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Abstract	and	Keywords

This	article	surveys	modern	Bayesian	methods	of	estimating	statistical	models.	It	first	provides	an	introduction	to
the	Bayesian	approach	for	statistical	inference,	contrasting	it	with	more	conventional	approaches.	It	then	explains
the	Monte	Carlo	principle	and	reviews	commonly	used	Markov	Chain	Monte	Carlo	(MCMC)	methods.	This	is	followed
by	a	practical	justification	for	the	use	of	Bayesian	methods	in	the	social	sciences,	and	a	number	of	examples	from
the	literature	where	Bayesian	methods	have	proven	useful	are	shown.	The	article	finally	provides	a	review	of
modern	software	for	Bayesian	inference,	and	a	discussion	of	the	future	of	Bayesian	methods	in	political	science.
One	area	ripe	for	research	is	the	use	of	prior	information	in	statistical	analyses.	Mixture	models	and	those	with
discrete	parameters	(such	as	change	point	models	in	the	time-series	context)	are	completely	underutilized	in
political	science.
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1	Introduction

Since	the	early	1990s,	Bayesian	statistics	and	Markov	Chain	Monte	Carlo	(MCMC)	methods	have	become
increasingly	used	in	political	science	research.	While	the	Bayesian	approach	enjoyed	philosophical	cachet	up	until
that	point,	it	was	impractical	(if	not	impossible)	for	applied	work.	This	changed	with	the	onset	of	MCMC	methods,
which	allowed	researchers	to	use	simulation	to	fit	otherwise	intractable	models.	This	chapter	begins	with	an
introduction	to	the	Bayesian	approach	for	statistical	inference,	contrasting	it	with	more	conventional	approaches.	I
then	introduce	the	Monte	Carlo	principle	and	review	commonly	used	MCMC	methods.	This	is	followed	by	a	practical
justification	for	the	use	of	Bayesian	methods	in	the	social	sciences,	and	a	number	of	examples	from	the	literature
where	Bayesian	methods	have	proven	useful.	The	chapter	concludes	with	a	review	of	modern	software	for
Bayesian	inference,	and	a	discussion	of	the	future	of	Bayesian	methods	in	political	science.

(p.	495)	 2	The	Bayesian	Approach

The	Bayesian	approach	to	statistical	inference	begins	at	the	same	place	as	more	conventional	approaches:	a
probability	model	(also	known	as	a	data‐generating	process).	A	probability	model	relates	observed	data	y	to	a	set
of	unknown	parameters	θ,	with	the	possible	inclusion	of	fixed,	known	covariates	x.	Our	data	are	usually	a
collection	of	observations	indexed	i	=	1,…,	n:	y	=	{y	 ,	y	 ,…,	y	 }.	The	observed	data	need	not	be	scalars;	in
fact,	they	can	be	anything	supported	by	the	probability	model,	including	vectors	and	matrices.	The	probability
model	has	k	parameters,	which	are	represented	θ	=	(θ ,	θ …,	θ ).	The	covariates,	or	independent	variables,	are
typically	a	collection	of	column	vectors:	x	=	{x	 ,	x	 ,…,	x	 }.	The	probability	model	can	be	written	f(yǀθ,	x),	or
suppressing	the	conditioning	on	the	covariates,	f(yǀθ).	It	is	important	to	stress	the	importance	of	choosing
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appropriate	probability	models.	While	canonical	models	exist	for	certain	types	of	dependent	variables,	the	choice
of	model	is	rarely	innocuous,	and	is	thus	something	that	should	be	tested	for	adequacy.

The	linear	regression	model	is,	perhaps,	the	most	commonly	used	probability	model	in	political	science.	Our
dependent	variable	y	=	{y	 ,	y	 ,…,	y	 }	is	a	collection	of	scalars	with	domain	y	 	∊	ℝ.	Our	independent	variables
can	be	represented	as	a	collection	of	column	vectors	x	=	{x	 ,	x	 ,…,	x	 },	each	of	dimension	(K	×	1).	We
typically	assume	that	the	conditional	distribution	of	y	 	given	x	 	is	normal:

This	distributional	assumption,	along	with	an	assumption	that	the	observations	are	independent,	yields	a	probability
model	with	two	parameters:	θ	=	{β,	σ }.	β	is	a	(K×1)	vector	that	contains	the	intercept	and	slope	parameters;	σ 	is
the	the	conditional	error	variance.	The	probability	model	for	the	linear	regression	model	is	thus

I	will	use	this	probability	model	as	an	illustration	throughout	this	chapter.

The	purpose	of	statistical	inference	is	to	learn	about	parameters	that	characterize	the	data‐generating	process
given	observed	data.	In	the	conventional,	frequentist	approach	to	statistical	inference,	one	assumes	that	the
parameters	are	fixed,	unknown	quantities,	and	that	the	observed	data	y	are	a	single	realization	of	a	repeatable
process,	and	can	thus	be	treated	as	random	variables.	The	goal	of	the	frequentist	approach	is	to	produce
estimates	of	these	unknown	parameters.	These	estimates	are	denoted	θ̑.	The	most	common	way	to	obtain	these
estimates	is	by	the	method	of	maximum	likelihood	(for	an	introduction	to	this	method	for	political	scientists,	see	King
1989).	This	method	uses	the	same	probability	model,	but	treats	it	as	a	function	(p.	496)	 of	the	fixed,	unknown
parameters.	For	our	regression	example:

One	maximizes	the	likelihood	function	ℒ,(∙)	with	respect	the	parameters	to	obtain	the	maximum	likelihood	estimates;
i.e.	the	parameter	values	most	likely	to	have	produced	the	observed	data.	To	perform	inference	about	the
parameters,	the	frequentist	recognizes	that	the	estimated	parameters	θ̑	result	from	a	single	sample,	and	uses	the
sampling	distribution	to	compute	standard	errors,	perform	hypothesis	tests,	construct	confidence	intervals,	and	the
like.

