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Parametric inference for multiple repairable
systems under dependent competing risks

Anupap Somboonsavatdeea and Ananda Senb*†

The focus of this article is on the analysis of repairable systems that are subject to multiple sources of recurrence. The event of interest
at the system level is assumed to be caused by the earliest occurrence of a source, thereby conforming to a series system competing
risks framework. Parametric inference is carried out under the power law process model that has found significant attention in
industrial applications. Dependence among the cause-specific recurrent processes is induced via a shared frailty structure. The
theoretical inference results are implemented to a warranty database for a fleet of automobiles, for which the warranty repair is
triggered by the failure of one of many components. Extensive finite-sample simulation is carried out to supplement the asymptotic
findings. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

Data pertaining to failure history of a repairable system has long been a focus of interest to statisticians and reliability
engineers. Situations where one studies repeated occurrences of an event of interest frequently arise in manufacturing,
software development, medical applications, social sciences and risk analysis. In a medical application, ‘failures’ are often
translated into times until the occurrence of a recurrent event (e.g., infection) in individuals. Clinical experiments typically
consist of a fairly large number of individuals observed over a relatively short period. This is also common with databases
of manufactured products generating warranty claims. By contrast, most of the field and bench test data for demonstrating
product reliability consist of a very small number of prototypes put under test for a fairly long time. Irrespective of the
area of application, interest often lies on the inference around the mean or rate function of the underlying process of
recurrence, vis à vis their association with important prognostic factors. Statistical analysis is often carried out by assuming
the recurrence history to follow a nonhomogeneous Poisson process, although this assumption can be relaxed.

Recently, there has been some interest in investigating repairable systems whose failures are subject to multiple failure
modes, more widely known as competing risks. Under competing risks, the occurrence of a system failure is caused by
the earliest onset of the component failures (a series system). The general topic of competing risks is well-studied in the
context of non-repairable systems. The excellent books by Crowder [1] and Pintilie [2] motivate the need for accounting for
competing risks in reliability and survival applications through several examples in industrial statistics and health sciences.
In contrast with the investigations in the area of non-repairable systems, relatively fewer investigations have been carried
out for analyzing failures of systems with multiple sources of recurrence. Yet, there are multiple examples available in
the literature that fall under this framework. Majumdar [3] documents recurrent failure times of a vertical boring machine
spanning a total of 18285 hours along with the indices of the components that are responsible for the failure. Langseth
and Lindqvist [4] report cumulative service times of a component spanning over 1600 time units, marking each failure
with the specific failure causing mode. The causes are categorized into two broad groups with several subcauses specified
under each. Lawless et al. [5] analyze repeated shunt failures in infants diagnosed with hydrocephalus where the failures
are known to occur due to a variety of causes. There are analogous examples in health sciences. Dauxois and Sencey [6]
analyze occurrence rate of different types of recurrent infections for patients that are admitted to the French intensive care
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unit followed over 4 years. All of these examples clearly demonstrate a need for a systematic development of methodologies
to analyze recurrent failures under competing risks, the topic of our article.

Our focus in this article is fully parametric. The motivating premise is that of an industrial setup where the primary pur-
pose of the inference is reliability planning, tracking, and prediction. This is common in defense industry where systems
and subsystems undergo developmental testing programs with the goal of demonstrating a pre-specified growth in relia-
bility. Further, in such situations, either there is limited data on covariates or a covariate adjusted analysis is not of primary
importance. In order to integrate failure data from the early and late phase of the developmental program that can be used
for projection and planning purposes, a parametric growth curve formulation is warranted.

In this paper, we discuss a specific parametric model known as a power law process (PLP) that has found considerable
attention in the repairable systems literature [7,8]. The model, comprehensively studied first by Crow [9], has been used in
various application areas including, most notably, the defense industry. Statistical inference of PLP model is investigated
in the present article under competing risks.

The rest of the article is organized as follows. Section 2 introduces the competing risks framework for repairable systems.
Section 3 formulates the setup for analyzing repairable systems subject to an arbitrary number of failure modes with
inter-related failure processes. The inference results for PLP under dependent competing risks are developed in Section 4.
Section 5 details findings from extensive finite-sample simulation that supplements the theoretical results in the previous
section. Section 6 implements the inference results to a warranty database created for a fleet of automobiles for which the
failure at the car level is triggered by the earliest failure of any one of its components. The article is concluded in Section 7
with some general remarks.

2. Competing risks framework for repairable systems

In order to understand the competing risks framework for analyzing repairable systems, consider first a single system with
successive failures at calendar time 0 < t1 < t2 <…. Suppose failures arise from an underlying competing risks structure
that is equivalent to assuming the system failure to be caused by the earliest occurrence of one of K mutually exclusive
failure modes. At the i-th failure time ti, one thus also observes the failure causing mode 𝛿(ti). Let {N(t), t ⩾ 0} denote the
cumulative failure counter at the system level. If Nk(t) denotes the counting process corresponding to the k-th mode, then
it easily follows that N(t) =

∑K
=1 Nk(t). The mode specific intensity function is defined as

𝜆k(t) = lim
Δ−→0

Pr [𝛿(t) = k,N(t + Δ) − N(t) = 1 ∣ N(s), 0 ⩽ s ⩽ t] ∕Δ.

It is easy to see that the time and the mode of failure are stochastically independent if and only if 𝜆k(t)’s are proportional
to each other [10]. This is a simple extension of a corresponding result from the competing risks literature in failure time
modeling of non-repairable systems [11].

Generally, there are two different approaches that have been pursued in analyzing recurrent failures. One approach is to
base the inference on models of gap times between successive failures. Such modeling can be entertained also in presence of
competing risks [5,12]. The capability of the gap-time models to directly incorporate any effect of design or configuration
changes is clearly quite attractive. However, gap-time formulation is often confronted with modeling challenges such as
length biasing and informative censoring [13]. The alternative approach to directly investigate the associated counting
process is attractive because it avoids such challenges through well-defined structures (e.g., Poisson process). Clearly there
is a one-to-one correspondence between the two approaches as models on gap-times induces a model on the corresponding
counting processes and vice versa. The choice of framework, however, is often dictated by the physical motivation that
underscores the process of recurrence.

The modeling strategy we adopt in this paper is the latter of the two described in the paragraph earlier. We study systems
with a series connection of K components (or failure modes) whose failures are governed by separate PLPs with the
respective intensities sharing a latent frailty variable. In the next section, we describe the Power law process model under
this shared frailty structure that we study in the context of competing risks.

