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Abstract

In an attempt to understand the global temperature distribution in the

mantle and its consequences for Earth structure we construct a model for the

instantaneous temperature field of the mantle, assuming downwelling slabs

to be the most important source of density heterogeneity and temperature

variations. We neglect the contributions due to active upwellings. We use a

model for the history of subduction derived from tectonic reconstructions

and compute the 3-D velocity field for an incompressible Newtonian fluid.

We solve the advection-diffusion equation in steady state for a spherical

shell using the finite element package ABAQUS. We choose 3000 K

temperature boundary condition at the core-mantle boundary. At the top, up

to a depth of 100 km we constrain velocities to be plate velocities and derive

the temperature boundary condition by solving the advection-diffusion

equation for lithospheric cooling. The vertical resolution in the mantle below

100 km is on the order of 145 km in the mantle except for the bottom-most

300 km. The horizontal resolution is ~5 x 5°. We recover the half-space

cooling behavior in the lithosphere and not surprisingly, the 3-D variations

in the entire mantle are dominated by the presence of slabs in regions of

long-lived subduction. We speculate on the effects on topography at the 410

and 660 km seismic discontinuities.
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1. INTRODUCTION

Knowing the three-dimensional temperature structure and distribution in

the mantle can help us gain a better understanding of Earth's interior, and

has long been a goal in mantle studies. Lateral variations in temperature

drive convective currents through their effect on density and also affect other

physical properties, such as the elastic modulus that control wave speeds.

Therefore, studying the 3-D temperature distribution of the mantle can lend

insight into mantle dynamics, mineral physics and seismology.

The one-dimensional temperature profile of the mantle (the geotherm)

has been studied extensively combining, petrological and mineral physics

evidence [e.g. Jeanloz and Morris, 1986; Stacey, 1995]. In the lithosphere,

the temperature is determined largely by conduction, modified by in situ

heat production in the crust. In the mantle, the temperature gradient is

principally the result of adiabatic compressibility, which we can compute

from knowledge of mineral physics properties, such as the Grtneisen

parameter. Figure 1 shows a possible geothermal gradient profile of the

mantle [Brown and Mussett, 1981]. In the crust, the continental temperature

gradient is shallower than the one for the oceans because the abundance of

radioactive element is higher in continents. In the convective mantle part, the
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temperature gradient is much shallower than the one above, and it cannot

greatly exceed the adiabat. At the base of the mantle, the temperature

gradient in a thin layer is again controlled by conduction. The temperature

at the base of the mantle must be continuous with that in the core across the

core-mantle boundary and is constrained by knowledge of the freezing point

of iron alloys. The thin layers at the top and bottom are referred to as

thermal boundary layers, which are commonly found in thermal convection

systems. In the presence of layered convection we would expect another

thermal boundary layer within the mantle, but evidence for this is scant. In

this study, one of our goals is to study reasonable deviations from the

geotherm.

The main goal of our work is to predict the three-dimensional

instantaneous temperature distribution of the mantle. Since there is no way

to observe the mantle temperature directly, the lateral temperature

heterogeneity is often studied by some indirect ways, usually by comparing

seismological observations to the results of mineral physics experiments or

theory. Realistic numerical mantle convection simulations may also provide

bounds on the lateral temperature structure of the mantle. However, this

remains a distant goal, given the approximations in flow parameters and
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physical properties, as well as tectonic history for most mantle convection

simulations (Tackley, 2002; Bunge, 2005).

Here, we take a different approach rooted firmly in previous work (e.g.

Lithgow-Bertelloni and Richards, 1998). First, we compute the

instantaneous flow from a density heterogeneity model of the mantle based

on the history of subduction. With these velocities, we solve the advection-

diffusion equation in steady state to compute the 3-D instantaneous

temperature distribution throughout the mantle. We analyze and discuss the

results to show that our numerical models are consistent with our prediction.

6
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2. Models and Methods

2.1 Mantle Flow Model

From the history of subduction derived from tectonic reconstructions, a

density flow model can be constructed to drive viscous flow (Ricard et al.,

1993; Lithgow-Bertelloni and Richards, 1998). For a prescribed density field,

ignoring self-gravitation, the flow in an incompressible Newtonian fluid is

governed by the equations for conservation of mass,

V"v=0 (1)

conservation of momentum

0=V. r+ f (2)

and the constitutive relation for Newtonian creep.