When	performing	Bayesian	inference,	the	foundational	assumptions	are	quite	different.	The	unknown	parameters	θ
are	treated	as	random	variables,	while	the	observed	data	y	are	treated	as	fixed,	known	quantities.	(Both	the
Bayesian	and	frequentist	approach	treat	the	covariates	x	as	fixed,	known	quantities.)	These	assumptions	are	much
more	intuitive;	the	unobservable	parameters	are	treated	probabilistically,	while	the	observed	data	are	treated
deterministically.	Indeed,	the	quantity	of	interest	is	the	distribution	of	the	parameter	θ	after	having	observed	the
data	y.	This	posterior	distribution	can	be	written	f(θǀy),	and	can	be	computed	using	Bayes's	Theorem:

The	posterior	distribution	is	the	conditional	distribution	of	the	parameters	after	having	observed	the	data	(as
opposed	to	the	prior,	which	is	that	distribution	before	having	observed	the	data).	The	posterior	is	a	formal,
probabilistic	statement	about	likely	parameter	values	after	observing	the	data.	Bayes's	Theorem	follows	directly
from	the	axioms	of	probability	theory,	and	is	used	to	relate	the	conditional	distributions	of	two	variables.

One	of	the	three	quantities	on	the	right‐hand	side	of	equation	(4)	is	familiar:	f(yǀθ)	is	the	likelihood	function	dictated
by	the	probability	model.	(The	likelihood	function	plays	a	crucial	role	in	both	frequentist	and	Bayesian	approaches
to	data	analysis;	what	is	done	with	the	likelihood	function	is	what	differs	between	the	two	approaches.)	The	second
expression	in	the	numerator	f(θ)	is	called	the	prior	distribution.	This	distribution	contains	all	ex	ante	information
about	the	parameter	values	available	to	the	researcher	before	observing	the	data.	Often	researchers	use
noninformative	(or	minimally	informative	parameters)	such	that	the	amount	of	prior	information	included	in	the
analysis	is	small.	The	denominator	of	equation	(4)	contains	the	prior	predictive	distribution:
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While	this	quantity	is	useful	in	some	settings,	such	as	model	comparison,	most	of	the	time	researchers	work	up	to	a
constant	of	proportionality,	f(θǀy)	α	f(yǀθ)f(θ).

The	posterior	distribution,	in	essence,	translates	the	likelihood	function	into	a	proper	probability	distribution	over
the	unknown	parameters,	which	can	be	(p.	497)	 summarized	just	as	any	probability	distribution;	by	computing
expected	values,	standard	deviations,	quantiles,	and	the	like.	What	makes	this	possible	is	the	formal	inclusion	of
prior	information	in	the	analysis.	For	accessible	introductions	to	Bayesian	methods	see	the	textbooks	by	Gill	(2002)
and	Gelman	et	al.	(2004),	or	the	expository	articles	by	Jackman	(2000;	2004).

To	perform	Bayesian	inference	for	the	linear	regression	model,	we	need	to	include	prior	information	about	our	two
parameters.	These	priors	can	take	any	form,	and	are	completely	at	the	discretion	of	the	analyst.	For	the	sake	of
illustration,	suppose	that	β	and	σ 	are	a	priori	independent,	with	the	prior	information	about	β	encoded	in	a
multivariate	normal	distribution

,	and	prior	information	about	the	inverse	of	the	conditional	error	variance	in	a	Gamma	distribution	σ 	~	gamma(c
/2,	d	 /2).	For	any	application,	the	analyst	would	choose	values	of	the	hyperparameters	b	 ,	B	 ,	c	 /2,	and	d	 /2

that	characterize	the	prior	distribution.	These	priors	result	in	a	posterior	distribution	for	the	linear	regression	model:

where	f(β)	is	the	multivariate	normal	density,	and	f(σ )	is	a	Gamma	density.	Getting	from	a	probability	model	to	the
posterior	distribution	is	an	exercise	in	taking	a	probability	model,	deriving	the	likelihood	function,	and	positing
probabilistic	prior	beliefs.

So	why	have	Bayesian	statistics	not	been	widely	used	in	political	science	until	very	recently?	Writing	down	a
posterior	distribution	is	a	straightforward	algebraic	exercise,	but	summarizing	the	distribution	is	far	more
complicated.	To	compute	something	as	simple	as	the	posterior	expected	value	requires	integrating	the	posterior
distribution	which,	except	for	the	most	trivial	of	models,	is	analytically	impossible.	We	thus	require	computation
methods	to	summarize	posterior	distributions,	which	leads	us	to	simulation	methods.

3	Model	Fitting	via	Simulation

Analytically	summarizing	posterior	distributions	is	typically	impossible.	Over	the	last	twenty	years,	Bayesian
statisticians	have	harnessed	the	Monte	Carlo	method	(Metropolis	and	Ulam	1949)	to	perform	this	summarization
numerically.	While	these	methods	can	be	employed	to	study	any	distribution,	the	discussion	here	will	focus	solely
on	Monte	Carlo	methods	commonly	used	in	Bayesian	statistics.	We	are	interested	in	learning	about	the	posterior
distribution,	f(θǀy),	which	I	will	call	the	target	distribution	because	it	is	the	distribution	from	which	we	intend	to
simulate.	(There	are	other	distributions	we	might	be	interested	in	simulating	from,	including	the	posterior	and	prior
predictive	distributions.)	The	Monte	Carlo	method	is	based	(p.	498)	 on	a	simple	idea:	One	can	learn	anything
about	a	target	distribution	by	repeatedly	drawing	from	it	and	empirically	summarizing	those	draws.	For	example,	we
might	be	interested	in	computing	the	posterior	expected	value,	which	can	be	done	analytically	by	computing	a
high‐dimensional	integral:

