Disturbed progastrin processing in carboxypeptidase E-deficient fat mice

Karen A. Lacourse\(^a\), Lennart Friis-Hansen\(^a,b\), Jens F. Rehfeld\(^b,\)* Linda C. Samuelson\(^a\)

\(^a\) Department of Physiology, University of Michigan, Ann Arbor, MI 48109-0622, USA
\(^b\) Department of Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen, Denmark

Received 27 August 1997

Abstract The fat mouse strain exhibits a late-onset obesity syndrome associated with a mutation in the gene encoding carboxypeptidase E (CPE). Since CPE plays a central role in the biosynthesis of a number of regulatory peptides, including gastrin, we examined the biogenesis and processing of progastrin in fatfat mice by measuring gastrin mRNA, carboxyamidated gastrin and its processing intermediates in the stomach. The tissue concentration of carboxyamidated (i.e. bioactive) gastrin was only slightly reduced (601 ± 28 pmol/g in fatfat mice vs. 715 ± 43 pmol/g in wild-type controls). However, progastrin processing intermediates accumulated excessively with an 86-fold increase in the concentration of the CPE substrate, glycyl-arginine extended gastrin, and a seven-fold increase in the concentration of glycine-extended gastrin. Accordingly, the total progastrin product was doubled, as was the concentration of gastrin mRNA. Plasma concentrations of carboxyamidated gastrin were, however slightly reduced both in fasted and fatfat mice and postprandially. The results show that the CPE mutation diminishes the efficiency of progastrin processing, but gastrin synthesis is nevertheless increased to maintain an almost normal production of bioactive gastrins. By comparison with other neuroendocrine prohormones, progastrin processing in CPE-deficient mice is unique. Hence, the increase of glycine-extended gastrin in combination with normal levels of carboxyamidated gastrin suggests that G-cells may have another biosynthetic pathway for gastrin.

Key words: Progastrin processing; Carboxypeptidase E; fat mice

1. Introduction

Peptide hormones and neurotransmitters are synthesized as propeptides that undergo a series of modifications in the trans-Golgi network and the secretory vesicles before they are released as active peptides. The modifications include endopeptidase, sulfation, phosphorylation, amidation and others. Prohormone convertase catalyzes cleavages at di- and monobasic sites [1-3] with subsequent trimming by a carboxypeptidase to remove C-terminal basic residues [4,5].

Recently the fat mouse mutant was identified as one of the first in vivo models containing a mutation in a prohormone processing enzyme. The fat mutation is a missense mutation (Ser[Ser]Pro) in the carboxypeptidase E (CPE) gene, which appears to abolish enzyme activity [6]. The resulting phenotype is a slowly developing adult-onset obesity with mild diabetes [6,7]. CPE is involved in the posttranslational maturation of many regulatory peptides. Thus, peptides requiring C-terminal trimming of basic residues may be deficient in this mouse mutant. Accordingly, fatfat mice exhibit changes in the processing of proinsulin, proglucagon, progastrin, prorenin-concentrating hormone and pro-opiomelanocortin showing accumulation of hormone precursors and a marked decline in the production of bioactive peptides [6,8-10]. However, it is difficult to predict the complete range of peptides affected in the fatfat mouse since carboxypeptidase D may compensate for CPE in some tissues [9,11].

Cellular synthesis of the gastrointestinal hormone, gastrin, also requires carboxypeptidase cleavage by prohormone convertases yielding a C-terminally glycyl-arginine extended gastrin, which by carboxypeptidase removal of the arginyl residues exposes glycine-extended gastrin for amidation [12]. Using the fat mouse as an in vivo model, we have now tested the hypothesis that CPE is required for the maturation of gastrin. Moreover, we examined how alterations in progastrin processing might change the biosynthesis to ameliorate the effects of reduced maturation. Finally, we measured plasma concentrations of amidated (i.e. bioactive) gastrin to determine if fatfat mice responded adequately to food.

