
Peritumoral tissue compression is predictive of
exudate flux in a rat model of cerebral tumor:
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MRI estimates of extracellular volume and tumor exudate flux in peritumoral tissue are demonstrated in an experi-
mental model of cerebral tumor. Peritumoral extracellular volume predicted the tumor exudate flux.
Eighteen RNU athymic rats were inoculated intracerebrally with U251MG tumor cells and studied with dynamic

contrast enhanced MRI (DCE-MRI) approximately 18 days post implantation. Using a model selection paradigm
and a novel application of Patlak and Logan plots to DCE-MRI data, the distribution volume (i.e. tissue porosity)
in the leaky rim of the tumor and that in the tissue external to the rim (the outer rim) were estimated, as was the
tumor exudate flow from the inner rim of the tumor through the outer rim.
Distribution volume in the outer rim was approximately half that of the inner adjacent region (p< 1×10�4). The

distribution volume of the outer ring was significantly correlated (R2 = 0.9) with tumor exudate flow from the inner
rim. Thus, peritumoral extracellular volume predicted the rate of tumor exudate flux. One explanation for these data
is that perfusion, i.e. the delivery of blood to the tumor, was regulated by the compression of the mostly normal
tissue of the tumor rim, and that the tumor exudate flow was limited by tumor perfusion. Copyright © 2015 John
Wiley & Sons, Ltd.
Additional supporting information may be found in the online version of this article at the publisher’s web site.
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INTRODUCTION

Using animals implanted with a model U251 cerebral tumor and
studied twice in a 24 h interval by dynamic contrast enhanced
MRI (DCE-MRI), an estimate of tissue extracellular volume frac-
tions in both tumor boundary and the surrounding normal tissue
will be presented. The outward flux of a contrast agent (CA) in

interstitial tumor exudate in the tumor boundary will also be
presented. Extracellular volume fraction and flux in the tumor
boundary will be shown to be highly correlated.

An outward transport of CA may indicate increased tumor
interstitial fluid pressure (TIFP) (1–4), which is associated with
increased tumor aggressiveness (3). In order to non-invasively
quantify TIFP, both the velocity of tumor fluid exudate and tissue
fluid conductivity in the tumor boundary must be measured. It is
the purpose of this paper to demonstrate methods for quantify-
ing the extracellular distribution volume (VD) of CA at the tumor
edge and in its normal surroundings, and to estimate tumor
exudate flux at the tumor boundary. VD is closely related to
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porosity (φ), which in turn may be used, with appropriate calibra-
tion, to estimate tissue fluid conductivity (5).

The stepping-off point of this paper lies in a previous consid-
eration of model selection and systematic errors in DCE-MRI
studies (6), where it was shown (Fig. 7 of Reference 6) in the
rat model of cerebral tumor employed herein that, in the appar-
ently normal tissue rimming the embedded tumor, model failure
in the form of near-zero and even negative estimates of plasma
volume (vp) typically occurred. The apparent cause of this model
failure (Figs 1–3 of Reference 6) was the transport, via tumor
exudate streaming, of the CA from the tumor interior to the
voxels where the negative estimates of vp appeared.

Herein, a Logan plot (7–9) is used to estimate the VD of CA in
the tumor itself, and, uniquely, in the tumor surroundings. We
have found (9) that a Logan plot estimate of VD in the tumor is
well correlated with cellular density and with a standard model
(SM) (10) estimate of an equivalent quantity. Assuming that the
border of the leaky vasculature can be identified and associated
with the tumor, it will be demonstrated that a stable estimate of
VD in the tumor surround can be generated by a Logan plot with
an appropriately chosen input function. With the same assump-
tions it will also be shown that a Patlak plot can estimate exudate
flux through the tumor rim. Finally, the association of VD and flux
at the tumor periphery will be demonstrated.

METHODS

Experimental methods, including the animal model, sample size,
imaging methods and post-mortem histopathology have been
previously described (9,11) and are further summarized in the
supplementary material. All the animals presented herein have
had their test–retest DCE-MRI studies analyzed for standard
pharmacokinetic parameters, with results summarized and
reported in Reference 11. Thus, the experimental methods used
herein will be only briefly summarized.

In a protocol approved by the Henry Ford Hospital Institu-
tional Animal Care and Use Committee, 18 RNU athymic rats
were inoculated intracerebrally with U251MG tumor cells and
imaged approximately 18 days post-implantation. Tumors when
imaged were about 5mm in diameter. In order to establish
test–retest variation in this animal model, two MRI studies were
conducted for each animal, 24 h apart.

DCE-MRI studies were performed at 7 T. The DCE-MRI se-
quence used was a dual-echo spoiled gradient-recalled (2GE)
sequence with a 60ms TR and tip-angle of 27°. This allowed
the direct calculation of changes in T2* after the injection of
CA, and thus the construction of a time trace of change in R1
that was free from T2* dephasing effects. Details may be found
in Reference 6. A three-slice set of 2mm slices was centered
over the tumor and a total of 150 image sets at intervals of
4 s were taken. Total run time was 10min. Prior to the 2GE
sequence, and immediately afterwards, two Look–Locker (LL)
sequences were run so that a voxel-by-voxel estimate of T1 in
the tissue could be made pre and post CA administration. CA
(Magnevist, Bayer Healthcare Pharmaceuticals, Wayne, NJ,
USA) bolus injection was performed by hand push at Image 15.
After a data-driven process for model selection and parametric
estimation (6,12,13), the slice with the largest tumor cross-
section, usually the center slice, was selected for further analysis
so that it might be assumed that the radial movement of CA
was taking place in the plane of the image.

Numerical and statistical methods

Using data from a series of LL-MRI studies performed before and
after the 2GE DCE-MRI study, voxel-by-voxel maps of T1 pre and
post contrast were generated (12,14,15). After compensation for
T2* effects, the points of the DCE-MRI data before CA administra-
tion, and the last few points of DCE-MRI data, were calibrated
against the LL T1 estimates performed pre and post study, thus
creating two points, pre and post CA administration, that were
used to generate and stabilize the running estimate of ΔR1(t)
(R1 = 1/T1), which in turn was used to approximate the
concentration–time curve of CA in the tissue (13).
A scaled radiological arterial input function (AIF) was used as

the AIF in all studies (6,9,16,17). The starting point of the AIF
was aligned with the first appearance of CA in contralateral
normal tissue. A global starting point was selected, usually one
or two time points after the arrival of CA. For the calculation of
the pharmacokinetic parameters of the SM, i.e. the extended
Tofts (10,18) or extended Patlak model, or in this paper Model
3, the next 90 points (6min) of data were fitted by minimizing
the sum squared error. For Logan plot calculations, because the
Logan plot depends on the asymptotic behavior of the CA in
the tissue, the entire interval of indicator uptake and clearance
after the starting point was considered, with the linear last
portion of the curve used to estimate VD.

Model selection

Model selection in this experimental paradigm (DCE-MRI in a rat
model of cerebral tumor) has been previously presented
(6,12,13) and used to select regions of interest (ROIs) in recently
published studies (11,16,19). A full description of the model
selection paradigm is presented in the supplementary material.
In the SM, there are at most three parameters to be estimated:

the plasma volume (vp), the forward volumetric transfer constant
(Ktrans) and the reverse transfer constant (kep). The often-reported
interstitial volume fraction ve is computed as Ktrans/kep, although,
because information in the data that pertains to the leakage of
CA to the interstitium has to do with the first and second deriva-
tives of concentration–time data, it is the rate constant kep that is
directly estimated. Consider the hierarchy of models that might
prevail in the analysis of DCE-MRI data in the brain. For any one
voxel, there are four possible descriptions, as follows. (0) The voxel
contains little or no perfused tissue. Consequently, there is no de-
tectable change in ΔR1 after CA administration and no parameters
are different from 0. (1) The vasculature in the voxel does not
detectably leak CA across the period of observation: vp≠ 0,
Ktrans = kep= 0. This is the case in most normal brain. (2) The vascu-
lature in the voxel detectably leaks CA, but there is little evidence of
reflux from the tissue to the vasculature: vp≠ 0, K

trans≠ 0, kep =0. (3)
The vasculature detectably leaks CA, and there is evidence of reflux
from the tissue to the vasculature. This is the full model described
by the SM, vp≠0, K

trans≠ 0, kep≠0. These models are numbered 0
through 3 to reflect the number of parameters estimated. The
models are nested, both physiologically and mathematically, so
they can be compared via an F-statistic (6,13), with a higher-order
model selected only if it is a significantly better explanation of
the data than a lower-order model.
In each voxel, one set (0–3 in number) of parameters is re-

ported, with the choice of model driven by a model comparison
performed via a non-central F-test (20). In the brain, the maps
produced are a map of model selection, a nearly complete
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map of plasma volume, a partial map of Ktrans and a smaller map
of ve. See Figure 1 for an example of such maps. The element of
this process that was most important to this paper was the
delineation via model selection of the edge of the tumor.