If	we	were	able	to	produce	a	random	sequence	of	G	draws	θ	 ,θ	 ,…,θ	 )	from	f(θǀy),	we	could	approximate
the	posterior	expected	value	by	taking	the	average	of	these	draws:

The	precision	of	the	estimate	depends	solely	on	the	quality	of	the	algorithm	employed,	and	the	number	of	draws
taken	from	the	target	distribution	(which	is	only	limited	by	the	speed	of	one's	computer	and	one's	patience).	Similar
methods	can	be	used	to	compute	the	posterior	standard	deviation	or	quantiles,	probabilities	that	parameters	take
particular	values,	and	other	quantities	of	interest.	What	all	of	these	methods	have	in	common	is	that	they	serve	to
compute	high‐dimensional	integrals	using	simulation.	A	great	deal	of	work	in	numerical	analysis	is	devoted	to
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understanding	the	properties	of	algorithms;	for	such	a	discussion	of	commonly	used	methods	in	Bayesian	statistics,
see	Tierney	(1994).

To	use	the	Monte	Carlo	method	to	summarize	posterior	distributions,	it	is	necessary	to	have	algorithms	that	are	well
suited	to	producing	draws	from	commonly	found	target	distributions.	Two	algorithms—the	Gibbs	sampling	and
Metropolis—	Hastings	algorithms—have	proven	to	be	very	useful	for	applied	Bayesian	work.	Both	of	these
algorithms	are	Markov	Chain	Monte	Carlo	methods,	which	means	that	the	sequence	of	draws	θ	 ,	θ ,…,	θ	 )
are	dependent;	each	draw	θ	 )	depends	only	on	the	previous	draw	θ	 .	The	sequence	of	draws	thus	forms	a
Markov	chain.	Algorithms	are	constructed	such	that	the	Markov	Chain	converges	to	the	target	density	(its	steady
state)	regardless	of	the	starting	values.

Click	to	view	larger

Fig.	21.1. 	An	illustration	of	Gibbs	sampling	from	a	bivariate	normal	distribution

Note:	The	target	distribution	is	represented	by	the	grey	contour	lines.	Each	cell	depicts	200	draws	after	100
burn‐in	iterations,	which	are	discarded.	The	left‐hand	cell	depicts	the	individual	draws;	the	right‐hand	cell
shows	the	trajectory	of	the	sampler.

The	Gibbs	sampling	algorithm	(Geman	and	Geman	1984;	Gelfand	and	Smith	1990)	uses	a	sequence	of	draws	from
conditional	distributions	to	characterize	the	joint	target	distribution.	Suppose	that	our	parameter	vector	θ	has	three
components,	making	our	target	distribution	f(θ ,	θ ,	θ ǀy).	To	use	the	Gibbs	sampler,	one	begins	by	choosing
starting	values

and

(starting	values	are	usually	chosen	near	the	posterior	mode	or	the	maximum	likelihood	estimates).	One	then
repeats,	for	g	=	1,…,	G	iterations	(making	sure	to	store	the	sequence	of	draws	at	each	iteration):

(p.	499)

Since	we	are	always	conditioning	on	past	draws,	the	resultant	sequence	results	in	a	Markov	Chain.	When
computing	Monte	Carlo	estimates	of	quantities	of	interest,	like	the	posterior	mean,	one	discards	the	first	set	of
“burn‐in”	iterations	to	ensure	the	chain	has	reached	steady	state.	For	the	posterior	distribution	of	many	common
models,	these	conditional	distributions	take	known	forms;	e.g.	multivariate	normal,	truncated	normal,	Gamma,	etc.
So,	while	the	joint	posterior	distribution	is	difficult	to	simulate	from	directly,	it	is	easy	to	simulate	from	these
conditionals.

To	illustrate	the	Gibbs	sampling	algorithm	in	practice,	Figure	21.1	shows	sampling	from	a	bivariate	normal
distribution	f(X,	Y),	where	both	X	and	Y	have	mean	0	and	variance	1,	and	cov(X,	Y)	=	−0.5.	The	sampler	iteratively
draws	YǀX	and	then	XǀY	from	the	conditional	distributions,	each	of	which	take	the	following	form	for	this	example:
f(YǀX)	=	N(−0.5X,	0.75).	What	is	apparent	in	Figure	21.1	is	that	the	sampler	seems	to	be	sampling	from	the	proper
target	distribution.	The	trajectory	of	the	sampler	takes	a	city	block	pattern	because	X	and	Y	are	updated
sequentially.	See	Casella	and	George	(1992)	for	an	accessible	introduction	to	Gibbs	sampling.
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Click	to	view	larger

Fig.	21.2. 	An	illustration	of	an	ill‐conditioned	Metropolis—Hastings	sampler	with	a	uniform	random	walk
proposal	from	a	bivariate	normal	distribution

Note:	The	target	distribution	is	represented	by	the	grey	contour	lines.	Each	cell	depicts	200	draws	after	100
burn‐in	iterations,	which	are	discarded.	The	left‐hand	cell	depicts	the	individual	draws;	the	right‐hand	cell
shows	the	trajectory	of	the	sampler.

