
2 Software and Technology

Software and Technology

Clustered Computing for Political Science

Andrew D. Martin

Washington University
admartin@wustl.edu

Kevin A. Croker

Washington University
kac3@cec.wustl.edu

Introduction: Why Clusters?

Up and down the halls of universities throughout the
world, computers sit in offices and labs doing nothing. Per-
haps these computers are looking for alien life as part of the
SETI project when not being used, but more likely, they
are idle. Have you ever wondered how you could harness
these available cycles for your computation needs? Or, per-
haps you are tired of using your workstation for model es-
timation, grinding your other programs to a halt, and are
looking for a way to use other available computing power
to solve your problem. Some recent advances in clustered
computing make putting to use available resources relatively
straight forward. Not only does this ameliorate the need
to purchase additional hardware, but it makes it possible
to harness available spare cycles already available in nearly
every academic building.

But why would a political scientist need these sorts of
resources? Simply put, many problems in political method-
ology are computationally expensive. As models get more
and more complicated, the computational power needed to
estimate them increases. Many likelihood functions are not
easily maximized, and various optimizers require significant
time to converge. Other optimization problems rely on sim-
ulations, sometimes to evaluate the likelihood function (e.g.,
the use of the Geweke-Hajivassiliou-Keane probability simu-
lator to compute multivariate Normal integrals), other times
to use sophisticated genetic algorithms as the optimization
routine itself (Mebane and Sekhon 2004). Markov chain
Monte Carlo (MCMC) methods—the workhorse of applied
Bayesian inference—also require significant computer time,
whether in an interpreter such as R or WinBUGS, or in a
compiled language like C or FORTRAN. It is not uncommon
for political scientists to fit models that take days, weeks,
or even months to estimate on state-of-the-art hardware.

Moreover, fitting a single model does not make for good
social science. Indeed, all robustness and sensitivity analy-
sis that goes into applied statistical work in political science
requires the researcher to fit models with slightly different
covariates, perhaps different priors, and different assumed
model structures. Having to fit multiple instances of compu-

tationally expensive models becomes practically impossible
on a single workstation.

In this article we review two state-of-the-art clustering
technologies: openMosix and Xgrid. openMosix is used for
clustering Linux workstations, and Xgrid is used for clus-
tering MacOS X machines. We are not aware of (nor would
we consider using) clustering systems for Windows systems.
We have used openMosix for over two years to run a small
cluster of Linux machines that we use for running long simu-
lations in R and C++. We have also installed a beta version
of Xgrid on some local computers to test its reliability.

Before we describe how each of these technologies works,
it is important to draw a distinction between a cluster and a
supercomputer. A supercomputer is one physical unit able
to process instructions at speeds many times greater than
your average workstation. A cluster, on the other hand,
is one virtual unit consisting of several workstations con-
nected over some sort of network. Supercomputers have
highly accelerated input/output, memory access, and pro-
cessor speed, and typically have shared memory access. As
such, they are useful for problems that can be solved in par-
allel. Supercomputers have been used in political science;
Poole and Rosenthal (1997) estimated their two-dimensional
D-NOMINATE model on the CYBER 205 supercomputer
at Purdue University in the late 1980s. As discussed in
the conclusion, clusters can also be used to attack prob-
lems that can be implemented in parallel, often at greatly
reduced cost. While we have limited experience with ex-
plicitly parallel code, in principle this could be used for a
number of problems in political science using the same clus-
tering technology discussed below.

openMosix

When constructing our cluster, we chose openMosix1 for
its transparent operation and ease of deployment. Among
the other options available at the time, Beowulf and comer-
cial MOSIX, we felt that openMosix represented the best
potential for growth and flexibility. How transparent is
openMosix? Working on an openMosix cluster is as sim-
ple as working on a regular workstation; the user never has

1http://openmosix.sourceforge.net/



The Political Methodologist, vol. 12, no. 1 3

11:37am up 2 days, 30 min, 9 users,

load average: 2.31, 1.12, 0.87 115

processes: 112 sleeping, 3 running, 0 zombie, 0 stopped

CPU states: 792.6% user, 5.4% system, 0.0% nice, 0.0% idle

Mem: 1030332K av, 658444K used, 371888K free, 0K shrd, 6480K buff Swap:

2040244K av, 3272K used, 2036972K free 189600K cached

PID USER PRI NI SIZE RSS SHARE STAT N# MGS %CPU %MEM TIME COMMAND

25785 adm 17 0 116M 116M 1352 S 4 1 99.9 11.6 1:04 R.bin

25794 adm 15 0 117M 117M 468 S 2 1 99.9 11.6 1:45 R.bin

25758 adm 16 0 116M 116M 1352 S 2 1 99.7 11.6 1:11 R.bin

25776 adm 15 0 115M 115M 468 S 4 2 99.7 11.5 1:23 R.bin

25731 adm 17 0 115M 115M 468 S 3 2 99.2 11.4 1:11 R.bin

25740 adm 17 0 115M 115M 468 S 3 2 99.2 11.5 1:12 R.bin

25749 adm 18 0 115M 115M 468 R 0 2 95.5 11.5 1:00 R.bin

25767 adm 13 0 115M 115M 468 R 0 2 94.7 11.5 0:55 R.bin

22659 adm 9 -1 29420 11M 2232 S 0 0 3.3 1.1 1:02 X

25888 adm 9 0 26196 9796 6852 D 0 0 2.7 0.9 0:02 openmosixv

25887 adm 12 0 892 892 716 R 0 0 1.3 0.0 0:00 mtop

22 root 9 0 0 0 0 SW 0 0 0.3 0.0 0:21 memsorter

Table 1: Output of the openMosix mtop command.

