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Abstract

Using 1D seismic velocity profiles we determine whether three complementary

sets of seismic observations can be reconciled with simple models for the mantle

composition and geotherm. The profiles are founded on self-consistent

thermodynamic calculations of phase equilibria, physical properties and seismic

velocities. We explore two pyrolitic compositions. Composition EA assumes chemical

homogeneity, and composition MM regards the pyrolitic mantle as a mechanical

mixture of basalt and harzburgite. Further, we explore more than 1000 geotherms,

comprised of linear segments that represent thermal boundary layers and adiabatic

segments in the underlying convecting mantle.

Handpicked regional body wave traveltimes, fundamental mode and overtone

Rayleigh wave dispersion, and the differential traveltime between converted waves

indicate that the upper mantle beneath western North America is relatively hot. The

average temperature in the uppermost mantle beneath western North America is at

least 1100 K, a value that is consistent with heat flow measurements. The uppermost

mantle (<250km) has a relatively steep temperature increase with a gradient of at least

1.75 K/km. In the transition zone, the temperature is about 1900-2000 K. The highest

temperatures are resolved for the EA. Temperatures in the MM models are about 100

K lower, indicating the significant influence of mechanical mixing on seismic

velocities in the upper mantle.

Keywords: pyrolite, mechanical mixture, Western North America, upper mantle, seismic waves travel times
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1. Introduction

With only few geologic sites with exposed mantle rock, the study of earth's

inaccessible interior relies almost entirely on remote sensing techniques. Seismology

takes an important place in deep earth investigations. By studying the properties of

earthquake generated elastic waves, models of Earth's elastic and density structure

can be constructed. The very existence of Earth's crust, mantle and core and the

primarily layering of the mantle have largely been inferred from seismological data.

Radial symmetric, or 1D, models of Earth's seismic structure (i.e. wave speeds

and density) still play a key role in seismology and global geophysics. Beginning with

Jeffreys and Bullen (1940), ID models explain much of the complexity seen in

seismograms and indicate that, to first order, Earth's seismic structure changes only as

a function of depth. Except in the crust and uppermost mantle, lateral variations in

seismic wave speed and density rarely exceed more than a few percent (Romanowicz,

1991).

Traditionally, forward and inverse seismic modeling involves the search for a

seismic model that best matches the data without considering whether the resolved

models are physically plausible. The character of most seismic models is influenced

by the resolving power of the data, choices in parameterization, and artifacts due to

theoretical simplifications. Standard, global iD models such as AK135 (Kennett,

1995) and PREM (Dziewonksi and Anderson, 1981) are non-unique solutions to

global data and may have anomalous characteristics (e.g., the 220-km discontinuity in

PREM or the density inversion in AK135) that have uncertain geophysical origins.
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Model interpretation of seismic profiles or 3D tomographic images based on standard

1D profiles is therefore not straightforward.

Ideally, seismic data are directly modeled using physically meaningful

parameters such temperature, composition, or melt content. Recently, Cammarano et

al. (2005) have taken such approach on the global scale. They have systematically

compared global traveltimes and free-oscillation frequencies to thousand of "physical

reference models" based on simple mineral physics constraints.

We follow the approach by Cammarano et al. (2005) albeit with a number of

important differences. We analyze seismic data on a regional scale and we will

employ data types that are strictly sensitive to the upper mantle. We make new

measurements using broadband data with established techniques that enable us to

quantify measurement uncertainties.

Using theoretical profiles of seismic structure (i.e. physical reference models)

based on the thermodynamic method of Stixrude and Lithgow-Bertelloni (2005a,b)

and Xu et al. (2008), we will explore whether three complementary sets of seismic

observations can be reconciled with ID profiles. These profiles are based on

homogeneous mantle compositions and simple geotherms. For the successful models

we will determine the common physical properties.

In sections 2 and 3, we describe the geophysical setting and seismological data.

Section 4 provides background on the forward modeling problem and the modeling

set up. Results are presented in Section 5 and discussed in Section 6.
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2. Study region: the western United States

Western North America is an interesting region with a complex tectonic history

(Atwater, 1970) and anomalous geophysical properties. Broad uplift, high heat flow

(Pollack et al., 1993), thin lithosphere (Melbourne and Helmberger, 2001) and low

seismic velocities (Figure 1) (Grand and Helmberger, 1984a,b) indicate that the

temperature in the mantle is anomalously high. Diverse tectonic terrains characterize

the region, but the seismic structure in the sublithospheric mantle is within a few

percent laterally homogeneous as is evident from the uniformity of teleseismic SS

traveltime delays (Grand et al. 1984a,b) and long period surface wave dispersion

(Ritsema et al., 2004; Merrer et al., 2007). Previous analyses have suggested elevated

temperatures in the region (compared to "normal" continental regions) (Ritsema et al.,

2008), not unlike typical values for mid ocean ridges (Herzberg et al., 2007).