The	second	algorithm	that	enjoys	common	use	in	applied	Bayesian	statistics	is	the	Metropolis‐Hastings	algorithm,
first	introduced	by	Metropolis	et	al.	(1953)	and	generalized	by	Hastings	(1979).	Chib	and	Greenberg	(1995)	provide
an	accessible	introduction	to	this	algorithm.	The	algorithm	has	many	applications	beyond	Bayesian	statistics;	it	is
commonly	used	for	all	sorts	of	numerical	integration	and	optimization.	(It	is	also	the	case	that	the	Gibbs	sampling
algorithm	is	a	special	case	of	the	Metropolis‐Hastings	algorithm.)	To	simulate	from	our	target	distribution	f(θǀy),	we
again	start	with	sensible	starting	values:	θ .	For	each	iteration	of	the	simulation	g	=	1,…,	G,	we	draw	a	proposal
θ*	from	a	known	proposal	distribution	p	 (θ*ǀθ	 ).	One	chooses	a	proposal	distribution	from	which	it	is	easy	to
sample,	(p.	500)	 such	as	a	uniform	distribution	over	a	particular	region,	or	a	multivariate	normal	or	multivariate‐t,
centered	at	the	current	location	of	the	chain,	the	posterior	mode,	or	perhaps	elsewhere.	It	is	important	to	choose	a
proposal	distribution	such	that	the	chain	“mixes	well;”	i.e.	adequately	explores	the	posterior	distribution.	The
convergence	diagnostics,	discussed	below,	can	be	used	to	determine	how	well	the	chain	is	mixing.	For	each
iteration,	we	set

.

With	a*	defined:

Unlike	the	Gibbs	sampling	algorithm,	when	each	move	is	automatically	accepted,	one	accepts	the	proposal
distribution	probabilistically,	sometimes	moving	to	a	value	with	a	higher	density	value,	sometimes	moving	to	one
with	a	lower	density	value.	Just	as	with	the	Gibbs	sampling	algorithm,	the	steady	state	of	the	Markov	chain
characterized	by	this	algorithm	is	the	target	distribution,	in	this	case	the	posterior	distribution.	Figure	21.2	illustrates
sampling	from	the	same	bivariate	normal	distribution	using	Metropolis‐Hastings	with	a	uniform	random	walk	proposal
with	width	of	two	units.	In	Figure	21.2	we	see	that	this	Metropolis—Hastings	sampler	traverses	the	space	more	more
slowly;	in	fact,	30	percent	of	the	time	the	sampler	does	not	move	at	all.	The	size	of	the	proposal	distribution	is	also
somewhat	small,	which	keeps	the	sampler	in	certain	parts	of	the	distribution	longer	than	a	better	conditioned
sampler.

(p.	501)	Without	being	able	to	plot	the	target	distribution,	which	in	most	applications	is	of	high	dimension,	it	would
be	difficult,	if	not	impossible,	to	assess	whether	the	chain	is	sampling	from	the	target	distribution.	An	important	part
of	any	Bayesian	analysis	is	assessing	the	convergence	of	the	simulation	results.	Indeed,	no	Monte	Carlo
estimates	of	posterior	density	summaries	can	be	trusted	unless	the	chain	has	reached	its	steady	state.	But	just
as	it	is	impossible	to	know,	in	most	circumstances,	that	a	numerical	optimizer	has	reached	the	global	maximum
likelihood	estimate,	so	too	is	it	impossible	to	know	for	sure	whether	a	Markov	Chain	Monte	Carlo	algorithm	has
converged.	However,	there	are	a	number	of	methods	that	can	be	used	to	take	output	from	a	MCMC	sampler	and
test	whether	the	sequence	of	draws	is	consistent	with	convergence	(see	the	review	pieces	by	Cowles	and	Carlin
1995;	Brooks	and	Roberts	1998).	Each	of	these	convergence	diagnostics	is	based	on	one	of	a	number	of	criteria;
some	look	at	the	marginal	posterior	distributions	to	see	if	the	traceplots	are	stationary	(using	a	number	of	different
tests).	Others	compare	multiple	runs	from	different	starting	values	and	using	different	random	number	seeds	to
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determine	whether	the	chains	converge	in	such	a	way	as	to	make	their	different	starting	values	irrelevant.	It	is
important	to	note	that	finding	nonconvergence	of	any	parameter	means	that	the	entire	chain	has	not	converged,
and	it	needs	to	be	run	longer	(or	reimplemented	using	a	different	algorithm).	Every	analyst	should	use	these
diagnostic	tools	before	computing	any	posterior	density	summaries	or	reporting	results,	and	results	from	these
diagnostics	should	be	presented	in	research	papers.

I	present	in	Figure	21.3	the	traceplots	for	both	X	and	Y	for	the	simulation	results	presented	above.	For	this	short‐run
length	of	500	iterations	neither	of	these	chains	passes	the	standard	battery	of	tests,	but	by	inspection	it	is	clear
that	the	Gibbs	sampler	is	mixing	far	better	than	the	Metropolis—Hastings	chain.	A	poor	mixing	chain	traverses
slowly	through	the	parameter	space,	and	the	traceplots	will	show	a	close	following	pattern,	as	in	the	right‐hand
cells	of	Figure	21.3.	(The	reader	should	not	take	the	point	that	Gibbs	sampling	works	well	and	Metropolis‐Hastings
does	not;	this	is	solely	a	feature	of	the	illustration).	All	of	the	standard	tests	for	convergence	are	implemented	in	the
coda	(Plummer	et	al.	2005)	package	in	the	R	language	(R	Development	Core	Team	2005).

4	Practical	Advantages	of	Bayesian	Methods

The	Bayesian	approach	to	data	analysis	requires	a	different	set	of	assumptions	and	computational	tools	than	the
classical	approaches	typically	used	in	political	science.	This	section	provides	a	number	of	practical	advantages	of
performing	Bayesian	inference.