3. Power law model under shared frailty

3.1. Power law process model

Power law process has been popular primarily because of its attractive physical interpretation in the way of depicting the
failure history of a repairable system. PLP describes the repeated failure history by assuming an nonhomogeneous Poisson
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process for the underlying counting process N(t), t ⩾ 0, with intensity function

𝜆(t) = 𝜇𝛽t𝛽−1, t ⩾ 0, 𝜇 > 0, 𝛽 > 0, (1)

matching the hazard rate of a Weibull distribution. The linear relation of the intensity in (1) with time in log-log scale
conforms to empirical observations in hardware failure processes encountered in manufacturing industry [14]. The PLP
is a flexible model in that it can represent a decay (𝛽 > 1), a growth (𝛽 < 1), or a flat pattern (𝛽 = 1) in reliability. One
of the features of PLP is the surprising elegance of the statistical inference [9]. It has been extensively used in analyzing
repairable systems data by reliability practitioners in manufacturing and defense industry where data is limited, and there is
a strong desire to construct a reliability growth curve that can be used for tracking, planning, and projection. Often, in this
context, the tested devices or systems are complex, typically comprising of multiple inter-related components. Extensive
investigation regarding PLP have appeared in the literature in the 70s and the 80s. The book by Rigdon and Basu [8]
provides a comprehensive account of the research related to PLP.

As indicated earlier, in our competing risks setup, the underlying failure process for the failure modes are generated by
PLPs. No restriction is imposed on the failure pattern of the modes so that each can exhibit either a decay, growth, or flat
pattern in reliability. Under a series structure, the system level failure process conforms to a PLP if and only if the growth
parameters (𝛽) of all components are equal. In the general case, the system level intensity encompasses a range of possible
features including a bathtub shaped structure.

3.2. Shared frailty formulation

In time to event studies, the idea of frailty is used to model unobserved heterogeneity among subjects or units. In that sense,
frailty models are special classes of random effects models. The term ‘frailty’, coined in [15] in estimating mortality rates,
points to the inherent heterogeneity in the population where a subgroup is perhaps more ‘frail’ and hence is more prone
to early failures. In a typical application, frailty appears as a multiplicative random effect to a hazard rate. Conditionally,
given a random variable Z, one assumes the hazard function to be of the form

h(t ∣ Z) = Zh0(t),

where h0(t) satisfies the properties of a hazard function. The associated conditional survival function is S(t ∣Z) =
exp

[
−Z∫ t

0 h0(y) dy
]
. Frailty thus gives rise to a mixture distribution. The observed marginal survivor function is obtained

by integrating out Z, i.e.

S(t) = EZ[S(t ∣ Z)] = 
(
∫

t

0
h0(y) dy

)
,

where  is the Laplace transform of the frailty distribution. The marginal inference is greatly facilitated when the
distribution of the frailty yields a tractable Laplace transform. Some common examples of frailty distribution include expo-
nential, gamma, Weibull, Gompertz, inverse Gaussian, and a positive stable family of distributions with Laplace transform
(s) = exp(−s𝛼), 0 ⩽ 𝛼 ⩽ 2. An excellent and comprehensive treatment on frailty and its theoretical nuances has been
carried out in [16].

Shared frailty refers to the framework where individuals or units belonging to a cluster share the same value of frailty.
Physically, it may represent an effect of a common environmental stress the cluster is subjected to. In the recurrent events
context, such clustering appears naturally across the repeated events of a system. Thus, for the i-th system, the counting
process associated with the recurrent event history can be modeled with an intensity function

𝜆(i, t) = Zi𝜇(t) (2)

conditionally given Zi. For m systems under observation, Zi, i = 1,… ,m are usually modeled as independent and identically
distributed copies of a random variable. Further, the Zi’s are assumed to be stochastically independent of the failure process
governed by the intensity function 𝜇(t). The common value of Zi creates dependence within observations in the i-th cluster.
The model in (2) is non-identifiable in a nonparametric sense. A fixed parametric structure of 𝜇(t) and a specified parametric
distribution for Zi makes (2) identifiable. Interestingly, a proportional regression form of 𝜇(t) = 𝜇0(t) exp(𝛾 ′x) makes the
model identifiable even without having to parameterize Z [17].
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3.3. Competing risks power law process model under shared frailty

The PLP under shared frailty conforms to a K-component series system where the failures of the k-th component is governed
by a PLP Nk(t) with intensity function

𝜆k(t) = Z𝜇k𝛽kt𝛽k−1, k = 1,… ,K (3)

conditionally given a latent random variable Z. Although given the frailty Z, the Nk’s are assumed to be independent, the
dependence among Nk’s follows in an unconditional sense, upon integrating over the distribution of the shared frailty Z.
The marginal mean and variance of the component processes are given by

E(Nk(t)) = 𝜇kt𝛽k E(Z), Var(Nk(t)) = 𝜇kt𝛽k
[
E(Z) + 𝜇kt𝛽k Var(Z)

]
. (4)

Moreover, for a given t, the component specific counting processes Nk(t), k = 1, 2,… ,K are correlated with each other.
Specifically, for k ≠ k′,

Cov
(
Nk(t),Nk′ (t)

)
= E

[
Cov(Nk(t),Nk′ (t) ∣ Z)

]
+ Cov

[
E(Nk(t) ∣ Z),E

(
Nk′ (t) ∣ Z

)]
= 0 +

(
𝜇kt𝛽k

) (
𝜇k′ t

𝛽′k
)

Var(Z)
= 𝜇k𝜇k′ t

𝛽k+𝛽k′ Var(Z).
(5)

An immediate consequence of (5) is that the component processes are positively correlated. In the sequel, we take Z to
be a gamma random variable. The choice of gamma is dictated largely by mathematical tractability. With gamma frailty,
the marginal distribution of Nk(t) becomes negative binomial, which is often used as a candidate for the distribution of an
overdispersed Poisson random variable. A quick inspection of (3) reveals that a full specification of gamma will lead to
scale non-identifiability. We take the mean of Z to be equal to one to circumvent this problem. Specifically, the probability
density function (pdf) of Z will assume the form

g(z) = 1
Γ(𝜂−1)𝜂𝜂−1

z𝜂
−1−1 exp(−z∕𝜂), 𝜂 > 0, (6)

which is the pdf of a gamma random variable with scale = 𝜂 and shape = 𝜂−1. The parameter 𝜂 = Var(Z) represents the
variability between systems. As 𝜂 −→ 0 so that Z tends to a degenerate random variable at 1, the component processes
approach being independent. On the other hand, as 𝜂 grows large, so does the correlation between the component processes.

