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A modified Fock function is obtained to describe the current distribution on a smooth convex 
boundary, composed of a flat plane smoothly joined to a parabolic cylinder with the join in the pe· 
numhra region. Both analytical and numerical methods are used to obtain the modified Fock function 
which now depends on the di~tance between the shadow boundary and the flat plane-parabolic cyl­
inder join. The modified F.,.:k function is applied to estimate the ba.-:kscattering cross section of a 
cone-sphere. 

1. Introduction 

When a high-frequency plane electromagnetic wave is tangentially incident upon a locally 
parabolic convex surface, the distribution of the induced current near the shadow boundary is 
described by the Fock function [Fock, 1946]. However, if a portion of the scattering surface near 
the shadow boundary is no longer parabolic but flat (e.g., wedge-cylinder or cone-sphere), the 
effect of the surface discontinuity at the join of the flat plane and parabolic cylinder must be taken 
into account. Weston [1965] has, in a previous paper, discussed an extension of the Fock theory 
when the position of the surface discontinuity coincides exactly with the shadow boundary. 

It is the purpose of this paper to present a modified Fock function which provides the current 
distribution in the penumbra and shadow regions when the surface discontinuity is in the penum­
bra region. This new modified Fock function describes the current distribution as a function of 
two variables: one is the distance between the shadow boundary and the observation point, and the 
other the distance between the shadow boundary and the flat plane-parabolic cylinder join. 

The method to be used is as follows: an exact integral equation governing the total magnetic 
field on the boundary is formulated by Maue's method [Maue, 1949]. The high-frequency asymp­
totic expression of the exact integral equation is a Volterra type, and both analytic and numerical 
solutions of the Volterra equation are obtained. These solutions may be called the modified 
Fock functions. In section 5, this modified Fock function is applied to estimate the backscatter­
ing cross section of a cone-sphere. 

2. Integral Equation Governing the Surface Fields 

Consider a plane electromagnetic wave 

Hin = zeiky-iwt (1) 

incident upon a perfectly conducting convex cylinder whose boundary is composed of a smoothly 
joined flat plane and a parabolic cylinder (fig. 1). In terms of a Cartesian coordinate system whose 
origin is taken at the shadow boundary, the surface of the scattering body is represented by the 

following equations: 

r x=--
2R 

for y;;;. - R tan a (2) 
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FIGURE l. Geometry of the scattering surface. 

x=tan a (y+ ~tan a) for y .;;; - R tan a, (3) 

where R is the radius of curvature of the parabolic section near the origin and is assumed large 
in comparison with wavelength. 

The total magnetic field on the boundary is defined as 

Htotal = zue-iwt. (4) 

Then the scalar function u is the solution of the following equations [Maue, 1949]: 

au=O 
an ' u(P) = 2eiky- ik J"" ds DQ. r H~1>(kr)u(Q), 

2 _"' r 
(5) 

where r is the distance between two points P and Q, and n is a unit vector normal to the boundary. 
It was shown by Weston [1965] that on the flat section the field reflected from the surface 

discontinuity is of the order 1/kR. Therefore, for the high-frequency region, the reflected field 
contributes to higher-order corrections, and u on the flat section becomes equal to the geometrical 
optics term 2eiku. 

On the parabolic section, let us define 

u{y) = /(y)eik• for y >-R tan a, (6) 

where s is the distance along the surface between the shadow boundary and the observation 
point: 

(7) 

Using the relationships (5), (6), and (7), we obtain an integral equation governing /(y): 

/(y) = 2eiku-ika<u>- ik -- 1 H~l)(kr1)[ exp { ikt- iks(y)} + 0(1/ kR)] l -R tan a dt n(t) • r 

_"' cos a rt 

ik f"" ( t2 ) 1' 2 n(t). r2 --2 dtl(t) l+R2 • H}l>(kr2)exp{iks(t)-iks(y)}, 
-R tan a T2 

{8) 

with (9) 

and 
I 

~ = {y- t)2 + 4R2(y2- t2). (10) 
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In order to obtain an appropriate high-frequency asymptotic form of /(y) near the shadow 
boundary, we shall set 

(kR)ll3= m, 

ky=m2~, 

(ll) 
kt= m2,, 

and l(y)=}(~). 

