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Sampling) project is a long-running project to pro-
vide a user-friendly language and environment for
Bayesian inference. The first article, by Andrew
Thomas and colleagues, describes the BRugs pack-
age which provides an R interface to the OpenBUGS
engine. The second article by Andrew Thomas de-
scribes the BUGS language itself and the design phi-
losophy behind it. Somewhat unusually for an article
in R News, this article does not describe any R soft-
ware, but it is included to highlight some of the dif-
ferences in the way statistical models are represented
in R and OpenBUGS.

The issue ends with an article by Jouni Kerman
and Andrew Gelman, who give a personal perspec-
tive on what the next generation of Bayesian soft-
ware may look like, and preview some of their own
work in this area, notably the rv package for rep-
resenting simulation-based random variables, and
the forthcoming “Universal Markov Chain Sampler”

package, Umacs.
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Introduction

Over the past 15 years or so, data analysts have be-
come increasingly aware of the possibilities afforded
by Markov chain Monte Carlo (MCMC) methods.
This is particularly the case for researchers interested
in performing Bayesian inference. Here, MCMC
methods provide a fairly straightforward way for
one to take a random sample approximately from a
posterior distribution. Such samples can be used to
summarize any aspect of the posterior distribution
of a statistical model. While MCMC methods are ex-
tremely powerful and have a wide range of applica-
bility, they are not as widely used as one might guess.
At least part of the reason for this is the gap be-
tween the type of software that many applied users
would like to have for fitting models via MCMC and
the software that is currently available. MCMCpack
(Martin and Quinn, 2005) is an R package designed
to help bridge this gap.

Until the release of MCMCpack, the two main
options for researchers who wished to fit a model via
MCMC were to: a) write their own code in R, C, FOR-
TRAN, etc., or b) write their own code (possibly re-
lying heavily on the available example programs) us-
ing the BUGS language! in one of its various imple-

mentations (Spiegelhalter et al., 2004; Thomas, 2004;
Plummer, 2005). While both of these options offer a
great deal of flexibility, they also require non-trivial
programming skills in the case of a) or the willing-
ness to learn a new language and to develop some
modest programming skills in the case of b). These
costs are greater than many applied data analysts are
willing to bear. MCMCpack is geared primarily to-
wards these users.

The design philosophy of MCMCpack is quite
different from that of the BUGS language. The most
important design goal has been the implementation
of MCMC algorithms that are model-specific. This
comports with the manner in which people often-
times think about finding software to fit a particular
class of models rather than thinking about writing
code from the ground up. The major advantage of
such an approach is that the sampling algorithms,
being hand-crafted to particular classes of models,
can be made dramatically more efficient than black
box approaches such as those found in the BUGS lan-
guage, while remaining robust to poorly conditioned
or unusual data. All the MCMCpack estimation rou-
tines are coded in C++ using the Scythe Statistical Li-
brary (Martin et al., 2005). We also think it is eas-
ier to call a single R function to fit a model than to
code a model in the BUGS language. It should also
be noted that MCMCpack is aimed primarily at so-

1The BUGS language is a general purpose language for simulation from posterior distributions of statistical models. BUGS exploits
conditional independence relations implied by a particular graphical model in order to automatically determine an MCMC algorithm to
do the required simulation. In order to fit a model, the user must specify a graphical model using either the BUGS language or (in the case

of WinBUGS) a graphical user interface.
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cial scientists. While some models (linear regression,
logistic regression, Poisson regression) will be of in-
terest to nearly all researchers, others (various item
response models and factor analysis models) are es-
pecially useful for social scientists.

While we think MCMCpack has definite advan-
tages over BUGS for many users, we emphasize that
we view BUGS and MCMCpack as complimentary
tools for the applied researcher. In particular, the
greater flexibility of the BUGS language is perfect for
users who need to build and fit custom probability
models.