Click	to	view	larger

Fig.	21.3. 	Marginal	density	traceplots	of	Gibbs	and	Metropolis—Hastings	sampling	from	a	bivariate	normal
distribution

Note:	These	traceplots	depict	the	same	simulation	results	as	Figures	21.1	and	21.1,	except	they	depict	500
iterations	after	100	burn‐in	iterations.

(p.	502)

4.1	Intuitive	Interpretation	of	Findings

In	classical	statistics	hypothesis	tests	and	confidence	intervals	are	used	to	perform	statisical	inference.	We	choose
to	reject	a	null	hypothesis	when	the	probability	of	observing	sample	data	as	inconsistent	or	more	inconsistent	with
a	posited	null	hypothesis	is	quite	low.	At	base,	a	rejected	null	hypothesis	(and	thus	claiming	“statistical
significance”)	tells	us	that	an	effect	exists.	Confidence	intervals	are	also	used	to	provide	a	range	of	likely	values
for	parameter	estimates;	i.e.	they	can	be	used	to	make	claims	about	effect	sizes.	Precisely	interpreting	confidence
intervals	is	a	difficult	proposition.

Suppose	that	for	a	given	sample,	we	compute	a	95	percent	confidence	interval	for	parameter	θ	to	be	[3.2,	6.1].	A
question	we	might	want	to	answer	is:	What	is	the	probability	that	θ	falls	between	3.2	and	6.1?	The	answer	to	this
question	is:	“Zero	or	one—but	it	is	impossible	to	know.”	This	follows	directly	from	the	assumption	that,	in	the
classical	context,	parameters	are	fixed,	unknown,	unknowable	quantities.	Since	confidence	intervals	are	computed
based	on	a	single	sample,	and	since	the	observed	data	y	are	assumed	to	be	random	variables,	the	end	points	of
the	confidence	intervals	are	also	random	variables.	Confidence	intervals	are	constructed	such	that	if	we	were	to
repeatedly	draw	from	our	population,	95	percent	of	our	confidence	intervals	(each	taking	different	ranges)	would
contain	the	population	parameter.	(Note	that	this	requires	that,	at	least	conceptually,	we	could	resample	from	the
population.	This	(p.	503)	makes	sense	in	survey	research,	but	it	is	more	difficult	to	believe	when	modeling	data
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collected	about,	for	example,	institutions	or	markets.)	In	addition,	most	frequentist	hypothesis	tests	and	confidence
intervals	require	the	assumption	of	an	infinitely	large	sample	size.	Such	asymptotic	assumptions	are	not	necessary
when	using	the	Bayesian	approach.	Even	if	one	is	comfortable	with	the	sample	size	and	the	ability	to	resample	from
the	population,	a	confidence	interval	does	not	provide	a	probabilistic	statement	about	parameter	values.

This	is	quite	different	in	the	Bayesian	context.	It	is	straightforward	to	summarize	the	posterior	and	compute	any
number	of	interesting	quantities,	all	of	which	can	be	treated	as	probabilities.	Analogous	in	some	ways	to	a
frequentist	p‐value,	the	Bayesian	analyst	can	compute	the	probability	that	a	parameter	value	is	positive	or
negative.	Akin	to	a	confidence	interval,	one	can	also	write	down	a	range	of	values	that	contain	the	parameter
value	a	certain	percentage	of	the	time.	Unlike	confidence	intervals,	these	Bayesian	credible	intervals	(which	are
typically	computed	using	the	highest	posterior	density	region)	can	be	interpreted	probabilistically.	A	95	percent
Bayesian	credible	interval	for	θ	of	[3.2,	6.1]	suggests	that,	after	observing	the	data,	there	is	a	95	percent	chance
that	the	parameter	falls	between	3.2	and	6.1.	Computing	these	probabilities	requires	summarizing	the	posterior
density,	and	is	typically	done	using	MCMC	methods.

4.2	Quantities	of	Interest

When	analyzing	data,	parameters	of	statistical	models	are	typically	not	the	quantities	of	interest.	Indeed,	we	are
typically	interested	in	functions	of	parameters,	such	as	predicted	values	(King,	Tomz,	and	Wittenberg	2000).	Using
Bayesian	methods	makes	it	easy	to	compute	many	types	of	quantities	of	interest,	and	propagate	the	uncertainty
about	parameters	into	uncertainty	about	these	quantities.	One	useful	example	is	the	posterior	predictive
distribution,	which	can	be	summarized	to	provide	ranges	of	values	for	a	new	datapoint	y	 :

Just	as	with	Bayesian	credible	intervals,	these	intervals	will	also	be	on	the	scale	of	probability,	and	can	be
interpreted	as	such.

In	the	frequentist	context,	providing	confidence	intervals	for	quantities	of	interest	is	difficult	for	nearly	all	cases
except	the	linear	model.	To	compute	these	quantities	analytically	requires	the	use	of	the	delta	method,	which	can
provide	arbitrarily	precise	approximations.	There	are	also	simulation‐based	approaches	(King,	Tomz,	and
Wittenberg	2000).	In	the	frequentist	context,	these	intervals	suffer	the	same	ills	as	confidence	intervals:	They	are
based	on	assumptions	that	the	sample	size	is	infinite	(such	that	the	sampling	distribution	is	multivariate	normal;
King,	Tomz,	and	Wittenberg	2000,	352),	and	require	the	logic	of	repeated	sampling	which	is	implausible	in	many
political	science	applications.