Patlak and Logan plots

Patlak and Logan graphical approaches are central to inferences
about model behavior. The key test employed in each graphical
approach addresses the question of what portion of the data can
be linearized, when plotted as a Patlak (21), extended Patlak (22)
– an analysis that uses the SM – or Logan (8) plot. The portions of
data where linearity prevails indicates those times in the experi-
ments where certain critical assumptions hold.
In a region where a Patlak Model 2 plot is linear, indicator enters

a last (sink) compartment and is trapped therein; only vp and Ktrans

can be estimated. In a region where a Patlak Model 3 plot is linear,
an estimate of the full set of Model 3 parameters (including ve) is
available. In a region where a Logan plot is asymptotically linear,
the source and sink compartments reach an approximate equilib-
rium in concentration. Note that, while plasma concentration is
considered the forcing function of the differential equation of the
model (e.g. Equation [1] in Reference 8), if another forcing function
is available the relationship still holds. For instance, if the forcing
function is the concentration of indicator in an adjacent space,
and that space is the source of indicator, the relationships outlined
above still hold, and the portions of data where the critical assump-
tions hold will still plot as linear functions.

Statistical methods for the analysis of the population sample

“Signal-to-noise” (S/N) in the first echo of the 2GE DCE-MRI data
prior to CA administration was assessed by measuring the aver-
age image intensity of the whole brain in the middle slice of
the pack, divided by the image intensity in the portions of the
image where no tissue resided. In order to allow a better sense
of conditions in a tumor of about 5mm diameter, S/N± SD for
the tumor itself was also estimated; however, because the
receiver employed a surface coil, the gradient in image intensity
contributed to the variance of the measure of signal. Note also
that this is not the true S/N in the complex time-domain data,
but it is a convenient metric that is unimodal in the true S/N.
In the 18 studies, each with two measurements made 24 h

apart, the parameters of interest were VD outside the tumor
rim, and tumor exudate flux through the rim. Preliminary analy-
ses examined differences in volume with t-tests, and correlations
between volume and flow with Pearson product–moment corre-
lation coefficients. In order to account for the effect of correlated
measures due to repeated studies, the final reporting analysis

utilized a generalized linear model (GLM) approach, as imple-
mented in the library nlme (23) of the R statistical package (24).
In comparing models produced by GLM, the Akaike information
criterion (AIC) was used as a measure of goodness of fit; differ-
ences in the AIC were used to predict the probability that a
model was descriptive of variation in the dependent variable.

RESULTS

S/N in the DCE-MRI experiments was about 30:1. S/N in the tumor
itself was about 35 ± 4.

See Figure 1, where the results of pixel-by-pixel estimates of
DCE-MRI model parameters in the brain of an athymic nude rat
implanted with an U251 tumor are mapped. This animal study
is chosen as typical of the 18 studies summarized in this results
section, and will be used throughout to illustrate the methods
employed in the analysis of the full set of studies. A second study
is shown in the supplementary material. Shown left to right are
estimates of vp, K

trans, ve, and model selection, where Model 1
estimates only vp, Model 2 estimates Ktrans and vp, and Model 3
estimates ve, K

trans, and vp. For reasons that will be explained
below, the largest slice in the tumors in our animal model nearly
always showed regions with near-zero or negative estimates of
vp in the Model 2 regions. For instance, in Figure 1, the map of
vp shows a nearly complete ring of negative estimates in the
Model 2 region outside the tumor. Since they imply a failure of
conservation of mass, these estimates are clearly artifacts and
point to a model failure, but an insight into the source of these
artifacts suggests a method for estimating the distribution vol-
ume of CA in the mostly normal tissue outside rim of the tumor.

First, it should be demonstrated that the CA escapes the
boundaries of the tumor. An examination of the typical histology
of the U251 cerebral tumor (the hematoxylin and eosin (H&E)
stained section of Fig. 2 of Reference 6, of Fig. 7S of the supple-
mentary material, and of Fig. 2 herein) shows that, on the scale of
the DCE-MRI image sets, where the pixel sizes are about 250μm,
the edge of the tumor is confined to a single pixel. The post-
contrast T1-weighted images in Reference 6, in Figure 2 herein,
and in Figure 7S of the supplementary material, which were ac-
quired about 15min after CA injection, show a bright rim of con-
trast around the central lesion; the DCE-MRI data in Reference 6
show that CA leaks from the tumor across the time of the
experiment, and, since the area of contrast enlarges radially over
time, is transported (by advection and/or diffusion) into the
surrounding normal tissue, entering a region of mostly, or
entirely, normal parenchyma where the blood–brain barrier
restricts its reabsorption to the vasculature.

Figure 1. Parametric maps: left to right, vp, K
trans, ve and model selection. For the model selection map, yellow is Model 3 acceptance, dark red is Model

2 acceptance and red is Model 1 acceptance. In order to better display the range of values, the map of vp was windowed to set negative values to 0.
Pixels 1–3 are marked with green dots and numbered from right to left, with Pixel 1 placed in the margin of the Model 3 region, and Pixels 2 and 3 in
the Model 2 region in a line proceeding from Pixel 1. Banding in the parametric maps and model selection is due to Gibbs ringing in the original 2GE
data set.
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Notice the three pixels in Figure 1 that are marked by an arrow
and three small green dots placed on themap of model selection.
Figure 3 shows the change in ΔR1 with time in the three linearly
adjacent voxels, starting in the Model 3 region and proceeding
outward in the Model 2 region. Two types of plot appear, with
normally plotted data and curve fits in the left-hand panel, and
Patlak-plotted data in the right-hand panel. In both panels, the
three traces of concentration–time data correspond, top to
bottom, to right to left points in Figure 1. The top trace is ΔR1 data
from Pixel 1, the Model 3 voxel; the middle trace is data from Pixel
2, the first Model 2 voxel outside the inner Model 3 region, and
the bottom trace is data from Pixel 3, the next voxel out.

Presumably, the tumor is the major source of CA seen in nor-
mal tissue in Figure 2. Consider the top left ROI shown in Figure 4,
defining the outer limit of the Model 3 region, outside of which is
a region of predominantly Model 2 behavior with near-zero or
negative estimates of vp. Figure 5, left, displays the Patlak and
extended Patlak plots of concentration–time data in this inner
rim ROI, demonstrating that Model 3 provides a better explana-
tion of the behavior of the data than Model 2 because the Model
3 plot is linear while the Model 2 plot is concave. The F-statistic,
with a value of 725, yielding a vanishingly small probability that
the errors of the Model 2 fit and the Model 3 fit were drawn from
the same distribution, confirms this judgment. SM estimates of
vp, ve, and Ktrans in this inner-rim ROI are 1.1%, 10.8%, and
3.0 × 10�2 min�1, respectively. The Logan plot estimate of VD is

11.4%. These estimates reflect the typical physiology of this
model of cerebral tumor, with fairly high vascular permeability,
and a decreased distribution volume fraction relative to the
typical 20% of normal brain tissue (25,26).
If a three-pixel-wide ROI (Fig. 4, top right) is formed outside the

inner ring defined by the edge of the Model 3 region, the (Model
2) Patlak plot of Figure 6 is obtained. This plot has an evident line-
arity, a positive slope, a negative intercept, and a convex curve
connecting the linear part of the curve to the start of the data. An
examination of the methods of plotting the Patlak and extended
Patlak plots shows that a convexity in the Patlak plot can only be
obtained if kep is negative, a clearly non-physical situation that vio-
lates the conservation of mass and/or the assumption of temporal
stability. Nevertheless, the linear portion of the Patlak plot indicates
that CA is entering the region, and is not being reabsorbed by the
source. It also appears that the normalized standard radiological
AIF to the outer region becomes approximately correct as the
experiment proceeds, but that the input to this compartment lags
the input of the adjacent compartment. These observations
suggest that CA enters the ROI from the adjacent inner surface,
and does not re-enter the source compartment in an appreciable
amount during the course of the experiment. Note that, without
a model selection paradigm with its two-parameter fit resulting in
a negative vp, in a three-parameter SM analysis vp and Ktrans would
be positive and kep negative, again signaling a model failure of
standard pharmacokinetic modeling.

