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For a plane electromagnetic wave at nose-on incidence on a semi-infinite perfectly conducting 
cone expressions for the surface field components are obtained. These have been programmed for 
numerical computation and data are presented for the magnitudes and phases as functions of the 
distance from the tip for three different cone angles. Comparison with results derived from the 
physical optics approximation and from a simple wedge approximation shows that the differences 
between the exact and physical optics values are not attributable to a tip-excited wave. 

1. The Genesis of the Problem 

Traveling waves have long played an important role 
in antenna theory. Their application to the theory of 
scattering by long thin bodies at oblique angles of 
incidence was realized a decade ago (Peters, 1956a,b), 
but in spite of this, the concept of such waves-their 
manner of excitation and the extent to which they can 
be regarded as self-sustaining wave motions- is not 
well understood. 

As generally employed in scattering theory, a travel
ing wave is only a manifestation of the impressed effect 
of the incident field as long as the latter is present, and 
is therefore hlP'dly identifiable with a form of surface 
wave within the illuminated region. With a long thin 
body, however, this same wave motion is assumed to 
persist into the shadow region with only a negligible 
change of character; and when the wave reaches the 
rear termination of the body, it can then be reflected 
to give a wave which travels in the backward direction 
and which is ultimately responsible for the field 
radiated in the back-scattering direction. That such 
a decomposition of the surface field is basically correct 
has been verified by detailed asymptotic analyses 
applied to the known exact solution for on-axis illu
mination of acoustically hard and soft prolate spheroids 
whose eccentricities are almost unity ({;Qodrich and 
Kazarinoff, 1963), and is also evident from the analyti
cal treatments of scattering by thin wires, both finite 
(Einarsson and Tai, 1967) and semi-infinite (Vainshtein, 
1959) in length. 

The manner in which the surface field builds up as a 
function of distance away from the front end of the 
body is not apparent from the above studies, nor are 

we aware of any analysis which has yet thrown any 
light on this matter. On the other hand, a knowledge 
of the character and rapidity of the buildup could be 
quite important, not least from the point of view of 
designing an absorber which would effectively suppress 
the traveling wave. Thus, for example, with a long 
thin body whose radius is not a small fraction of the 
wavelength, the forward traveling wave is merely the 
physical optics current, and one could presumably 
design an absorber to attenuate this on the basis of a 
large flat plate· or circular cylinder illuminated at an 
angle corresponding to that which the incident field 
makes with the appropriate generator of the body. 
But if the surface field requires some considerable 
distance to achieve the physical optics value, the 
design would be inappropriate over a significant 
fraction of the body's surface. 

An attractive ·body on which to investigate this 
buildup is the semi-infinite cone illuminated by a 
plane wave at or near nose-on incidence. Probe 
measurements of the surface fields on cone-spheres 
for sufficiently large values of the base radius-to
wavelength ratio such that the fields on the sides of 
cone are relatively unaffected by the termination, have 
shown (Zukowski and Senior, 1965) that the fields do 
build up to values closely resembling those predicted 
by physical optics. But in the important region near 
to the tip, the measured data . are substantially in 
error because of the sensitivity of the probe to lateral 
(azimuthal) variations in the field. Attention was 
therefore directed at the known analytical solution 
for the surface fields on a semi-infinite cone at nose-on 
incidence, and, for the first time, detailed computa
tions of the infinite eigenfunction expansion have 
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been performed. We shall here summarize both the 
analysis and the computed data with particular 
emphasis on the form and magnitude of the perturba
tion field associated with the tip, that is, on the dif
ference between the exact and physical optics values 
of the surface fields. 

2. The Surface Field on a Semi-Infinite Cone 

Although solutions for some Of the scattering prob
lems associated with the semi-infinite cone have been 
known for almost a century, it was not until1948 that 
Hansen and Schiff provided the first exact solution 
for the (vector) problem of a plane ei.:ctromagnetic 
wave at nose-on incidence on a perfect~y conducting 
cone. Since then there have been a variety of an
alytical treatments appropriate to the more general 
types of dipole and plane-wave excitation (see, for 
example, Felsen, 1957), and it is sufficient to give here 
only a brief outline of one method of derivation which 
leads directly to expressions for the surface field com
ponents in the forms required for numerical compu
tation. 

