
1.002016942
1.018038669
1.00280084

0.981830749
1.04765735

1.058188786
0.970521542

1.06001828
0.993691799
0.992619926
1.016068612
1.015654229
0.928031038
0.948998534
1.015460852

1
1.049715762
1.036437247
1.054556727
1.047367877
1.045709621

1
1.0029

1.004888268
1.016881029
0.996707244
0.997207818
1.005025126
1.024615073
1.009930084
1.009392991
1.011120097
0.984230884
1.010664229
1.020441371
1.018997258
1.024958239
1.021070169
1.017369223
1.003098141
1.031505728
1.053037408
0.970087573

0.98777336
1.001686675
0.977138352
1.029022664
1.001904189
1.019838872
1.032385302
1.033885935
1.012983122
1.013691579
0.989791873
1.000698603

1.06231019
1.066015953
1.018674044
1.018205332
1.044189175

21,43
35,27
203,0
23,0
8,49
220,12
77,13
207,4
232,10
49,17
199,5
150,51
82,4
239,8
211,37
209,35
232,24
206,41
261,86
7,27
354,5
341,4
167,3
340,4
2,18
359,19
57,18
61,13
224,10
86,33
54,12
50,5
260,5
124,43
119,43
122,43
125,38
119,36
289,19
284,23
290,23
287,12
99,10
96,5
294,8

133,22 242,39
155,45 286,33
113,88 293,2
113,66 293,24
212,38 112,12
328,55 122,32
307,70 171,15
298,15 104,74
139,15 356,72
317,26 213,72
100,63 292,26
59,1 328,39
180,63 350,27
331,17 126,71
4,50 111,13
336,41 95,30
12,59 134,18
59,44 312,17
26,2 116,3
241,49 112,28
263,6 122,82
71,2 192,85
257,4 34,85
250,3 127,85
141,67 268,15
111,48 255,36
170,50 314,34
175,61 325,26
117,58 320,30
181,8 283,56
167,62 318,25
151,65 318,25
155,71 351,18
12,22 263,39
18,11 277,45
25,7 289,46
19,20 268,45
227,24 344,45
73,67 194,12
79,65 190,10
78,63 194,13
108,78 17,0
8,6 245,78
186,4 314,84
39,64 200,24
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Sample T P' K k1 k2 k3 k1/k2 k2/k3 kmax kint kmin

SD7-1A
SD7-1B
SD7-2A
SD7-3A
SD7-4A
SD7-5A
SD9-1A
SD9-1B
SD10-1A
SD10-1B
SD10-2A
SD10-2B
SD10-3A
SD10-3B
SD11-1A
SD11-1B
SD11-2A
SD11-2B
SD11-3A
SD11-3B
SD12-1A
SD12-2A
SD12-3A
SD12-4A
SD12-5A
SD12-5B
SD12-5C
SD13-1A
SD13-2A
SD13-2B
SD13-3A
SD13-4A
SD13-5A
SD14-1A
SD14-1B
SD14-2A
SD14-2B
SD14-3A
SD14-3B
SD14-3C
SD15-1A
SD15-1B
SD1 5-2A
SD15-3A
SD15-3B
SD15-4A
SD15-4B

-0.475
-0.611
-0.162
-0.394
-0.563
-0.617
0.243
0.648

-0.329
-0.389
-0.869
0.147
-0.44

-0.604
1

-0.324
-0.212
0.534

0.21
-0.863
-0.031
-0.212
-0.532
-0.338
-0.373
-0.605
0.276

-0.745
-0.899
-0.27

-0.013
-0.298
-0.269
-0.301
-0.091
-0.957

-1
-0.502
-0.733
-0.183
0.468
0.005

-0.093
0.104

-0.364
0.545
0.305

1.033
1.033
1.038
1.048
1.054
1.053
1.023
1.086
1.221

1.25
1.031
1.057
1.274
1.177

1.03
1.045
1.078
1.093

1.11
1.113
1.023

1.04
1.06

1.021
1.018
1.014
1.019
1.013
1.033
1.021
1.016
1.042
1.033
1.094
1.092
1.115
1.048
1.072
1.108
1.048
1.023