Dense regional seismic networks have been operating in the western United

States for more than 15 years. Combined, the Berkeley Digital Seismic Network in

northern California, operated by UC Berkeley, and TriNet in southern California,

operated by the California Institute of Technology and the United States Geological

Survey, include more than a 100 stations. Since 2004, the deployment of the

Transportable Array, one of the components of the recently launched EarthScope

project (www.earthscope.org), have resulted in the operations of more than 400 new

stations in the western United States with a stations spacing of about 70 km. The large

number of seismic stations (Figure 2) in the western United States and the broadband

waveform recording provide us the opportunity to combine array analysis of both
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high-frequency body waves and long-period surface wave in our investigations.

3. Seismic data

We analyze three data types with well-established techniques that are applicable

to large data volumes. These data types are

1. dispersion of Rayleigh waves,

2. traveltimes of the regional P and S waves, and

3. traveltimes of teleseismic P410s and P660s converted waves.

These seismic phases are sensitive primarily to seismic structure in the upper mantle

(< 700 km). Moreover, they provide complementary upper mantle constraints since

they have widely different propagations characteristics. Each uniquely constrains

absolute velocities, upper mantle and transition zone velocity gradients and the

410-km and 660-km discontinuities depths, structures attributes that depend strongly

on the structure of the upper mantle geotherm.

3.1 Rayleigh Wave Dispersion

Rayleigh waves generate the largest amplitude signals in seismograms.

Rayleigh waves propagate horizontally through the upper mantle and they are

sensitive primarily to the shear velocity. The fundamental mode Rayleigh wave

constrains the shallowest regions (0-400 km depth) of the upper mantle. The

dispersive character of the Rayleigh waves can be exploited to constrain the variation

of shear velocity with depth (Der et al., 1970; Wiggins, 1972). The longest period

Rayleigh wave penetrate deepest. Rayleigh wave with periods smaller than 50 s are
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affected to great extent by the crust while Rayleigh waves at 200 s period reach a

depth of at least 400 km (Figure 3).

Overtone Rayleigh wave are a critical part of our dispersion data set. For the

same frequency, overtones penetrate much deeper into the mantle than the

fundamental mode and thus help considerably to constrain the seismic structure

between 300-500km depth (van Heijst and Woodhouse, 1999; Ritsema et al. 2004).

We use phase velocity dispersion measurements of the fundamental and first

overtone Rayleigh wave from 14 shallow and intermediate depth earthquakes in South

America and the northwest Pacific. These data have been measured with the U-C

diagram technique (Cara, 1978) and modeled previously by (Merrer et al., 2007).

3.2 First Arriving P and S Wave Traveltimes

Regional distance (< 2000km) P and S waves turn within the upper 700 km of

the mantle (Figure 4). The derivative of travel time with distance (OT/&A), also called

the ray parameter, is the inverse of seismic velocity at the turning point of the wave

traveling a distance A. Measurements of OT/OA over a broad distance range constrain

the vertical shear and P wave velocity gradients.

For 16 earthquakes in Western North America between 2000-2008 with

magnitudes larger than 5.5, we measure traveltime curves T(A) of P waves recorded

on vertical seismograms and S waves recorded on tangential components

seismograms at more than 200 stations (Figure 2). We measure traveltimes from the P

and S wave onsets using an interactive computer program. We select highest quality
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data after visually inspecting each seismogram. Our data set has twice as many P

wave (about 1000 records) measurements than S wave (about 500 records)

measurements. Given uncertainties in earthquake location and origin time we can not

model absolute traveltimes. Hence we project the traveltimes for all earthquakes onto

a single distribution by least-squares minimization.

3.3 Teleseismic P-to-S converted wave traveltimes

P41Os and P660s waves are long range P waves that have converted to S waves

after crossing the 410-km and 660-km discontinuities beneath the seismic stations

(Figure 5). The traveltime difference between P410s and P660s depends entirely on

the average shear and P velocity in the transition zone and the depths of the 410-km

and 660-km discontinuities. This seismic observable is widely used to constrain the

transition zone structure both on a global (Chevrot et al., 1999; Lawrence and Shearer,

2006) and regional scale (Li et al., 2003; Gilbert et al., 2003; Du et al., 2006).