In terms of the spherical polar coordinates (r, (), l/J), 
which are related to the Cartesian coordinates (x, y, z) 
by the equations 

x = r sin () cos </> 

y= r sin () sin</> 

z=r cos(), 

the surface of the cone is defined as () = 00• The ex
terior half-angle is therefore 00, and the (interior) 
semivertex angle is a= 1r Oo. 

A plane electromagnetic wave is incident in the 
direction of the negative z axis. Without loss of 
generality its electric vector can be assumed to be 
in the x direction and hence 

(1) 

where Y= 1/Z is the intrinsic admittance of free space 
and a time factor e-iwt has been suppressed. When 
expressed in terms of the spherical polar coordinates, 
the incident field becomes 

§.1 = (r sin () cos .p + e cos () cos 4> 

_ J> sin </> )e-ikr cos 9 

H1 =-Y (r sin 8 sin cp + 0 cos () sin cf> 

+ J> cos <f>)e-ikr cos 9, 

(2) 

and the task now is to find the corresponding total 
(incident plus . scattered) field (b lf) satisfying the 
boundary condition 
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exE 0 (3) 

at the surface () = 00 of the perfectly conducting cone. 
To this end we introduce two Debye potentials u 

and v, and write the components of the total field as 

iJ2 
Er= iJr2 (ru) + kZru 

1 a2 ikZ a 
Eo=-;. arae (ru)+ r sin fJ a.p (rv) 

1 ikZ iJ 
E"'=-- (ru)--- (rv) 

r sin () ariJ<f> r iJ() 

iJ2 
Hr= ar2 (rv)+k2rv 

1 a2 ikY a 
H9 =-;. iJriJO (rv)- r sin 0 a¢ (ru) 

___ 1_ 2 ikY ~ 1 . 

H<t>- r sin () iJriJ<f> (ru) + r iJ() (rui). (4) 

By virtue of the geometry and the form of the incident 
field, natural representations for u and v are 

u= ,L a,j.,(kr)P~ (cos 8) cos </> (5) 

v= ,L bpj,ikr)PJ (cos 8) sin </> (6) 

in which js(kr) is the spherical Bessel function of order 
sand 

iJ .e1 (cos ()) = ao P, (cos 0) 

is the associated Legendre function of degree s and 
order unity as defined, for example, by Magnus and 
Oberhettinger (1949). The coefficients av and b,., 
together with the ranges of the summation variables 
v and f.L, are as yet unspecified, but from an examina
tion-of (4) it is seen that if vis chosen to be a zero of 
P! (cos 8o), that is v= lin, n= 1, 2, 3, ... with 

P~11 (cos 8o) = 0, 

and if f.L is chosen to be a zero of 

a~o P1 (cos Oo), 

that is, f.L = JLn, n = 1, 2, 3, . . . with 

a 
iJOo PAn (cos Oo) = 0, 

(7) 

(8) 

the boundary condition (3) is fulfilled, and the summa
tions in (5) and (6) then extend over all 'the positive 
roots Vn and f.J..n of (7) and (8) respectively. 
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The coefficients av and b,... are determined by ex-
. panding the incident field (3) in a form analogous to 

(5) and (6), using the orthogonality of the functions 
P!n (cos ()) and PJ... (cos ())over the interval (0, Oo), and 
matching the resulting coefficients with those in (5) 
and (6). It is found that {Mentzer, I955) 

2i (2vn + I)e- ivn ~ 
avn =- k sin Oo _j_ pvt ( () ) . a pt ( () ) 

av}l n COS 0 aeo Vn COS 0 

b = 2iY (2p.n + I).e- iSLn i 
SLnk"() a:z sm o __ · _ p 1 ( () ) 

a ~0. "n COS o p.,v u 

(9) 