Currently MCMCpack contains code to fit the
following models: linear regression (with Gaus-
sian errors), a hierarchical longitudinal model with
Gaussian errors, a probit model, a logistic regres-
sion model, a one-dimensional item response theory
model, a K-dimensional item response theory model,
a normal theory factor analysis model, a mixed re-
sponse factor analysis model, an ordinal factor anal-
ysis model, a Poisson regression, a tobit regression, a
multinomial logit model, a dynamic ecological infer-
ence model, a hierarchial ecological inference model,
and an ordered probit model. The package also con-
tains densities and random number generators for
commonly used distributions that are not part of the
standard R distribution, a general purpose Metropo-
lis sampling algorithm, and some utilities for visu-
alization and data manipulation. The package pro-
vides modular random number generators, includ-
ing the L’Ecuyer generator which produces indepen-
dent substreams, thus making (embarrassingly) par-
allel simulation using MCMCpack possible.

In the remainder of this article, we illustrate the
user interface and functionality of MCMCpack with
three examples.

User interface

The model fitting functions in MCMCpack have
been written to be as similar as possible to the cor-
responding R functions for estimation of the models
in question. This largely eliminates the need to learn
a specialized model syntax for anyone who is even
a novice user of R. For example, to fit a linear re-
gression model with an improper uniform prior on
the coefficient vector, an inverse gamma prior with
shape and scale both equal to 0.0005 for the error
variance, and the default settings for the parameters
governing the MCMC algorithm, one would issue a
function call nearly identical to the Im() command.
As an example, consider the swiss data that
contains fertility and socioeconomic indicators from
the 47 French-speaking provinces of Switzerland in
1888. To fit a Bayesian linear regression of fertil-
ity on a number of predictors in the dataset we use
the Gibbs sampling algorithm to obtain a sample ap-
proximately from the appropriate posterior distribu-
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tion. To do this with MCMCpack and to then sum-
marize the results we issue the following command:

> data(swiss)

> posteriorl <- MCMCregress(Fertility ~

+ Agriculture + Examination +
+ Education + Catholic +

+ Infant.Mortality,

+ data=swiss)

> summary (posteriorl)

The MCMCregress () function has a syntax similar to
the Im() command. All model functions in MCMC-
pack return mecmc objects as defined by the coda pack-
age (Plummer et al.,, 2005). MCMCpack relies on
coda to perform posterior summarization and con-
vergence diagnostics on the simulated values. The
summary method for mcmc objects prints various
quantities of interest to the screen, including the pos-
terior mean, standard deviation, and quantiles. The
coda package provides a number of other facilities,
including a plot method that produces marginal pos-
terior kernel density plots and traceplots, and a suite
of convergence diagnostics. See Figure 1 for the pos-
terior summary for the Swiss fertility regression.

We note that diagnosing convergence is critical for
any application employing MCMC methods. While
we have ignored such diagnostics here for reasons of
space, please note that simulation run lengths used
in all of the examples have been chosen so that infer-
ences are accurate.

Latent variable models in MCMC-
pack

One very active area of research in the field of polit-
ical methodology involves modeling voting in com-
mittees using the spatial voting model. This expla-
nation of voting asserts that actors have a preferred
policy position (usually called an ideal point) in a
K-dimensional issue space. For example, many Eu-
ropean parliamentary systems are characterized by
a two-dimensional model, with one dimension rep-
resenting traditional left-right economic considera-
tions, and the other dimension representing the issue
of European integration. Voters cast votes on binary
choices—one representing the status quo, the other
an alternative policy. The goal of these models is to
recover the ideal points of the actors, and a set of
item-specific parameters that are functions of the al-
ternative and status quo positions.

Under certain sets of assumptions, these empir-
ical spatial voting models are the same as item re-
sponse theory (IRT) models used in educational test-
ing and psychometrics. The Bayesian approach to
fitting these latent variable models provides many
advantages over the frequentist approach. Model
estimation is reasonably easy using data augmenta-
tion, identification of the model is straightforward,
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> summary(posterioril)

Iterations = 1001:11000
Thinning interval = 1
Number of chains 1

Sample size per chain

1000

1.

