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The admittance of an infinite cylindrical antenna is calculated as a function of exciting frequency 
and exciting gap thickness. The results obtained show that an asymptotic analytical expression derived 
for the susceptance by Chen and Keller and also later by Fante, is strictly valid only in the limit of 
"Vanishing gap thickness. An altenate analYtical. form is presented-for die susceptance, which removes 
this restriction and which gives good agreement with the correct susceptance values obtained in this 
study. 

1. lntrodudion 

The admittance of a cylindrical antenna of finite or 
infinite length, fed by a circumferential voltage gap, 
is a subject which has received a great deal of atten· 
tion. A solution for the antenna current can be exactly 
obtained only for the infinite antenna, the finite antenna 
current being determined by an integral equation. The 
reason for this is the reflected current waves. which 
are set up by the ends of the finite antenna, but which 
are absent from the infinite antenna. 

While the current, and thus the admittance, of the 
infinite and finite antennas may be very different, they 
do have in common the feedpoint singularity associated 
with an infinitesimal (delta function) exciting gap 
in the ou~ward traveling current wave. As a result, the 
change m antenna susceptance that results from. 
changing the gap thickness might be expected to be 
similar for both antennas. Whether or not the· depend­
ence of the susceptance upon gap thickness is sig­
nificant will depend upon the relative importance of 
other determining parameters such as antenna radius, 
and in addition for the finite antenna, the antenna 
length. The purpose of the work, which is discussed 
here, is to investigate, using a numerical approach, 
the admittance variation of the infinite antenna as a 
function of the gap thickness, as well as the excitation 
frequency. 

It will be demonstrated from some numerical results 
to be presented that a condition for the asymptotic 
form derived for the antenna susceptance by Chen 
and Keller (1962) and also subsequently, by Fante 
(l966a), to be valid is that a~ 0 rather than k8 ~ l,. 
where k is the wave number and 8 the gap thickness. 
In addition, the numerical analysis here is not re­
stricted to finding an average gap current in the 

1 The research reported in this paper was supported by the National Aeronautics and 
Space Administration under Headquarters contract No. NASr-54(05). 

vicinity of an infinitesimal gap, from which to estimate 
the susceptance, as was done by Duncan (1962), but 
the explicit effect of varying the gap thickness can 
be obtained. Values are also readily obtained for the 
antenna conductance, for which some numerical 
results are presented. The approach taken here is 
simply a straightforward numerical evaluation of the 
equation for the antenna current, without any approxi­
mations to the integrand as has been done in the 
papers quoted. ' 

2. Formulation 

The current on the surface of an infinite antenna of 
radius a, whose axis is coincident with the z axis of a 
cylindrical (p, cp, z) coordinate system, and which is 
excited by a voltage V0eiwt, may be expressed by 
(Duncan, 1962), 

_ _ f"' S(/3) H\2>(>..a)df3 
l(z) --2wcuE 

0 
cos ({3z)-A.- H~2>(>..a) (1) 

with E the permittivity of the medium surrounding 
the antenna, H~l the Hankel function of second kind 
and order n, and . 

S (/3) = v, sin (/38/2) 
0 ({38/2) 

where 8 is the gap thickness. The medium permea­
bility is given by p., and c is the propagation velocity 
of light in the medium which we take to be free sp~ce. 
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The real part of {1), which for Vo = 1 and z = 8/2 is 
the conductance, is given by the finite integration 
range 0 to k, since for {3 > k, the ratio H\2>fH~2 l becomes 
pure imaginary, cancelling out the· i arising from A., 
so that the integrand function is pure real. The con· 
ductance is consequently more easily found than the 
susceptance, requiring a finite range of integration, 
and encountering only an integrable singularity at 
{3 = k (see Duncan, 1962). In addition, since ka ~ 1 is 
required for the assumption of a uniform electric field 
across the gap to be valid, we see that S({3) will be 
equal to unity over the range of integration determining 
the conductance, which is thus independent of gap 
width. · 

Calculating the susceptance from (1) is not so 
straightforward, however, because nonintegrable 
singularities of opposite sign are found near {3 = k in 
the imaginary portion of the integral, and, an important 
consideration in a numerical treatment, the range of 
integration is much greater. If, in particular' a= 0, then 
when a~ k and tJa ~ 1 H<2lfH<2>A.-+- tJ-l and the J-:1 ,.., ' 1 0 f-1 ' 

current at the source is infinite, since J"' df3/{3 is not 

convergent. For nonzero o, the current is no longer 
singular, but the range of integration is still very large, 
on the order of ( k8) - 1 times that required to find the 
conductance. 