(p.	504)	 The	quantities	over	which	one	can	compute	probabilities	are	limited	only	by	the	creativity	of	the
researcher.	In	the	context	of	estimating	latent	ideal	points	for	Supreme	Court	justices,	Jackman	argues	how	MCMC
methods	can	be	used	to	perform	inference	for	“comparisons	of	ideal	points,	rank	ordering	the	ideal	points,	the
location	of	the	median	justice,	cutting	planes	for	each	bill	(or	case),	residuals,	and	goodness‐of‐fit	summaries”
(Jackman	2004,	499).	All	of	these	quantities	of	interest	can	be	computed	using	MCMC	methods.

4.3	Incorporation	of	Prior	Information

Political	scientists	typically	have	a	great	amount	of	substantive	knowledge	gleaned	from	the	political	science
literature,	fieldwork,	and	journalistic	accounts.	One	advantage	of	Bayesian	methods	is	the	ability	to	formally	include
this	type	of	information	in	a	statistical	analysis	through	the	use	of	informative	priors.	(Related	to	this	is	the	ability	to
include	results	from	previous	statistical	studies	by	repeatedly	using	Bayes's	Rule,	or	combining	results	from	a
number	of	studies	using	meta‐analysis.)	Western	and	Jackman	(1994)	argue	that	this	strategy	is	particularly
germane	to	the	study	of	comparative	politics,	where	sample	sizes	are	quite	low	(and,	thus,	asymptotic	properties	of
estimators	have	likely	not	yet	kicked	in).	Translating	rich,	substantive	information	into	statements	about	parameters
of	probability	models	is	a	difficult	task.	Gill	and	Walker	(2005)	review	the	prior	elicitation	literature,	and	use	some	of
these	tools	to	translate	expert	opinion	into	priors	on	the	marginal	effects	of	various	covariates	on	attitudes	toward
the	judiciary	in	Nicaragua.	One	does	not	need	to	use	informative	priors	when	doing	Bayesian	inference;	indeed,
much	applied	work	uses	so‐called	“uninformative”	priors,	which	bring	little,	if	any,	information	into	the	analysis.	It	is
important	to	keep	in	mind	that	when	using	informative	priors	it	is	necessary	to	perform	sensitivity	analysis	to	ensure

new
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that	the	prior	beliefs	are	not	unduly	affecting	the	results.

4.4	Fitting	Otherwise	Intractable	Models

When	performing	classical	inference,	numerical	optimatization	is	the	computational	method	used	to	fit	models;	one
finds	parameter	values	by	maximizing	some	function,	in	most	cases	a	likelihood	function.	Bayesian	inference,	on
the	other	hand,	has	integration	at	its	core.	There	are	a	number	of	examples	where	MCMC	methods	afford	the
opportunity	to	fit	models	that	are	otherwise	difficult,	if	not	impossible,	to	fit	using	conventional	methods.

Quinn,	Martin,	and	Whitford	(1999)	use	MCMC	methods	to	fit	multinomial	probit	models	(MNP)	of	voter	choice	in	the
Netherlands	and	the	UK.	These	models,	which	allow	for	correlated	errors	in	the	latent	utility	specification,	are
difficult	to	fit	using	classical	approaches	because	of	the	high‐dimensional	integrals	one	needs	to	compute	to
evaluate	the	likelihood	function	(also	see	the	strategic	censoring	model	(p.	505)	 of	Smith	1999).	Another	example
are	measurement	models,	such	as	the	item	response	model	used	to	uncover	ideal	points	in	legislatures	(Clinton,
Jackman,	and	Rivers	2004),	or	the	dynamic	item	response	theory	model	of	Martin	and	Quinn	(2002),	which	allows
smooth	evolution	of	ideal	points	when	dealing	with	multiple	cross‐	sections	of	data.	These	models	are	difficult	in	the
classical	context	because	the	number	of	parameters	grows	with	each	additional	legislator	or	bill.

Bayesian	methods	are	also	extremely	promising	in	dealing	with	data	that	are	organized	hierarchically.	Western
(1998)	models	some	cross‐sectional	time‐series	data	using	Bayesian	methods.	Working	with	these	data	in	a
classical	context	is	difficult	because	either	the	number	of	clusters	(e.g.	multivariate	time‐series	data),	time	periods
(e.g.	panel	data),	or	both	(e.g.	cross‐sectional	time‐series	data	as	typically	used	in	comparative	and	international
political	economy)	are	small.	This	does	not	cause	any	difficulty	in	the	Bayesian	context,	which	can	be	modified	to
deal	with	other	types	of	complex	dependence.

There	are	also	some	models	that	have	discrete	parameters,	which	are	difficult	to	deal	with	in	the	classical	context
because	the	optimization	problem	is	not	continuous.	One	example	would	be	estimating	the	number	of	mixture
components	or	the	number	of	dimensions	in	a	latent	space	model.	Green	(1995)	provides	an	algorithm	suited	to
these	types	of	problems	called	reversible	jump	MCMC.	In	the	time‐series	context,	we	might	be	interested	in
estimating	the	number	and	location	of	structural	breaks	in	the	data.	The	methods	of	Chib	(1998)	are	suited	to	these
change	point	models.	In	all	of	these	cases,	adopting	a	Bayesian	approach	and	using	MCMC	for	model‐fitting	opens
doors	to	new	types	of	analyses.