2. Materials and methods

2.1. Mice

Heterozygous fat+/ mice were purchased from The Jackson Laboratory (Bar Harbor, ME). Homozygous fatfat and wild-type (+/+) mice were generated by intercrossing heterozygotes and genotyping the offspring. Mice were housed on a 12 h light-dark cycle and fed Purina 5008 chow ad lib.

2.2. Genotyping

Genomic DNA was prepared from tail biopsies [13]. The fat and wild-type CPE alleles were detected using an allele-specific polymerase chain reaction (PCR) assay. Primer CPE-R (5' TGG TCT TGT ATG CAA CAT TCC ATT TGT GCT TT) or FAT (5' TGG CCA CAT TCC ATT TGT GCT TT) or CPE-D (5' GGA CAT CAT ATG GGT AAT) was paired with primer WT (5' GGA CAT CAT ATG CAA CAT TCC ATT TGT GCT TT) to amplify an 80 bp fragment from the wild-type or fat alleles, respectively. (Underlined primer sequences highlight the single nucleotide difference between the two alleles.) PCR reactions contained 10 mM Tris-HCl, pH 8.3; 50 mM KCl; 3.5 mM (WT) or 3 mM (FAT) MgCl\(_2\); 0.01% (w/v) bovine serum albumin; 0.2 mM dATP, dTTP, dGTP and dCTP; Taq polymerase; and 1.0 mM (CPE-R, FAT) or 2.0 mM (WT) primers. The cycle parameters were: (i) 94°C 5 min, (ii) 40 cycles of 94°C 45 s, 62°C 45 s, 72°C 1 min, (iii) 72°C 3 min. The amplified products were detected by ethidium bromide in 5% agarose [3:1 NuSieve GTG (FMC BioProducts):ultra P food agarose (Gibco-BRL)] and ethidium bromide staining.

2.3. Tissue isolation and extraction

Eight mice 2–6 months old were anesthetized, and stomach tissue was rapidly dissected and frozen in liquid nitrogen. The tissue was gently cleaned in phosphate buffered saline, on ice, before freezing. Tissue extracts for radioimmunoassay (RIA) were prepared as previ-
Fig. 1. Diagrammatic presentation of the co- and posttranslational modification of preprogastrin in the stomach. Activation of the gastrin amidation site (R₁-Phe-Gly-Arg-Arg-R₂) occurs via a series of carboxy-terminal cleavages and modifications. Endoproteolytic cleavage by prohormone convertases produces the carboxypeptidase E substrate (R₁-Phe-Gly-Arg). Carboxypeptidase E then acts in secretory granules to remove the C-terminal arginine residue yielding glycine-extended gastrin (R₁-Phe-Gly). Carboxyamidation of glycine-extended gastrin by α-amidating mono-oxygenase results in the production of bioactive gastrin (R₁-Phe-NH₂). Concomitant N-terminal cleavage by prohormone convertases produces pro- and bioactive gastrins of varying sizes (e.g. gastrin-71, gastrin-34, etc.). A library of sequence-specific antibodies was used in combination with in vitro protease treatments to measure bioactive gastrin and various precursor peptides, as described in Section 2.

ROUGH ENDOPLASMIC RETICULUM:

ROUGH ENDOPLASMIC RETICULUM:

SIGNALASE

TRANS-GOLGI APPARATUS

TYROSYL-PROTEIN SULFOTRANSFERASE

AND

IMMATURE SECRETORY VESICLES:

PROHORMONE CONVERTASE

SECRETORY GRANULES:

1. GLYCYL-ARGININE-EXTENDED GASTRIN

PROHORMONE CONVERTASE(S)

CARBOXYPEPTIDASE-E

Gly-Arg

2. GLYCINE-EXTENDED GASTRINS

PROHORMONE CONVERTASE(S)

PEPTIDYLGLYCINE α-AMIDATING MONO-OXYGENASE

Gly

COMPLEX

Gly

3. BIOACTIVE GASTRINS

CONH₂ Gastrin-71

CONH₂ Gastrin-34

CONH₂ Gastrin-17

CONH₂ Gastrin-6

Previously described [14]. Briefly, frozen tissues were boiled in water (1 ml/mg) for 20 min, homogenized (polytron) and centrifuged for 30 min at 10000 rpm. The supernatants were withdrawn and the pellets re-extracted in 0.5 M CH₃COOH (1 ml/mg), rehomogenized, incubated at room temperature for 30 min and centrifuged. The water and acid supernatants were stored at -20°C until RIA analysis.