Mean
(Intercept) 67.0208 11
Agriculture -0.1724 0
Examination -0.2586 O
Education -0.8721 O
Catholic 0.1040 O
Infant.Mortality 1.0737 O
sigma2 54.0498 12.
2. Quantiles for each variab
2.5%
(Intercept) 45.53200 59
Agriculture -0.31792 -0
Examination -0.76589 -0
Education -1.24277 -0
Catholic 0.03154 0
Infant.Mortality 0.28590 O
sigma2 34.57714 45

Empirical mean and standard deviation for each variable,
plus standard error of the mean:

SD Naive SE Time-series SE
.08133 0.1108133 0.1103841
.07306 0.0007306 0.0007149
.26057 0.0026057 0.0024095
.18921 0.0018921 0.0017349
.03602 0.0003602 0.0002965
.39580 0.0039580 0.0042042
68601 0.1268601 0.1566833
le:

25Y% 50% 75% 97.5%
.56526 67.0600 74.31604 88.87071
.22116 -0.1715 -0.12363 -0.02705
.43056 -0.2579 -0.08616 0.24923
.99828 -0.8709 -0.74544 -0.49851
.08008 0.1037 0.12763 0.17482
.81671 1.0725 1.33767 1.85495
.06332 52.3507 61.03743 83.85127

0

Figure 1: Posterior summary from coda for the Swiss fertility regression fit using MCMCregress ()

auxiliary information can be included in the analysis
through the use of priors, and one can discuss quan-
tities of interest on the scale of probability (Clinton
et al., 2004; Martin and Quinn, 2002). MCMCpack
contains a number of latent variable models, includ-
ing one-dimensional and K-dimensional IRT models
and factor analysis models for continuous, ordinal,
and mixed data.

To illustrate the one-dimensional IRT model in
MCMCpack, we will use some data from the U.S.
Supreme Court. MCMCpack contains a dataset
(SupremeCourt) of the votes cast by the nine sit-
ting justices on the 43 non-unanimous cases decided
during the October 2000 term. The data are just a
(43 x 9) matrix of zeros, ones, and missing values.
To identify the polarity of the model we constrain the
ideal points of two justices in our one-dimensional
latent space. We constrain Justice Stevens (a well-
known liberal) to have a negative ideal point, and
Justice Scalia (perhaps the most conservative mem-
bers of the Court) to have a positive ideal point. (The
one-dimensional IRT model in MCMCpack is identi-
fied through constraints on the ideal points / subject
abilities while the K-dimensional model is identified
through constraints in the item parameters). We use
the default priors on the item and subject parameters.
To fit the model, we issue the following command:
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> data(SupremeCourt)
> posterior2 <- MCMCirt1d(t(SupremeCourt),

+ theta.constraints=1ist(Stevens="-",
+ Scalia="+"), burnin=5000, mcmc=100000,
+ thin=10, verbose=500)

By default, MCMCirt1d only retains the ideal points
in the posterior sample. One can optionally store the
item parameters. We illustrate our results from this
sample analysis in Figure 2. This figure shows the
standard normal prior density on the ideal points,
and the marginal posterior densities of the ideal
points. Justice Stevens is the leftmost Justice, fol-
lowed by Breyer, Ginsburg, and Souter, who are es-
sentially indistinguishable. Justice O’Connor is the
pivotal median justice, closely followed by Justice
Kennedy. Chief Justice Rehnquist is next, following
by Justices Thomas and Scalia. The posterior sample
can be used to answer any number of important sub-
stantive questions (see, for example, Clinton et al.,
2004).

