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The gut microbiome is composed of ~1013–1014 microbial cells and viruses that exist in a symbiotic
bidirectional communicative relationship with the host. Bacterial functions in the gut have an impor-
tant role in healthy host metabolic function, and dysbiosis can contribute to the pathology of many
medical conditions. Alterations in the relationship between gut microbiota and host have gained some
attention in mental health because new evidence supports the association of gut bacteria to cognitive
and emotional processes. Of interest, illnesses such as major depressive disorder are disproportionately
prevalent in patients with gastrointestinal illnesses such as inflammatory bowel disease, which patho-
logically has been strongly linked to microbiome function. Not only is the microbiome associated with
the disease itself, but it may also influence the effectiveness or adverse effects associated with pharma-
cologic agents used to treat these disorders. This field of study may also provide new insights on how
dietary agents may help manage mental illness both directly as well as though their influence on the
therapeutic and adverse effects of psychotropic agents.
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The human microbiome is primarily
composed of 10–100 trillion bacterial symbionts
that are commensal to our gut, mucosal surfaces,
and skin.1 These microbes greatly outnumber
our somatic and germ cells by ~10-fold.1 Aside
from variation in our genomic DNA, we under-
stand that the collective genomic content of our
gastrointestinal microbiome profiles also con-
tributes to human diversity.1, 2 Although the gut
microbiome actually consists of a variety of
microorganisms, such as commensal fungi,
viruses, protozoa, and parasites, the vast major-
ity of work focuses on bacterial colonizers and
is the focus of this review. The bacterial compo-
nent of gut microbiota is composed of more
than 1000 phylotypes (organisms classified

based on evolutionary relationships), predomi-
nantly obligate anaerobes, with Firmicutes and
Bacteroidetes representing more than 90% of the
total microbiota.3 Gut microbiota structure and
function (the metagenome) is influenced by a
variety of factors including host physiology, diet,
antimicrobial medications, infections, and envi-
ronment.
Although microbiome research is still develop-

ing, a growing body of evidence also supports
the effect of microorganisms on cognitive and
emotional processes. This review summarizes
the role of the microbiome on mental illness,
focusing on the interaction of the microbiome
and pharmacologic management of psychiatric
disease.

Microbiome in the Gut–Brain Axis

The gut–brain axis is a term that defines the
bidirectional communication between an indi-
vidual’s microbiome and brain, and it has
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become a topic of interest in psychiatry and neu-
roscience. Communication between the gut and
brain can occur by neural, hormonal, or immuno-
logic mechanisms. The ubiquitous presence of
neuroendocrine hormones in both mammalian
and nonmammalian systems has been recognized
for decades. Bacterially produced neuroactive
compounds include catecholamines, such as nore-
pinephrine and dopamine, c-aminobutyric acid
(GABA), histamine, serotonin, and acetylcholine,
which have known roles in most mental illnesses
as well as in the mechanisms of action of psychi-
atric drugs.4 Remarkably, the complete identical
biosynthetic pathway for catecholamines was
found in bacteria, which led to the hypothesis that
mammalian cell-to-cell signaling systems, such as
neuroendocrine pathways, are derived from late
horizontal gene transfer from bacteria.5 Not only
do certain species of endogenous bacteria produce
these chemicals but some bacteria possess recep-
tors to these neuroactive compounds, which sug-
gests these compounds not only facilitate
interbacterial communication but also mediate
communication from the host.6 This intersection
of neurobiology and microbiology has been ter-
med microbial endocrinology.
Gut–brain communication can be mediated in

part through enteric, vagal, and central nervous
pathways.7 The enteric nervous system (ENS) is
embedded into the lining of the intestinal tract
from the esophagus to the colon and governs
the function of the gastrointestinal system.
Despite considerable innervation from the auto-
nomic nervous system, the ENS operates largely
independently of the central nervous system
(CNS) and is sometimes referred to as the “sec-
ond brain.”7 Neurochemicals produced by gut
microbiota from the food we eat can directly
interact with receptors found on components of
the ENS and can influence the brain via ENS-
CNS communication through the various path-
ways.8