(IO) 

which now complete the specification of the total 
field. On the surface of the cone the only nonzero 
components are Ee, Hr and H<J>, and after some sim
plification the expressions for these can be written as 

Hr=- iY sin cp (,a;2 +I) A' 

H =- y cos cp {-.-i _a A'+ A}, (ll) 
<~> p sm Oo ap 

where 
• 1T 

2 -IVn "fi/J ( ) 
A=--.-:2:(2vn+I)e vn.p 

sm Oo n _j__ pt ( () ) 
a vn COS o 

Vn 

-iSL !!: 

A'=~() L (2p.n +I) a~ n 2 1/!v (p) 
Sin o n ___ pt ( () ) 

ap.noOo SJ.n cos o 

and, for convenience, we have put 

p=kr 

We note in passing that 

(:;2 +I) 1/J.{p) = s(s p~ l) 1/J.{p). 

(12) 

(13) 

(I4) 

The expressions for the three surface field com
ponents shown in (II) were the effective starting point 
foi: the present study. Each is a function of p, Oo 
and cp, but since the cp dependence is explicit, it can 
be suppressed by writing 

Ee=cos cf>f!e 

Hr= Y sin cf>Jit'r 
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The actual formulae for g'e, Jlt'r and Jlt'<P are evident 
from (II) and the task that now confronts us is the 
computation of these as functions _of p for selected 
values of Oo. 

3. Computational Procedures 

The heart of the computation of g'e, Jlt'r and Jlt'<P is 
the calculation of the zeros of the Legendre function 
and its first derivative, that is, the determination of 
the two sets of values Vn and P,n, n =I, 2, 3, ... , 
satisfying (7) and (8) for a prescribed 00• Although 
this problem has received quite some attention over 
the years, most of the work was carried out before 
the advent of large, high-speed digital computers, and 
neither approximate analyses nor hand computations 
have produced values for the zeros accurate enough 
for use in the calculation of expressions such as those 
for A and A' (see, for example, Carrus and Treuenfels, 
I950; Siegel et al., 1952, I953). An exception to this 
is the more recent work of Waterman (I963) in which 
zeros were obtained to a stated accuracy of seven 
significant figures by numerical integration of the 
Mehler-Dirichlet representation of the Legendre func
tion, and we shall comment upon these results in a 
moment. 

The representation which formed the basis for the 
present computation of the zeros is the trigonometric 
expansion 

P] (cos ()) = 7T-1i22i+l (sin (J)i 

X f(i+ j+ l) ~ (i+ I/2)k(i+ j+ l)k 
- rc; + 3/2) t-o k!(i + 3/2)k 

xsin {(l+j+2k+I)O} 

(NBS, I964), valid for 0 < () < 1r. If i =- I, the 
convergence of the series is improved, and SIQCe 

P I( ())- f(j + 2) p-t ( 8) 
j cos -- f(j) j cos ' 

an expansion for the Legendre function of order unity is 

1 __ l f(i+2) 
Pi (cos 8)- • 1 . f(j+ 3/2)Si0) 

V7TSID 8 . 
(16) 

with (I7) 

Similarly, from the recurrence relation 

(r -l) .-lz.PJ(z) = jzPJ(z)- U + I)PJ_1 (z) 

H <~> = Y cos cf>Jit' <~>· (I5) with z =cos (), an expansion for the derivative of the 
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Legendre function is 

a 1 
08

P] (cos 8) 
f(j+2) 

8 f(j+3/2) 

and the required zeros Vn and P.n for a specified 8 = 80 
are now obtained from (16) and (18) respectively by 
successive iteration based on Newton's method. 

