Supplementary Material

Identifying Binding Hot Spots on Protein Surfaces by Mixed-Solvent MD: HIV-1 Protease as a Test Case

Peter M.-U. Ung, ${ }^{1,2}$ Phani Ghanakota, ${ }^{1}$ Sarah E. Graham, ${ }^{3}$ Katrina W. Lexa, ${ }^{1}$ Heather A. Carlson ${ }^{1,3^{*}}$
${ }^{1}$ Department of Medicinal Chemistry, College of Pharmacy, 428 Church St., University of Michigan, Ann Arbor, MI 48109-1065, United States
${ }^{2}$ Present address: Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
${ }^{3}$ Department of Biophysics, College of LSA, 930 N. University St., University of Michigan, Ann Arbor, MI 48109-1055, United States

SUPPORTING TABLES

Table S1. Ratio of Organic Solvent and Water in 50% w/w Organic-Aqueous Solutions

	Acetonitrile $^{1}:$ water 2	Isopropanol $^{3}:$ water	Pyrimidine $^{4}:$ water
Weight : Weight	$50: 50$	$50: 50$	$50: 50$
Mol : Mol	$1.220: 2.775$	$0.832: 2.775$	$0.624: 2.775$
Molecule : Molecule	$2,766: 6,113$	$829: 2,779$	$622: 2,751$

${ }^{1}$ Acetonitrile (ACN): $41.05 \mathrm{~g} / \mathrm{mol} ;{ }^{2}$ Water: $18.02 \mathrm{~g} / \mathrm{mol}$
${ }^{3}$ Isopropanol (IPA): $60.10 \mathrm{~g} / \mathrm{mol} ;{ }^{4}$ Pyrimidine (1P3): $80.09 \mathrm{~g} / \mathrm{mol}$

Table S2. Normalized eigenvalues of the first five ED eigenvectors of pure-water MD and 50\% w/w MixMD

	Normalized Eigenvalue (Cumulative Percentage)			
Eigenvector	Pure Water	ACN 50\%	IPA50\%	1P3 50\%
1	$0.54(54 \%)$	$0.29(29 \%)$	$0.39(39 \%)$	$0.54(54 \%)$
2	$0.14(68 \%)$	$0.18(47 \%)$	$0.21(60 \%)$	$0.14(68 \%)$
3	$0.08(75 \%)$	$0.14(60 \%)$	$0.11(71 \%)$	$0.09(78 \%)$
4	$0.06(81 \%)$	$0.08(68 \%)$	$0.06(77 \%)$	$0.04(82 \%)$
5	$0.04(86 \%)$	$0.07(75 \%)$	$0.05(82 \%)$	$0.04(86 \%)$

Table S3. Ratio of organic solvent and water molecule in 5\% v/v organic-water solutions

	ACN : water ${ }^{2}$	IPA : water	$1 \mathrm{P} 3^{4}:$ water
Volume : Volume	$5: 95$	$5: 95$	$5: 95$
Weight : Weight	$3.10: 95$	$5.08: 95$	$3.93: 95$
Mol : mol	$1.0: 55.5$	$1.0: 83.2$	$1.0: 80.7$
Molecule $:$ Molecule	$276: 15,315$	$184: 15,308$	$190: 15,333$
${ }^{1}$ ACN $: 41.05 \mathrm{~g} / \mathrm{mol} ;{ }^{2}$ Water: $18.02 \mathrm{~g} / \mathrm{mol}$			
${ }^{3} \mathrm{IPA}: 60.10 \mathrm{~g} / \mathrm{mol} ;{ }^{4} 1 \mathrm{P} 3: 80.09 \mathrm{~g} / \mathrm{mol}$			

SUPPORTING FIGURES

Figure S1. Different solvents have differently shaped radial distribution functions, so to put all the simulations into a common frame of reference, the RDFs of water in each mixed-solvent system are given. If water is evenly mixed, the partner solvent of ACN, IPA, or 1P3 must also be evenly mixed. On the left in blue, the RDFs are given for the simulations of semi-open HIV1 p in $50 \% \mathrm{w} / \mathrm{w}$ solvent environments. On the right in red, the RDFs are given for the simulations of semi-open HIV-1p in $5 \% \mathrm{v} / \mathrm{v}$ solvent environments. The even mixing of all solvents is confirmed by finding the same, standard RDFs for TIP3P water that converge to 1.0 at $\sim 8 \AA$. .

Figure S2. RMSD of the core of the HIV-1p dimer in 50% w/w MixMD. The trajectories are stable throughout the $20-n$ s simulation, with the exception of one opening event in 1P3. A similar opening event has been observed in pure-water simulations. [ref 34 in manuscript]

50\% w/w ACN-Water

50\% w/w IPA-Water

50\% w/w 1P3-Water

Figure S3. Comparison of the $1^{\text {st }}$ ED eigenvectors of apo HIV-1p in water and in $50 \% \mathrm{w} / \mathrm{w}$ probe-water solution MixMD. Red indicates correlated vectors with positive dot-products. Blue indicates anti-correlated vectors with negative dot-products. White indicates the vectors have no correlation. (A) $1^{\text {st }}$ ED eigenvectors from ACN -water MixMD and from MD have a global similarity factor of 0.734 , (B) while IPA-water MixMD and MD is 0.556 , and (C) 1P3-water MixMD and MD is 0.760 . The illustrated HIV-1p is the averaged structure of 5 independent trajectories of MixMD.