We use radial component seismograms between distances of 56-88 to measure

these traveltimes. The P410s and P660s signals are enhanced by slant stacking. We

align all seismograms on the peak of the first arriving P wave and sum the

seismograms after applying linear move-out corrections to account for the slightly

different slowness of P410s and P660s with respect to P (Vinnik, 1977). On average,

we find that, for the western U.S., Tn66 0s-TP4 1 0s = 22.83 +/- 0.3 s for a P wave slowness

of 6s/deg. The 0.3 s uncertainty stems from measurement error and lateral variability

in the data.
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4. Calculation of 1D seismic velocity structures

4.1 Theory

Predicted values for traveltimes and dispersion are determined by applying the

same analytical techniques to synthetic waveforms for theoretical 1D seismic models.

The calculation of seismic velocity profiles for two compositions and a range of

geotherms are accomplished by a new thermodynamic formulism (Stixrude and

Bukowinski, 1993; Stixrude and Lithgow-Bertelloni, 2005a, b; Xu et al., 2008). The

procedure involves the calculation of (1) the compositions and proportions of

equilibrium phases at certain temperature, pressure and bulk composition, (2) the

physical properties of individual phase in the equilibrium compositions, and (3) the

elastic properties of the assemblage. Figure 6 illustrates the connection between the

theoretical computations and the seismological analysis.

4.2 Model parameterization

Given the computational expense of the theoretical calculations, and the

substantial effort to handpick traveltimes in broadband synthetics for each of the ID

profiles, we limit our modeling to relatively few parameters.

4.2.1 Compositions

We explore two compositions for the mantle. Both compositons have the same

pyrolitic bulk chemistry but they differ in the manner by which various mantle

component are mixed. Pyrolite (Ringwood, 1969), with about 50% olivine, is widely

invoked composition for the mantle that is similar to the composition of chondritic
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meteorites and it explains, to first order, the seismic velocity structure of the mantle

(Bina, 2004)

We will consider the mantle as a mixture of basalt and harzburgite, where the

basalt fraction is 15%, consistent with the thickness of the oceanic crust and mid

ocean ridge melting depths (Shen and Forsyth, 1995). We determine concentrations of

the six most abundant oxides (MgO, FeO, A120 3, SiO2, CaO, Na2 O) to match the bulk

composition of the mantle according to Workman and Hart (2005).

Two end-member models represent two ways harzburgite and basalt can be

mixed. The Equilibrium Assemblage (EA) considers full re-equilibration of the basalt

and harzburgite into a homogeneous peridotite after the (basaltic) oceanic crust and

(harzburgitic) lithosphere re-enter the mantle in subduction zones. The Mechanical

Mixture (MM) regards the mantle as a mechanical mixture of basalt and harzburgite

that are in chemical disequilibrium. The MM is akin to the "marble-cake" model of

(Allegre and Turcotte, 1986) and is motivated by the low rate (1014- 10-16 cm 2/s) of

chemical diffusion of mantle in solid state (Allegre and Turcotte, 1986; Farber et al.,

1994; Yamazaki, et al., 2000) and long stirring time (250-750 Myr) of the mantle

(Kellogg et al., 2002). Although basalt transforms to a denser phase (eclogite) below a

depth of 80 km and may settle deep in the mantle (Christensen and Hoffmann, 1994;

Brandenburg and Van Keken, 2007), we will ignore the possibility that a basaltic

gradient has formed in the mantle (Xie and Tackley, 2004a,b; Nakagawa and Buffett,

2005). Models EA and MM have been discussed in great detail by Xu et al. (2008).

There is not a straightforward way to implement the chemically distinct crust in
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our calculations. We therefore substitute the Standard Southern California Velocity

Model (Wald et al., 1995; Zhu and Kanamori, 2000) into our theoretical models for

the upper 40 km. This simplified model of the crust may affect the accuracy of

dispersion of the shortest fundamental mode Rayleigh waves

4.2.3 Geotherms

We consider geotherms that are comprised of two segments. The temperature

increases linearly in the uppermost mantle and follows an adiabatic geotherm below it.

