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Clinical classification of early dementia and mild cogni-
tive impairment (MCI) is imprecise. We reported previ-
ously that molecular imaging classification of early
dementia and MCI with dual amyloid and dopamine
terminal positron emission tomography differs signifi-
cantly from expert clinical classification. We now
report pathological diagnoses in a substantial subset
of our previously imaged subjects. Among 36 subjects
coming to autopsy, imaging classifications and patho-
logical diagnosis were concordant in 33 cases
(j 5 0.85). This approach enhanced specificity of Alz-
heimer’s disease diagnosis. The strong concordance of
imaging-based classifications and pathological diagno-
ses suggests that this imaging approach will be useful
in establishing more accurate and convenient classifica-
tion biomarkers for dementia research.
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Clinical classification of dementias, particularly in

early disease phases, is imprecise.1 There are three

common neurodegenerative dementias; Alzheimer disease

(AD), Lewy body dementia (LBD), and Frontotemporal

dementias (FTDs). Even expert clinical characterization

does relatively poorly in differentiating AD from FTDs.2

Clinical criteria for LBD possess good specificity, but rel-

atively poor sensitivity.3 Mild cognitive impairment

(MCI), a common precursor of dementia, is a heteroge-

neous category associated with all major neurodegenera-

tive pathologies and vascular etiologies. Imprecise classifi-

cation of MCI and early dementia subjects is an obstacle

to clinical research owing to the fact that heterogeneous

study populations dilute power to detect effects of trial

interventions or associations with potential biomarkers.

The emergence of positron emission tomography (PET)

ligands identifying specific pathological features of neuro-

degenerative disorders raises the possibility of minimally

invasive characterization of MCI and early dementia sub-

jects. We previously reported results of combined amy-

loid ([11C]PIB) and dopamine terminal ([11C]DTBZ)

PET imaging in 102 MCI and early dementia subjects,

demonstrating only moderate concordance (j 5 0.41)

between imaging-based and expert clinical consensus clas-

sifications.4,5 Our previous results raise the possibility

that this imaging-based approach to classification more

faithfully reflects underlying pathologies than clinical

characterization. We now report neuropathological

follow-up of a substantial fraction of our study subjects.

Subjects and Methods

Study participants were individuals with MCI or relatively mild

dementia (Mini–Mental State Examination [MMSE]> 17) as

described previously and enrolled in our previous imaging study

from 2005 to 2009.4,5 The purpose of the previous study was

to compare amyloid-dopamine terminal PET-based classifica-

tion of early cognitive impairment subjects with expert clinical

classification. Subjects with primary features of cognitive

impairment were recruited from the University of Michigan

Cognitive Disorders Clinic. Patients with primary neurological

presentations involving noncognitive domains (ataxia, parkin-

sonism, and so on) were excluded. Inclusion-exclusion criteria

are described in previous publications; patients with possible

vascular dementia (modified Hachinski score> 4 or meeting

NINDS-AIREN criteria or large infarcts on structural imaging)

were excluded.4 Clinical classifications were established by

expert consensus conference based on clinical and
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neuropsychological data accumulated at the time of visits for

imaging, as described previously.4 Enrollees agreed to follow-up

autopsy. To date, 41 study participants died and autopsies were

completed on 36. Autopsy results of 1 subject were reported

previously.6 All autopsies were performed at the University of

Michigan Health System. Neuropathology was assessed by

standard methods and using standard diagnostic criteria.7–11

The examining neuropathologists (A.F.-H., A.P.L., and S.C.-P.)

were blind to results of imaging studies. Thal scores of amyloid

plaque density were compiled for three neocortical regions;

mid-frontal (Brodmann’s areas [BA] 10 and 46), parietal (BA 7

and 39), and primary occipital (BA 17). Plaques were identified

with Ab immunohistochemistry (6F/3D; 1:50; Leica Biosys-

tems, Nussloch, Germany). Thal scoring was available for all

subjects. Regional [11C]PiB binding was quantified as distribu-

tion volume ratios (DVRs) with the cerebellar gray matter as

the reference region. Image-based classifications established in

our previous studies were used for categorical comparison with

pathological diagnoses.4,5 Standardized DVR image data sets

were classified qualitatively by an expert interpreter (K.A.F.)