Figure 3. Left: data and curve fits from the three marked pixels of Figure 1. These three traces, top to bottom, correspond to right to left in Figure 1 –
the top trace is ΔR1 data from Pixel 1, the Model 3 voxel, the middle trace is data from Pixel 2, the first Model 2 voxel outside the inner Model 3 region,
and the bottom trace is data from Pixel 3, the next voxel out. Right: linearized fits to the data showing the (Model 3) extended Patlak fit (top) and the
two (Model 2) Patlak fits of the data shown on the left.

Figure 2. Left: post-contrast T1-weighted image in the animal of Figure 1. Right: H&E staining of a centrally located tissue slice. The MRI image was
acquired about 15min after the injection of CA. The central tumor mass is fairly well matched by the central but somewhat darker region of enhanced
contrast, demonstrating the likely convection of the CA from the central lesion.
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Consider a thin outer ROI drawn immediately adjacent to, and
outside, the ROI of the edge of the Model 3 region. This ROI, a
single pixel wide, is shown as the middle panel of Figure 4. As-
sume that the outer ring does not contain significantly leaky vas-
culature, and that the inner ring supplies the thin outer ring with
the majority of its CA. The Logan plot of the CA concentration in
the inner ring (Fig. 5, right) shows that a transvascular equilib-
rium occurs where the Logan plot becomes linear, after 100 s,
the 25th point post CA administration. That is to say, the CA con-
centrations in plasma and interstitial fluid are approximately
equal after the 25th point. Thus, it is plausible that, rather than
using the AIF as an input to the outer ring, the CA concentration

in the inner ring can be used as an input function, with the
assumption that all the CA in the outer rim is obtained from
the inner rim. It is assumed that the vascular volume of the
normal contralateral caudate putamen is 1%. Since extravascular
and intravascular CA concentrations have equilibrated, the extra-
vascular concentration, i.e. the concentration of the interstitial
fluid, is that of the blood. The trace of concentration in the inner
ring is then normalized to be 100 times that of the trace of con-
centration in the (presumably non-leaky) contralateral caudate
putamen. This is equivalent to requiring that the extravascular
concentration of CA in the inner rim equilibrates with the
intravascular concentration by the 25th point post CA injection,
and that the vascular concentrations of CA do not substantially
influence the behavior of the concentration–time studies under
consideration. The biases introduced by vascular concentrations
are examined in the appendix.

The Logan plot of Figure 7 shows the result of these proce-
dures. The plot becomes linear after the 97th point post contrast;

Figure 4. Three ROIs in the animal under study. Left: an ROI defined as
mainly Model 3, and inside the regions of negative estimate of vp in
Figure 1. Middle: an ROI of single-pixel width, adjacent to and outside of the
ROI on the left, defined mainly by lying inside the regions of negative
estimate of vp. Right: the ROI of the middle panel, widened to include all of
the regions of negative vp outside the inner rim defined by the right panel.
The intent of these ROIs was to define a source region (left panel), an
equilibrating region (middle panel), and a sink (right panel).

Figure 5. Left: Patlak (concave curve) and extended Patlak (linear curve) plots of response in the inner rim ROI (top left, Fig. 4). Right: Logan plot of the
same data. Both plots of the data employed the group-averaged estimate of the AIF, normalized to the plasma volume of the contralateral caudate
putamen.

Figure 6. A Patlak plot (Model 2) of the concentration–time data in the
enlarged outer rim of the tumor. The input function employed was that
of the group-averaged estimate of the AIF, normalized to the plasma
volume of the contralateral caudate putamen, as in Figure 5. Note the
linearity of the latter part of the curve, and the convex curvature of the
early part of the curve, signaling a model failure.
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fitting the last 35 points yields a slope of 0.0643, or an estimate of
VD of 6.4%. Contrariwise, the Logan plot of these data, but using
the estimate of CA plasma concentration versus time that resulted
in the Logan plot of Figure 5, is shown in the inset of Figure 7. This
graph yields a nonsensical result because the asymptotic behav-
ior of the plot demonstrates a near-infinite slope, and thus cannot
estimate distribution volume in the tissue. This is suggestive of
the inner rim being the source of CA for the outer rim.

Continuing with the practice of using the rim of the tumor as a
source of CA in the adjacent outer voxels, consider the wide ROI
shown in the top right-hand image of Figure 4. This ROI is
2–3 pixels wide and contains essentially all of the region outside
of the tumor into which the CA leaks. Thus, it satisfies the require-
ments of the Patlak (Model 2) model, in that it is a final compart-
ment from which no return to the source compartment takes
place. Figure 8 shows the resulting Patlak plot, which equilibrates
very quickly, and appears to be linear for almost the entirety of
the experiment. The slope of the plot, 2.9 × 10�3 [ml/(mlmin)] in
this case, should give an estimate of the rate of transfer of the
CA between the inner rim and the outer sink. When normalized
to the volume of the wide ROI and the area of the interface be-
tween the inner and outer ring ROIs (see the appendix, Case 2),
it yields an estimate of CA flux between the two compartments.

The compartment size (of the wide outer ROI) into which the
CA flows is 134 voxels, and there are 34 voxels on the rim of the
tumor. Pixel edge sizes are 32/128mm=¼mm; slice thickness
is 2mm. The average flux per voxel is thus about 4.5 × 10�2

μl/(μm2 s). Taking the estimates of interstitial volume fraction to
be 6.43 × 10�2 for the outer ring and 1.14 × 10�1 for the inner
ring, this rate of flux yields an estimate of fluid velocity in the in-
terstitial space in the outer ring of 0.70μm/s and in the inner ring
of 0.37μm/s. These velocities are in the range of other estimates
of tumor velocity, i.e. less than 1μm/s. See, for instance, Table 1 of
Munson and Shieh (27) and also the work of Pishko et al. (28).

Table 1 summarizes the results of 34 studies in 18 animals.
Sixteen of these studies were repeated studies; in Table 1 the first
and second of the studies are labeled “pre” and “post,” respec-
tively. In the three parameters measured, there appeared to be
no systematic differences between estimates in the two studies:
that is to say that the two studies did not differ significantly in
their sample means between Study 1 and Study 2 in the esti-
mates of any parameter, nor did the paired differences show a
trend by a paired t-test. The smallest p-value for any of the paired
t-test comparisons was about 0.3 for the paired estimates of exu-
date flux; the smallest p-value for any of the tests on the sample
means of Study 1 and Study 2 was about 0.17, again for flux.
The sample mean of VD in the inner ring ROI (tumor) was

about 15%; in the (presumably normal) outer ring it was about
10%. These estimates, particularly that of the outer ring, are
smaller than the measured distribution volume of normal brain,
which is about 20% across a wide variety of mammalian species
(25,26). There were distinct differences between the estimated
VD of the inner ring region and that of the immediately adjacent
outer ring. In 33 of 34 studies, the distribution volume in the
outer ring ROI was smaller than its immediately adjacent inner
ring ROI, and the one case where the difference was reversed
was that of the second-smallest tumor cross-sectional area in
the sample. In an initial analysis of parameters, the estimate of
distribution volume in the inner ROI was significantly larger than
that of the immediately adjacent outer ring in both Study 1
(p< 4 × 10�4) and Study 2 (p< 1 × 10�4). When calculating the
difference between the inner and outer ring distribution vol-
umes, there was no significant difference (p= 0.63) between
Study 1 and Study 2. A GLM analysis confirmed these findings:
the outer ring ROI estimate of VD was highly predictive of the
inner ring’s estimate of VD (p< 1× 10�4). A regression slope of
0.528 demonstrated that the outer ring VD was usually about half
the inner ring VD. The intercept of this relationship was non-zero
(intercept = 0.021, p~ 0.043), raising the possibility that some
positive residual difference might be expected between the tis-
sue of the inner (mainly tumor) and outer (mainly normal) ROIs.
These analyses present a picture of a relatively porous inner ring

Figure 7. A Logan plot of the concentration–time data in the thin outer
rim of the tumor (central ROI, Fig. 4). The input function employed was
that of the normalized indicator concentration in the inner ROI. The
equilibration point on the Logan ordinate of about 80min is evident,
yielding an estimate of distribution volume of about 6.4%. The same con-
centration–time data, plotted as a Logan plot but using the estimated
plasma concentration as an input function (Figs. 5, 6), are plotted in the
inset to demonstrate that the plasma concentration is not a viable input
function for the concentration–time data of the thin outer rim, since the
asymptotic behavior of the plot demonstrates a near-infinite slope, and
thus cannot estimate distribution volume in the tissue.