Three variables define these profiles (Figure 7). To is the temperature at the base of

the crust. We explore three values for To: 630 K, 1160 K, and 1420 K. The lowest

temperature has been suggested as appropriate for the Sierra Nevada region. The

highest temperatures represent the range of values estimated for the Basin and Range

(Lachenbruch and Sass, 1977).

The geotherm has a kink T, at depth zi. Between the base of the crust and z,

the temperature increases linearly. Below z, the temperature follows an adiabatic

geotherm with a potential temperature T. We systematically vary z from a depth of 60

km to 400 km with a 20 km interval. The potential temperature T is varied between

1400 K and 1800 K with a 20 K interval. Therefore, a total of 3x18x21 = 1134

geotherms are explored.

5. Modeling results

For a total of 2268 velocity profiles we calculate Rayleigh wave dispersion

using normal mode theory (Gilbert and Dziewonski, 1975), traveltime curves T(A) by
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picking onset in broadband synthetic waveforms, and P660s-P410s differential

traveltimes from slant stacks of synthetic receiver functions.

For each data set we show the fit to the data as a function of T1 (along the

vertical axis) and Z1 (along the horizontal axis). Six panels show the fit separately for

models MM and EA and three uppermost mantle temperatures of 630 K, 1160 K, and

1420 K. The misfit M is defined by M = (Z(Dsyn-Dobs);2 /Ei 2 )/N, where (Dsyn-Dubs); is

the square difference between observed and predicted value (e.g., the average Raleigh

wave phase velocity at a given period i, the average body wave travel T(Ai) at a given

distance A, or the P660-P410s traveltime. E is the measurement error in the seismic

observable. N is the total number of data points.

5.1 Surface Wave Dispersion

The fit to the fundamental mode and ls overtone Rayleigh waves are shown in

Figure 8 and fits for a selection of profiles are shown in Figure 9. By inspection of the

fits, we consider models that produce a misfit M lower than 0.5 as acceptable.

For composition EA these models have values for T between 1540K to 1775K

and values for Z1 that vary between 60km to 400km if we assume a To of 1420K. For

the lower To of 1160K, acceptable values for Z1 range from 70km to 220km.

There is a clear trade-off between Z1 and T1 . T1 increases for increasing Z1 . This

trade-off is directly linked to integral constraints that dispersion data provide on upper

mantle structure. The misfit structure for the EA and the MM are largely the same

although a better fit is generally obtained for MM profiles because their shear velocity
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gradients are slightly steeper.

The best fitting shear velocity profiles (Figure 10) indicate that the surface wave

data requires a negative gradient in aVs/&z (i.e. a low velocity zone) just below 100

km depth, and a relatively steep shear velocity gradient between 150 and 400 km

depth. The structure of the transition is not well constrained given the relatively large

uncertainties of the ls overtone Rayleigh wave phase velocities.

5.2 First Arriving P and S Wave Traveltimes

Fits to the regional P and S wave traveltimes have nearly identical structure.

Hence we show the average misfit of the two data sets (Figure 11). The EA and MM

compositions yield similar misfit patterns. From inspection of the fits, we consider

profiles that have a misfit lower than 0.4 as acceptable. The profiles with an

uppermost mantle temperature To of 630 K produce a low data misfit only if Z < 200

Km. Models that fit the data well have a relatively high (> 1600 K) temperature T at

a depth z1 of less than 200 km, indicating that the gradients in the regional traveltimes

are best matched when a strong temperature gradient is present in the uppermost

mantle. The best fitting shear velocity profiles (Figure 12) and fits to the traveltime

curves (Figure 13) indicate, akin to the surface wave data, that best fitting profiles

have steep velocity gradients in the upper 400 km of the mantle. The transition zone

structure is poorly constrained since the traveltimes of the first-arrival (up to 16

degrees distance) turn well above the 410 km discontinuity.

5.3 P-to-S Conversions
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The misfit for the P660-P410s data (Figure 14) indicates that the converted

wave traveltimes constrain solely the temperature in the transition zone which is

parameterized by T1. The best fitting profiles for EA have a transition zone

temperature that is 100 K higher than for the EA, since transition zone shear velocities

are higher in the MM. The range of misfit value is much greater than for the other two

data type which indicates that P660s-P410s traveltimes are particularly useful to

constrain the temperature in the transition zone. A misfit of less than 1.0 is only

achieved for T, ranging from 1680K to 1740K for the EA and from 1600K to 1680K

for the MM. The best-fitting shear velocity profiles (Figure 15) underscore the tight

constraints on the transition zone while shear velocities (and temperature) in the upper

mantle is unconstrained.