1.02
1.024
1.058
1.067

1.1
1.095

85.19
118.82
101.41
113.79
89.68

119.23
26.57
13.28

1.94
1.35
4.92
5.54
1.04
1.31

-7.48
-6.53
-3.81
-3.64
-2.31
-2.41

146.76
87.06

77
73.14
83.29
93.32
67.61

116.06
126.72
118.81
109.79
144.88
137.18

7.15
7.43
6.34
6.93

7.1
7.16

8.7
-10.36

-9.79
-8.39
3.94
3.97

40.09
34.86

1.0175
1.0186
1.0155
1.0239

1.03
1.027

1.0078
1.03

1.1111
1.1263
1.0179
1.0265
1.1386
1.0944
-0.983

-0.9895
-0.9657
-0.9506
-0.9453
-0.9598
1.0117
1.0208
1.033

1.0116
1.0098
1.0078
1.0087
1.0074
1.0187

1.011
1.0078
1.0224
1.0177
1.0493
1.0455

1.064
1.0275
1.0394
1.0595
1.0248

-0.9874
-0.9903
-0.9886
1.0271
1.0357
1.0372
1.0407

0.9868
0.9937
1.0019
0.9828
0.9904
0.9879
1.0006
1.0162
0.9755
0.9681
0.9919
1.0025
0.9614
0.9673

-1.0085
-0.9951
-0.9943
-1.0146
-1.0064
-0.9671
0.9997
0.9971
0.9899
0.9976
0.9978
0.9974
1.0017
0.9971
0.9915
0.9982
0.9999
0.9958

0.997
0.9905
0.9967

0.969
0.9863
0.9885
0.9763
0.997

-1.0034
-1

-0.9992
1.0017
0.992

1.0159
1.0085

0.9867
0.9877
0.9824
0.9933
0.9796
0.9851
0.9916
0.9538
0.9135
0.9057
0.9901
0.971

0.9001
0.9383

-1.0085
-1.0243

-1.04
-1.0348
-1.0484
-1.0731
0.9885
0.9821
0.9771
0.9908
0.9924
0.9948
0.9896
0.9956
0.9899
0.9909
0.9922
0.9817
0.9853
0.9602
0.9578

0.967
0.9863
0.9722
0.9641
0.9782

-1.0092
-1.0097
-1.0122
0.9713
0.9723
0.9468
0.9508

1.031110661
1.025057865
1.013574209
1.041819292
1.039983845
1.039578905
1.007195683
1.013580004
1.139005638
1.163412871

1.02621232
1.02394015

1.184314541
1.131396671
0.974714923
0.994372425
0.971236045
0.936920954
0.939288553
0.99245166

1.012003601
1.02376893

1.043539751
1.014033681
1.012026458

1.01042711
1.00698812

1.010329957
1.027433182
1.012823082
1.00790079

1.026712191
1.020762287
1.059363958
1.048961573
1.098039216
1.04177228
1.05149216

1.085219707
1.027883651
0.984054216

0.9903
0.989391513
1.025356893
1.044052419
1.020966631
1.031928607

1.000101348
1.006074719
1.019849349
0.989429175
1.011024908
1.002842351

1.00907624
1.06542252

1.067870826
1.068896986
1.001817998
1.032440783
1.068103544
1.030906959

1
0.971492727
0.956057692

0.98047932
0.959938955
0.901220762
1.011330298
1.015273394

1.01309999
1.006863141
1.005441354
1.002613591
1.012227162
1.001506629
1.001616325

1.00736704
1.007760532

1.01436284
1.011874556
1.031555926
1.040613907
1.002068252

1
1.016766098
1.012654289
1.019218974
0.994252874
0.990393186
0.987156688

1.03129826
1.020261236
1.072982678
1.060685738

291,86
288,73
212,64
139,82
246,73
337,76
13,3
189,39
222,32
200,58
30,11
213,13
215,29
222,21
225,3
29,0
199,2
37,63
62,53
30,12
56,11
56,8
49,6
258,12
48,7
43,15
227,7
309,8
315,3
311,20
279,12
274,14
299,11
253,14
269,1
234,25
240,18
256,1
244,17
260,1
82,45
117,0
41,38
86,34
273,49
323,18
332,22

131,4
82,62
29,26
333,8
86,16
156,14
105,17
52,42
322,15
17,32
290,43
89,67
354,53
45,69
316,10
119,80
106,58
270,17
234,37
129,37
165,59
220,82
172,79
146,59
299,69
217,75
326,50
216,21
223,29
220,2
12,14
4,2
209,2
150,42
178,42
336,24
22,68
166,22
354,49
170,14
330,21
207,75
231,52
190,20
69,39
55,6
241,3