When the surface discontinuity lies in the penumbra region, m tan a is of the order of unity 
or less, and can be replaced by ma for large m. The asymptotic expression of (9) becomes 

(12) 

When rna goes to infinity, the second term in (12) disappears, and the solution becomes the 
ordinary Fock function [Cullen, 1958]. This means that when the position of the flat plane­
parabolic cylinder join is far away from the shadow boundary, the current distribution is given by 
the Fock function. Otherwise, the Fock function has to be modified. The solution }(~) of (12) 
will be called the modified Fock function. When a is identically zero, the solution of (12) is that 
obtained by Weston [1965]. 

In the following two sections, the solution of (12) is obtained when ma is finite but is not iden~ 
tically zero. 

3. Analytic Solution 

In this section, the solution of (12) is derived when the distance between the shadow boundary 
and the position of the surface discontinuity is small, so that m3a3 is negligible. 

In order to solve (12) by the Laplace transform method, it is convenient to modify (12) by 
setting 

~=0-ma, 

and }(0- ma)= j(8). (13) 

Substituting these new variables into (12) and taking the Laplace transform of both sides of 
the integral equation, we obtain 

where 

J(p) = --_ :-M-"-(p-'-) -­

_1 + t:~' 4 v'2f;M(p)_ 

}(p) = L'"' dOe-P6j(O), 

(14) 

(15) 
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M(p)= L" dOe-pB-;f{iOl/2, and (16) 

N(p) = dOe-ps-; 18-;'">' 1--4 v 2/71" (J2 l, [ e-i:!!.. ~ fo dcf> 
0 4 - _, (0- c/>)3/2 

{ 04 m2a2 ma. }] · exp i + i-- (0-cp)- i- 02 • 
8(0- cf>) 2 2 

(17) 

The integral M(p) has been evaluated by Weston [1965] as 

M(p)=47T ~ Ai(q){Ai'(q)-iBi'(q)} + 2~] ei~, (18) 

with q=-ip2113, where Ai and Bi are Airy functions of the first and second kind, respectively, 
and the prime denotes different~ation with respect to the argument; The denominator of (14) 
becomes 

27TiAi(q) ~ [Ai(q)- iBi(q)]. (19) 

The integral N(p) is evaluated in the appendix under the assumption that (ma)3 is negligible. 
We obtain 

j(p) =- [Ai'(q) ~\Bi'(q)] [ 2413 H+~ f [Ai(x)- iBi(x)]dx} 

· { 1-q2m2a 22-5i3} + 2-413m2a 2{ [Ai(q)- iBi(q)] + q[Ai'(q)- iBi'(q)]} l (20) 

The desired solution ](~) is obtained by taking the inverse transform of (20) and using the 
relationships ~ = (}- ma and j((}) = ](0- ma): 

](~) = 2-1/3 f x-ic dq exp { iq2-:~3(f + ma)} [{ 1-q2m2a22-5/3} 
7T -,-ic W1 q 

(21) 

with w;(q) = i y; [Ai'(q)- iBi'(q)]. 

When ~ is sufficiently large and positive, the contour integral may be evaluated in terms of 
the residues at the zeros of w;(q), resulting in the expression of the field as a sum of the creeping 
waves. For numerical calculation of the residue series, it is convenient to substitute the following 
relationship: 

(22) 

The high-frequency asymptotic expression of the total field in the shadow region for small 
ma is 
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u(y)=eiks.'f exp {i~,e•!fy/d} exp {ima,812-1i3e'~} [{~+2 (P! Ai(-x)dx} 
l=l ,B,At(- ,81) 3 )0 

· {1- ,8fm2a22-5i3e•~} + e-•j m2a 22-2/3Ai(- ,81)], (23) 

with d = (AR.2/7T)113• When a goes to zero, (23) becomes equal to the solution given by Weston 
[1965] except for a factor 2. The reason for this is that when a is identically zero, the amplitude 
of the total field on the flat portion was taken by Weston [1965] to be unity, while it is taken to be 2 

in this paper. Numerical values of ,a,, Ai(-,Bz), and LP' Ai(-x)dx are given by Weston [1965]. 