The approach .taken here to numerically evaluate 
(1) without any restrictions other than assuming a 
nonzero a, is to integrate upwards along the imaginary 
{3 axis to about {3 k, and then integrate parallel to 
the real {3 axis until the desired convergence has oc· 
curred. It is not necessary to return the integration 
to the real axis, since the contribution to the integral 
of the neglected segment is negligible at the large 
value of 13 where the integration is terminated. The 
integral is considered to have converged when the 
normalized truncation· error that arises from termi-· 
nating the integration at a finite f3 value, is less than 
some acceptable normalized error. The integration 
was carried out using the Romberg integration scheme 
discussed by Ralston (1965, p. 121). A computer routine 
that automatically chose the interval size so that the 
desired convergence took place within each interval 
with no more than 5 abscissa points, was developed. 
This scheme was consistently found to select the 
smallest interval sizes at points where the integrand 
function is nearly singular, with a resulting maximum 
to minimum abscissa-spacing ratio as high as 106 or 
107• In the next section we present some numerical 
results for the admittance calculations. 

3. Numerical Results 
In figure 1 is shown the susceptance, B, of an an­

tenna of 1·cm radius eperated at 1 MHz (K = ka 
= 2.0958 X 10-4) as a function of the gap thickness 
which varies from 0.1 em to I0-4 em. For greater 
numerical accuracy, the susceptance of the antenna, 
as well as the conductance, G, is given in table l. 
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We may observe from figure 1 that the susceptance, 
in the range a= I0-1 to I0-4 , varies logarithmically, 
and may be represented as 

B = Bo + t:JJ ln (o), (2) 

where Bo and t:JJ may be functions of K. With a ex· 
pressed in em, we may solve for Bo and t:J1 from the 
data in table 1 to get 

B0 = 2.1612 X 10-4 mhos, 

tlB l.llll X I0-6 mhos, 

where K=2.0958 X I0-4• 

(3a) 

(3b) 

Chen and Keller, and Fante, derived an approxi­
mate closed·form expression for the susceptance, 
which is given by 

TABLE 1 

K = 2.0958 X 10·• 

()(em) GxJO" BxlO" 

JO-• 1.0309 0.21870 
JO·• 1.0309 0.22124 
10"' 1.0309 0.22379 
JO·• 1.0309 0.22635 

Jo·•.--...-----------------. 

o •I em 

f =I MHz 

K = 2.0958 xlo-4 

8 {em) 

FIGURE 1. Variation of susceptance B as a function of 
exciting gap thicknes:. 3, at 1 MHz, {K = 2.0958 X lO -•) 
with an antenna radius a of 1 em. 
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lJ =- 2awE ln (k8/2) (4} 

where we denote the susceptance by if to differentiate 
it from the purely numerical results which are ob­
tained in our approach. We see that (4) may be put 
in the form of (2), so that 

Bo - 2awE ln (k/2), (Sa) 

AB 2aw€. (5b) 

Solving for Bo and 6.B from (5) we get 

Bo= 1.0106 X 10-s mhos 

AB =- L 1126 X I0-6 mhos 

(6a) 

(6b) 

again with K 2.0958 X 10-4• While the !J.B values 

(3b) and (6b) are in quite good agreement, the BG values 
are very different and it would appear that a term not 
containing a should be included in (4). 