41,1
262,28
120,1
242,2
354,5
246,0
273,72
299,23
72,54
108,1
131,45
308,19
113,20
313,1
119,80
299,10
291,32
174,20
327,4
285,51
320,28
326,2
318,9
354,28
141,20
312,2
132,39
59,67
51,61
124,70
150,72
103,76
110,79
357,45
0,48
103,54
146,13
347,68
141,36
352,76
223,38
27,15
135,5
306,49
169,12
162,71
142,68
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Sample T P' K Sm e T ' Kk k2 k3 kI1 k2 k2/k3 ka it kikmax kint kmin

SDI6-1A
SDI6-1B
SDI 16-2A
SDI 6-2B
SDI 16-3A
SDI 6-3B
SDI7-1A
SDI7-1B
SD1 7-2A
SDI 7-2B
SDI 17-3A
SDI 7-3B

-0.159
-0.11

-0.468
-0.334
-0.425
-0.378
-0.874
-0.587
-0.518
0.038

-0.155
0.152

1.078
1.077
1.048
1.05

1.045
1.03

1.029
1.032
1.028
1.025

1.02
1.024

50.65
57.92
15.72
19.23
25.89
58.77

210.07
166.81
181.09
163.83
214.68
180.27

1.0395
1.0387
1.0263
1.0266
1.0248
1.0164
1.0168
1.0178
1.0156

1.012
1.0104
1.0113

0.9956
0.9968
0.9928
0 .9945
0.9937
0.9963
0 .9924
0.9941
0 .9954
1.0003
0.999

1.0012

0.9649
0.9644
0.9809
0.9789
0.9815
0.9873
0.9908
0.998

0.9891
0.9877
0.9907
0.9875

1.044094014
1.04203451

1.033742949
1.032277526
1.031297172
1.020174646

1.02458686
1.02384066

1.020293349
1.011696491
1.011411411
1.010087895

1.031816769
1.033596018
1.012131716
1.015936255
1.012429954
1.00911577

1.001614857
0.996092184
1.006369427

1.01275691
1.008377915
1.013873418

239,7
242,4
243,4
242, 8
241,9
236,7
118,15
124,13
108,4
120,7
126,5
129,14

147,22
150,19
345,72
344,59
147,25
135,56
211,9
218,18
200,27
214,31
220,42
234,46

346,67
342, 71
152,17
147,30
351;63
330,33
331,72
0,67
11,62
18,58
31,48
27,41

Table 1. AMS results by site and specimen.
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Sample Room T In liquid N Low T meas./Room T. meas.
x 1OA^ 6 x 101-6

001-1A 107.573 100.683 0.93595
002-1A 177.345 147.848 0.833674
005-l B 112.735 147.44 1.307846
006-lA 41 .502 23.063 0.555708
007-l B 38.315 117.364 3.063135
008-lA 120.309 44.027 0.365949

009-3A 183.828 162.927 0.886301
0010-lA 120.852 72.14 0.596928
C01 1-2A 110.19 82.291 0.74681

0012-lB 22.199 37.43 1.686112

001 3-l B 235.78 117.786 0.499559

0017-IA 216.956 208.761 0.962227
0018-lA 306.138 187.999 0.614099
0019-2A 38.83 40.939 1.054314
0020-lA 23 .401 43.425 1.85569
0021-lA 181.871 201.591 1.108429
0022-IA 29.172 24.099 0.8261

0023-lA 37.968 51.27 1.350348

M1-2A 76.518 283.813 3.709101
S D2-1IA 18.401 27.732 1.507092
SD3-1IA 27.559 57.257 2.077615
SD4-1A 29.993 60.554 2.018938
SD6-1IB 259.4 151.25 0.583076
8D7-1IA 72.266 88.411 1.223411
SD8-1 A 91.584 117.528 1.283281
SD9-1IB 15.622 29.825 1.909167
SD12-1A 118.17 41.14 0.348143
SDI13-1IA 95.213 58.746 0.616996
SDI16-1IA 43.865 25.199 0.574467
SDI7-1A 170.48 130.585 0.765984

Table 2. Low-T susceptibility measurements for problem-free samples.
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