2.4. Chromatography

One or two ml of extracts were applied to Sephadex G-50 superfine column (10 × 1000 mm), which were eluted at 4°C with 0.02 M barbital buffer, pH 8.4, containing 0.1% bovine serum albumin. Fractions of 1.0 ml were collected at a rate of 4.0 ml/h. The columns were calibrated with [¹²⁵I]albumin (void volume), human gastrin-71, -34 and -17 (both sulfated (s) and non-sulfated (ns) gastrin-17), and with [¹²⁵I]NaCl (total volume). The elutions were monitored with sequence-specific radioimmunoassays as described below.

2.5. Radioimmunoassay

A library of sequence-specific antibodies against preprogastrin was used to measure the different forms of gastrin and its processing intermediates (Fig. 1). The sum of carboxyamidated, bioactive gastrin were measured using the gastrin-specific antisera no. 2604, with [¹²⁵I]gastrin-17 as tracer and gastrin-17 as standard [15]. Antibody no. 2604 binds all the carboxyamidated forms of gastrin with equimolar affinity irrespective of size and sulfation. Crossreactivity with homologous cholecystokinin (CCK) peptides is negligible [15]. Non-sulfated carboxyamidated gastrins were measured in parallel using antibody no. 2605 [16]. Glycine-extended intermediates of gastrin were measured using antisera no. 3208 with [¹²⁵I]glycine-extended...
Fig. 2. Gel chromatography on Sephadex G-50 superfine columns of stomach extracts from wild-type control mice (left) and the CPE-mutant fat/fat mice (right). The upper panels show the elution of carboxyamidated gastrins as measured using Ab. no. 2604 (●), which binds both sulfated and non-sulfated gastrins and Ab. no. 2605 (○), which binds only non-sulfated gastrins. The lower panels show the elution of glycine-extended gastrins (Ab. no. 3208, ○) and further C-terminally extended gastrins (Ab. no. 3208 after trypsin and carboxypeptidase B treatment, ●). The arrows indicate the elution positions of corresponding human gastrins used for calibration.

Gastrin-17 as tracer and glycine-extended gastrin-17 as standard [17]. Glycine-arginine-extended intermediate precursors were measured using antiserum no. 3208 following enzymatic pretreatment with carboxypeptidase B (CPB). To measure all three precursor forms of gastrin, samples were pretreated with trypsin and CPB followed by RIA with antiserum no. 3208, as described previously [17]. CPB mimics the effect of CPE, while trypsin mimics the effects of prohormone convertase. Control measurements of homologous CCK peptides were performed with a CCK-specific RIA using the new antibody no. 92128 (Rehfeld, unpublished).

2.6. RNA analysis

Tissue for RNA analysis was isolated from animals fasted overnight. Total RNA was extracted from frozen tissue by a guanidine thiocyanate homogenization-CsCl centrifugation method [18]. For Northern blot analysis, total stomach RNA samples (10 μg) were electrophoresed in agarose gels containing 2.2 M formaldehyde and transferred to Zeta-Probe nylon membrane (BioRad). Probes were 32P-labeled and hybridized to filters as previously described [19]. Final wash conditions were 0.5XSSC (0.075 M NaCl, 7.5 mM trisodium citrate, pH 7.0) and 0.1% SDS at 60°C. Imaging and quantitation were performed on a GS-250 Molecular Imager (BioRad). The gastrin probe was a 422 bp cDNA [20]. After hybridization, filters were stripped and rehybridized with a mouse ribosomal protein L32 probe [21] to control for RNA loading.