Although the relatively slow convergence of the 
series for Si8) limits the accuracy with which it can 
be computed, no difficulty has been found in achieving 
values for the zeros which are believed· accurate to 
7 or 8 significant figures, with the accuracy decreasing 
towards the lower number as the order of the zero 
increases, hut otherwise not significantly affected by 
the value of ()0• Comparison with the results that 
Waterman (1963) has provided for the case ()0 = 165°, 
shows agreement to within unity in the 7th significant 
figure for the zeros of the Legendre function, but for 
the zeros of the derivative, the results for all zeros 
beyond the first are consistently larger than those of 
Waterman in the 6th and 7th significant figure. In 
spite of several checks which have been applied to 
the program, no explanation for the discrepancy has 
been found. At present the iteration for the zeros is 
continued until there is no change in the 8th decimal 
place, with the program computing 5,(00) out to the 
point at which the last term in the series is less than 
10-8, or until500 terms have been included, whichever 
occurs first. In general 500 terms were included, with 
the magnitude of the last term increasing with the 
order of the zero, but tests run with an iteration toler
ance of I0-10 and 1000 terms retained in the series 
(leading to a decrease of one order of magnitude in the 
size of the last term), showed that the original values of 
the·zeros were good to at least 7 (and often 8) significant 
figures. The factor limiting the precision of the results 
at this point is the error caused by the truncation of 
the series Si(00 ). 

Once the zeros Vn and #Ln have been determined, 
the evaluation of the expressions for the surface field 
components is relatively straightforward. Since the 
denominator of each term in the expansions for A 
and A' arises naturally in the course of the iteration 
for the zeros, all such factors not involving p are 
combined and computed along with each zero. The 
expansion used for the function l/18 (p) is derived from 
that of the cylindrical Bessel function, and is 

v; (fY+l ~ (-fr 
7T (s+3/2) ~k!(s+3/2h. (19) 

To avoid undue loss of accuracy in the computation, 
(19) is employed only when s is not small compared 
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with p, and in the remaining cases, the function is 
evaluated for a much larger value of the order, fol
lowed by a repeated application of the recurrence 
relation 

2s+ l 1/ls-l (p) = -- 1/Js(p )-1/Js+ 1 (p) 
p 

(20) 

to obtain the required function accurate to 7 decimals. 
In the final summations to compute the series expres
sions (12) and (13) for A and A' respectively, the num
ber N of terms retained has been somewhat arbitrarily 
set at N = 3p + 5, rounded up to the next integer. 
Examination of the truncation error at this point 
showed it to be much less than any error involved in 
the determination of values for 1/Js(p). 

4. The Behavior of the Surface Field 
Components 

Before examining the results of the digital compu
tation, a few remarks about the expected form of the 
surface field components would appear to be in order. 

In the immediate vicinity of the tip, the behavior 
of g'e, ?t'r and Jf'q, is determined by the first (and 
smallest) zeros Vt and #Lt· U 00 <'IT, Vt exceeds unity, 
and some typical values of Vt and v2 for TT/2 ~ 60 < 'IT 

are as follows: 

Vt 2.0000 l.ll56 

Vz 4.0000 2.2780 

1.0316 

2.0844 

1.0083 

2.0237. 

On the other hand, P-1 is less than unity for TT/2 < 80 
<'IT, and some typical values of f.Lt and P-2 are: 

#Ll 1.0000 0.9005 

#L2 3.0000 1.8857 

0.9671 

1.9189 

0.9914 

1.9748. 

The variation of #Lt as a function of 00 for the range 
21/2° ~ 60 ~ 1771/2° is shown in figure 1. 

From an examination of (11) through (15) it is ap
parent that for 'IT/2 < 80 < 7T the tip behavior of the 
component ge is determined by the value of Vt alone, 
whereas #Lt determines the behavior of ?t'r and Jf'q,. 
Explicitly 

(21) 

and thus ?t'r and Jf'q, become infinite as p ~ 0 while 
go tends to Zt?rp. However, since .I#Lt-11 ~I, the 
region in which the tip behavior is dominant will be· 
confined to the immediate vicimty of the tip, and this 
will be true also of the buildup of g'l! from zero if 80 is 
not too different from 'IT. 
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FIGURE 1. First z.ero p.=p.t of a"(J PA (cos 8). 