4. Likelihood based inference

In our framework, we shall assume the existence of m identical systems experiencing repeated failures that result from the
failure of any of the K components connected in series. Let tij denote the j-th cumulative failure time of the i-th system,
i = 1, 2,… ,m. Along with the failure times, we also have information on 𝛿ij, index of the mode responsible for the
corresponding failure. The i-th system is observed until a censoring time 𝜏i, which is assumed to be noninformative of the
failure process. Let ni be the observed number of failures for the i-th system, with n =

∑m
i=1 ni denoting the total number

of observed system failures. Then, conditionally given Zi, using standard properties of a Poisson process, the likelihood
contribution from the i-th system with (3) governing the underlying failure process is

Li

(
𝜇1, 𝜇2,… , 𝜇K , 𝛽1, 𝛽2,… , 𝛽K ∣ Zi

)
=

ni∏
j=1

K∏
k=1

[
Zi𝜇k𝛽kt𝛽k−1

ij

]I(𝛿ij=k)

× exp

[
−Zi

K∑
k=1

𝜇k𝜏
𝛽k

i

]
,

(7)

I(⋅) denoting the indicator function. We shall provide the details for the case of single censoring, namely, 𝜏i = 𝜏 for
simplicity of exposition. Integrating (7) over the distribution of Zi, the unconditional likelihood contribution from the i-th
system is
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Li(𝜇1,… , 𝜇K ; 𝛽1,… , 𝛽K) =
K∏

k=1

{
(𝜇k𝛽k)nik

ni∏
j=1

(
t𝛽k−1
ij

)I(𝛿ij=k)
}

× EZ

[
Zni exp

(
−Z

K∑
k=1

𝜇k𝜏
𝛽k

)]
, (8)

where nik denotes the number of k-component failures observed for the i-th system, and EZ(⋅) refers to the expectation with
respect to the distribution of Z. Combined likelihood function based on all m systems is calculated as L =

∏m
i=1 Li, which

upon maximizing with respect to 𝜇k, 𝛽k, yield the respective maximum likelihood estimators (MLE). We assume Z1 … ,Zm
to be a random sample from the gamma pdf defined by (6). With such a choice, the unconditional MLEs of 𝜇k, 𝛽k are in
the remarkably simple form:

𝛽k =
∑m

i=1 nik∑m
i=1

∑ni

j=1 I(𝛿ij = k) log(𝜏∕tij)
, 𝜇̂k =

∑m
i=1 nik

m𝜏𝛽k

, k = 1, 2,… ,K. (9)

Note that the estimators in (9) are identical to the case when the component failure processes are independent. Further, it is
evident that for 𝜇̂k, 𝛽k to be defined, at least one failure needs to be caused by the k-th mode. The MLE 𝜂̂ results by solving
𝜕 log L∕𝜕𝜂 = 0, which reduces to the equation

0 = −
m∑

i=1

𝜓(ni + 𝜂−1) + m𝜓(𝜂−1) + m log 𝜂 − m +
m∑

i=1

(ni + 𝜂−1)

/(
K∑

k=1

𝜇k𝜏
𝛽k + 𝜂−1

)

+ m log

(
K∑

k=1

𝜇k𝜏
𝛽k + 𝜂−1

)
,

(10)

with 𝜓 denoting the digamma function. Plugging in the expressions from (9), the score equation (10) is tantamount to
solving f (𝜂) = 0, where

f (𝜂) = −
m∑

i=1

𝜓(ni + 𝜂−1) + m𝜓(𝜂−1) + m log
(

1 + m𝜂
n

)
.

Finite-sample inference for the maximum likelihood estimators does not yield any tractable distributional results. We
provide in the succeeding text the large-sample distribution of (𝜇̂k, 𝛽k, 𝜇̂k′ , 𝛽k′ ) for any pair k, k′ ∈ {1, 2,… ,K}, k ≠ k′,
proof of which is relegated to the Appendix. In the sequel, we shall reserve the square brackets to denote matrices.

Theorem 1
Let us define Q1m =

√
m(𝜇̂k − 𝜇k), Q2m =

√
m(𝛽k − 𝛽k), Q3m =

√
m(𝜇̂k′ − 𝜇k′ ), Q4m =

√
m(𝛽k′ − 𝛽k′ ) and Qm =

(Q1m,Q2m,Q3m,Q4m)′. Then, Qm

d
→ N(0,Ω) where

Ω =
[
𝜔11 𝜔12
𝜔′

12 𝜔22

]

with

𝜔11 = 1
𝜏𝛽k

[
𝜇k(𝛽k log 𝜏)2 + 𝜇k

(
1 + 𝜂𝜇k𝜏

𝛽k
)
−𝛽2

k log 𝜏

−𝛽2
k log 𝜏 𝛽2

k∕𝜇k

]
,

𝜔12 =
[
𝜇k𝜇k′𝜂 0

0 0

]
and 𝜔22 is identical to 𝜔11 with k replaced by k′.
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Theorem 1 indicates some interesting features of the maximum likelihood estimators. The large-sample distribution of 𝜇̂k
involves 𝜂. The difference between the asymptotic variances in the cases of independence and frailty-induced dependence
increases linearly with 𝜂, and so does the large-sample covariance between 𝜇̂k and 𝜇̂k′ . On the other hand, we note that
the large-sample distribution of 𝛽k is identical to that in the case where the components work independently of each other.
Further, 𝛽k is asymptotically independent of the ML estimators of the parameters specific to any other component. At first
glance, one has the impression that the shared frailty does not have any effect on the asymptotic distribution of 𝛽k. In reality,
however, the large-sample behavior of 𝛽k is a consequence of imposing a unit mean condition for Z. We demonstrate in the
Appendix the identity

√
m(𝛽k − 𝛽k) =

−𝛽k√∑m
i=1 nik∕m

𝜈km,

where 𝜈km is a function of 𝛽k and
∑m

i=1 nik. Distribution of the negative binomial random variable
∑m

i=1 nik depends on the
parameters of Z, which in turn induces dependence of 𝛽k on Z. As the number of systems grows large,

m∑
i=1

nik∕m
p

−→ 𝜇k𝜏
𝛽k E(Z) and νkm

d
−→ N(0, 1)

by the weak law of large numbers and the central limit theorem, respectively. When E(Z) = 1, the large-sample variance
for 𝛽k matches that in the no-frailty case.