2.7. Plasma hormone measurements

To examine changes in circulating gastrin concentrations in re-
sponse to feeding, mice were fasted for 24 h before blood collection by retro-orbital bleeding. A second group of mice was fasted and then refed for 40 min before bleeding. Blood was collected into tubes containing 10 mM EDTA. Plasma concentrations of carboxyamidated gastrins were measured radioimmunochemically using antibody no. 2604 as previously described [15,22].

2.8 Statistics
Statistical analysis was carried out using an unpaired t-test with the SYSTAT software. All values are expressed as means ± S.E.M.

3. Results

3.1. Progastrin processing

The concentrations of carboxyamidated (i.e. bioactive) gastrins in the stomach was insignificantly lower in fat/fat mice compared to wild-type controls (Table 1). A large percentage of carboxyamidated gastrins are sulfated in normal mice (71%, Table 1). The similar degree of sulfation in fat mice (69%) indicates that the early posttranslational modification by tyrosyl-protein sulfotransferase is unaffected by CPE. To determine the effect of the CPE mutation on further progastrin processing, we measured the concentrations of a number of processing intermediates (Fig. 1) in gastric extracts. In contrast to the almost normal concentration of carboxyamidated gastrin, those of some progastrin processing intermediates were grossly increased in the mutant. The concentration of the progastrin-derived substrate for CPE, glycyl-arginine-extended gastrin, was 86-fold elevated in fat/fat mice (12.2 vs. 1054.0 pmol/g, Table 1). Surprisingly the concentration of glycine-extended gastrin was also markedly increased (from 4.8 to 34.7 pmol/g, Table 1). In contrast fat/fat mice were apparently devoid of further C-terminal extended gastrin (Table 1). Summing up the total progastrin product, fat/fat mouse stomachs contain twice the amount of wild-type controls.

Gel chromatography showed marked differences in the N-terminal proteolytic processing of progastrin in fat/fat and wild-type mice (Fig. 2). Carboxyamidated, glycyl-arginine-extended gastrins were cleaved at N-terminal processing sites to a greater extent in fat/fat mice, so that shorter molecular forms constituted a larger fraction of the progastrin products. The molecular pattern suggests that CPE influences endoproteolytic prohormone convertase cleavage, but not the early tyrosyl protein sulfotransferase modification (Table 1, Figs. 1 and 2).

3.2. Plasma gastrin

The basal plasma concentration of carboxyamidated gastrin in fat mice was not insignificantly lower than in wild-type controls (Fig. 3). To examine whether fat/fat mice exhibit the normal postprandial rise, we also measured gastrin concentrations in plasma after refeeding. In wild-type mice gastrin concentrations significantly increased 40 min after refeeding. However, this response was attenuated in fat/fat mice. Although circulating gastrin concentrations in fat/fat mice rose after refeeding, postprandial concentrations were 2.4-fold lower than in the control mice.

3.3. Gastrin mRNA levels

Gastrin transcript levels measured by Northern blot analysis were two-fold higher in fat/fat mice (P < 0.05; n = 4 per group) (Fig. 4). This is in accordance with the two-fold increase in progastrin processing intermediates (Table 1).

4. Discussion

The results of this study demonstrate that CPE is heavily involved in the maturation of progastrin. However, the processing differs from that of other prohormones examined so far [6,8-10], as CPE-deficient mice are able to maintain essentially normal tissue concentrations of bioactive α-carboxyamidated gastrin. Analysis of gastrin processing revealed a marked increase in some precursor peptides, including the excessive 86-fold accumulation of glycyl-arginine-extended gastrin. We expected the defect in carboxypeptidase activity to result in an accumulation of glycyl-arginine-extended gastrin, since this is the substrate for CPE. Previous studies in fat/fat mice demonstrated reduced levels of mature peptides, such as insulin, neurotensin, melanin-concentrating hormone, dynorphin and ACTH, with a more modest accumulation of arginine-extended peptides [6,8-10], and with no significant changes in other processing intermediates. We have also found such processing abnormalities for cholecystokinin, a hormone ho-
mologous to gastrin (unpublished). Further examination of gastrin processing revealed an unexpected seven-fold accumulation of glycine-extended gastrin and the absence of other C-terminally extended gastrin precursors. The massive accumulation of gastrin processing intermediates indicates that gastrin biosynthesis is upregulated in the mutant to compensate for the processing deficiency. Thus, the effects of CPE dysfunction on progastrin processing appear to be unique in comparison with the processing of other prohormones.