The microbiome plays a critical part in the
development of the immune response of the
intestinal endothelium and the blood–brain bar-
rier (BBB) system, as shown by work in germ-
free mice. Compared with their conventionally
housed counterpart, germ-free mice have stunted
development of gut-associated lymphoid tissue,
which is critical in pathogen recognition.9

Germ-free mice have also exhibited increased
BBB permeability compared with conventionally
raised mice.10 Intestinal and BBB integrity can
be restored when germ-free mice are colonized
with intestinal microflora. Psychiatric disorders

have been linked to the immune system, and an
emerging concept is that gut bacteria may be
able to influence the emotional state of the
host.11 It is thought that a commonality between
psychiatric illness and the gut may reside in
inflammatory pathways. Indeed, high rates of
comorbid depression have been found in
patients with inflammatory disease states such as
inflammatory bowel disease and rheumatoid
arthritis.12, 13

Understanding the Gut-to-Brain Connection
Through Lipids

Short-chain fatty acids (SCFAs) are the major
metabolic products of intestinal bacteria derived
from the fermentation of carbohydrates and pro-
teins in the gut.14 The main SCFAs produced in
the gut are acetic acid, propionic acid, and buty-
ric acid, which come from dietary intake.15

SCFAs interact with the human body by a num-
ber of different mechanisms including mediation
of colonic epithelial cell growth, hepatic control
of lipids and carbohydrates, gene expression,
and energy sources for a wide array of tissues.
Both propionic acid and butyric acid have been
shown to be ligands for receptors involved in
host energy homeostasis and inflammatory
responses.16 SCFAs can cross the BBB and might
be environmental factors that contribute to neu-
rodevelopment disorders such as autism spec-
trum disorders.17 Recent work has highlighted
the role of SCFAs and their regulation of
immune responses by their effects on T cells,
neutrophils, and colonocytes. Importantly,
SCFAs have been shown to induce both effector
and interleukin-10 T-regulatory cells, depending
on the cytokine condition and immunologic
context.18, 19

Bile acids are not only a known contributor to
drug pharmacokinetics but are also a regulator of
gut microbiome composition.20 Formed in the
liver, bile acids account for most of the choles-
terol turnover in the body. Bile acids form
micelles in bile and are excreted in the small
intestine after eating, where they are an essential
component required for the absorption of lipophi-
lic vitamins, fat, and drugs. The gut microbiome
is capable of producing secondary bile acids such
as deoxycholic acid and lithocholic acid that
affect host metabolic processes, drug metabolism,
and immune response.21, 22 Bile acids mediate
these processes through the activation of recep-
tors such as the farnesoid X, pregnane X, vitamin
D (VDR), and TGR5 receptors.23, 24 Activation of
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the VDR exhibits a wide range of immunomodu-
latory effects, and VDR ligands have been shown
to reduce messenger RNA (mRNA) expression
and decrease plasma concentrations of proinflam-
matory cytokines.24–26 Bile acids also have antimi-
crobial properties despite the microbiome’s
critical role in their biotransformation; thus, a
dynamic equilibrium exists between the micro-
biome and the bile acid pool.27

Cometabolism of Drugs by Host and Gut
Bacteria

The pharmacokinetics of orally administrated
drugs can be complicated and depend on mea-
sures such as the chemical properties and envi-
ronmental risk parameters specific for each
drug. Knowledge of how human genetics affect
drug pharmacokinetics and pharmacodynamics
has further advanced our understanding of
interindividual variations in drug efficacy and
adverse effects, but much variation remains
unexplained. An important but sometimes over-
looked contributor to drug metabolism is the
gut microbiota, which expands the metabolic
processes of these compounds beyond that of
mammalian-encoded enzymes.
Microbiome-mediated reactions in the gut