The parametric model based estimator of the mean number of system failures Λ(t) is Λ̂(t) =
∑K

k=1 𝜇̂kt𝛽k , which, at the
censoring time 𝜏, matches the nonparametric estimator n∕m. A 100(1 − 𝛼)% approximate pointwise confidence interval
for Λ(t) is given by

Λ̂(t) ± z1−𝛼∕2

√
Λ̂(t)

(
1 + 𝜂Λ̂(t)

)
. (11)

The standard error explicitly indicates the extra-Poisson variation induced by dependence.

Remarks

1 As is shown in the proof in the Appendix, we do not explicitly use the specific distributional form of frailty in order
to derive the results in Theorem 1. The results are valid more generally for frailty distributions with unit mean. Quite
interestingly, starting from (8) for a general frailty variable Z, one can derive the MLE of 𝛽k to be identical to that in
(9). For arbitrary Z, the MLE of 𝜇 does not simplify to the expression in (9), however.

2 The contrast between the large-sample results in the single system and the multiple system case is worth a mention.
Somboonsavatdee and Sen [10] have demonstrated some peculiarities of the inference of the ML estimators in the
single-sample case where the large-sample results are applied as the number of repeated failures from the system
grows large. In that case, the estimators of 𝜇k’s suffer from a pretty slow rate of convergence. Further, the asymptotic
variance-covariance matrix turns out to be singular, highlighting the contrast with the multiple system case, which is
devoid of such pathologies.

4.1. Contrasting with the nonparametric approach

Extensive research has been pursued in the area of recurrent events in the nonparametric setting ([18–20], among others).
Recurrent events under competing risks have been studied recently by Dauxois and Sencey [6]. The nonparametric devel-
opment focuses on the mean and rate functions and in the absence of any covariates is valid only for t < 𝜏, where 𝜏 is
the largest censoring time observed. When all systems are observed until a single censoring time 𝜏, the inference is partic-
ularly simple. Specifically, the Nelson-Aalen estimators for the cause-specific cumulative intensity Λk(t) and the overall
cumulative intensity Λ(t) =

∑K
k=1 Λk(t) are given by

Λ̂NA
k (t) =

∑m
i=1 nik(t)

m
, k = 1,… ,K; Λ̂NA(t) =

∑m
i=1

∑K
k=1 nik(t)
m

, (12)

Copyright © 2014 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind. 2015, 31 706–720
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where nik(t) is the observed number of k-mode failures for the i-th system in time [0, t]. Note that the estimators in (12)
are valid up to the censoring time 𝜏. As the number of systems grows large (m −→ ∞), the centered and scaled pro-
cess m1∕2

{
Λ̂NA

k (t) − Λk(t)
}

converges to a Gaussian process with a mean zero and a covariance function 𝜉k(s, t) that is
consistently estimated by

𝜉k(s, t) = m−1
m∑

i=1

(
nik(t) −

∑m
i=1 nik(t)

m

)(
nik(s) −

∑m
i=1 nik(s)

m

)
, 0 < s ⩽ t ⩽ 𝜏. (13)

An analogous result holds for the overall system where m1∕2{Λ̂NA(t) − Λ(t)} converges to mean zero Gaussian process
having a covariance function 𝜉(s, t), which has a consistent estimator

𝜉(s, t) = m−1
m∑

i=1

(
ni⋅(t) −

∑m
i=1 ni⋅(t)

m

)(
ni⋅(s) −

∑m
i=1 ni⋅(s)

m

)
, 0 < s ⩽ t ⩽ 𝜏, (14)

with ni⋅(t) =
∑K

k=1 nik(t). The corresponding results for the multiple censoring case involve more complex expressions and
are presented in [6]. In the data analysis section presented in Section 6, we contrast the parametric and the nonparametric
estimators of the cumulative intensity function.

5. Simulation study

We carried out extensive simulation in order to investigate finite-sample properties of the MLEs, especially for a small
number of systems. In order to keep the exposition simple, we kept our investigation confined to a two-mode system.
Among the many parameter combinations tested, we report the findings for three sets of (𝜇1, 𝛽1, 𝜇2, 𝛽2), namely (4, 0.25,
0.25, 2), (1, 0.75, 0.3, 1.25), and (0.5, 1.5, 5, 0.8). A single-censoring scheme was simulated with censoring time 𝜏 fixed at
20. The three scenarios yield the mean number of failures to be (8.5, 100), (9.5, 12.7), (44.7, 55) by time 𝜏, respectively, for
the two modes. Whereas the first of these corresponds to the situation with one dominating mode, the remaining two cases
represent a two-mode system where the modes contribute similarly, with the two cases differing in terms of the propensity
of failures. The number of systems (m) tested ranged between 10 and 50, whereas the frailty variance 𝜂 was varied from a
small value of 0.1 to a large value of 5 representing a low to a high degree of dependence.

Performance measures for the MLEs are calculated for the three sets of parameter values with m = 10, 25, 50, and
𝜂 = 0.1, 1, 5, on the basis of 5000 replications of data generated from PLPs under competing risks with shared frailty.
Specifically, the data for each replication with a given parametric configuration are obtained using the following steps:

Step 1: Generate a random observation zi from Gamma(𝜂−1, 𝜂) conforming to (6).
Step 2: Generate random observations ni1, ni2 from Poisson distributions with mean = zi𝜇1𝜏

𝛽1 , zi𝜇2𝜏
𝛽2 , respectively.

Step 3: Following the properties of PLP, generate the successive mode-1 failure times t(1)i1 , t
(1)
i2 ,… , t(1)ini1

as t(1)ij = 𝜏(u(j))1∕𝛽1 ,
where u(1), u(2),… , u(ni1) are order statistics based on a random sample of size ni1 from Uniform(0, 1).

Table I. Bias and finite-sample efficiencies of the maximum likelihood estimators for 𝜏 = 20 and 𝜂 = 0.1.