familiar with the normal and pathological distributions of these

tracers and blind to all clinical and routine structural imaging

data, as described previously.4 In our previous study, use of

parametric regional DVR thresholds for classification did not

alter results.4 The unweighted Cohen’s kappa statistic was used

to estimate concordance between imaging based and pathologi-

cal classifications. Spearman’s rank-order correlation was used to

compare amyloid burden assessed pathologically with the

[11C]PiB DVR estimates of regional amyloid burden. Sixteen

subjects also underwent [18F]fluorodeoxyglucose PET (FDG-

PET) at the same time they underwent DTBZ-PiB imaging.

These studies were interpreted by the same expert interpreter

(K.A.F.) blind to the clinical histories, and structural and PET

imaging data.

Results

There was overall excellent concordance of imaging based

classifications with neuropathological diagnoses

(j 5 0.85; 95% confidence interval 5 0.69–1.0; Table 1;

details of pathological results in Supplementary Table).

Regional amyloid DVRs correlated well with neuropatho-

logical scoring of amyloid burden in the selected neocort-

ical regions (Fig). For mid-frontal cortex, rho 5 0.72; for

parietal cortex, rho 5 0.79; for primary occipital cortex,

rho 5 0.64 (all p< 0.05). There were 3 cases with dis-

cordant imaging-pathological classifications. One subject

had a clinical diagnosis and imaging classification of

LBD, but a pathological diagnosis of AD. Alpha-

synuclein immunoreactive Lewy bodies were found in

midbrain neurons in this subject, suggesting the presence

of mixed AD-LBD pathology. The second discordant

subject had marked frontal and temporal atrophy second-

ary to multiple small infarctions and imaging classifica-

tion as FTD. The final discordant case was classified by

imaging as LBD, but remarkable only for the presence of

transactive response DNA binding protein 43 kDa

(TDP-43)-immunoreactive neurites in the frontal cortex

and hippocampal formation. This was an unusual case in

that there was marked unilateral striatal loss of

[11C]DTBZ binding. Three cases were assessed patholog-

ically as meeting criteria for both AD and LBD. These

individuals had imaging classifications as LBD with amy-

loid deposition and are assessed as concordant classifica-

tions. There was excellent concordance between imaging

assessments of increased amyloid burden and pathological

results; all subjects found to have moderate-to-high amy-

loid plaque burden at autopsy were classified as amyloid

positive in imaging classifications.

We performed a more limited comparison of com-

bined amyloid and dopamine terminal imaging classifica-

tions, neuropathological diagnoses, and FDG-PET

classifications. Approximately 30% of the FDG-PET

classifications differed from final neuropathological diag-

noses (Table 2). There were 3 cases where the FDG-PET

classification was FTD with pathological diagnoses of

AD and 2 cases where the FDG-PET classification was

AD with pathological diagnoses of LDB. In all cases

with discrepant FDG-PET classifications and neuropath-

ological diagnoses, combined amyloid and dopamine ter-

minal PET imaging correctly identified the pathological

diagnosis (Table 2).

FIGURE 1: Scatter plot of parietal cortex Thal scores
(autopsy rating) versus [11C]PiB DVRs. PET 5 positron emis-
sion tomography; DVR 5 distribution volume ratio;
[11C]PiB 5 Pittsburgh B; r 5 Spearman’s rho.
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Discussion

Our results indicate that classifications based on com-

bined amyloid and dopamine terminal PET imaging cor-

relate well with neuropathological diagnostic classifica-

tions. Of 36 subjects studied, there were 3 cases (8.3%)

where imaging based and pathological classifications dif-

fered. In our previous studies, in contrast, �35% of par-

ticipants had discordant expert clinical consensus and

imaging diagnostic classifications.4,5 One discordant case

was classified as LBD on the basis of significantly

reduced striatal [11C]DTBZ binding. Though not meet-

ing pathological criteria for LBD, this subject had nigral

Lewy bodies, suggesting mixed pathology.