6. Discussion and Conclusions

Three seismic data sets of body wave traveltimes and Rayleigh wave dispersion

provide complementary constraints on the upper mantle shear velocity structure and,

temperature gradients. While regional wave traveltimes and Rayleigh wave dispersion

suggest steep shear velocity gradients in the upper 400 km of the mantle and a low

velocity zone between 100 and 200 km depth (see also Merrer et al. 2007), the

P660s-P410s data tightly constrains the shear velocity in the transition zone and the

depth of the 410-km and 660-km discontinuities.

By considering the misfit obtained for all three data types, we can determine a

population of models that provide adequate fit to the combined data set (Figure 16).

Best overall fit is achieved for models in which the uppermost mantle temperature is
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1400 K, at the high end of the subcrustal temperature inferred for the Basin and Range.

For EA, the temperature at 200 km is equal to 1650-1800 K and subsequently follows

the 1700 K adiabat. For the MM, the temperature is about 100 K lower.

Figure 17 shows the velocity profiles of the best fit models along with the shear

velocity profiles of model TNA which is derived for tectonic North America (Grand

and Helmberger, 1984), PREM, and IASP91. In the upper 200km of the mantle, the

shear velocity in MM is higher velocity than in EA and the shear velocity for both

models is slightly higher than TNA and significantly lower than PREM and IASP91.

Below 200km depth, the shear velocity in both the EA and MM are lower than in

TNA and have lower gradients. In the transition zone, the shear velocity in MM is

similar to that in TNA. The shear velocity in EA is significantly lower and EA

features a wider range of velocity profiles that match the data equally well.

The 410km discontinuities of both EA and MM are deeper than TNA and have a

stronger jump. At 660km discontinuity, EA have a stronger jump in velocity than

MM.

Overall, the velocity profiles of best fitting models indicate that the geotherm

(Figure 18) in the region is relatively hot, consistent with previous studies (Ritsema et

al., 2008). Despite a simple parameterization, the best-fitting geotherms share

common features. The average temperature in the uppermost mantle beneath western

North America is at least 1100K, a value that is consistent with heat flow. The

uppermost mantle has a relatively steep temperature increase with a gradient of at

least 1.75 K/km. In the transition zone, the temperature is about 1900-2000 K. The
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highest temperatures are resolved for the EA. Temperatures in the MM models are

about 100 K lower, indicating the significant influence of mechanical mixing on

seismic velocities in the upper mantle.

We emphasize the simplicity of the models explored and we readily acknowledge

that important seismic data types have not been considered. We have ignored

compositional and thermal heterogeneity, the presence of partial melt (Hammond and

Humphreys, JGR 2000), hydrous phases (Bercovici and Karato, Nature, 2003), and

other traces element. Furthermore, we have ignored the effects of anisotropy that can be

constrained from combined Love and Rayleigh wave analysis (Gaherty, 2001) and SKS

splitting (Silver and Holt, 2002) and amplitude of P410s and P660s (Lawrence and

Shearer, 2006) that may further constrain the velocity jumps in the transition zone.

The modeling exercise presented here offers a recipe to constrain the first order

features of seismological models that can readily be related to known physical

parameters and that could serve a physical reference model for subsequent detailed

modeling and tomographic imaging.
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Figure 1. Map of shear velocity variation at a depth of 100 km according to model
S20RTS (Ritsema et al., 2004). The shear velocity in regions shaded red (blue) are
up to 7% lower (higher) than the average shear velocity at 100 km depth. White
triangles are hotspot location from the compilation of Ritsema and Allen (2003).
Note that at this large scale the shear velocities beneath the western United States
and the East Pacific Rise region are similarly low.
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be recorded at a single distance due to the discontinuous velocity changes at the 410-km
and 660-km phase transitions.
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Mineralogical model:

Potential temperature (1400K-1800K)

Basalt fraction (15%)

Earthquake record

lObserved data

Seismological properties

Synthetics

Seismic velocity model

Phase equilibrium

Physical properties
I op

Figure 6. For both models, there are two parameters: potential temperature and bulk

composition, using basalt fraction to represent it. In our study, we use basalt fraction of

15% and temperature range from 1400-1800K. Through self-consistent

thermodynamical calculation, mineralogical model is related to seismological
properties.
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mantle adiabat with a potential temperature of TI. Shown are adiabats for potential
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