to worry about viewing the particular computer system she
is on as part of a special entity. When a user starts a pro-
gram, openMosix looks at all other workstations running
openMosix and asks them: “Hey, how busy are you?” The
other machines reply, and based on the replies, the user’s
program is invisibly relocated over the network to the ma-
chine where it will run most efficiently. To the user, it still
appears as if the process is running locally, but it is actu-
ally not. Migration is dynamic and takes place in real-time.
openMosix is therefore constantly tuning the performance
of all programs that are running on the cluster without ever
needing user intervention. Of course, this has limitations,
particularly with jobs that are input/output or memory in-
tensive. In these cases, the programs simply stay on the
local machine and other programs that can be efficiently
relocated are moved. openMosix shines in CPU intensive
tasks, which are typical problems in political science.

openMosix is nothing more than an extension to a Linux
kernel and is freely available as a fully open-source project.
openMosix can be run on a variety of Linux platforms, but
for a particular cluster, it is necessary to have homogeneous
architectures on all computers in the cluster. (This does
not mean that all machines have to be the same; one just
cannot mix machines running Linux on PowerPC chips and
Pentium chips.) Installation can be as simple as installing
the appropriate packages for your Linux distribution (a bare
minimum is the openMosix enabled kernel and the userland
tools). Once installed, it is easy to see the advantages of

openMosix. In Table 1 we show typical output from the
mtop command, which is a part of the userland tools and is
a replacement for the top command. Here you will see that
we started eight computationally expensive R jobs, which
have automatically been migrated to available nodes on our
cluster. Each job is pulling nearly 100% of a processor; the
N# column shows which of our dual-processor machines the
job has migrated to.

openMosix can be used to share resources across a num-
ber of workstations. To the extent that most political sci-
ence departments are not full of Linux users, we suspect
most people will use openMosix for clustering dedicated
machines. There are also ways to harness spare Windows
machines by booting them into Linux (perhaps for a short
while) from either a CD or over a network. As an exam-
ple, our cluster consists of a master node with a number of
slave computers which boot off of a private network. Each
slave node consists of just a motherboard, power supply,
memory, and a network interface card. We have released a
set of scripts to build an auto-assimilating cluster (Croker
and Martin 2004). The ClusterKnoppix 2 project also has
released a number of innovative ways to automatically con-
figure a cluster using network and CD booting. We view
the upside of openMosix to be its kernel-level implementa-
tion. With it, working on a cluster appears just the same
as working on a machine with a large number of processors.
Installation and administration are required, but no more
so than administering a Linux workstation.

2http://bofh.be/clusterknoppix/



4 Software and Technology

Figure 1: Xgrid Interface for Submitting an R Program

Xgrid

The Advanced Computing Group at Apple Computer
has recently released a package to enable clustering of Ma-
cOS X machines.Their technology is called Xgrid 3. It can
be used to harness spare cycles on G4s and G5s that are
configured to be part of the cluster. Xgrid is not a kernel-
level clustering solution; it resides at the user level, and is
a controller/client protocol. Users submit jobs to the con-
troller machine, which distributes them to available client
processors. Some clients may be dedicated severs; others
might be workstations on the network that have registered
with the controller. Xgrid moves jobs automatically, and
balances the load across available machines. Each user con-
trols how much, if any, of their processing power they wish
to contribute to the cluster. The default setup is to only
use workstations when they are not in active use. When
a job is completed, the output is returned to the user who
submitted the job.

Since Xgrid is not a kernel extension, its installation is as
easy as installing a software package. One uses the System
Preferences panel to configure the cluster, including setting
what machine is the controller, setting up secure passwords
to access the controller, the clients, etc. Once configured,
the user submits a job to the cluster using a graphical in-
terface. In Figure 1 we show how one would submit a long
R job to the cluster. As with openMosix, Xgrid can be
used to execute truly parallel programs. As a demonstra-
tion, Apple distributes a parallel program used to search
DNA and protein databases. The Xgrid program contains
a number of graphical tools one can use to see how much
available processing power is in use at a given time. The

upside to Xgrid for applied work in political science is the
availability of hardware; surely more political scientists use
MacOS X than Linux. The installation and configuration is
trivial, and one can even install Xgrid on ones’ colleagues’
machines without ever sitting at the terminal (if you have
root access). The down side, compared with openMosix, is
the batch submission process, which adds an additional step
to executing a large program.

Conclusion

In our experience, the time invested in learning and de-
ploying these technologies is well worth it. Being able to
estimate ten or more instances of a single model that takes
two or three weeks with different priors and covariates at the
same time considerably speeds up the research process. As
our models become increasingly complicated, having tech-
nologies that can make computing as easy and quick as pos-
sible is of great utility.

Moreover, there are additional gains to be had when our
software can take into account these available computation
resources by “going parallel.” Both openMosix and Xgrid
work seemlessly with MPI 4, the protocol most often used
to implement parallel algorithms in FORTRAN and C. Due
to communication latency, clusters are not quite as fast as
traditional supercomputers with shared memory, however
they are far more economical. As such, clusters serve as a
viable platform for implementing parallel algorithms. We
look forward to seeing interesting applications in political
science in the future. Happy computing, and happy cluster-
ing.

3At the moment, Xgrid is freely available at: http://www.apple.com/acg/xgrid/
4http://www.lam-mpi.org