At sufficiently large distances from the tip, the physi
cal optics approximation is expected to provide an 
accurate picture of the surface field behavior. Al
though the approximation is generally used only to 
specify the tangential components of the total magnetic 
field, the same conceptual basis can he used to predict 
the normal electric field, and there is no obvious 
reason why the prediction should not he of comparable 
accuracy to the estimates of the tangential magnetic 
field. We thus obtain 

g~.o. = 2 cos 9oe- ;p cos e. 

Jt"~·0 • =- 2 sin Ooe- ;p cos 9o 

<:r.?p.o. =-2e-ipcos90 
,n 4> ' (22) 

and some values for the moduli of the optics approxi
mations to the field components are then: 

8o=l50° 8o=165° 80 =172lf2° 

Jlifi·0 ·! l. 7233 1.9273 L9829 

f?fl!·0 ·! 1.0000 0.5176 0.2611 

!?f~o·J 2.0000 2.0000 2.0000. 

For values of p which are not so large that the physi-
cal optics approximation is appropriate, we can gather 
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some information about the probable behavior of the 
surface field components by considering the corres
ponding two-dimensional problem of a perfectly 
conducting wedge excited by a plane wave at symmetri
cal incidence. For wedges of relatively small included 
angle, the fields on each surface are, to a first approxi
mation, the same as on a half-plane inclined at the 
appropriate angle to the field, and by choosing the 
polarization of the incident field in such a way as to 
yield components analogous to those of interest in 
the cone problem, the following estimates for the sur
face fields on a cone are arrived at: 

[ ·" { . } ] e-•- ~ 
?fw=- 2 sin 8 e- ip cos e"' 1---4 F(T) -- e 1•' 

r 0 'Tr 21' 

?(:=- 2e-iP coso.[ 1- e-~~ F(T)l (23) 

The affix "w" here denotes the wedge approximation 
and F(-r) is the Fresnel integral 

with 

Since 

F(-r) = i"' ei>.•dt... 

• ~ 9o 
T= V 'L.p COS-· 

2 

F( 
i . 2 

-r)-- e" 
21' 

for large T, it is obvious that each of the field compo
nents (23) approaches its physical optics value (22) 
at sufficient distances from the tip, but for p less than 
this all three components show an oscillatory behavior. 
This is illustrated in figures 2 and 3 in which the moduli 
and phases of the wedge approximations (23) are 
plotted as functions of p for 00 = 150°. For very small 
values of p the behavior of the wedge approximation 
is dictated by the edge condition at a two-dimensional 
singularity, namely 

(24) 

and since these variations are quite distinct from 
those appropriate to a tip (see (21)), it is apparent that 
the wedge approximation will not he applicable in 
the immediate vicinity of the tip. For other values of 
p, however, the wedge approximation does reproduce 
the essential features of the surface field behavior on 
the cone and, as we shall see shortly, the estimates 
given in (23) are accurate to a surprisingly high degree. 
This is in spite of the usual quantitative discrepancy 
between solutions of two- and three-dimensional proh-



484 

\ _,, 
v ---

---------------------:----------

'\ 

I ''-------------------~---------------------

FIGURE 2. Amplitudes of surface field components lfs, ilt'r 
and ilt'q, for a= 30°, derived from wedge approximation 
(4.23). 
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FIGURE 3. Phases of surface field components lfs, ilt', and 
ilt' .,, relative to those of physical optics field ( 4.22), for 
a= 30•, derived from wedge approximation (4.23). 

lems resulting from the differing dependences on 
distance. 

5. Numerical Results 

Using the computational techniques described in 
section 3, the three surface field components g'o, ?t'r, 
and ?t'q, were computed in real and imaginary parts, 
amplitude and phase, as functions of p, 0 < p ~ 30, 
for a sequence of values of 80 spanning the range 
150° :,;;;; ()0 ~ 1721/2°. The computations were carried 

·· out on the IBM 7090 at the University of Michigan, 
and the results for 80 = 150°, 165°, and 1721f2°, cor
responding to cones of half-angle a=30°, 15°, and 
71/2° respectively, are presented here with the ampli
tudes shown in figures 4, 6, and 8, and the phases 
(relative to those of the physical optics approximation 
(22)) given in figures 5, 7, and 9. 