4.5	Model	Comparison

Political	scientists	are	typically	engaged	in	comparing	explanations	of	political	phenomena.	Different	explanations
often	dictate	very	different	models	of	the	observed	data	y.	The	Bayesian	approach	to	statistical	inference	offers	an
extremely	useful	tool	for	model	comparison	called	Bayes'	factors	(Kass	and	Raftery	1995).	Bayes'	factors	can	be
used	to	compare	models	with	different	blocks	of	covariates,	models	with	different	functional	forms,	and	can	be
used	with	any	number	of	plausible	models	(because	transitivity	holds	in	all	pairwise	comparisons).	As	with	all
quantities	in	the	Bayesian	approach,	Bayes'	factors	provide	the	posterior	probability	that	model	M	 	is	the	true	data‐
generating	process	compared	with	model	M	 .	Since	each	model	contains	prior	information	about	the	parameters	of
the	model,	Bayes'	factors	are	sensitive	to	the	priors	chosen.	The	quantities	used	to	compute	Bayes'	factors	are	the
prior	predictive	distribution	(see	equation	(5)),	and	the	prior	probabilities	assigned	to	each	model	(typically	one
assumes	that	each	model	is	a	priori	equally	likely).	Quinn,	Martin,	and	Whitford	(1999)	use	Bayes'	factors	to
compare	two	different	theoretical	models	and	two	different	functional	forms	(multinomial	probit	and	multinomial	logit)
in	their	comparative	voting	study.	For	an	accessible	introduction	to	Bayes'	factors	for	a	social	science	audience
see	Raftery	(1995).

(p.	506)	 Computing	the	prior	predictive	distribution	is	a	difficult	task.	While	there	exist	MCMC	methods	that	can	be
used	in	some	situations,	others	have	developed	model	comparison	heuristics	that	are	far	easier	to	compute,	such
as	the	Bayesian	Information	Criterion	(Raftery	1995)	or	the	Deviance	Information	Criterion	(Spiegelhalter	et	al.
2002),	which	is	computed	automatically	in	the	WinBUGS	software	package.

4.6	Missing	Data

1

2
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Missing	data	is	a	common	problem	in	political	science,	and	is	easily	taken	into	account	in	the	Bayesian	context	by
using	data	augmentation	(Tanner	and	Wong	1987).	Data	augmentation	works	by	using	the	data‐generating
process	as	an	imputation	model.	As	such,	it	is	easy	to	estimate	models	when	some	of	the	data	y	are	missing.	Not
only	will	the	recovered	estimates	take	into	account	the	uncertainty	caused	by	the	missing	data,	but	the	analyst	can
access	the	imputed	values,	which	will	average	over	all	parameter	uncertainty	when	producing	the	values.	What
about	missing	data	in	the	covariates	x?	This	is	a	more	difficult	problem,	because	in	both	the	frequentist	and
Bayesian	context	the	covariates	are	assumed	to	be	fixed	and	known.	However,	given	an	imputation	model	for	the
missing	covariates,	it	is	straightforward	to	adapt	an	MCMC	algorithm	to	average	over	the	missing	covariate
information	when	performing	inference	about	parameters	and	quantities	of	interest.	The	software	package
WinBUGS	automatically	performs	data	augmentation	for	all	missing	data	y.

4.7	Common	Concerns

While	there	are	a	number	of	practical	advantages	of	using	Bayesian	methods	in	political	science,	there	are	some
common	concerns,	which	I	detail	below	with	some	reactions.

•	Bayesian	analysis	is	far	more	complicated	than	classical	statistics.	The	mathematics	that	underlie	Bayesian
methods	are	no	more	complicated	than	those	needed	to	perform	classical	inference.	MCMC	algorithms	are	no
more	complicated	that	the	numerical	optimization	and	matrix	inversion	routines.	The	unfamiliar	will	always
appear	more	complex	than	the	familiar.

•	Priors	are	subjective,	and	they	can	be	used	to	drive	results.	It	is	true	that	priors	are	subjective;	but	so	too
are	any	number	of	assumptions,	including	what	model	to	use,	what	covariates	to	include	or	exclude	in	the
analysis,	and	in	what	fashion	they	should	relate	to	the	dependent	variable.	All	of	these	modeling	choices	are,	in
a	sense,	subjective.	What	is	of	utmost	importance	is	to	test	all	testable	assumptions	in	order	to	determine	which
model	is	best.	Bayes'	factors	are	particularly	useful	in	this	light.	Also,	as	long	as	one	performs	prior	sensitivity
analysis,	it	is	possible	to	determine	whether	the	prior	or	the	data	are	driving	results.	Simply	put,	if	changing	the
prior	changes	the	posterior,	the	data	are	not	informative	about	the	parameter	values	and	the	priors	are	driving
the	results.	Such	sensitivity	analysis	should	be	an	important	part	of	any	applied	Bayesian	work.

(p.	507)
•	There	is	no	way	to	know	whether	an	MCMC	algorithm	has	converged.	This	is	true.	However,	there	are
diagnostics,	discussed	above,	which	can	be	used	to	determine	nonconvergence	(Cowles	and	Carlin	1995;
Brooks	and	Roberts	1998).	In	the	classical	context,	there	is	also	no	way	to	know	whether	a	numerical
optimization	algorithm	has	reached	a	global	maximum	in	most	cases.

•	There	is	no	good	software	to	perform	Bayesian	inference.	There	exists	no	widely	used	statistical	software	for
Bayesian	inference	that	compares	to	commercial	products	such	as	SAS,	SPSS,	or	Stata.	(This	is	likely	due	to	the
fact	that	all	of	these	packages	were	developed	before	MCMC	methods	were	widely	used.)	Over	the	last	decade
a	number	of	promising	software	packages	have	emerged,	which	I	discuss	in	the	following	section.

5	Software

Until	the	late	1990s,	those	interested	in	doing	applied	Bayesian	work	needed	to	develop	their	own	MCMC	algorithms
and	write	their	own	software.	Much	of	this	work	was	done	in	high‐level	languages	like	GAUSS,	Matlab,	R,	or	S‐Plus,
or	low‐level	languages	like	FORTRAN	or	C.	The	ability	to	develop	these	algorithms	and	produce	software	remains
an	important	skill	for	the	applied	analyst,	as	existing	software	packages	are	limited	in	their	scope.	(It	is	also	the
case	that	developing	software	is	an	important	part	of	innovation	for	those	working	in	the	classical	paradigm.)