Therefore, when kRa:3 is negligible, each mode of the creeping waves given by (23) is different 
from the Fock solution [Goodrich, 1959] by the factor 

exp {i,B,2-1' 3ma&i} [ H+2 LP 1Ai(-x)dx} {I-,arm2a22-513ei~}+e-iim2a22-213Ai(-,81)} 
(24) 

4. Numerical Solution 

In this section, a numerical method is described to obtain the solution of (12) without the 
assumption that m3a3 is negligible. 

The high-frequency asymptotic expansion reduces Mane's integral equation from that of the 
Fredholm class to that of the Volterra type, which is much easier to handle numerically. Several 
methods are available for the solution of the Volterra integral equation. When a high-speed digital 
computer is available, the simplest approach is to expand the unknown in a set of algebraic func­
tions}., ... , ln, and to require the integral equation be satisfied at n different points. The solu­
tion of (12) may be approximated by setting 

ln =}(~= nll.- ma), (25) 

where 1::!.. is the distance between two adjacent points on the contour of integration. 

Insertion of this expression in (12) gives 

with 

{ . (nll.)4 • m2a2 ( A Yl • ma ( A)2}] · exp ' + '-· - nu- ma- .,, - t- nu 
B(nll.- ma- {) 2 2 

(27) 

and 
e-i!!. ~ ·r;;-;- { (n- m)3ll.3} 

Kn,m=-~ v2/1T(n-m)l12 exp -i 24 · (28) 

As shown in (26), the current at the nth point (~ = nll.- ma) can be obtained by simply sub­
stituting the previously known currents between the Oth to the (n- l)th points. This is the reason 
why, for high-frequency scattering, the asymptotic expression of the integral equation governing 
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the surface is simpler to solve numerically than the exact (Maue's) equation. 
In figures 2 and 3, numerical solutions of the modified Fock function are compared with the 

regular Fock function. 
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FIGURE 2. Amplitude of J in the penumbra region. 

40 

35 

30 

25 

20 

" ., 
~ 15 
A 

10 

5 

0 

I 
I 
I 
I 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

\ 

- - -- Fock Function (ma= ool 
--Modified Fock Function 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

I 
I 

I 

\ , 
' / ' / 

, __ ,.,... 

-s~~r-----r-----~----.------.-----, 
.()_ 8 -0.4 0 0.4 0. 8 1.2 

< 2-1/3 

FIGURE 3. Phase of J in the penumbra region. 

5. Application: Estimation of the Backscattering Cross Section of a Cone-Sphere 

It is known that a good approximation to the nose-on backscattering cross section of a cone­
sphere can be had by adding the contribution of a sphere creeping wave to the physical optics 
estimate of the scattering from the cone-sphere join [Senior, 1965]. Nevertheless, Senior reported 
that there is evidence of a small but systematic discrepancy between the amplitudes of the creep­
ing-wave contributions from a cone-sphere and a sphere alone. This phenomenon can be explained 
by results obtained in the previous sections. When a plane wave is incident upon a cone-sphere 
at nose-on direction, the cone-sphere join lies near the shadow boundary. We have to take into 
account that the geometry of the scattering surface near the shadow boundary is no longer entirely 
spherical, but that a portion of it is conical. 