The seven-fold increase in glycine-extended gastrin is surprising since this intermediate is the product of carboxypeptidase cleavage and thus expected to be readily amidated. The accumulation of glycine-extended gastrin indicates that the peptidylglycine α-amidating mono-oxygenase complex is not readily available for amidation following carboxypeptidase cleavage, suggesting an alternative processing pathway for progastrin in the fatfat mutant. There are recent data to suggest that CPE may function as a sorting receptor to partition peptides into the regulated secretory pathway [10]. Loss of sorting receptor in the fat mutant could result in the misdirection of progastrin into a different cellular compartment, removed from other modifying enzymes, producing more widespread disturbances in peptide processing than would be predicted from reduced carboxypeptidase activity alone.

To investigate possible mechanisms for the upregulation of gastrin synthesis, we measured gastrin mRNA in the stomach and found that transcript levels doubled in fatfat mice. This change in gastrin mRNA is similar to increases observed when gastric acid secretion is blocked by the H⁺/K⁺-ATPase antagonist, omeprazole, or by surgical removal of the acid-secretory portion of the stomach [23,24]. In these models, increased gastrin mRNA is also associated with hypergastrinemia, while in fatfat mice, the plasma concentration of carboxyamidated gastrin was slightly reduced. The observed increase in gastrin mRNA in fatfat mice could result from a proliferation of gastrin producing cells (G-cells), or from increased gene transcription or mRNA stability. A prolonged state of gastric acid hyposecretion can lead to an increase in the number of G-cells in the gastric mucosa. Indeed, G-cell numbers are increased two-fold in a mutant mouse strain which does not express gastrin receptors [25]. Alternatively, an accumulation of transcripts within individual G-cells could also lead to elevated gastrin mRNA levels. Somatostatin, the primary negative regulator of gastrin release, inhibits gastrin gene expression by decreasing transcription and mRNA stability [26–29]. Thus, a reduction in gastrin and gastric acid output in fatfat mice could reduce somatostatin secretion, thereby lessening the inhibitory mechanisms regulating gastrin biosynthesis. However, we measured somatostatin in stomach extracts and found no differences between fatfat mice and wild-type controls (data not shown).

During the preparation of this paper, Udupi et al. reported a similar study on gastrin processing in fatfat mice [29]. Their results generally correspond to those presented here, but they deviate in two important respects. First, they did not measure glycine-extended gastrin, which is necessary for interpreting changes in G-cell processing caused by the CPE mutation. The unexpected increase in the concentration of glycine-extended gastrin found in our study (Table 1) is a key argument for the existence of an alternative processing pathway. In addition, the possible growth effects of glycine-extended gastrin [30,31] have drawn particular attention to its synthesis. Second, Udupi et al. found a significant reduction in the concentration of carboxyamidated gastrin.

Maintaining physiologic concentrations of gastrin is important for normal stomach function. Measurement of plasma concentrations showed that although the basal concentration of bioactive gastrin is normal in fatfat mice, meal-stimulated gastrin secretion is attenuated. Forty minutes after a meal, gastrin concentrations were 2.4-fold lower in fatfat mice compared to controls. This reduction in postprandial gastrin levels suggests that meal-stimulated acid secretion may also be attenuated. Thus, the attenuation of postprandial hormone secretion in the fatfat mouse suggests that the CPE processing defect may affect gastric function.

Acknowledgements: The skilful technical assistance of Rikke Granholm, Alice Lieth and Lisa Swanberg is gratefully acknowledged. The study was supported by grants from the National Institute of Health CMAS1B Training Grant; The P. Carl Petersens Foundation; The Danish MRC; the Danish Biotechnology Center for Cellular Communication and the University of Michigan Peptide Center and National Institutes of Health. L.C.S. and J.F.R. are both senior co-authors.

References