Figure 8. A Patlak plot (Model 2) of the concentration–time data in the
enlarged outer rim of the tumor (top right ROI in Fig. 4), using as an input
function the data of the innermost adjacent ring. The linearity of this
portion of the curve is evident, thus supporting the assumptions of the
model. The slope of the line yields an estimate of interstitial flow of
tumor exudate.
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of tissue that was mainly tumor, and a compressed outer ring of
mainly normal tissue, in which it might be expected that the
normal tissue would actually have a greater distribution volume
than the tumor, absent the compressive forces placed on the
outer ring by the tumor and the gradient of interstitial fluid
pressure that typically exists in the rim of embedded tumors (29).
When the estimated flux from the inner ring ROI to the outer

expanded ROI was considered in relation to the estimated VD of
the thin outer ring, a very significant relationship was demon-
strated (see Figure 9). An R2 of 0.9 (N= 34) calculated by a simple

regression implied that all but a small amount of the variation in
flux was described by the compressed distribution volume of the
outer ring. In a GLM analysis for repeated measures, a regression
coefficient of 0.740 was demonstrated: VD in the outer ring pre-
dicted (p< 10�5) the exudate flux through the outer ring of com-
pressed tissue. The intercept of the regression, �0.011, probably
differed from 0 (p= 0.049). The distribution volume of the inner
ring was also a strong predictor of flux (p< 10�4), but a compar-
ison of the twomodels via the AIC indicated that the outer ring VD
was a vastly better predictor than the inner ring VD (ΔAIC =�45.5,
p= 1.7 × 10�20). A multivariate GLM analysis that included VD of
the inner ring showed no advantage in the inclusion of that
parameter in the model (ΔAIC =�8.9). Thus, the estimated distri-
bution volume in the rim of the normal tissue bounded by the
tumor in itself appears to be sufficient to predict the rate of tumor
exudate flux through the rim of the tumor in this model.

DISCUSSION

In an animal model of an embedded cerebral tumor, if its rim can
be identified, a non-invasive estimate of extracellular space is
available, both in the region of leaky vasculature and in the
immediate boundary of that region. If its rim can be identified,
an estimate of the exudate flow across the boundary of the
tumor is also available. In this paper, using model selection to
define the rim of the tumor, estimates of VD of CA (porosity) in
the rim of the tumor and flux through that rim resulted in the
porosity strongly and independently predicting the flux.

A key reservation concerning this finding is that it is assumed
that the methods in play did in fact define the rim of the tumor,
and that there was little or no vascular leakage in the ROI defined
as the normal tissue outside tumor edge. A better model, given
sufficient S/N, would assess both transvascular leakage and

Figure 9. Exudate flux from the inner rim of the tumor to the outer ring
in 18 animals. The 16 repeated studies are connected with dashed lines.
This very significant co-variance implies that a knowledge of VD in the rim
of the tumor will yield a remarkably precise prediction of exudate flow,
regardless of other parameters such as TIFP and tumor porosity, which
might otherwise be thought necessary for a prediction of the exudate
flow rate.

Table 1. Test-Retest Values of Distribution Volumes and Exudate Flux

Dist. volume, inner edge Dist. volume, outer edge Inner – outer Flux [μl/(μm2 s)]

Pre Post Δ Pre Post Δ Pre Post Pre Post Δ

JS80 0.0691 0.0404 �0.0287 0.0151
JS81 0.0653 0.0731 �0.0077 0.0484 0.0618 �0.0134 �0.0169 �0.0113 0.0249 0.0344 �0.0095
JS82 0.2003 0.1842 0.0160 0.1093 0.1122 �0.0029 �0.0910 �0.0720 0.0575 0.0614 �0.0039
JS83 0.1390 0.1842 �0.0452 0.0973 0.1430 �0.0456 �0.0417 �0.0413 0.0562 0.0726 �0.0164
JS87 0.1679 0.1385 0.0294 0.1552 0.1067 0.0485 �0.0127 �0.0318 0.1097 0.0641 0.0457
JS91 0.1443 0.1460 �0.0017 0.1017 0.1062 �0.0045 �0.0425 �0.0397 0.0606 0.0588 0.0018
JS93 0.1827 0.1512 0.0315 0.0842 0.0976 �0.0134 �0.0985 �0.0536 0.0509 0.0529 �0.0020
JS101 0.0767 0.0921 �0.0154 0.0498 0.0722 �0.0224 �0.0269 �0.0199 0.0264 0.0349 �0.0085
JS132 0.1065 0.1140 �0.0075 0.0762 0.0643 0.0119 �0.0304 �0.0497 0.0487 0.0452 0.0035
JS134 0.1677 0.0960 �0.0718 0.0539
JS135 0.1335 0.1210 0.0125 0.1163 0.0669 0.0494 �0.0173 �0.0541 0.0957 0.0454 0.0504
JS162 0.1950 0.1379 0.0571 0.1833 0.1121 0.0712 �0.0118 �0.0259 0.1322 0.0817 0.0505
JS163 0.0381 0.0716 �0.0334 0.0448 0.0438 0.0010 0.0067 �0.0277 0.0350 0.0174 0.0176
JS180 0.2178 0.1956 0.0222 0.1560 0.1436 0.0124 �0.0618 �0.0520 0.1058 0.1070 �0.0012
JS181 0.1393 0.1261 0.0132 0.0835 0.0913 �0.0078 �0.0558 �0.0348 0.0479 0.0618 �0.0139
JS195 0.1163 0.1751 �0.0587 0.0789 0.1040 �0.0251 �0.0374 �0.0710 0.0474 0.0777 �0.0303
JS205 0.3011 0.2388 0.0623 0.1307 0.1468 �0.0161 �0.1704 �0.0920 0.1002 0.0835 0.0167
JS207 0.2144 0.1597 0.0547 0.1309 0.1061 0.0248 �0.0835 �0.0536 0.0891 0.0658 0.0233
Mean 0.1524 0.1414 0.0081 0.1029 0.0953 0.0042 �0.0495 �0.0472 0.0680 0.0599 0.0077
SEM 0.0166 0.0110 0.0089 0.0102 0.0075 0.0077 0.0110 0.0050 0.0327 0.0215 0.0244
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intervoxel transport. However, the information available in typi-
cal concentration–time curves is limited. It appears that two is
the highest number of parameters that the data demand. The
suggestion that convection and vascular leakage be modeled
simultaneously appears to demand at least four variables – vp,
Ktrans, kep, and a directed inter-voxel flow. Even in the tumor it-
self, typical values of R2 are 0.98 and above (6,13), so, given the
S/N of a typical experiment, a stable estimate of four or more
model parameters appears unlikely (6). It is possible that
poroelastic modeling, given a starting-point estimate of distribu-
tion volumes (porosities), mechanical properties of tissue, and
the time-dependent spatial concentrations of CA, might be
employed to make a best-guess estimate of TIFP, intervoxel
convection, and microvascular permeability (28,30–32). This
appears to be a natural extension of the work presented herein,
but one notes that the S/N is limited in MRI studies of contrast
transport, posing significant problems in extended modeling
that uses dynamic MRI data for verification.

Although it has been of secondary interest in DCE-MRI, voxel-
to-voxel transport of CA has been noted in cerebral tumors,
sometimes as a source of artifact (6,33), but also as a potential
means of assessing tumor interstitial pressure (1–3) and/or eval-
uating tumor characteristics that affect the delivery of chemo-
therapy (30,34–36) and bias parametric estimates in DCE-MRI
(30,34). One experimental measure that affects all these consid-
erations is the extracellular volume fraction, particularly because
it can be expected that this quantity, equivalent to the porosity
(φ) of the tissue when the tissue is studied as a poroelastic
medium (31,37), is related to the fluid conductivity of the
medium (5). In the absence of in vivo experimental evidence,
fluid conductivity is sometimes modeled as a constant across
tissues (see, e.g., Reference 30), and also the supplementary
material of Reference 38), which may lead to biased results.

In vivo experimental estimates of porosity in tumors and
normal tissues are relatively scarce. In humans, a positron emis-
sion tomography (PET) study using 76Br-bromide studied nine
patients with cerebral tumors of varying grades, usually after bulk
resection, and adjuvant therapy (39). ROIs were chosen to incor-
porate the highest concentration of radiotracer, so estimates of
extracellular volume in the tumor, which ranged from 16% to
62%, might be expected to be biased high. Estimates of extracel-
lular volume in normal brain, about 20%, were in agreement with
classical measures in the brains of a wide variety of animal species
(25,26). While this in vivo human study is interesting, the choice to
inspect regions of highest 76Br uptake, coupled to the limited
intrinsic resolution of PET, and the treatments, particularly tumor
resection, that the patients in this group had undergone, shed
little light on tissue porosity and/or exudate flux at the rim of
the tumor. Note also that a DCE-MRI study in patients with glioma
(40) assessed interstitial volume in tumors as having two types of
filling – the faster filling compartments had much lower values
than the PET study, while the slower filling compartments tended
to agree with the PET study, raising the likelihood that slowly
filling necrotic regions were better sensed in the PET study.