tend to be dominated by reduction or hydrolysis
reactions, whereas mammalian metabolism
shows a greater propensity for oxidation and
conjugation.28 Gut microbiota have been shown
to participate in the reductive metabolism of
psychotropic medications such as the benzodi-
azepine clonazepam.29 Risperidone, an atypical
antipsychotic, has been shown in postmortem
studies to undergo gut-mediated isoxazole scis-
sion.30 In addition, studies with levodopa, a
mainstay in the treatment for Parkinson disease,
show that the presence of Helicobacter pylori is
associated with decreased plasma levels of the
drug.31 Although the pharmacokinetics of these
medications may, in part, be altered by the
microbiome, there are currently no defined clini-
cal consequences of these occurrences. The gut
microbiota can also indirectly contribute to
xenobiotic metabolism by altering gene expres-
sion of hepatic enzymes that aid in the metabo-
lism and detoxification of drugs outside of the
gut. Studies in colonized and germ-free rats (rats
cultivated with no intestinal microbiota) showed
that the microbiome affects hepatic concentra-
tion of both phase I and phase II metabolizing
enzymes, which are responsible for transforma-
tion of most prescribed medications.32, 33

Microbiome, Inflammation, and Mood

Changes in proinflammatory and cell-mediated
immune cytokines have been thoroughly docu-
mented in psychiatric diseases such as major
depressive disorder (MDD). In fact, in addition to
genetic and environmental factors, a robust asso-
ciation has been defined for MDD, immune
response, and inflammation.34, 35 Evidence sug-
gests that antidepressants, such as the tricyclic
antidepressants and selective serotonin reuptake
inhibitors (SSRIs), may function to normalize
cytokine levels, and this may be an additional
therapeutic mechanism secondary to their effect
on neurotransmitters.34, 36 Several studies have
examined the effects of antidepressants on bacte-
rial endotoxin lipopolysaccharide (LPS)-induced
inflammation and depressive symptoms in ani-
mals. In rodents, pretreatment with SSRIs (fluox-
etine or paroxetine) or serotonin-norepinephrine
reuptake inhibitors (venlafaxine and duloxetine)
reduced LPS-induced inflammation and depres-
sive-like behaviors.37

Few studies have examined whether an
increased gastrointestinal permeability with an
increased translocation of LPS from gram-negative
bacteria may play a role in the pathophysiology of
MDD and other mental illnesses. One study in
humans examined levels of serum antibodies
against LPS of gram-negative enterobacteria and
found higher levels in patients with MDD than in
controls.38 Alterations in gut epithelial permeabil-
ity in patients with autism and schizophrenia has
been described but without conclusive results.39

In animals, acute and chronic stress has been
shown to lead to increased gut permeability and
bacterial translocation.40, 41 In these studies, the
therapeutic benefits, such as reduced stress-
induced corticosterone level, anxiety, and depres-
sion-related behaviors were obtained through the
administration of probiotics. The therapeutic ben-
efits of adjunct therapy with minocycline and
doxycycline have been explored in both animal
and human studies for MDD and schizophre-
nia.42–44 Minocycline has antioxidant, anti-inflam-
matory, and neuroprotective properties that are
not related to its antimicrobial properties but mir-
ror many of the deficits observed in MDD.45, 46

Microbiome, Obesity, and Cardiovascular

Disease in the Mental Health Population

Longitudinal studies following the introduc-
tion of atypical antipsychotics (AAPs) have
noted the growing contribution of cardiac and
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metabolic disease to increased mortality in
subjects with schizophrenia.47 Data suggest that
the standardized mortality ratio for cardiac dis-
ease in these subjects is increasing compared
with the general population.48, 49 Due to the
wealth of data that links changes in the micro-
biome to obesity and metabolic syndrome, the
role of the microbiome in AAP-associated meta-
bolic risk is currently being investigated in ani-
mal models.
A study of olanzapine use in rats demon-

strated that treatment had significant effects on a
number of physiologic, inflammatory, and
microbial parameters and that many, but not all,
were more pronounced in females compared
with males.50 Specific microbiome alterations in
olanzapine-treated female rats included dose-de-
pendent increased levels of Firmicutes, decreased
levels of Bacteroidetes species, and overall
decreased biodiversity. These observations were
replicated in male rats but only at higher doses.
In a follow-up study performed in female rats,
coadministration of antibiotics attenuated the
physiologic and inflammatory effects of olanzap-
ine use.51 A study in germ-free mice determined
that gut bacteria were not only necessary but
sufficient for olanzapine-mediated weight gain.52

As seen in previous studies, colonized mice trea-
ted with olanzapine showed a shift in gut micro-
biota toward an “obesogenic bacterial profile.”53

Finally, in an in vitro model, olanzapine was
determined to have antimicrobial activity against
enteric bacterial strains.52 In all, these studies
make a strong case for the translation of these
types of studies to humans.