Today	there	exist	two	different	types	of	software	packages	useful	for	Bayesian	inference.	The	first	is	the	BUGS
language.	BUGS	stands	for	Bayesian	updating	using	Gibbs	sampling.	To	use	BUGS,	one	writes	down	a	model
definition	using	an	R‐like	syntax.	The	model	definition	is	then	processed,	and	the	program	chooses	a	scheme	to
sample	from	the	posterior	distribution	of	the	model.	Here	is	an	example	of	BUGS	syntax	for	our	linear	regression
model	with	semi‐conjugate	priors:

1 model	{
2  for(i	in	1:N)	{
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3   Y[i]	̃	dnorm(mu[i],tau)
4    mu[i]	←	inprod(X[i,],	beta)
5   }
6
7  for(k	in	1:K)	{
8   beta[k]	̃	dnorm(0,0.001)
9  }
10  tau	̃	dgamma(0.001,	0.001)
11  }

The	first	five	lines	of	the	code	define	the	probability	model.	Here	each	observation	y	 	is	assumed	to	be	distributed
conditionally	normal	with	a	common	precision	(inverse	(p.	508)	 variance)	τ.	Lines	7–10	define	the	priors,	in	this
case	univariate	normal	for	each	element	of	the	β,	and	Gamma	for	the	precision.	With	this	model	definition	and	some
data,	the	BUGS	language	will	use	MCMC	methods	to	sample	from	the	posterior.	The	most	commonly	used	BUGS
implementation	is	the	WinBUGS	package,	which	runs	only	on	Microsoft	Windows	machines	(Spiegelhalter	et	al.
2004).	There	are	two	newer	implementations	of	the	BUGS	language:	OpenBUGS	(Thomas	2004)	which	runs	on	the
Linux	operating	system,	and	JAGS	(Plummer	2005)	which	is	platform	independent.	The	BUGS	language	works	well
for	most	simple	models.

The	second	option	is	to	use	contributed	software	to	the	R	language	(R	Development	Core	Team	2005).	There	are	a
number	packages	that	are	useful	for	performing	applied	Bayesian	inference.	Two	general	packages	that	provide
model	estimation	for	a	number	of	commonly	used	models	are	MCMCpack	(Martin	and	Quinn	2005)	and	bayesm
(Rossi	and	McCulloch	2005).	MCMCpack,	for	example,	uses	common	R	syntax	to	specify	models.	Consider	the
following	example	code	used	to	fit	a	linear	regression	model:

The	returned	object	posterior	is	an	mcmc	object	which	can	be	summarized	using	the	coda	package	(Plummer	et	al.
2005).	Prior	information	is	included	in	the	model	by	passing	hyperparameter	arguments	to	the	model	fitting	function.
The	“Bayesian	Task	View”	on	the	Comprehensive	R	Archive	Network	(<http://cran.r-project.org>)	contains
information	about	many	more	packages,	including	those	that	fit	single	models	or	single	classes	of	models,	that	are
available	for	the	R	language.

6	Conclusion

Bayesian	methods	and	estimation	via	Markov	Chain	Monte	Carlo	afford	a	number	of	advantages	to	applied	political
scientists.	The	methods	can	be	applied	in	many	situations	to	answer	all	sorts	of	substantive	questions.	Most
importantly,	all	quantities	of	interest,	including	parameter	estimates,	can	be	stated	as	probabilities,	and	as	such
comport	with	the	manner	in	which	we	typically	think	about	estimation.

I	conclude	this	chapter	with	some	thoughts	about	places	for	future	research,	and	for	promising	applications.	One
area	ripe	for	research	is	the	use	of	prior	information	in	statistical	analyses.	Prior	elicitation	is	an	underdeveloped
field,	and	there	are	elicitation	problems	unique	to	the	study	of	politics,	such	as	encoding	elite	opinion	or	attitudes,
or	information	produced	by	governmental	agencies.	Developing	new	methods	for	translating	that	information	into
formal	statements	about	parameters	seems	like	a	promising	field	of	research.	So,	too,	are	guidelines	for	sensitivity
analysis.	When	using	informative	priors,	political	scientists	need	guidance	as	to	testing	the	(p.	509)	 dependence
of	the	findings	on	the	included	prior	information.	Another	area	that	needs	significant	work	is	statistical	software.
While	the	BUGS	language	and	various	R	packages	are	promising,	there	is	not	yet	a	lingua	franca	for	applied
Bayesian	work.	This	lack	of	available	software	makes	doing	Bayesian	work	more	difficult	than	it	otherwise	should
be.	Finally,	there	are	a	number	of	models	and	methods	that	are	wholly	underutilized	in	political	science	that	I	think
exhibit	great	promise.	These	include	mixture	models,	and	those	with	discrete	parameters	(such	as	change	point
models	in	the	time‐series	context).	Formal	model	comparison	is	also	rarely	performed	in	political	science.	Bayes'
factors	provide	an	avenue	to	comparing	many	different	types	of	models.	When	dealing	with	clustered	data,	such
as	cross‐sectional	time‐series	data,	hierarchical	models	show	great	promise.	These	models	are	easily	fit	using
MCMC,	and	can	be	extended	to	handle	many	different	types	of	complex	dependence.	Just	as	with	any	statistical
tool,	Bayesian	methods	are	limited	only	by	the	creativity	of	the	practitioner,	yet	to	date	the	advantages	of	Bayesian
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methods	have	not	yet	been	fully	explored	in	political	science.
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