Starting first with the case a= 30°, we observe that 
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FIGURE 4. Amplitudes of surface field components lfs, ilt', 
and ilt'q,for a= 30•. 

----------------

FIGURE 5. Phases of surface field components lfs, ilt'r and 
~t relative to those of physical optics field (4.22)./or a= 30°. 
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FIGURE 6. Amplitudes of surface field components ffs, ilt', 
and ilt' q, for a= 15•. 
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FIGURE 7. Phases of surface field components ff9, ilt'r and 
ilt' .,, relative to those of physical optics field ( 4.22), for 
a= 15°. 
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FIGURE 8. Amplitudes of surface field components f!e, ?f, 
'' and ?f<~>for a= 7lf2°. 

the region where the tip behavior dominates the sur
face field amplitude is confined to within 'A/2 (approx.) 
of the tip. Thereafter, jJt",-l would appear to approach 
its physical optics value more or less asymptotically 
from below, and has almost reached that value when 
p = 30, whereas jJt"q,j and jg'ol oscillate about their 
limiting values. For all three components, the be
havior is strikingly similar to that revealed by the 
wedge approximation, and a comparison of figures 2 
and 4 shows that this approximation is accurate to 
within 5 percent for p > 10. The residual phases of 
the three components when the physical optics phases 
are subtracted are less than 10° at all points more than 
about O.OIA from the tip, and are once again predicted 
to a very large extent by the wedge approximation (see 
fig. 3). For the component Jt",-, however, the agree
ment is somewhat poorer than for the amplitude, and 
the discrepancy is of order 4° for r > 2'A. We also 
note the slight oscillation of the phase of Jt",- that is 
evident at distances of more than about 3'A. Such 
oscillations are intensified when the cone angle a is 
reduced, and since detailed checks of the computa
tional procedures have revealed rw errors of this mag· 
nitude, it must be concluded that the oscillations are 
real. 

At the next smaller value of a, a= 15°, the region 
where the tip behavior dominates the amplitude is still 
more reduced and, for example, IJt",-l is still only a 
factor of two greater than its optics limit at a distance 
of lO 101.. from the tip in spite of the fact that it must 
become infinite as r~ 0 in accordance with the con
dition (21). Away from the tip, IKrl again approaches 
its physical optics value more quickly than the other 
two components, which are now somewhat closer in 
magnitude and oscillate about their optics limits with 
a period of oscillation which is much greater than for 
a= 30°. Such changes as a function of a are fully 
predicted by the wedge approximation (23). The 
phases for a= 15° (see fig. 7) are within 6° of their 
physical optics values throughout the range of p com· 
puted, and the oscillation noted in the phase of Jf" r 
for r > 2'A when a= 30° is here more well developed, 
with a trace of it also being detectable in the numerical 
data for the amplitude. 
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FIGURE 9. Phases of surface field components f!e, :Jr, and 
?fq,, relative to those of physical optics field (4.22), for 
a=71f2•. 

At the smallest value of a considered, a= 71/2 °, the 
results are .shown in figures 8 and 9. Because of the 
vastly increaseo period of the main oscillation of the 
amplitudes, the amplitudes of the three components 
are almost constant out to the largest p computed with 
the exception of the immediate vicinity of the tip. 
The small period oscillation of IJt"rl is now evident in 
the plot, and this is reflected in a marked variation of 
its phase (see fig. 9). The oscillation commences near 
p = 5 and appears to achieve a maximum amplitude 
near p = 23, decreasing thereafter. Because of this, 
the phases depart from their physical optics values by 
almost as much as for a= 150, and we also observe 
from figure 9 that the phase of g'e is oscillating to some 
extent. 