No. of Systems Bias(𝜇̂1) FE(𝜇̂1) FEInd(𝜇̂1) Bias(𝛽1) FE(𝛽1) Bias(𝜇̂2) FE(𝜇̂2) FEInd(𝜇̂2) Bias(𝛽2) FE(𝛽2)

(m) 𝜇1 = 4, 𝛽1 = 0.25, 𝜇2 = 0.25, 𝛽2 = 2

10 −0.007 0.989 0.642 0.003 0.983 0.003 1.004 0.790 0.003 0.997
25 −0.013 0.953 0.618 0.001 0.950 0.001 1.021 0.803 0.001 1.009
50 0.007 0.957 0.621 0.000 0.958 0.001 0.985 0.775 0.000 1.000

𝜇1 = 1, 𝛽1 = 0.75, 𝜇2 = 0.3, 𝛽2 = 1.25

10 0.005 0.986 0.853 0.007 0.919 0.007 1.000 0.923 0.010 0.958
25 0.002 0.977 0.845 0.003 0.967 0.003 0.989 0.912 0.004 0.977
50 0.000 0.995 0.860 0.002 0.983 0.002 0.981 0.905 0.002 1.013

𝜇1 = 0.5, 𝛽1 = 1.5, 𝜇2 = 5, 𝛽2 = 0.8

10 0.007 0.954 0.788 0.003 0.935 −0.007 1.004 0.553 0.001 1.003
25 0.004 0.960 0.793 0.001 0.985 0.006 1.005 0.554 0.001 0.995
50 0.002 1.026 0.847 0.000 1.018 0.005 0.983 0.542 0.000 1.002
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Table II. Bias and finite-sample efficiencies of the maximum likelihood estimators for 𝜏 = 20 and 𝜂 = 1.

No. of Systems Bias(𝜇̂1) FE(𝜇̂1) FEInd(𝜇̂1) Bias(𝛽1) FE(𝛽1) Bias(𝜇̂2) FE(𝜇̂2) FEInd(𝜇̂2) Bias(𝛽2) FE(𝛽2)

(m) 𝜇1 = 4, 𝛽1 = 0.25, 𝜇2 = 0.25, 𝛽2 = 2

10 −0.024 1.008 0.157 0.003 0.842 0.003 0.980 0.264 0.002 0.879
25 −0.014 0.988 0.154 0.001 0.889 0.001 0.988 0.266 0.001 0.956
50 −0.007 0.984 0.153 0.001 0.937 0.001 0.981 0.264 0.001 1.000

𝜇1 = 1, 𝛽1 = 0.75, 𝜇2 = 0.3, 𝛽2 = 1.25

10 0.012 0.983 0.383 0.008 0.857 0.007 0.985 0.534 0.012 0.879
25 0.000 1.008 0.393 0.004 0.920 0.001 1.006 0.546 0.007 0.956
50 0.000 1.007 0.393 0.001 0.974 0.001 1.000 0.542 0.003 0.949

𝜇1 = 0.5, 𝛽1 = 1.5, 𝜇2 = 5, 𝛽2 = 0.8

10 0.000 1.028 0.330 0.004 0.921 −0.024 1.012 0.111 0.001 0.868
25 0.000 1.027 0.330 0.000 0.956 −0.043 1.050 0.115 0.000 0.957
50 0.002 1.007 0.324 0.001 0.998 0.009 1.016 0.111 0.000 1.004

Table III. Bias and finite-sample efficiencies of the maximum likelihood estimators for 𝜏 = 20, 𝜂 = 5.

No. of Systems Bias(𝜇̂1) FE(𝜇̂1) FEInd(𝜇̂1) Bias(𝛽1) FE(𝛽1) Bias(𝜇̂2) FE(𝜇̂2) FEInd(𝜇̂2) Bias(𝛽2) FE(𝛽2)

(m) 𝜇1 = 4, 𝛽1 = 0.25, 𝜇2 = 0.25, 𝛽2 = 2

10 −0.051 1.024 0.036 0.007 0.309 0.001 1.025 0.070 0.004 0.544
25 −0.035 1.022 0.036 0.001 0.757 −0.001 1.036 0.071 0.002 0.770
50 −0.032 0.985 0.035 0.001 0.892 −0.001 0.979 0.067 0.001 0.863

𝜇1 = 1, 𝛽1 = 0.75, 𝜇2 = 0.3, 𝛽2 = 1.25

10 0.005 0.994 0.113 0.020 0.252 0.009 1.005 0.192 0.021 0.192
25 0.013 0.943 0.107 0.005 0.750 0.006 0.961 0.184 0.006 0.763
50 0.007 1.000 0.113 0.001 0.888 0.003 0.980 0.188 0.003 0.881

𝜇1 = 0.5, 𝛽1 = 1.5, 𝜇2 = 5, 𝛽2 = 0.8

10 0.010 0.964 0.083 0.006 0.452 0.023 0.957 0.023 0.004 0.374
25 0.000 1.036 0.090 0.002 0.751 −0.005 1.047 0.025 0.000 0.808
50 −0.003 1.003 0.087 0.001 0.888 −0.042 1.007 0.024 0.001 0.869

Step 4: Similarly generate ni2 successive failure times corresponding to mode 2.
Step 5: Repeat this for i = 1, 2,… ,m.

Tables I–III exhibit the bias and the finite-sample efficiencies (FE) of the MLEs. FE is defined as the ratio of the large-
sample (theoretical) variance obtained from Theorem 1, and the variance calculated from the simulated samples. For the
𝜇 parameters, a second efficiency measure (FEInd) is calculated for comparative purposes, where the numerator of FE is
replaced by the large-sample expression under the assumption of independence of the failure modes. This provides an
assessment of misspecification arising from ignoring the underlying dependence between the failure modes. As is evident
from Tables I to III, the bias in the ML estimates for both the scale and the shape parameters are quite small, even for
small m, rarely going beyond 2%. Further, the bias does not seem to be affected by the extent of dependence. The FE of
the scale parameter MLEs are close to 100% regardless of the values of m and 𝜂, demonstrating close agreement between
asymptotic and finite-sample variability. It seems, however, that the large-sample variance of 𝛽1, 𝛽2 severely underestimate
the true variability for small to moderate m. The tables also clearly demonstrate that ignoring the dependence results in
severe underestimation of the variability of the MLEs of the scale parameters, even for small to moderate 𝜂. Indeed, as
exhibited in Theorem 1, the amount of underestimation increases with the magnitudes of 𝜂 as well as the scale parameters.
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Figure 1. Q-Q plots of 𝜇̂1 for varying m and 𝜂.