An investigation in a rat model of cerebral glioma (N= 4)
employing a 9L gliosarcoma cell line performed DCE-MRI studies
at 4.7 T with similar timing and CA to the work herein, but with a
different analysis (BOLERO (41)) that included the effects of
water exchange. This study yielded much larger estimates of ve
than those that appear herein, with porosity estimates of about
0.5. This large interstitial volume fraction seems implausible
when viewing histology of the closely packed cells of a 9L

cerebral tumor. A later paper (42) using a water exchange model
(BALDERO) (43) with all three eigenvalues in play and a normal-
ized AIF estimated ve in a U87 cerebral tumor model to be about
15%, in fair agreement with this and other studies. We note that
the estimates of Ktrans herein and in other publications that use
the SM to study both human and animal models of cerebral
tumor (6,11,13,16) are in fairly good agreement with those of
computer-assisted tomography perfusion estimates (44) that
use a similarly sized CA with no dependence on water exchange.
Some additional discussion is warranted by the concern that

variation between the true AIFs in individual studies and the
group-averaged AIF that was employed throughout the sample
undermines the results of these studies. The most straightfor-
ward approach to this topic is to refer to the tables of Reference
11). That work contains a statistical analysis of the 24 h test–
retest variation in the sample of animals presented in this paper.
In Model 3 regions, paired differences were not significantly
different from 0 for any of the model parameters, or for either
of the summary statistics (mean, median). For Ktrans and ve
(Tables 2 and 3 of Reference 11), the sample of paired differences
displayed very small medians and means, less than 3% for Ktrans

and about 5% for ve. The parameter vp showed higher sampling
differences – about 15% in the mean, which might be expected
of a parameter that, unlike Ktrans and ve, is sensitive to the high-
frequency components of the AIF. Test–retest areas of Model 3
did not differ. Thus, the sample of animals used in this present
paper does not present a picture of high variability in the para-
metric estimates of the Model 3 region. A summary of Model 2
parameters and areas also did not show large sampling mean
differences. This implies that the underlying processes involved
in the DCE-MRI studies were stable, and should alleviate concern
about the influence of hand injection of CA.
There are sound physical reasons to explain the experiment’s

insensitivity to the details of the shape of the input function.
The transfer of CA to the interstitium constitutes a low-pass filter
– the components of the input function that are passed to the
interstitium are the ones with long time constants. In the Model
3 regions (i.e. in the tumors) of both humans (13) and animals (6),
R2 values of 0.98 and higher are typical for a 6min DCE-MRI
analysis, so the low-pass filter explains almost the entirety of
the signal behavior in the experiment. In both humans (13) and
animals (6), typical rate constants for transfer of CA to and from
tissue (Ktrans and kep) in the tumor are less than 0.1min�1, mean-
ing that the components of the input function that are important
in Model 3 regions are those with time constants of about 10min
or longer. The most important element of the input function is
the DC component; the short-term details of the shape of the
input function do not contribute strongly to the fitting of the
major component of the tissue response. In order to reliably
estimate the DC component of the input function, we utilize
the very useful a priori knowledge that CA does not leak from
the vasculature in normal tissue across the 6min time of the
experiment (45), and that the plasma volume in the caudate
putamen is approximately 1% (46). These matters are further
explained in the supplementary material.
Figure 9, displaying 32 samples in 16 animals, appears to de-

scribe a major effect in the physiology of an embedded cerebral
tumor; about 90% of the variation is explained by one relation-
ship. That a decreased distribution volume in the rim of a tumor
so strongly predicts tumor exudate flux generates a puzzle in
modeling. If one infers that tumor rim compression governs
exudate flux to the practical exclusion of other effects, what then
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is the role of T, or of the solid stresses generated by tumor
growth? Measures of TIFP in this model (data not shown) are
generally in the range of 5–15mm Hg, and cellularity is also
known to vary – Table 1 shows a factor of 4 in VD in the inner
rim ROI. Since cellularity and VD co-vary (11), it is likely that tumor
rim cellularity varied substantially, and, along with this variation,
tumor rim compression due to hyper-cellularity varied from
animal to animal. Further, a number of constraints having to do
with the nature of the input function in the dynamic models were
placed on the analysis of data, probably introducing a variation in
those animals whose input function deviated from the assump-
tions necessary for the analysis. Despite these other likely varia-
tions, it appears that one parameter, the distribution volume in
the rim beyond the tumor, was predictive of the great majority
of the variation in the rate of exudate flux from the tumor.
One explanation for these data is that perfusion, i.e. the delivery

of blood to the tumor, was regulated by the compression of the
tumor rim, and that the total exudate flow was limited by total
perfusion. It has been demonstrated that TIFP is regulated by
perfusion pressure (47). It can be reasoned that TIFP, exudate
flow, and compression of the tumor rim all co-vary in a fashion
that depends on the relative mechanical properties of the tumor
and its surroundings. This paper is not the place to carry out a
poroelastic analysis of the range of possibilities, but we note that,
in many tumors, the rigidity of the extracellular matrix, and of the
tumor itself, is greater than that of the normal tissue in which the
tumor is embedded, and that modeling of solid stresses in tumors
predict that “elevated radial and circumferential stress levels
extend beyond the tumor by at least one tumor radius” (31). If this
is the case with the U251 tumors studied in this work, then a
picture is presented of a relatively incompressible, albeit tightly
packed, tumor surrounded by a layer of relatively compliant
tissue whose mechanical properties essentially regulate flow into,
flow out of, and interstitial fluid pressure within the tumor.
Note that U251 tumors of the size that were studied, 5–8mm di-

ameter, typically have necrotic cores. Thus, these embedded tumors
may not have had the central support that has been modeled in
solid tumors (31,38). It may be that, without that central support,
the solid stress associated with proliferating cells assumes less
importance than the solid stress associated with a pressure gradient
that projects into the normal surround of an embedded tumor.
A number of fairly strong constraints have been placed on the

analysis of data in this work. Many of these have to do with the
nature of the input function to the system being studied. In esti-
mating Ktrans, kep, vp, and VD in theModel 3 region, it was assumed
that a group-averaged AIF would serve adequately for individual
input functions. It was also assumed that the integrated tissue
response in the (presumably) non-leaky caudate putamen would
serve to scale the group-averaged input function (by a factor of
100). In the Model 2 region, it was assumed that no vascular
leakage occurred, that the sole source of contrast was the
adjacent inner region, and that the contrast concentration of
the inner rim could also be scaled to the contrast of the caudate
putamen. It was assumed that, for the time of the experiment, all
of the tumor exudate remained within the bounds of an
extended ROI drawn around the inner rim, and also that, at some
time after the equilibration of the inner rim’s extra- and intra-
vascular concentrations, the amount of indicator flowing into,
and out of, the thin outer rim equilibrated. Many of these
assumptions and constraints are reasonable, based on the linear-
ities in the data analysis that tend to confirm them, and on the
generation of an orderly set of inferences that, in their internal

consistency, tend to support the assumptions. However, some
caution is necessary: these observations should be replicated in
other tumors and tissues, and, where practical, be compared with
other measures of exudate flow.

We note the benefit of using the model selection paradigms
that were employed in this effort. The boundary of the Model 3
region apparently serves as a discriminant between tumor and
normal parenchyma, and provides a clear choice for the location
of a driving function of tumor exudate flow. Model selection in
the GLM analyses also helped to provide a clear picture of the
relative strengths of the associations between measured param-
eters, and allowed a clear path to the inferred relationships
between flow and VD. A model selection procedure generated
an observation, the negative values of vp in the Model 2 rim of
the tumor, that led to the hypothesis that CA was streaming
from the leaky inner rim to the non-leaky outer rim, and thence
to the ability to estimate VD in the boundary region of the tumor.