In order to throw some light on the nature of the 
discrepancy between the exact and physical optics 
values for the surface field components, the differences 
between the exact results and the physical optics 
estimates (22) have been computed for the same three 
values of a. The amplitudes of the difference (or 
"perturbation") fields ~re shown in figures 10, 12, and 
14, and as expected they ai:e comparatively small 
except within the immediate vicinity of the tip. They 
also decrease with decreasing a, and in so doing, the 
small period oscillations, which are only just apparent 
in the curves for the complete surface field ampli
tudes, become more pronounced. 

Of more interest, however, arf? the phases of the 
perturbed fields plotted in figures 11, 13, and 15. For 
ease of presentation, the phases have been modified 
by subtracting those of the physical optics approxima, 
tion (22), but such a modification is by no means suffi
cient to account for most of the variation of the phases 
of the perturbation fields with p. Although the phases 
of the complete surface field components are quite 
closely approximated by the physical optics phase, 
this is not true of the perturbation field, and accord
ingly this field cannot be explained by a simple "scal
ing" of the physical optics estimates. Nor is the 
phase of the perturbation field compatible with that of 
a spherical wave diverging from ·the tip, so that an 
interpretation in terms of a tip-excited correction is 
also. inappropriate. 
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,fiGURE 10. Amplitudes of components 1?8 , 2r and 2., of the 
perturbation field for a= 30°. 
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FIGURE 11. Phases of components 1?8, 2r and 2.,, relative 
to the physical optics phases, for the perturbation field 
with a,;,30°. · 

1 
! \ 

0.1 \ _____ -,..-::::: ________ ;¥;. _________________ _ 

\ .......... - . ~ .. """/ 
~''\ , , 

'\ ... _ ........ 

FIGURE 12. Amplitudes of components i?s, 2r and 2., of the 
perturbation field for a= 15°. 

The failure of both these explanations to account for 
the phases in figures 11, 13, and 15 is no longer sur
prising when we recall the agreement between the 
estimates (23) based on the wedge approximation and 
the exact data for the surface field components at 
distances of more than 2A. or so from the tip. The 
functional behavior of the wedge approximation is 
governed by the Fresnel integral, and the physical 
origin of this integral lies in the proximity of the sur
face to the reflected wave boundary at which the 
physical optics field is discontinuous, necessitating 
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FIGURE 13. Phases of components i?s, 2r and 2.,, relative 
to the physical optics phases, for the perturbation field with 
a= 15°. 

FIGURE 14. Amplitudes of components 1?8, 2r and 2., of the 
perturbation field for a= 7lf2°. 

....... ---...... , 

'\\ 
', ~ 

... , ____ t __ ----------------------------. '"' 
l 
i 

i •+-----~----~------+------+--~~~--~~ _________ .......... - -------
--------------~ 

/ 

/ 

FIGURE 15. Phases of components 1?8, 2r and 2., relative to 
the physical optics phases, for the perturbation field with 
a= 7lf2°. 

a discontinuity in the diffracted field in order to com
pensate. The complete (optics plus diffraction) field 
is, of course, continuous everywhere, but its oscilla
tory behavior in an angular region centered on the 
reflected wave boundary does lead to the corrections 
to the physical optics fields evident in the wedge 
approximation (23), and it is only at large distances 
from the edge, i.e., at points on the surface which are 
electrically remote from the nearest point on the re
flected wave boundary, that these correction terms 
become negligible. It would appear that the same 
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sort of mechanism is operating in the case of the cone, 
and the quantitative success of the wedge approxima
tion suggests that the function which describes the 
perturbation field is closely related to the Fresnel 
integraL In this connection, the work of Felsen 
(1959), dealing with a ring source on the axis of a semi
infinite cone, and the extension by Bowman (1963) to 
the problem of a plane wave at axial incidence, are 
very relevant, although in neither case is the analysis 
applicable to the surface field as such. 

The work described here was sponsored by the Air 
Force Avionics Laboratory of the Wright-Patterson 
Air Force Base, Ohio, under USAF Contract No. 
AF 33(615)-5170. 
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