Figure 1 and Figure 2 show the Q-Q plots for (𝜇̂1, 𝛽1) for different sets of m and 𝜂 and with the true parameter vector
being 𝜇1 = 1, 𝛽1 = 0.75, 𝜇2 = 0.3, 𝛽2 = 1.25. The findings for (𝜇̂2, 𝛽2) are similar. As 𝜂 increases, the deviation from
normality for both 𝜇̂1 and 𝛽1 become increasingly prominent when data from only a small number of systems are available.
For the distribution of 𝛽1, however, the conformity to normality is realized at a faster rate than that for 𝜇̂1.

6. Automobile warranty data analysis

The motivating example for the model and methodology discussed in this article is a dataset comprising of recurrent failure
history of a fleet of automobiles. The outcome of interest is repeated mileages at failure for multiple vehicles of a certain
model and make, obtained from a warranty claim database, that also documents the labor code associated with the failure.
In order to verify the conformity to a PLP, logarithm of cumulative number of failures is plotted against the cumulative
mileage at failure for the overall failure history pooled across the individual prototypes. For three broad groupings of the
labor codes, these plots, known in the literature as Duane plots [14] show a fairly linear pattern (Figure 3), confirming the
plausibility of the parametric model used in this article.

The data, shown in Table IV, are real, but the source and specifics are masked for de-identification purposes. The database
consists of recurrent failure history of 456 vehicles. We consider a single Type-I censoring at 3000 miles. Fourteen different
labor codes of the warranty claims of each vehicle are recorded with mileage at filing. Ideally, the grouping should be
dictated by engineering judgement and a knowledge of the component interactions. This was not possible here due to the
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Figure 2. Q-Q plots of 𝛽1 for varying m and 𝜂.

Figure 3. Plots in log-log scale of mileage versus failure count for the automobile warranty data; also indicated are the total number of
failures corresponding to the failure mode (FM).
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Table IV. Automobile warranty data.

No. Mil. FM No. Mil. FM No. Mil. FM No. Mil. FM No. Mil. FM No. Mil. FM No. Mil. FM

1 12 1 26 777 1 51 2205 3 80 3 1 108 174 1 131 1 1 161 157 3
1 514 2 26 985 3 52 294 3 81 10 3 108 2850 3 132 2270 3 161 515 3
1 2411 1 26 1107 2 53 1488 1 82 40 1 109 1140 3 133 1250 3 161 1380 3
2 484 3 26 1303 1 54 54 2 83 127 3 109 2720 2 133 1842 1 161 1861 3
2 525 3 26 1499 2 55 5 1 84 1200 3 110 129 1 134 1081 3 161 1953 2
3 2800 3 26 2420 2 56 519 2 85 135 2 110 156 3 134 1457 2 161 2296 1
4 1347 3 26 2446 2 57 61 2 85 532 2 111 367 1 135 196 2 161 2313 3
5 14 1 27 2105 2 57 293 2 86 38 3 112 5 2 136 1 2 161 2964 3
5 558 2 28 1535 3 57 1355 3 86 1137 2 113 40 3 137 13 3 162 1037 1
5 559 3 29 98 1 57 1911 1 86 1668 2 114 3 1 138 696 3 163 59 2
5 1599 1 29 120 3 58 503 3 87 233 1 115 81 2 138 2972 1 164 2104 3
6 10 3 30 2028 2 59 121 2 88 1181 3 115 97 3 139 2 1 165 374 3
7 28 1 30 2329 2 60 21 2 88 2840 3 116 2 1 140 5 1 165 408 2
8 1 1 31 1507 2 61 1135 1 89 2898 1 117 1200 3 141 2574 2 165 436 3
9 102 2 32 1370 2 62 16 2 90 123 3 118 1662 3 142 7 3 165 490 2
10 1812 3 33 2164 3 63 1603 3 90 138 3 119 1733 1 142 816 2 165 1287 2
10 1938 3 34 914 2 64 801 3 90 2966 3 120 887 1 143 41 1 165 1631 3
11 12 1 35 10 3 65 155 1 91 189 2 120 938 3 143 2750 3 165 2387 2
12 569 1 35 1622 1 66 76 2 92 10 2 121 288 3 144 535 2 165 2801 3
13 2097 3 36 525 2 66 77 1 93 870 3 121 2083 3 144 1322 3 166 5 1
14 776 3 37 154 1 66 153 1 94 1 2 122 325 3 144 1692 3 166 543 3
14 979 2 37 1979 3 67 149 1 94 13 1 122 400 1 145 10 2 167 237 2
15 309 2 38 149 1 67 2127 3 95 620 1 123 1961 2 146 562 3 167 2424 2
15 2719 2 38 210 2 68 265 2 96 1086 3 124 170 1 146 665 1 168 416 2
16 1015 2 39 1097 3 69 1912 2 97 1722 3 125 1116 3 146 2868 3 169 396 1
16 1440 3 40 3 2 70 24 1 98 40 2 126 520 1 147 136 2 169 1315 3
16 2055 2 40 12 2 71 5 1 98 1041 2 126 709 3 148 2883 3 169 1350 3
17 14 2 41 2176 3 72 1301 3 98 1393 1 126 878 1 149 259 1 169 1693 3
17 16 2 42 604 3 72 1333 3 98 1447 3 126 2091 3 150 920 1 169 1902 3
17 62 1 43 250 3 73 2 1 99 331 1 126 2316 3 151 975 3 169 2016 2
17 74 3 44 2198 2 73 1779 3 100 313 3 127 1270 3 152 11 1 170 279 2
17 1696 1 45 8 1 74 6 1 100 329 1 128 1104 2 153 48 2 170 1330 3
18 2144 3 45 397 1 74 984 3 101 756 3 129 21 2 154 2338 1 171 677 3
19 787 2 46 604 2 74 1854 3 102 447 1 129 61 1 155 1 2 172 1633 3
20 30 1 47 248 1 75 21 1 103 2 1 129 175 2 156 2324 2
21 960 2 47 2939 2 76 2 3 104 1343 3 129 182 2 157 1957 3
22 2524 2 48 129 1 77 753 3 105 11 1 129 378 3 158 2606 3
23 5 1 48 567 2 77 944 2 106 313 3 129 386 1 159 888 3
24 2090 1 49 8 2 78 124 2 106 645 3 129 1512 3 160 2040 3
25 1 2 50 395 3 79 2921 3 107 2767 2 130 604 2 161 47 2