These results prompt a cautionary comment about the costs of
employing a priori knowledge in model fitting. It does seem to
make sense in the analysis of DCE-MRI data to at least bound
the search space to physically possible values, and non-negative
constraints are almost universally employed in DCE-MRI. Note,
however, that estimates that lie outside those bounds signal that
a fundamental mismatch between model and measurement has
occurred; the work herein would probably not have been gener-
ated if there had been a non-negative constraint on the parame-
ter estimates. That said, it would be quite possible, if another
reliable way to define the edge of the tumor could be described,
to proceed to estimate tissue compression and flux in the bound-
ary of the tumor. It appears that the information contained in
that analysis constitutes a description of tumor physiology, and
probably of changes in tumor physiology under treatment.

Acknowledgements

The authors thank Jun Xu for excellent technical assistance. The
many discussions with Joseph D Fenstermacher as to the nature
of the Patlak plot, the history of estimates of cerebral permeabil-
ity in normal brain, and the possible sources of artifact in the
model’s parametric estimates are gratefully acknowledged.
Research reported in this publication was supported by the
National Cancer Institute of the National Institutes of Health
under award number R01CA135329. The content is solely the
responsibility of the authors and does not necessarily represent
the official views of the National Institutes of Health.

References
1. Hassid Y, Furman-Haran E, Margalit R, Eilam R, Degani H. Noninvasive

magnetic resonance imaging of transport and interstitial fluid pressure
in ectopic human lung tumors. Cancer Res. 2006; 66(8): 4159–4166.

2. Hompland T, Ellingsen C, Rofstad EK. Preclinical evaluation of
Gd-DTPA and gadomelitol as contrast agents in DCE-MRI of cervical
carcinoma interstitial fluid pressure. BMC Cancer 2012; 12(1): 544.

3. Hompland T, Ellingsen C, Ovrebo KM, Rofstad EK. Interstitial fluid
pressure and associated lymph node metastasis revealed in tumors by
dynamic contrast-enhanced MRI. Cancer Res. 2012; 72(19): 4899–4908.

4. Liu LJ, Brown SL, Ewing JR, Schlesinger M. Phenomenological model
of interstitial fluid pressure in a solid tumor. Phys. Rev. E 2011; 84(2):
021919-021911–021919-021919.

5. Nield DA, Bejan A. Convection in Porous Media, 3rd edn. Springer:
New York, 2006.

6. Ewing JR, Bagher-Ebadian H. Model selection in measures of vascu-
lar parameters using dynamic contrast-enhanced MRI: experimental
and clinical applications. NMR Biomed. 2013; 26(8): 1028–1041.

PERIPHERAL TISSUE COMPRESSION AND GLIOMA EXUDATE

NMR Biomed. 2015; 28: 1557–1569 Copyright © 2015 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/nbm

1565



7. Logan J. Graphical analysis of PET data applied to reversible and
irreversible tracers. Nucl. Med. Biol. 2000; 27(7): 661–670.

8. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ,
MacGregor RR, Hitzemann R, Bendriem B, Gatley SJ, Christman DR.
Graphical analysis of reversible radioligand binding from time-activity
measurements applied to [N-11C-methyl]-(�)-cocaine PET studies in
human subjects. J. Cereb. Blood Flow Metab. 1990; 10(5): 740–747.

9. Aryal MP, Nagaraja TN, Keenan KA, Bagher-Ebadian H, Panda S,
Brown SL, Cabral G, Fenstermacher JD, Ewing JR. Dynamic contrast
enhanced MRI parameters and tumor cellularity in a rat model of
cerebral glioma at 7 T. Magn. Reson. Med. 2014; 71(6): 2206–2214.

10. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV,
Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff
RM. Estimating kinetic parameters from dynamic contrast-
enhanced T1-weighted MRI of a diffusable tracer: standardized quan-
tities and symbols. J. Magn. Reson. Imaging 1999; 10(3): 223–232.

11. Aryal MP, Nagaraja TN, Brown SL, Lu M, Bagher-Ebadian H, Ding G,
Panda S, Keenan K, Cabral G, Mikkelsen T, Ewing JR. Intratumor distri-
bution and test–retest comparisons of physiological parameters
quantified by dynamic contrast-enhanced MRI in rat U251 glioma.
NMR Biomed. 2014; 27(10): 1230–1238.

12. Ewing JR, Brown SL, Lu M, Panda S, Ding G, Knight RA, Cao Y, Jiang Q,
Nagaraja TN, Churchman JL, Fenstermacher JD. Model selection in
magnetic resonance imaging measurements of vascular permeabil-
ity: Gadomer in a 9 L model of rat cerebral tumor. J. Cereb. Blood
Flow Metab. 2006; 26(3): 310–320.

13. Bagher-Ebadian H, Jain R, Nejad-Davarani SP, Mikkelsen T, Lu M,
Jiang Q, Scarpace L, Arbab AS, Narang J, Soltanian-Zadeh H, Paudyal
R, Ewing JR. Model selection for DCE-T1 studies in glioblastoma.
Magn. Reson. Med. 2012; 68(1): 241–251.

14. Gelman N, Ewing JR, Gorell JM, Spickler EM, Solomon EG. Inter-
regional variation of longitudinal relaxation rates in human brain at
3.0 T: relation to estimated iron and water contents. Magn. Reson.
Med. 2001; 45(1): 71–79.

15. Ewing JR, Brown SL, Nagaraja TN, Bagher-Ebadian H, Paudyal R,
Panda S, Knight RA, Ding G, Jiang Q, Lu M, Fenstermacher JD. MRI
measurement of change in vascular parameters in the 9L rat cerebral
tumor after dexamethasone administration. J. Magn. Reson. Imaging.
2008 27(6): 1430–1438.

16. Nagaraja TN, Aryal MP, Brown SL, Bagher-Ebadian H, Mikkelsen T,
Yang JJ, Panda S, Keenan KA, Cabral G, Ewing JR. Cilengitide-induced
temporal variations in transvascular transfer parameters of tumor
vasculature in a rat glioma model: identifying potential MRI bio-
markers of acute effects. PLoS One 2013; 8(12): e84493.

17. Nagaraja TN, Karki K, Ewing JR, Divine GW, Fenstermacher JD, Patlak
CS, Knight RA. The MRI-measured arterial input function resulting
from a bolus injection of Gd-DTPA in a rat model of stroke slightly
underestimates that of Gd-[(14)C]DTPA and marginally overesti-
mates the blood-to-brain influx rate constant determined by Patlak
plots. Magn. Reson. Med. 2010; 63(6): 1502–1509.

18. Sourbron SP, Buckley DL. Classic models for dynamic contrast-
enhanced MRI. NMR Biomed. 2013; 26(8): 1004–1027.

19. Brown SL, Nagaraja TN, Aryal MP, Panda S, Cabral G, Keenan KA,
Elmghirbi R, Mikkelsen T, Hearshen D, Knight RA, Wen N, Kim JH,
Ewing JR. MRI-tracked tumor vascular changes in the hours after
single-fraction irradiation. Radiat. Res. 2015; 183(6): 713–721.

20. Scheffé H. The Analysis of Variance, Bradley RA, Hunter JS, Kendall DG,
Watson GS (eds). Wiley: New York, 1959.

21. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of
blood-to-brain transfer constants from multiple-time uptake data.
J. Cereb. Blood Flow Metab. 1983; 3: 1–7.

22. Patlak C, Blasberg R. Graphical evaluation of blood to brain transfer
constants from multiple-time uptake data. Generalizations. J. Cereb.
Blood Flow Metab. 1985; 5: 584–590.

23. Pinheiro J, Bates DB, DebRoy SD, Sarkar D, R Core Team. nlme: Linear
and Nonlinear Mixed Effects Models. R package. 2013.

24. R Core Team. R. A Language and Environment for Statistical Comput-
ing. R Foundation For Statistical Computing: Vienna, 2013.

25. Levin VA, Fenstermacher JD, Patlak CS. Sucrose and inulin space
measurements of cerebral cortex in four mammalian species. Am.
J. Physiol. 1970; 219(5): 1528–1533.

26. Sykova E, Nicholson C. Diffusion in brain extracellular space. Physiol.
Rev. 2008; 88(4): 1277–1340.

27. Munson JM, Shieh AC. Interstitial fluid flow in cancer: implications for dis-
ease progression and treatment. Cancer Manag. Res. 2014; 6: 317–328.

28. Pishko GL, Astary GW,Mareci TH, SarntinoranontM. Sensitivity analysis of
an image-based solid tumor computational model with heterogeneous
vasculature and porosity. Ann. Biomed. Eng. 2011; 39(9): 2360–2373.

29. Boucher Y, Baxter LT, Jain RK. Interstitial pressure gradients in tissue-
isolated and subcutaneous tumors: implications for therapy. Cancer
Res. 1990; 50(15): 4478–4484.