r = -pI+2rji (3)

where v is the velocity , p is the non-hydrostatic pressure, I is the identity

matrix, 77 is the viscosity, £ is the strain rate tensor, r is the stress tensor,

and f =.8pg is the body force, with Sp is the lateral density contrast and g is

the gravitational acceleration. By substituting the constitutive relation into

the conservation of momentum equation with the incompressibility

condition, we obtain the Stokes equation for steady state viscous flow

Vp - 7IV 2v=f (4).
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To separate the vertical and horizontal components, velocity (v,, v,, v,) and

stresses ( T', , rr, , and r,, ) are represented with spherical harmonic

expansions, with azimuthal and colatitudinal derivatives of the spherical

harmonic function, which is defined with the associated Legendre

polynomials. Substituting the expansions for velocity and stress into (1)-(3)

we reduce the problem to a set of six coupled, first-order ordinary

differential equations. By specifying six boundary values, which are no-slip

at the surface and free slip at the core-mantle boundary, the equations are

solved analytically via propagator matrices [Hager and O'Connell, 1979],

and we can obtain stresses and velocities at any point in the interior. Here

the density increasing with depth is not considered because we don't include

compressibility.

2.2 Thermal Diffusion Equation

The heat transfer equation is defined as

OT k __A (5)
-- = --- V2 T+- A5
at pC, pcP

where T is the temperature field, K is the thermal diffusivity, which is k,
PC,

k is the thermal conductivity, p is the density and C, is the specific heat

capacity at constant pressure, and A is the heat generation rate. If we

8
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consider the motion of material, we need to add the effect of the motion of

the material through the region where the temperature varies with depth.

Equation (5) becomes

KV 2 T+ A -vVT (6)
a pCi,

Where v is the three-dimensional velocity of material, and the term v -VT is

the advection-transfer term. In the special situation when there is no heat

generation, Equation (6) becomes

0 T
=W2T -v-VT (7)

This is the thermal diffusion equation with heat advection-transfer. For a

steady-state situation when there is no change in temperature with time,

Equation (7) becomes

0=KV2 T--VT (8)

This is a second-order partial differential equation, and we can solve

Equation (8) to get the three-dimensional instantaneous temperature field,

provided we already know the velocity field. The mantle flow model

described above can provide the advection-transfer velocity v . Numerical

solutions to this equation were solved with a commercial finite element

package.

9
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2.3 Finite Element Model

2.3.1 Finite Element Package ABAQUS

The finite element method (FEM), also called the finite element analysis

(FEA) is used for finding approximate numerical solutions to field problems,

usually described by partial differential equations (PDE). FEM was first

developed to solve complex elasticity, structural analysis problems in civil

engineering and aeronautical engineering in 1940s. Since then, FEM has

been developed rapidly, and it has found wide use in many science and

engineering fields. Geoscientists also use FEM to solve problems in earth

science, such as heat transfer, stress and strain, crust deformation, mantle

convection, etc.

There are many finite element software packages (both free and

proprietary) developed by companies and institutions. ABAQUS is a

commercial software package for finite element analysis developed by

SIMULIA, a brand of Dassault Systemes S.A. ABAQUS is widely used in

automotive, aerospace, and industrial product industries, as well as in

academic and research institutions due to the wide material modeling

capability and strong heat transfer solvers. We use ABAQUS to solve our

three-dimensional mantle model to get the instantaneous temperature field.
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2.3.2 Two-Dimensional Oceanic Lithosphere Cooling Model

To avoid the numerical problems caused by big range of values and

parameters, geodynamicists usually use non-dimensional analysis in

studying geodynamics problems. In order to study how to non-

dimensionalize the scale and how ABAQUS solves the heat transfer problem,

we have tried some two-dimensional models to simulate the oceanic

lithosphere cooling in ABAQUS.

In the half-space cooling model, the analytical thickness of oceanic

lithosphere can be calculated from (Turcotte and Schubert, 1985),

T-T=erf 
(9)

T-To 2x/u

where To is the surface temperature, T is the temperature beneath the plate,

y is the thickness of the oceanic lithosphere, K is the thermal diffusivity, x is

the distance from the mid ocean ridge, and u is the plate spreading velocity.

We constructed a two-dimensional model with 150km in depth, and

1000km in distance with a spreading velocity 1cm/year, so that the oldest

lithosphere is 100 million years old. In the dimensional analysis model,

thermal conductivity k is 3W/(m-" K), density p is 3000kg/m3, and specific

heat C, is 10J/(kg -K). Plate spreading velocity v is 1cm / yr = 3.17 x 10-10 m/s,

surface temperature To is 300K, the isothermal temperature beneath plates T;
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is 1600K, and the mid-ocean-ridge temperature is also set to be T; =1600K.

We run this model in a time period of 100Myr, and reproduce the results of

the analytical solution from (9) [Figure 2].

Having accurately reproduced the analytical system, we developed an

intuition for the proper scaling of velocity for our 3-D models. The longest

length distance 1000km is set to be 1, so the depth is 150/1000=0.15, and the

spreading velocity is set to be

v =- v Vx 10 =vx10 2 =3.17x102  (10)
Vr K/i 106

Non-dimensional parameters: P, ,, and p* are set to be 1. Isothermal

temperature T* is 1, and the surface temperature To* is 0.1875 = 300/1600. After

running this model for the proper corresponding time period (10OMyr), we

properly reproduced the analytical solution [Figure 3].