Personalized Management of Gut Microbiota

Currently, interest in exploring probiotics as a
component of nutrition-based health is wide-
spread. Probiotics are currently defined as a diet-
ary supplement containing live bacterial cultures
that is taken orally in adequate quantities to exert
a health benefit. Although many bacteria are
advertised as probiotics, data show that the in vivo
effects of different species vary greatly, and few
have been thoroughly investigated. Derived bene-
fits from probiotic microorganisms are due to a
number of different actions including conferring
protection against pathogenic organisms and mod-
ulation of the immune response, and the actions
of microbial-derived metabolic products.54

Evidence that using probiotics to affect human
behavior is limited, but there are data that support
its use as an adjuvant treatment in mental health.

One report55 assessed the potential benefits of
the probiotic Bifidobacterium infantis compared
with the SSRI citalopram on mood using a rat
maternal separation model. In this study, mater-
nally separated rats were chronically treated
with B. infantis or citalopram. Assessments made
were motivational state, as measured by a forced
swim test, cytokine concentrations in whole
blood samples, monoamine levels in the brain,
and central and peripheral hypothalamic-pitu-
itary-adrenal axis measures. For nontreated rats,
maternal separation reduced swim behavior
(indicating a depressed-like behavior) and
decreased mobility as demonstrated by the
forced swim test. Decreased norepinephrine
levels were measured in the brain in addition to
greater proinflammatory cytokine and amygdala
corticotropin-releasing factor mRNA levels. Pro-
biotic treatment resulted in improvement of
mood deficiencies in addition to normalization
of cytokine levels and basal norepinephrine
levels, which was comparable to the effects of
citalopram.
Another study41 investigated the impact of

Lactobacillus rhamnosus on behavior and central
GABA receptors in mice. Probiotic-treated mice
exhibited reduced anxiety symptoms and altered
cerebral expression of both GABA type A and
GABA type B receptors compared with mice
treated with inactive broth. A subset of animals
underwent a vagotomy and was treated with
either the probiotic or inactive broth. Vago-
timized mice treated with a probiotic did not
show a decrease in anxiety, indicating that the
vagus may mediate behavioral and neurochemi-
cal effects of L. rhamnosus.
Table 1 provides a summary of preclinical and

clinical studies examining microbiomes in
animals or humans with behavioral and psycho-
logical disorders.

Perspective and Future: Impact of Host
Microbiome on Personalized Medicine

Advances in next-generation sequencing and
culture-independent approaches to study the
microbiome have led to a new understanding of
the microbiome’s involvement on host physiol-
ogy and disease. The most common method of
studying microbiome biodiversity and structure
is by sequencing hypervariable regions of the
gene encoding the small ribosomal subunit
known as 16S.67 Because many of the anaerobic
species that inhabit the gut are not culturable,
we may find that composition data may not be
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sufficient to define the role of the microbiome in
health and disease. Perhaps even more insight-
ful, culture-independent methods such as shot-
gun sequencing of the metagenome are now
used to study both the composition and the
functionality of processes occurring in the gut.68

Conclusion

Consideration of the human gut microbial
composition and function will be a necessary
part of future personalized medicine strategies.
Great potential exists in examining the micro-
biome to develop diagnostic markers of disease
and to take advantage of therapeutic strategies
that will maximize the benefice of a healthy gut

structure. Most data describing the importance
of the microbiome in psychiatric illness and
pharmacologic management are currently from
ex vivo or animal preclinical models. Biologic
validation of these methods on large human
cohorts will be necessary to demonstrate the
strength and clinical utility of these types of
predictors and therapeutic management of
disease.
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