30. Pishko GL, Astary GW, Zhang J, Mareci TH, Sarntinoranont M. Role of
convection and diffusion on DCE-MRI parameters in low leakiness
KHT sarcomas. Microvasc. Res. 2012; 84(3): 306–313.

31. Sarntinoranont M, Rooney F, Ferrari M. Interstitial stress and fluid pres-
sure within a growing tumor. Ann. Biomed. Eng. 2003; 31(3): 327–335.

32. Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK. Role of extra-
cellular matrix assembly in interstitial transport in solid tumors.
Cancer Res. 2000; 60(9): 2497–2503.

33. Pronin IN, McManus KA, Holodny AI, Peck KK, Kornienko VN. Quantifica-
tion of dispersion of Gd-DTPA from the initial area of enhancement into
the peritumoral zone of edema in brain tumors. J. Neurooncol 2009; 94
(3): 399–408.

34. Magdoom KN, Pishko GL, Rice L, Pampo C, Siemann DW,
Sarntinoranont M. MRI-based computational model of heteroge-
neous tracer transport following local infusion into a mouse hind
limb tumor. PLoS One 2014; 9(3): e89594.

35. Sirianni RW, Zheng MQ, Saltzman WM, Huang Y, Carson RE. Direct,
quantitative, and noninvasive imaging of the transport of active
agents through intact brain with positron emission tomography.
Mol. Imaging Biol. 2013; 15(5): 596–605.

36. Pathak AP, Artemov D, Ward BD, Jackson DG, Neeman M, Bhujwalla
ZM. Characterizing extravascular fluid transport of macromolecules
in the tumor interstitium by magnetic resonance imaging. Cancer
Res. 2005; 65(4): 1425–1432.

37. Netti PA, Baxter LT, Boucher Y, Skalak R, Jain RK. Time-dependent
behavior of interstitial fluid pressure in solid tumors: implications
for drug delivery. Cancer Res. 1995; 55(22): 5451–5458.

38. Stylianopoulos T, Martin JD, Snuderl M, Mpekris F, Jain SR, Jain RK.
Coevolution of solid stress and interstitial fluid pressure in tumors
during progression: implications for vascular collapse. Cancer Res.
2013; 73(13): 3833–3841.

39. Bruehlmeier M, Roelcke U, Blauenstein P, Missimer J, Schubiger PA,
Locher JT, Pellikka R, Ametamey SM. Measurement of the extracellu-
lar space in brain tumors using 76Br-bromide and PET. J. Nucl. Med.
2003; 44(8): 1210–1218.

40. Ludemann L, Grieger W, Wurm R, Budzisch M, Hamm B, Zimmer C.
Comparison of dynamic contrast-enhanced MRI with WHO tumor
grading for gliomas. Eur. Radiol. 2001; 11(7): 1231–1241.

41. Yankeelov TE, Rooney WD, Li X, Springer CS. Variation of the
relaxographic "shutter-speed" for transcytoliemmal water exchange
affects the CR bolus-tracking curve shape. Magn. Reson. Med. 2003;
50(6): 1151–1169.

42. Li X, Rooney WD, Varallyay CG, Gahramanov S, Muldoon LL,
Goodman JA, Tagge IJ, Selzer AH, Pike MM, Neuwelt EA, Springer
CS, Jr. Dynamic-contrast-enhanced-MRI with extravasating contrast
reagent: rat cerebral glioma blood volume determination. J. Magn.
Reson. 2010; 206(2): 190–199.

43. Li X, Rooney WD, Springer CS, Jr. A unified magnetic resonance
imaging pharmacokinetic theory: intravascular and extracellular
contrast reagents. Magn. Reson. Med. 2005; 54(6): 1351–1359.

44. Jain R, Ellika SK, Scarpace L, Schultz LR, Rock JP, Gutierrez J, Patel SC,
Ewing J, Mikkelsen T. Quantitative estimation of permeability
surface–area product in astroglial brain tumors using perfusion CT
and correlation with histopathologic grade. Am. J. Neuroradiol.
2008; 29(4): 694–700.

45. Blasberg RG, Fenstermacher JD, Patlak CS. Transport of alpha-
aminoisobutyric acid across brain capillary and cellular membranes.
J. Cereb. Blood Flow Metab. 1983; 3(1): 8–32.

46. Bereczki D, Wei L, Otsuka T, Hans F-J, Acuff V, Patlak C, Fenstermacher J.
Hypercapnia slightly raises blood volume and sizably elevates flow
velocity in brain microvessels. Am. J. Physiol. 1993; 264: H1360–H1369.

47. Boucher Y, Salehi H, Witwer B, Harsh GR, Jain RK. Interstitial fluid
pressure in intracranial tumours in patients and in rodents. Br. J.
Cancer 1997; 75(6): 829–836.

SUPPORTING INFORMATION

Additional supporting information can be found in the online
version of this article at the publisher’s website.

J. R. EWING ET AL.

wileyonlinelibrary.com/journal/nbm Copyright © 2015 John Wiley & Sons, Ltd. NMR Biomed. 2015; 28: 1557–1569

1566



APPENDIX

CASE 1. THE LOGAN PLOT IN THE THIN RIM

See Figure 10, Case 1. In Case 1, fluid carries an indicator from
Compartment 1 to Compartment 2. The dimensions of Compart-
ment 2 are small compared with the velocity of the fluid so that,
after a short time, the indicator begins to exit Compartment 2.
When the slope of the input function to Compartment 2 begins
to change slowly, approximately the same amount of indicator is
leaving the compartment as is entering it. This is an equilibrium
condition that can be exploited to evaluate the distribution
volume of Compartment 2.
Assume that there is no leakage from the microvasculature in

Compartment 2, that intravascular concentration of indicator can
be ignored, and that indicator flows only from Compartment 1 to
Compartment 2, and thence to a sink. In a differential time inter-
val, the change in the quantity Q2(t) of the indicator is equal to
the difference between the quantity entering, and the quantity
leaving the compartment:

dQ2 tð Þ ¼ F C1e tð Þ � C2e tð Þ½ �; [1]

where F is the flow from Compartment 1 to Compartment 2, and
C1e(t) and C2e(t) are the concentrations of indicator in the extra-
cellular interstitial fluid of Compartment 1 and Compartment 2,
respectively.
Integrating and dividing by the volume of the second com-

partment,

Q2 tð Þ
V2

¼ F
V2

∫t0C1e τð Þdτ � ∫t0C2e τð Þdτ� �þ V2p

V2
C2p tð Þ;

generates an expression in concentrations and specific flows:

C2 tð Þ ¼ f ∫t0C1e τð Þdτ � ∫t0C2e τð Þdτ� �þ v2pC2p tð Þ; [2]

where in Compartment 2 V2 is the volume, V2p is the plasma vol-
ume, f is the specific flow [ml/(mlmin)], and v2p is the fractional

plasma volume. By convention, lower-case letters are associated
with quantities that are normalized to volumes. Initially, consider
only the interstitial concentrations (i.e., assume v2p = v1p = 0,
where vip is the fractional plasma volume of the ith compart-
ment). Continuing,

C2 tð Þ
f

¼ ∫t0C1e τð Þdτ � ∫t0C2e τð Þdτ; [3]

note that C2(t) = v2eC2e(t), where v2e is the fractional volume of
the interstitial space in Compartment 2 and C2(t) is the concen-
tration of indicator in Compartment 2. Dividing both sides of
the equation by C2(t) and transposing two terms yields an
equation in the form proposed by Logan (8).

∫t0C2 τð Þdτ
C2 tð Þ ¼ v2e∫

t
0C1e τð Þdτ
C2 tð Þ � v2e

f
: [4]

Under the assumption that the concentration of CA has equil-
ibrated between inflow and outflow, and that v1p = v2p = 0, a

Logan plot with
∫t0C2 τð Þdτ

C2 tð Þ on the ordinate and
∫t0C1e τð Þdτ

C2 tð Þ on

the abscissa will yield a straight line with a slope of v2e.
The interstitial concentration in Compartment 1, C1e(t), is

related to the tissue concentration, C1(t), via the relation C1(t)
= v1eC1e(t). An estimate of v1e is available through the Model
3 analysis, but there is a more reliable estimate of C1e(t) that
can be obtained through its behavior as described by a Logan
plot. In the case at hand, an examination of the Logan plot of
indicator concentration in the Model 3 region (i.e. Compart-
ment 1) at the edge of the tumor demonstrates that the
exudate fluid in Compartment 1 equilibrates with the plasma
concentration. That is, the Logan plot of Compartment 1
becomes linear, with a slope of VD, at times t > t�1. Given this,
the same tactic that applies to calibrating Cp(t), i.e. scaling an
input function to a large area of normal caudate putamen,
with the assumption that vp in the caudate putamen is 1%
of tissue volume, can be applied to the section of C1(t) where
t > t�1. This practice was followed throughout in estimating the
interstitial space at the rim of the tumor.