In our two-dimensional model, both dimensional and non-dimensional

results from ABAQUS are close to the analytical solution given by (9),

which gives us confidence that we can solve this kind of heat transfer

problem with ABAQUS. From this two-dimensional model, we also figure

out the right scaling method to convert the three-dimensional model from

dimensional to non-dimensional.

12
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2.3.3 Three-Dimensional Global Lithosphere Model

First we construct a global lithosphere model with a depth of 150km. We

use ABAQUS to solve Equation (8) with the plate velocities from the

topmost layer of the subduction history. In this model, the lithosphere is

divided into 15 layers with thickness of 10km, and each layer has the same

velocity field, in which the vertical components are very small compared to

the horizontal components [Figure 4]. Each layer has 2352 heat transfer

elements (5 x 5 degree) with convection/diffusion control, which means there

are 2354 nodes at each depth. All the mid-ocean-ridge nodes and subduction

slab nodes were picked to give proper boundary conditions [Figure 5]. All

the mid-ocean-ridge nodes and the bottom nodes at depth of 150km are

given a temperature of 1600K, and the surface nodes are given a temperature

of 300K. We also give a linear increasing temperature to the slab nodes,

300K at surface and 1600K at the bottom. Then we non-dimensionalize this

model (k*,f, p*, T * ,*) and run this in a steady state analysis with an input

of mass flow rate *for each node. This mass flow rate comes from the

subduction history model. We get the temperature distribution of the

lithosphere, which looks reasonable with the mid-ocean-ridge and

subduction slabs [Figure 6]. The heat flow at the surface is shown in Figure

13



Master Thesis Xin Nang Geology 2008 University of Michigan

7. We can find the heat flow at the mid-ocean ridge is obvious higher than

other place.

2.3.4 Three-Dimensional Global Mantle Model

We construct the mantle model from 100km to 2890km (core-mantle

boundary) with the same type of finite element and the same number of

nodes for each layer [Figure 8]. The whole mantle was divided into 28 layers

with thickness of 145km except for the top most layer and the lowermost 10

layers with a thickness of 30km each [Table 1]. The mantle flow model is an

incompressible fluid model, so it can't simulate the temperature increase due

to adiabatic compressibility. The adiabatic temperature should be added

back to the simulated results when we want to get the geothermal gradient of

the mantle. The adiabatic temperature we choose is shown in [Table 1] and

is computed from a self-consistent thermodynamic model of a pyrolitic

mantle (Xu et al., 2008). We nondimensionalize this model (k*, C, '* , fI*)

with the experience from scaling the two-dimensional oceanic lithosphere

cooling model. Boundary conditions at the top (100km) were the results

from the global lithosphere model after subtracting the adiabatic temperature

and nondimensionalizing [Figure 8c], as well as the boundary condition at

the core mantle boundary was set to be 0.25 (400K after subtracting the

14
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adiabatic temperature, and 0.25 after nondimensionlizing). We run this

model in a steady state analysis with an input of mass flow rate *for each

node [Figure 9] to get the instantaneous temperature field.
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3. Results and Discussion

We obtain the instantaneous temperature of each node in each layer of

the three-dimensional mantle model from ABAQUS. After dimensionalizing

and adding back the adiabatic temperature, results of several layers are

shown in Figure 10. Our model doesn't consider active upwellings, either

large-scale or plumes, so downwelling slabs control the flow and the

temperature. Upwellings result from return flow from the slabs. The results

confirm our expectations. We can see the regions with downwelling

subduction slabs have considerably lower temperature. The regions with

return upwelling flow have higher temperatures (eg. 500 degrees higher than

slabs at the depth of 652.5km). Not surprisingly, the hottest regions are

farthest away from the slabs, due to advection and conduction. In other

words, regions far away from slabs are cooled less than those next to them.

Our mantle distribution results represent the effect of our mantle flow model

successfully.

We also calculated the average temperature of every layer and combined

the results from both the lithosphere model and the mantle model to compute

the geotherm with depth [Figure 11]. The geothermal gradient in the

lithosphere part is nearly linear, but it is not as the same as the computed

adiabat at greater depths. One possible reason is that we are missing heat

16
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generation of radioactive elements in the lithosphere and mantle. From

previous research, the heat generation of radioactive elements is at least 47%

of the surface heat flow [Fowler, 2005]. Although the abundance of these

elements in the crust is richer than it in the mantle, the contribution of

mantle is still greater due to the large volume of the mantle. In our model,

we don't account explicity for this heat generation effect on the adiabat,

although we do account for it indirectly. Our mantle density heterogeneity

model assumes that only the top thermal boundary layer is important in

generating buoyancy. This is the case for a mantle that is primarily internally

heated, so that much of the buoyancy generating capacity goes into building

the top boundary layer. Nonetheless, others have suggested that internal

heating also results in subadiabatic temperature profiles (Jeanloz and Morris,

1987; Bunge et al., 2001), which we do not capture. Deviations in our

model may also be caused by the absence of direct active upwellings (large

scale or plumes).