No., vehicle number; Mil., mileage; FM, failure mode (1–3).

absence of a specific description of the component associated with a labor code. We thus determined the grouping on
the basis of rate of failures. For all 14 individual labor codes, separate PLP were fit. Subsequently, the labor codes were
combined into three broad groups of failure modes FM1–FM3, where FM1 comprises of labor codes with shape parameters
ranging between 0.2 and 0.36, FM2 covers labor codes with shape parameter estimates between 0.4 and 0.55, whereas
FM3 combines the remaining codes that have the slowest rate of growth with shape parameter estimates varying between
0.7 and 0.93. Less than 4% of the vehicles had event times with ties across different failure modes. Although this is not a
deterrent to the analysis, we dropped these vehicles from consideration in order to make a cleaner presentation. Table IV
presents the data that have at least one documented record of warranty repair. In addition, there are 267 vehicles that have
no claim during the observation period, yielding a total of 439 vehicles that were considered for analysis. Pursuant to the
failure mode grouping, we observe 76, 87, and 111 failures due to FM1, FM2, and FM3, respectively.

Under the assumption of PLP governing the failure processes corresponding to the modes, the MLEs of the model
parameters are estimated as
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𝜇̂1 = 1.519 × 10−2, 𝛽1 = 0.304, 𝜇̂2 = 7.215 × 10−3, 𝛽2 = 0.414, 𝜇̂3 = 8.974 × 10−4, 𝛽3 = 0.705.

We assume a dependence structure induced by a gamma distributed frailty random variable with mean 1 and variance 𝜂.
Applying Theorem 1, the large-sample 95% confidence interval for 𝛽1, 𝛽2, and 𝛽3 are given by (0.236, 0.372), (0.327,
0.501), and (0.573,0.836), respectively, indicating reliability growth in each mode, consistent with the plots in Figure 1.
Using the asymptotic independence of 𝛽1 and 𝛽2, a large-sample 95% confidence interval for 𝛽1 − 𝛽2 is given by

(𝛽1 − 𝛽2) ± 1.96
√

ÂVar(𝛽1) + ÂVar(𝛽2) = (−0.220, 0.001),

where ÂVar indicates estimated asymptotic variance. Similarly, the asymptotic 95% confidence intervals for 𝛽1 − 𝛽3 and
𝛽2 − 𝛽3 are obtained as (−0.548,−0.253) and (−0.448,−0.133), respectively. The dependence parameter (frailty variance)
𝜂 affects the distribution of the scale parameter 𝜇. It is estimated for our data as 𝜂̂ = 5.450. Using the entries of the
large-sample variance-covariance matrix of 𝜇̂1, 𝜇̂2, and 𝜇̂3 from Theorem 1, the 95% asymptotic confidence intervals for
𝜇1 − 𝜇2, 𝜇1 − 𝜇3, and 𝜇2 − 𝜇3 are (−0.003, 0.019), (0.003, 0.025), and (−0.001, 0.014), respectively (Table V).

We carried out a parametric bootstrap procedure to assess the closeness of the large-sample results to a seemingly
more honest description of the random behavior of the MLEs. In order to generate the bth bootstrap estimates of
𝜇1, 𝜇2, 𝜇3, 𝛽1, 𝛽2, 𝛽3, we carry out steps identical to those in Steps 1–5 in Section 5, with 𝜇j, 𝛽j replaced by 𝜇̂j, 𝛽j, j = 1, 2, 3.

All subsequent calculations are based on 10000 bootstrap samples. The associated 95% confidence intervals using
the bias-corrected percentile bootstrap method ([21], Eq. (7.9)) are presented in Table V along with the ones based on

Table V. Interval estimates for the power law pro-
cess parameters for the automobile warranty data.

95% Confidence interval

Parameter Asymptotic Bootstrap

𝜇1 (0.6, 2.5)×10−2 (0.9, 2.3)×10−2

𝛽1 (0.236, 0.372) (0.248, 0.375)
𝜇2 (0.2, 1.3)×10−2 (0.3, 1.2)×10−2

𝛽2 (0.327, 0.50) (0.337, 0.511)
𝜇3 (0.0, 1.9)×10−3 (0.2, 2.2)×10−3

𝛽3 (0.573, 0.836) (0.582, 0.845)
𝜇1 − 𝜇2 (−0.003, 0.019) (0.000, 0.016)
𝜇1 − 𝜇3 (0.003, 0.025) (0.008, 0.022)
𝜇2 − 𝜇3 (−0.001, 0.014) (0.002, 0.011)
𝛽1 − 𝛽2 (−0.220, 0.001) (−0.223,−0.005)
𝛽1 − 𝛽3 (−0.548,−0.253) (−0.553,−0.259)
𝛽2 − 𝛽3 (−0.448,−0.133) (−0.453,−0.137)

Figure 4. The 95% large-sample confidence bands for estimated number of claims in the warranty data based on nonparametric (solid),
power law process (PLP) with frailty (dashed), and PLP without frailty (dash-with-dots).
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large-sample theory. Generally, the bootstrap-based intervals are in close agreement with the large-sample version, which
is not surprising due to the symmetric nature of the estimated distributions of the MLEs (picture not shown).

Figure 4 shows 95% pointwise asymptotic confidence intervals for numbers of claims from all 439 vehicles based on
(11) as well as the nonparametric analog in (14). They exhibit quite similar patterns, although the nonparametric confidence
band is slightly narrower than its parametric counterpart owing to the fact that the nonparametric one does not explicitly
account for the variability in the frailty variable. For comparison purposes, we have also included the band based on a PLP
model without frailty (dash-with-dots), which is the narrowest, as expected.