If we examine Fante's derivation more carefully, 
we find that in (23) of his paper, he neglects a term 
given by (Fante also neglects the f in this term, but 
subsequently corrected this omission; Fante, 1966b) 

- 0.9[Kln(PK~/2)]- 1 • 2awE (7) 

with In f=Euler's constant (0.577216}, on the basis 
that this term is small compared with ln (kS). It is 
obvious, however, with K- 10-4 and k8 -10-s that 
the neglected term is larger than the one retained. If 
we keep the term in question, then we obtain from 
Fante's approach 

B =- 2awE [0.9[2K ln (fKtV2) ]-1 + ln (k/2) +In (8)], 
(4)' 

so that 

B o 2aw€ [0.9[2K In (fKth.) ]-1 + ln (k/2) ]. (Sa)' 

with !lB given by (5b). We now find B 0, for K 
= 2.0958 x 10-4, to be 

B0 3.0012 X I0-4 mhos, (6a)' 

which is now more nearly in agreement with (3a) than 
was (6a). It is apparent that for sufficiently small values 
of o, the susceptance will be dominated by the In (kS) 
term, and {4) is then approximately correct. 

It should be noted here that the term in question, 
given by (7), is an approximation to an integral which 
cannot be solved in closed form, which may account 
for some of the difference between (3a) and (6a)'. We 
should also point out that Fante has a sign error on 
this term in his (23), which may be seen by examining 
(19) and (20) of his paper. 

272-802 0-67-3 
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The conductance term which appears in Fante's 
paper has also been incorrectly obtained, as a result 
of approximating the Hankel function of order zero 
and s~all argument, by the Neumann function alone. 
This can be seen by noting that the conductance term 
Fante obtains comes from (1) from the integration 
range {3 > k, where, as has been previously men­
tioned, the conductance contribution is zero. The 
same result for the conductance as Fante obtains is 
found, however, from the integration range 0 to k by 
using both the small argument Bessel and Neu~an 
function expressions in HW1, so that Fante's result 
for the conductance, which is 

(8) 

is correct. 
The value of G obtained from (8), the approximate 

result of Fante, is at 1 MHz for the antenna being 
considered,. 1.01813 X w-:l mhos. which is quite 
close to the calculated value obtained without ap­
proximation from (1), given in table 1. 

Further results obtained from integrating (l) are 
given in figure 2 and table 2 for the admittance as a 
function of K, (a is constant at 1 em), for 8=0.1 em, 
along with results of Duncan, denoted by the sub­
script D, and values obtained from (4)' for the suscept­
ance and (8) for the conductance, which we denote 
by the subscript F, after Fante. 

It may be seen that for small K, the conductance 
is at first growing more rapidly than the susceptance 
with increasing K, but that finally the susceptance 
begins to overtake the conductance, reflecting the 
increasing importance of the ln(k8) term in the sus­
ceptance. Note that our conductance results check 
those of Duncan, but that Duncan's susceptance 
values are slightly lower, as a result of the way in 
which Duncan defines the susceptance, which he 
obtains from the ~urrent for a gap of zero thickness. 
We see that the Gr- values agree very well with ours 
for K < 0.04, but begin to differ appreciably for larger 
K, which is not surprising, since Fante's derivation 
assumes K 4 1. The B F values are about 40 percent 
larger than the B values for the .smallest K used, and 
about 5 percent larger at the largest K, with the best 
agreement in the range K = 0.01 to 0.04. 

In figure 3 and table 3 are presented susceptance 
values as a function of 8 for K = 0.15. Using these 
results, we derive the following values for Bn and !J.B 
from (2), 

B 0 = 3.0874 X I0-3 mhos (9a) 

!J.B=-8.0646Xl0-4 mhos. (9b) 

Corresponding values from the approximate expres­
sions of (Sa)' and (5b) are 

Bo 3.4962 X 10-3 mhos (lOa) 
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AB = -7.9632 X 10-4 mhos (lOb) 

which are in better agreement with the values obtained 
from our calculations than was the case for K 
=2.0958xl0-4 • We see that the susceptance is 
more sensitive to 8 for the larger value of K, as shown 
by the larger AB term in the latter case. 