Generic metropolis sampling

MCMCpack model functions allow users to choose
prior distributions by picking the parameters of a
particular parametric family that is specific to each
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Figure 2: Posterior densities of ideal points for the U.S. Supreme Court justices, 2000 term, as estimated by

MCMCirt1d ()

model. This approach is reasonable for many appli-
cations, but at times users would like to use more
flexible prior specifications. Similarly, there are nu-
merous models that are not currently implemented
directly in MCMCpack, but whose posterior densi-
ties are easy to write down up to a constant of pro-
portionality. One area of MCMCpack that is cur-
rently under development is a set of functions to per-
form generic sampling from a user-supplied (log)-
posterior distribution. While the user-supplied den-
sity is written as an R function, the simulation itself is
performed in compiled C++ code, so it is much more
efficient than doing the simulation in R itself.

While MCMCpack is not designed to be a general
purpose sampling engine in the manner of BUGS, the
ability to fit a models with relatively small numbers
of parameters by specifying a (log)-posterior is very
attractive to many social scientists who are accus-
tomed to calculating maximum likelihood estimates
using numerical optimization routines. For many of
these researchers, writing an R function that eval-
uates a (log)-posterior is much more intuitive than
specifying the equivalent graphical model in BUGS.

As an example, suppose one would like to fit a
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logistic regression model to the birthwt data from
the MASS package (Venables and Ripley, 2002) with
a complicated prior distribution. We assume our di-
chotomous dependent variable (the low birthweight
indicator) y; ~ Bernouli(r;) for observations i =
1,...,n with inverse-link function:

1
" 1+ exp(~2p)

T

The parameter vector 3 is of dimensionality (p x 1),
and x; is a column vector of observed covariates.

The data encodes risk factors associated with low
birth weight. We prepare the data for analysis as fol-
lows:

> attach(birthwt)

> race <- factor(race, labels = c("white",
+ "black", "other"))

> ptd <- factor(ptl > 0)

> ftv <- factor(ftv)

> levels(ftv) [-(1:2)] <= "2+"

> bwt <- data.frame(low = factor(low), age,
+ lwt, race, smoke = (smoke > 0), ptd,

+ ht = (ht > 0), ui = (ui > 0), ftv)

> detach(birthwt)
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We could obtain the maximum likelihood estimates
with the command:

glm.out <- glm(low ., binomial, bwt)

We will store these estimates and use them as start-
ing values. We could also fit the model with
MCMClogit () which assumes a multivariate normal
prior on the 3 vector.

Suppose, however, that we would like to fit the
model where our prior on 3 is:

k
p(B) o< I(Be > 0)I(Bs > B7) Dl 2(1+(1/31/2)2)

This is an independent Cauchy prior with location
parameter 0 and scale parameter 2 truncated to a
sub-region of the parameter space. See Geweke
(1986) for some situations where such constraints
may be of interest.

To fit this model with MCMCpack, one has to
code the log-posterior density in R. This function can
be written as:

> logit.log.post <- function(beta){

## constrain smoking coefficient to be
## greater than zero

if (betal[6] <=0) return(-Inf)

## constrain coefficient on ht to be
## greater than coefficient on ptd
if (betal[8] <= betal7]) return(-Inf)

## form posterior

eta <- X Ux% beta

p <- 1.0/(1.0+exp(-eta))

log.like <- sum(Y * log(p) +
(1-Y)*log(1-p))

log.prior <- sum(dcauchy(beta,
0, 2, log=TRUE))

return(log.like + log.prior)

}

+ 4+ + + + + + + + + A+ + o+ o+ o+

Note that the argument to the function only contains
the parameter vector. The data must be in the en-
vironment from which the function is called, which
is done automatically by the model-fitting function.
See the documentation for details. To prepare the
data for analysis, we will build a vector that holds
y; and a matrix that holds x;:

> Y.vec <- as.numeric(bwt$low) - 1
> X.mat <- model.matrix(glm.out)