It should be noted that only C1(t), C2(t), and (indirectly) Cp(t)
are observable. The presence of a non-zero vascular volume,
filled with CA, introduces a bias into the result above.

Generally, since Compartments 1 and 2 are adjacent, we
can assume that the plasma concentrations in the two com-
partments are approximately equal. Thus C1p(t) = C2p(t) = Cp(t).
The quantities of CA in Compartments 1 and 2, respectively,
are

Q1 tð Þ ¼ V1pCp tð Þ þ V1eC1e tð Þ
Q2 tð Þ ¼ V2pCp tð Þ þ V2eC2e tð Þ:

Dividing each by the volume of its compartment yield the
following relationships between the measureable quantities
C1(t) and C2(t) and the quantities of interest, C1e(t) and C2e(t):

C1e tð Þ ¼ C1 tð Þ � v1pCp tð Þ
v1e

and C2e tð Þ

¼ C2 tð Þ � v2pCp tð Þ
v2e

: [5]

Figure A1. A two-compartment system. In Case 1, CA flows into, and
out of, Compartment 2. After some time t1*, the vascular concentration
of CA in Compartment 1 equilibrates with its interstitial concentration.
After some time t2*, the inflow and outflow of CA in Compartment 2 is
approximately equilibrated. The equilibration is demonstrated by the
Logan plot of this data becoming linear. In Case 2, CA flows into
Compartment 2, but is not cleared from the compartment. After some
time t′, a Patlak plot (Model 2) becomes linear.
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From Equations [2] and [5],

C2 tð Þ
f

¼ 1
v1e

∫t0 C1 τð Þ � v1pCp τð Þ� �
dτ � 1

v2e
∫t0 C2 τð Þ � v2pCp τð Þ� �

dτ

þ v2pCp tð Þ
f

:

Rearranging and collecting terms to generate an equation in
the form of a Logan plot,

∫t0C2 τð Þdτ
C2 tð Þ ¼

v2e∫
t
0
C1 τð Þ
v1e

dτ

C2 tð Þ þ v2e
v2p
v2e

� v1p
v1e

� �
∫t0Cp τð Þdτ
C2 tð Þ

� v2e
f

1� v2pCp tð Þ
C2 tð Þ

� �
:

As before, the quantity C1 tð Þ
v1e

is estimated after the equilibration

of plasma and interstitial concentrations in Compartment 1, and
set equal to Cp(t). This yields an equation in the form of a Logan
plot equation:

∫t0C2 τð Þdτ
C2 tð Þ ¼ v2e∫

t
0αC1 τð Þdτ
C2 tð Þ þ v2e

v2p
v2e

� v1p
v1e

� �
∫t0Cp τð Þdτ
C2 tð Þ

� v2e
f

1� v2pCp tð Þ
C2 tð Þ

� �
; [6]

where α is the factor that scales the measured change in contrast
in Region 1 to the known concentration, that of the plasma, after

time t1*. Thus, a Logan plot with
∫t0C2 τð Þdτ

C2 tð Þ on the ordinate and

∫t0αC1 τð Þdτ
C2 tð Þ on the abscissa, with α adjusted to equal plasma con-

centration, when the conditions of the assumption are met (flow
of contrast into and out of Compartment 2 is balanced), coupled
with a slowly changing plasma concentration, will yield a straight

line with a slope of v2e 1þ v2p
v2e

� v1p
v1e

� �
. The interstitial volume frac-

tion actions v2e and v1e are generally larger than their respec-
tive plasma volume fractions (typically a factor of 10 or more).
Thus, assuming the worst case of v1p= 0, with the other com-
partment ratio of relative volumes around 1/10, there is an upper
limit on the error introduced by the presence of CA in Compart-
ments 1 and 2 of about 10%. Generally speaking, since v2p≈ v1p,
the error can be expected to be much smaller than 10%.

JS132

v1p v2p v1e v2e

0.0110 0.01 (est.) 0.114 0.0642

CASE 2. THE PATLAK PLOT IN THE WIDE RIM

In Case 2, no contrast exits from Compartment 2, considerably
simplifying the treatment of the model. We ignore for the time
being the plasma volume of Compartment 1, V1p.

dQ2 tð Þ ¼ FC1e tð Þdt [7]

Q2 tð Þ ¼ F∫t0C1e τð Þdτ þ V2pC2p tð Þ: [8]

Normalizing to the volume of the second compartment and
dividing both sides by C2p(t) yields the Patlak (Model 2) equation.

C2 tð Þ
C2p tð Þ ¼ f

∫t0C1e τð Þdτ
C2p tð Þ þ v2p:

Remembering once again that C1e(t) is known to equilibrate
with the plasma concentration, we can say that after a time t1*

the relationship C2 tð Þ
C1e tð Þ ¼ f

∫t0C1e τð Þdτ
C1e tð Þ þ v2p; t > t�1., should hold,

and a plot of C2 tð Þ
C1e tð Þ

�
1
on the ordinate and

∫t0C1e τð Þdτ
C1t tð Þ on the abscissa

will yield a straight line with a slope of specific flow [ml/(mlmin)].
Note that this result pertains to specific flow normalized to the

volume of Compartment 2. Since the size of Compartment 2
varies across animals, another measure of transfer between the
two compartments must be adopted in order to make compari-
sons. The total flow to Compartment 2 is fV2, through a boundary
of N2b voxels, where V2 is the volume of the second compartment
and N2b is the number of voxels in the inner boundary of
Compartment 2, i.e. the number of voxels in the thin outer rim.
The volume of the second compartment is V2 =N2vVv, where
N2v is the number of voxels in Compartment 2, and Vv is the
volume of each voxel. Thus, if A2b is the area of the inner surface
of the outer ring ROI, a statistic that measures flux through the
boundary can be calculated as f N2vVv

N2bA2b
, in [mm3/(mm2min)].

This measure is reported as the flux across the boundary of
the tumor.
Since the porosity of the thin outer rim can be estimated,

another interesting measure that can be generated is the
mean interstitial velocity of the tumor exudate. Given a
measure of flux, ϕ, the velocity of the tumor exudate in the
interstitium is ϕ

ve
.

We now turn to an evaluation of the errors introduced by
ignoring the plasma concentration of CA in Compartment 1.
From Equations [5] and [8],

C2 tð Þ ¼ f
v1e

∫t0 C1 τð Þ � v1pC1p τð Þ� �
dτ þ v2pC2p tð Þ

C2 tð Þ ¼ f
v1e

∫t0C1 τð Þdτ � f
v1p
v1e

∫t0C1p τð Þdτ þ v2pC2p tð Þ:

Dividing both sides by C2p(t) to generate an equation in the
form of the Patlak graphical equation:

C2 tð Þ
C2p tð Þ ¼

f
v1e

∫t0C1 τð Þdτ
C2p tð Þ � f

v1p
v1e

∫t0C1p τð Þdτ
C2p tð Þ þ v2p

C2 tð Þ
C2p tð Þ ¼ f

∫t0C1 τð Þdτ
v1e

C2p tð Þ � f
v1p
v1e

∫t0C1p τð Þdτ
C2p tð Þ þ v2p

C2 tð Þ
C2p tð Þ ¼ f

∫t0αC1 τð Þdτ
C2p tð Þ � f

v1p
v1e

∫t0C1p τð Þdτ
C2p tð Þ þ v2p:

At equilibrium in Compartment 1, C1p(t) = αC1(t) and C1p(t)
=C2p(t), t > t�1
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C2 tð Þ
C2p tð Þ ¼ f 1� v1p

v1e

� �
∫t0C1p τð Þdτ
C2p tð Þ þ v2p:

Thus, the bias (overestimate) introduced into the estimate of
flow from Compartment 1 to Compartment 2 is of the order of
the ratio of the plasma to interstitial volume in Compartment

1. In our example, this estimation error is about 10%. We note
that the estimate produced by fitting the Patlak plot of Case 2
can be multiplied by v1e�v1p

v1e
, thus producing an unbiased estimate

of flow. However, this would add the errors in estimating v1p and
v1e to the errors of estimating flow between the compartments.
We have judged that a known bias of around 10% is acceptable
for a stable estimate of intercompartmental flow.
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