It is also possible that an adiabat does not properly capture the geotherm

of the mantle, where subduction is prevalent. The 1600 K adiabat is that

typical of a normal mantle, not an average mantle cooled by slab mass

fractions as high as 30% of the total volume in the transition zone. This is

clear in our results, where besides a deeper lithosphere (because of a half-

17
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space cooling solution) we have a cooler transition zone, where slabs may

pond due to phase transitions and a viscosity increase between upper and

lower mantle (Tackley et al., 1993).

It is clear from our maps in Figure 9 that the transition zone is dominated

by the slab signal and this decreases with depth, with their presence felt as

deep as 2000 km depth. The preponderance of a slab signal in the transition

zone suggests that in the Western Pacific and Southeast Asia we should find

a thicker transition zone and in the Eastern Pacific and Northern Europe a

thinner transition zone. This is in good general agreement with

seismological studies of topography on the 410 and 660 km discontinuities

(e.g. Lawrence and Shearer, 2006).

In order to get more detailed temperature distribution and structure,

future work should include: heat generation by radioactive elements, active

upwellings, more reasonable boundary conditions (increasing the number of

nodes and having more complicated temperature distribution at both the top

and the core mantle boundary).

18
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Table 1 Depth and adiabat temperature

No. Depth (km) Radius (km) Adiabal Temperature To (K)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

100
217.5
362.5
507.5
652.5
797.5
942.5
1087.5
1232.5
1377.5
1522.5
1667.5
1812.5
1957.5
2102.5
2247.5
2392.5
2537.5
2590
2620
2650
2680
2710
2740
2770
2800
2830
2860
2890

6271
6153.5
6008.5
5863.5
5718.5
5573.5
5428.5
5283.5
5138.5
4993.5
4848.5
4703.5
4558.5
4413.5
4268.5
4123.5
3978.5
3833.5

3781
3751
3721
3691
3661
3631
3601
3571
3541
3511
3481

1657.819
1708.027
1767.660
1862.914
1928.667
1957.748
2009.695
2059.085
2106.096
2151.027
2194.410
2236.175
2277.002
2315.982
2354.614
2391.765
2430.484
2486.451
2517.539
2532.046
2540.374
2548.649
2556.864
2565.011
2573.033
2581.312
2589.533
2597.689
3005.690, , ,'
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3000 Cr

2 000

0 1000 2000 3000
Depth (kin)

Figure 1 Possible temperature profiles in the mantle. [Brown, Mussett 1981 ]
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Figure 3 Dimensional and nondimensional oceanic lithosphere cooling.

Isothermal lines show the results of dimensional (blue), nondimensional

(red), and analytical solution (green). Dimensional results and non-

dimensional results are almost the same.
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-60' - 600

-90 -90°
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Figure 5 Picked nodes of plate boundaries for setting the temperature

boundary conditions. Blue nodes represent subduction slabs, and red nodes

represent mid-ocean-ridges. All the mid-ocean-ridge nodes are given an

isothermal temperature of 1600K except the surface, the slab nodes are

given a linear increasing temperature with depth (300K at the surface and

1600K at the bottom).
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Figure 6 Three-dimensional temperature distribution of the lithosphere. (a)

at depth of 60km, (b) at depth of 100km, (c) at depth of 140km. We chose (b)

as our top boundary condition for the mantle model.
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Surface Heat Flow

0 0

Figure 7 Three-dimensional heat flow distribution at the surface. This

result is consistent with the picked nodes distribution and temperature

distribution. High heat flow (red) areas are at the mid-ocean ridges.
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(a) (b) (c)

Figure 8 Three-dimensional global mantle model by using finite element

method from 100km to 2890km, with element of 5*5 degree. (a) whole

model, (b) cross section, (c) with the surface boundary condition of

temperature at the depth of 100km.
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Interpolated Velocities Depth=1667.5km

0 30 60 90 120 150 180 210 240 270 300 330 360

60 -

60 ------ - '- - -
30
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Figure 9 Nondimensional input velocity for the global mantle model at the

depth of 1667.5km. Different from the lithosphere model, horizontal and

vertical velocity are at the same order of magnitude.
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Figure 10 Three-dimensional mantle temperature distribution. (a)-(h) are

the maps at different depth.
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