Fock has shown that when a high-frequency plane electromagnetic wave is incident upon a 
three-dimensional conducting body, the dominant mode of the creeping waves may be described 
by the two-dimensional solution [Goodrich, 1959]. Therefore, we may apply the results of the 
previous sections in analyzing the diffraction problems of a cone-sphere. At nose-on incidence, 
the distance between the cone-sphere join and the shadow boundary is very small in many practical 
cases, and the result given by (23) may be applied. 
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a 
);2 

For example, when the cone angle (2a) is 25°, Senior [1965) gives the formula for the· back­
scattering cross section of a cone-sphere at nose-on incidence as 

o-/'A2 = 0.02190IA(L916-0.05593kR) + exp {i1T(L45410- L16335kR}I2. (29) 

Here A is the ratio between the amplitudes of the two dominant creeping waves; one is supported 
on a spherical portion of a cone-sphere, and the other on a sphere alone. Senior [1965] has obtained 
an approximate expression for A on the basis of physical reasoning. 

We may obtain A from (24) as 

A=[ U+2 L'31 Ai(-x)dx} {1-{3~a2(kR/2)2/3 e:~} 

+e-i'i(kR/2)213a 2Ai( -{3i)J exp {i,8 1(kR/2) 113aeiiJ: (30) 

Insertion of this expression in (29) gives the backscattering cross section of a cone-sphere with 
the cone angle 2a = 25°. The result is shown in figure 4. In order to assist the computation of 
the backscattering cross section of either a cone-sphere or a. wedge-cylinder at nose-on incidence, 
the numerical value of A as a function of both kR and a is shown in figure 5. This figure.provides 
a reasonably accurate means of estimating the creeping-wave contribution when kR is of order 5 or 
greater. For smaller kR, a more refined evaluation of A is necessary. This may be. achieved by 
including higher-order terms in the asymptotic representation, or more important, by employing 
the three-dimensional vectorial form of Maue's equation [1949] which is necessary to account for 
curvature in the direction transverse to the geodesic. 

When a plane wave is not incident along the nose-on direction, the distance between the 
shadow boundary and the cone-sphere join is not necessarily smalL In this case we may use the 
numerical method described in the previous section to obtain the creeping-wave contribution. 
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FIGURE 4. Nose-on Backscattering cross section of a 25" 
cone-sphere. 

FIGURE 5. Absolute value and phase of A given by (30): 
2a=cone angle. 
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6. Appendix: Evaluation of N(p) 

In this appendix the integral 

N(p)= {"' dee-p(6)-i (8-6ma) [1- e-irr/4 V2{;;- (J2 Jo d¢ 
}o 4 _.., ((J -¢)3/2 

· exp {i ~- i ~ (}2+ i m 2a2 (6-¢)1 J (Al) 
8(6-¢) 2 2 J 

is evaluated when ma is small, so that (ma)3 and higher-order terms are negligible. The integrand 
of (Al) may be further simplified by making the change of variable (}- cp = x and us in~ the 
relationship 

(A2) 

We obtain 

.(8-ma)"[l e-i~-~2/ ()2Jo d(J ' {· (J4 
e-• 6 -4 V"L.ITr _,.(0-¢)312 exp L8((J-cp) 

eim~<>" -i~ 16 dx { (J4 ()3 m2a2 } = · (}2 - exp i--i-+i-(x-(J) · 
2 "\12:;:;: o x 312 8x 6 2 

(A3) 

Neglecting terms involving (ma)3 and higher order in (A3), N(p) may be written as a sum of 
the two functions: 

(A4) 

with (AS) 

and (A6) 

Weston [1965) evaluated N1(p) as [NJ(p) is equal to 4 v2 F(p), where F(p) was evaluated in the 
appendix] 

(A7) 

with q=-ip21/3. 

The N2(p) can be evaluated by integration by parts: 

d i d4 d2 
N2(p)= dp N1(p)+4 dp4 NJ(p)+2 dp2 M(p), (A8) 

where M(p) is given by (18). 
Using (A 7) and (A8), we obtain 
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+ 7T2-113m2a2Ai(q)[ {Ai(q)- iBi(q)} + q{Ai'(q)- iBi'(q)} ]. (A9) 
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