7. Concluding remarks

In this article, we have provided an investigation of statistical inference for failure data arising from multiple repairable
systems that are subject to competing risks. The setup is pertinent to a failure mode effect analysis program often pursued
for complex multicomponent systems. The main focus of the article is on carrying out the inference under a shared frailty
structure that induces dependence across the component processes. Shared frailty model is essentially a random effects
model with two different sources of variation [16]. The variability of Zi in (2) represents the between-systems variation,
whereas the variability reflected through the intensity function 𝜇(t) represents variation within the repeat observations of
the i-th system. Shared random effects that the frailty formulation is akin to are also quite commonly employed in joint
modeling of repeated measures and time to event data [22]. Of course, shared frailty is not the only way to induce depen-
dence among components. One can perhaps directly appeal to the counting processes and model them in a multivariate
way. That would certainly be the preferred way to carry out inference if an assessment of the degree of dependence among
the components were sought. Here, our main interest lies on the inference of the model parameters. Treating the association
between the components as a nuisance parameter via frailty thus seems to be a natural approach in this case.

The discourse in this article has been confined to PLP with a gamma frailty that can be construed as an extension to a
popular parametric framework in this context. The result in Theorem 1 is presented for the single censoring case. The exten-
sion to the multiple censoring case with differing 𝜏i is substantially more cumbersome. In particular, the MLEs no longer
possess the attractive closed-form structures. In this case, one has to take recourse to iterative algorithms such as Newton-
Raphson to obtain the MLEs. As long as the mean model is specified correctly for the component recurrent processes, the
general theory of estimating equations is conceivably applicable to ensure the large-sample normality of the solutions to
the likelihood equations. For a general parametric counting process formulation of a recurrent event framework with dif-
fering censoring times, Lawless and Nadeau [19] develop the large-sample theory of the MLEs in the non-competing risks
case. The generalization to the competing risks case should follow along similar steps. The insights into the behavior of
the MLEs for the specific parametric formulation of PLP, however, remain unexplored.

Our simulation findings indicate that a moderate to large frailty variance coupled with the availability of a small number
of system prototypes have a significant impact on the standard errors of the ML estimators. In view of this, we recommend
estimating the dependence parameter 𝜂 first when analyzing a dataset under the frailty induced PLP framework. If the
estimate 𝜂̂ exceeds 1, or the number of systems tested is small (say m ⩽ 30), we recommend using the bootstrap met for
inference along the lines described in Sections 5–6.

Some earlier investigations have considered PLP in the context of complex multicomponent systems that is akin to a
competing risks framework. Pievatolo and Ruggeri [23] advanced a Bayesian approach in such a framework where the
repair history of the individual components conform to PLPs. A recent article by Hong et al. [24] investigated unavailability
of a system with repair pattern that can be viewed as a superposition of PLPs. One important feature of these work is their
formulation of component failure processes as independent. The premise we investigate in this paper assumes a shared
frailty structure that induces a dependence among the component processes.

We strongly believe that the investigation presented herein provides an important extension to a widely used parametric
model for repairable system failure. In the area of software reliability, parametric formulations of intensity function different
from PLP or classes of parametric models of gap times are often pursued. The general approach pursued in this article
can be adapted to these framework as well. As indicated earlier, methodologies exist for carrying out inference in a non-
parametric setting in the context of analyzing recurrent events under competing risks. The inference in the nonparametric
case is restricted to mean or rate of cause-specific recurrence and is not valid for time beyond the largest censoring time. The
inference in a parametric setting, on the other hand, is more comprehensive and can be extrapolated beyond the observation
point. The trade-off, of course, lies in the robustness of model assumptions. In recurrent data from human trials where it is
desired to model the effect of prognostic risk factors on the mean or rate, a semi-parametric regression model of the mean
function may be a preferred alternative to a fully parametric setting. Such models can be conceived as extensions of similar
models and methodologies pursued in the nonrecurrent framework [25].
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Appendix

Proof of Theorem 1

Define Slm = 𝛽l
∑m

i=1

∑ni

j=1 I(𝛿ij = l) log(𝜏∕tij) for l = k, k′. Define by n⋅l =
∑m

i=1 nil the observed number of l-mode failures.
Given n⋅l and zi’s, we have Slm ∼ Gamma(n⋅l, 1)with Skm and Sk′m mutually independent. Using strong law of large numbers,

it follows that n⋅l∕m𝜇l𝜏
𝛽l

a.s.
→ 1 as m → ∞. Hence, n⋅l

a.s.
→ ∞ as m → ∞. Furthermore, if we let 𝜈lm = (Slm − n⋅l)∕

√
n⋅l, then

using central limit theorem (𝜈km, 𝜈k′m)′
d
→ N2(𝟎, 𝐈𝟐) as m → ∞. Because the conditional distribution does not depend on

n⋅k, n⋅k′ , it is also the unconditional distribution. Noting that Slm = n⋅l𝛽l∕𝛽l, 𝜈lm can be re-expressed as 𝜈lm =
√

n⋅l(𝛽l−𝛽l)∕𝛽l.
Consequently, √

m(𝛽l − 𝛽l) =
−𝛽l√
n⋅l∕m

𝜈lm, l = k, k′. (A.1)

Using the large-sample distribution of (𝜈km, 𝜈k′m)′ along with the facts that 𝛽l

p
→ 𝛽l and n⋅l∕m

p
→ 𝜇l𝜏

𝛽l , we have

(
𝛽k − 𝛽k, 𝛽k′ − 𝛽k′

)′ d
→ N2

(
𝟎,

[
𝛽2

k∕(𝜇k𝜏
𝛽k ) 0

0 𝛽2
k′

/(
𝜇k′𝜏

𝛽k′
) ])

.

Define further ulm =
√

m log(n⋅l∕m𝜇l𝜏
𝛽l) for l = k, k′ and um = (ukm, uk′m)′. Then, by using the bivariate central limit

theorem, we have

um

d
→ N

⎛⎜⎜⎝𝟎,
⎡⎢⎢⎣

1+𝜂𝜇k𝜏
𝛽k

𝜇k
𝜂

𝜂
1+𝜂𝜇′k𝜏

𝛽′
k

𝜇′k

⎤⎥⎥⎦
⎞⎟⎟⎠ , as m → ∞,

where we used the expressions from (4) and (5). Rewriting 𝜇̂l with some intended manipulation, we see

log 𝜇̂l = log𝜇l +
ulm√

m
+ (𝛽l − 𝛽l) log 𝜏,

which upon using (A.1) and a Taylor Series expansion yield

√
m(𝜇̂l − 𝜇l) =

𝜇l𝛽l log 𝜏√
𝜇l𝜏

𝛽l

𝜈lm + 𝜇lulm + op(1), l = k, k′. (A.2)

The result follows from (A.1) and (A.2), upon noting that 𝜈lm and ulm are asymptotically independent.
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