It is interesting to note that the antenna conduc­
tance is determined by K alone, and that changes in 
radius or frequency are indistinguishable, but that the 
susceptance depends individually upon each param­
eter. This may be seen more clearly by rewriting (4)' 
and (8) as 

jj =-
2
K { 0.9 [2K In (fKtv'2) ]-1 

TJ 

+In (K/2) + ln (8/a)} 

1T 

TJ In (fK/V2) 

(lla) 

(llb) 

with TJ = V/Je. Thus, the determining parameter 
for the conductance is K, while for the susceptance, 
the ln(8/a) term, contains the additional dependence 
upon the ratio of gap width to cylinder radius. 

K 

B,G (milli mhos) 

FIGURE 2. The antenna admittance as a function of K with 
the radius a equal to 1 em and an exciting gap thickness 
l) equal to 0.1 em. 

TABLE 2 

a= I em; cS=O.l em 

.dO' 

K G (;,.. 

2.0958X JO·' ........... . 1.0309 . . . . . . .. . .. . . . . 1.0120 
4.1916 x w-• ........... . 1.1263 .......... ..... 1.1050 
w-• ....................... . 1.2726 . . . . . . . . . .. . . . . 1.2489 
0.01.. ..................... . I. 9204 I. 92 1.9063 
0-02 ....................... . 2.256 7 2.26 2.2652 
0.04 ....................... . 2.7220 2.72 2.7906 
0.08 ....................... . 3.3973 3.40 3.6334 
0.15 ....................... . 4.3162 4.32 5.0040 

TABLE 3 

K=O.I5 

ll(cm) (;X 10' 

10' 4.3162 
w-• 4.3162 
w-• 4.3162 
w-• 4.3162 
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.rl(}' 

B iJ, 

0.21870 
0.26626 
0.35439 ··············· 
0.95157 0.761 
1.3842 1.08 
2.0852 1.55 
3.2466 2.43 
4.9505 4.39 

Bx 10' 

4.9505 
6.8013 
8.6592 

10.473 

iJ,. 

0.30269 
0.34053 
0.41036 
0.94962 
1.3824 
2.1191 
3.3859 
5.3298 

ro- 1,..-----....---------------, 

8<cml 

8 (milli mhos) 

FIGURE 3. Variation of susceptance B as a function of 
exciting gap thickness S, at 715.7 MHz (K=O.IS) with an 
antenna radius· a of 1 em. 
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The calculated results presented in figures 1 and 3 
show that the sensitivity of the susceptance to changing 
gap width is greater for the larger value of K, a result 
which is shown by (lla). For large enough K and/or 
small enough 8, the first term in (lla) becomes small 
in comparison with the others, and iJ then is well 
ap.proximated by (4), the result of Chen and Keller. 
It is interesting to note that if we divide (4) by 21Ta, we 
obtain 

b = !!_ - 2/E In (k8/2), 
2?Ta (12) 

which is approximately the susceptance per unit 
length for a slot in an infinite plane. Thus, it is not 
surprising to find that (4) becomes more accurate as 
K increases while at the same time being inadequate 
for the smaller K values, where the correction term 
(7) is important. 

4. Conclusion 

A straightforward numerical technique has been 
described which allows the evaluation without ap· 
proximation of the admittance of an infinite cylindrical 
antenna as a function of the exciting gap thickness. 
The results obtained are in agreement with those of 
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Duncan for the conductance, but have for the suscep· 
tance the additional advantage of explicitly showing 
the dependence of the susceptance upon the feeding 
gap thickness, which Duncan's results do not show. 
It has been shown, in addition, that the approximate 
form derived by Chen and Keller, and Fante, for the 
antenna susceptance, neglects a term in the suscep· 
tance which does not contain the gap thickness. Good 
agreement is obtained between the numerical results 
presented here and an approximate form for the sus­
ceptance, which includes this neglected term. The 
approximate form for the conductance derived by 
Fante has been found to give results which agree well 
with the calculated values obtained here. 
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