Our results are consistent with other recent studies.

In trials of antiamyloid therapy of clinically classified

early AD subjects where participants underwent amyloid

imaging, �15% of enrolled subjects had negative amy-

loid imaging, excluding AD.12–14 These results likely

underestimate diagnostic misclassifications given that

�50% of LBD cases exhibit significant amyloid burden,

likely leading to misclassification of some LBD subjects

as AD.15 A clinicopathological study using the National

Alzheimer’s Coordinating Center (NACC) data set found

that �15% of classified clinically AD subjects failed

pathological criteria for AD.16 In our previous studies, a

major cause of discrepant clinical and imaging classifica-

tions were subjects classified clinically as FTD, but with

positive amyloid imaging results suggesting AD.4 Our

results comparing amyloid/dopamine terminal imaging

and clinical diagnostic classifications are similar to those

reported by Beach et al. using the NACC data set to

compare clinical and neuropathological diagnoses.17

Our limited evaluation of FDG-PET classifications

suggests that this method is less precise than combined

amyloid and dopamine terminal PET imaging. These

types of FDG-PET misclassifications are well described

in previous literature. Disproportionate frontal amyloid

deposition may give rise to frontal predominant hypome-

tabolism.18 The canonical pattern of cerebral metabolic

deficits in LDB is the pattern of temporoparietal and

frontal deficits found in AD plus occipital hypometabo-

lism, but the distinguishing occipital metabolic deficits

are absent is a significant fraction of patients.19

Amyloid imaging is accepted as a useful biomarker

of fibrillar amyloid deposition. The high prevalence of

amyloidopathy in LBD, however, indicates that increased

amyloid burden is not a unique AD biomarker. Combin-

ing amyloid imaging with a dopamine terminal marker

enhances accuracy. Our study, and this approach in gen-

eral, has some limitations. Our number of autopsied sub-

jects is relatively small. Because amyloid imaging is rela-

tively sensitive for detecting AD, and dopamine terminal

imaging allows exclusion of LBD, this method is argu-

ably best at improving identification of AD. Two of the

imaging misclassifications assessed subjects as LBD were

found at autopsy to have another diagnosis. This result

and the existence of nigrostriatal pathology in FTD and

related syndromes indicate that dopamine terminal imag-

ing possesses good sensitivity, but less specificity, for

detection of LBD. In amyloid-negative individuals, sub-

stantial nigrostriatal terminal loss could indicate either

LBD or FTD, given that some FTD patients develop

parkinsonism with nigrostriatal degeneration, particularly

those with MAPT or GRN mutations, decreasing the

specificity of this approach of accurate classification of

LBD.20 Identification of FTD is most problematic given

that our classification of FTD is based on negative imag-

ing results—the absence of pathological amyloid or dopa-

mine terminal imaging changes. This may be misleading

because there are multiple potential causes of cognitive

impairment without amyloid or nigrostriatal pathology,

for example, our case where the neuropathological evalu-

ation revealed multiple small infarcts instead of neurode-

generation. Positive imaging markers for tau deposition

and other FTD-associated pathologies would be useful

additions to this imaging approach.21

Our results point to another problem secondary to

use of the trinary classification scheme. This conventional

approach is artificial in that mixed pathologies are com-

mon, though the presence of other pathologies does not

confound amyloid ligand binding.22 Mixed pathologies

are observed in our data set with 3 subjects with both

AD and LBD, and the discordant subject who met neu-

ropathological criteria for AD and had midbrain Lewy

bodies. Identification of individuals with both AD and

LBD is particularly difficult, both with our dual tracer

approach and with conventional clinical classifications.

This is an area where addition of a tau tracer may be

valuable.