The function we will use to simulate from the pos-
terior is MCMCmetrop1R (). This function samples in a
single block from a user-defined (log)-density using a
random walk Metropolis algorithm with a multivari-
ate normal proposal distribution. To simulate from
the posterior distribution of this model, we issue the
command:
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> posterior3 <- MCMCmetroplR(logit.log.post,
+  theta.init=coef(glm.out), burnin=1000,
+ mcmc=200000, thin=20, tune=.7,

+ Y=Y.vec, X=X.mat, verbose=500)

Here we use the results from the glm() function as
our starting values. We choose a tuning parameter
to produce an acceptance rate of about 25%. The
data are passed with the Y=Y.vec, X=X.mat options.
MCMCmetroplR() puts these into the appropriate en-
vironment such that the data are available to the
function when performing simulation.

As with all MCMCpack model functions, this
code returns an mcme object. Here, to summarize the
results, we first label our variables, and then summa-
rize the posterior:

> varnames (posterior3) <- colnames(X.mat)
> summary (posterior3)

We report just the posterior medians and central 95%
credible intervals from the coda summary in Figure
3.

2.5% 50% 97.5%
(Intercept) -1.24909 0.70661 2.918533
age -0.10475 -0.03132 0.040915
lut -0.02965 -0.01595 -0.003622
raceblack 0.10524 1.10791 2.176933
raceother -0.09613 0.73250 1.606134
smokeTRUE 0.11367 0.78682 1.587147
ptdTRUE 0.35179 1.19072 2.076352
htTRUE 1.01740 2.01728 3.313555
uiTRUE -0.21642 0.67817 1.573814
ftvl -1.35557 -0.41235 0.459527
ftva+ -0.75103 0.14322 1.009499

Figure 3: Posterior medians and 2.5th and 97.5th
percentiles from the constrained logistic regression
model fit using MCMCmetropiR ()

Future developments

MCMCpack is a work in progress and under current
active development. Going forward, we intend to
implement more standard models—especially those
used commonly in the social sciences. To illustrate
the use of MCMCpack for applied problems, we will
provide detailed vignettes and more datasets. We
also intend to continue improving the flexibility of
MCMCpack. One approach to this is to give users
the ability to provide non-standard priors to any of
the standard model fitting functions. We also plan
to expand the number of general-purpose sampling
functions. The website for the MCMCpack project
(http://mcmecpack.wustl.edu) contains a more de-
tailed list of things to come. We welcome comments
and suggestions from the R community about MCM-
Cpack and how we can make it a better tool for ap-
plied Bayesian inference.
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CODA: Convergence Diagnosis and
Output Analysis for MCMC

by Martyn Plummer, Nicky Best, Kate Cowles and Karen
Vines

At first sight, Bayesian inference with Markov Chain
Monte Carlo (MCMC) appears to be straightforward.
The user defines a full probability model, perhaps
using one of the programs discussed in this issue;
an underlying sampling engine takes the model def-
inition and returns a sequence of dependent sam-
ples from the posterior distribution of the model pa-
rameters, given the supplied data. The user can de-
rive any summary of the posterior distribution from
this sample. For example, to calculate a 95% cred-
ible interval for a parameter «, it suffices to take
1000 MCMC iterations of « and sort them so that
a1 < ap < ... < aqgpo- The credible interval esti-
mate is then (aps, agys).

However, there is a price to be paid for this sim-
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plicity. Unlike most numerical methods used in sta-
tistical inference, MCMC does not give a clear indi-
cation of whether it has converged. The underlying
Markov chain theory only guarantees that the distri-
bution of the output will converge to the posterior
in the limit as the number of iterations increases to
infinity. The user is generally ignorant about how
quickly convergence occurs, and therefore has to fall
back on post hoc testing of the sampled output. By
convention, the sample is divided into two parts: a
“burn in” period during which all samples are dis-
carded, and the remainder of the run in which the
chain is considered to have converged sufficiently
close to the limiting distribution to be used. Two
questions then arise:

1. How long should the burn in period be?

2. How many samples are required to accurately
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