Our study has significant advantages. Our subjects

were enrolled during relatively early disease stages, either

MCI status or relatively mild dementia (MMSE> 17).

Previous studies correlating amyloid imaging results with

neuropathology enrolled individuals with advanced

dementia.23–26 Our study population is more typical of

clinical research studies and offers reassurance that previ-

ous imaging-pathological correlation studies of amyloid

imaging are relevant to earlier phases of neurodegenera-

tion. Our study design may underestimate the utility of

this multitracer approach. Imaging classifications were

made in the absence of clinical and structural (computed

tomography or magnetic resonance imaging) imaging

information. Conversely, our clinical classifications were

ANNALS of Neurology
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made without the PET results. Use of this multitracer

PET approach in conjunction with clinical and structural

imaging data would likely enhance accuracy of classifica-

tions. These methods may provide additional useful data.

We showed previously that regional cerebral blood flow

data derived from [11C]DTBZ PET closely mimics the

patterns of regional cerebral metabolism visualized with

[18F]FDG-PET imaging.27,28 Analysis of [11C]DTBZ-

based regional perfusion data would add a functional

dimension to analysis and might further enhance classifica-

tions. Individuals, for example, with abnormal striatal

[11C]DTBZ ligand binding could have either LBD or

FTD. These syndromes exhibit distinctive regional cerebral

metabolic-perfusion deficit patterns, which could be help-

ful in classifying LBD and FTD subjects more accurately.

We do not suggest that this approach to classifica-

tion would be broadly useful in clinical practice. It is

more plausible that this approach, or approaches using

similar tracers or incorporating additional tracers, such as

a tau ligand, will be useful in clinical research. These

methods may allow purer subject samples or better sub-

ject stratification, particularly for selection of AD sub-

jects, for clinical research studies. This approach may be

useful in establishing the utility of more accessible classi-

fication biomarkers. Rather than waiting years for

autopsy results, this dual tracer approach or similar

methods could be used as surrogates to validate more

convenient classification biomarkers.
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TABLE 2. Expert consensus clinical classifications, PiB-DTBZ imaging classifications, neuropathological
diagnoses, and FDG-PET classifications

Clinical
Consensus
Classification

Age at
Initial
Evaluation

Age at
Imaging
Classification

Age at
Death

Disease
Duration

PiB-DTBZ
Imaging
Classification

Pathologic
Diagnosis

FDG-PET
Classification

AD 59 60 66 7 AD AD AD

LBD 68 70 71 3 LBD LBD AD

AD 64 65 67 3 AD AD FTD

AD 69 71 73 4 AD AD AD

LBD 75 79 86 11 LBD LBD LBD

LBD 74 74 79 5 LBD LBD LBD

LBD 65 66 73 8 LBD LBD AD/LBD

mdMCI 65 65 66 1 AD AD AD

aMCI 77 80 83 5 AD AD FTD

AD 76 81 82 6 AD AD AD

AD 85 85 89 4 AD AD FTD

AD 66 67 72 6 LBD LBD AD

aMCI 79 80 84 5 AD AD AD

AD 65 68 72 7 LBD LBD1AD LBD

LBD 76 77 83 7 AD AD AD

AD 56 59 63 7 AD AD AD

Disease duration 5 interval from age at initial evaluation to age at death.
AD 5 Alzheimer’s disease; LBD 5 Lewy body dementia; FTD 5 frontotemporal dementia; MCI 5 mild cognitive impairment;
aMCI 5 amnestic MCI; mdMCI 5 multidomain MCI; PiB-DTBZ 5 [11C]Pittsburgh B and [11C]dihydrotetrabenazine positron
emission tomography; FDG-PET 5 [18F]fluorodeoxyglucose/positron emission tomography. FDG-PET classification criteria: AD:
temporoparietal and posterior cingulate hypometabolism; LDB: temporoparietal and posterior cingulate hypometabolism plus occi-
pital hypometabolism; FTD: frontal, anterior temporal, and anterior cingulate hypometabolism.
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