The effects of Porapak™ trap temperature on δ^{18}O, δ^{13}C, and Δ_{47} values in preparing samples for clumped isotope analysis

Sierra V. Petersen*, Ian Z. Winkelstern, Kyger C. Lohmann and Kyle W. Meyer
Department of Earth and Environmental Science, University of Michigan, 1100 N. University Avenue, Ann Arbor, MI 48103, USA

RATIONALITY: The clumped isotope paleothermometer, a new proxy widely applicable in studies of paleoclimate, tectonics, and paleontology, relates the abundance of doubly substituted isotopologues of carbonate-derived CO₂ to the temperature of formation of the carbonate phase. As this technique becomes more widely used, more is discovered about the effects of everyday laboratory procedures on the clumped isotopic composition of CO₂ gas.

METHODS: Preparation of CO₂ for clumped isotope analysis requires the removal of isobaric contaminants prior to measurement, achieved dynamically by passing the CO₂ through a gas chromatography column using a helium carrier gas or cryogenically pumping CO₂ through a static trap filled with Porapak™ Q (PPQ) material. The stable and clumped isotopic compositions of carbonate standards prepared at PPQ trap temperatures between ~40°C and ~10°C were measured by isotope ratio mass spectrometry to evaluate potential artifacts introduced by the static PPQ trap method.

RESULTS: The stable isotopic composition of carbonates run at temperatures below ~20°C was fractionated, despite achieving >99% retrieval of gas at temperatures as cold as ~30°C. The δ^{13}C and δ^{18}O values decreased by ~0.01 and ~0.03 ‰/°C below ~20°C. The raw Δ_{47} values decreased by 0.003–0.005 ‰/°C below ~20°C, but the final reference-frame-corrected values (Δ_{47,RFAC}) were unaffected as long as the carbonate samples and standard gases were prepared identically.

CONCLUSIONS: Preparing carbonate samples for clumped isotope analysis using a PPQ trap that is too cold can result in erroneous stable isotopic compositions. New and existing labs using the static PPQ trap cleaning procedure should determine the ideal PPQ trap temperature for their particular system through monitoring not only yield through the PPQ trap, but also stable isotopic composition at various PPQ trap temperatures. Copyright © 2015 John Wiley & Sons, Ltd.
guidelines. Contaminants that have a small but relevant effect on Δ47 will often have an order of magnitude larger effect on Δ6b,[6] making it a good diagnostic for contamination.

To reduce the effects of these contaminants, CO2 is cleaned prior to sample introduction into the mass spectrometer. In initial work performed at Caltech, this involved passing each CO2 sample through a gas chromatography (GC) column (Supelco Q-PLOT, 530μm i.d., 30 m long) held at −10°C for 40–60 min using a helium carrier gas and baking out the column between samples.[1,14] A later design did away with the need for a carrier gas and instead used a U-trap packed with a very similar adsorbing agent, Porapak™ Q (PPQ), cooled to −12°C. This method relied on the pressure gradient created by placing liquid nitrogen on the far side of the trap to draw the CO2 through (cryogenic pumping).[15] Porapak™ is a type of porous polymer adsorbent manufactured by the Waters Corporation, which is used to pack GC columns.

All new labs entering the field of clumped isotopes generally follow one of these two methods of cleaning CO2 of contaminants. Currently, labs at the California Institute of Technology, Johns Hopkins University, Yale University, UCLA, and the Toyko Institute of Technology use the GC cleaning method, whereas labs at Harvard University, ETH Zurich, Tulane University/University of South Florida, Imperial College London, University of Miami, University of East Anglia, and the University of Michigan use the static PPQ method (Table 1). In the labs using the static PPQ trap configuration, the dimensions of the trap, the temperature to which it is cooled, and the duration of transfer have all been empirically determined on a lab-by-lab basis. Details of this trial-and-error process rarely make it into published articles, but could be based on assessing yield (% of starting gas collected on the far side of the PPQ trap) or by testing measured Δ47 values of standards calibrated by other labs.

Here, we test the effects of the temperature of the static PPQ trap on the measured stable isotopic (δ13C and δ18O) and clumped isotopic (Δ47) composition of carbonate standards. We show that at colder PPQ trap temperatures the δ13C, δ18O and raw Δ47 values are fractionated, but the reference-frame-corrected Δ47 value (Δ47-RFAC) is unaffected as long as standards, gases and samples are prepared identically. In cases where the samples and standards are prepared at different temperatures, a simple correction can be applied to account for the fractionation.

EXPERIMENTAL

Measurements were made in the University of Michigan (U of M) Stable Isotope Laboratory. Carbonate standards of 4–6 mg were prepared on a custom-built off-line system described by Defliese et al.[16] The resulting clean CO2 was analyzed on a ThermoFinnigan MAT 253 isotope ratio mass spectrometer (Thermo Scientific, Bremen, Germany) equipped with cups to measure masses 44–49. Unless otherwise noted, samples were measured at 16 V on the m/z 44 beam for 60–80 cycles (6–8 acquisitions of 10 cycles each with pressure balanced at the beginning of each acquisition). Standards including heated gases (1000°C) and gases equilibrated with H2O (25°C) were measured alongside carbonate standards, and raw Δ47 values were converted into the absolute reference frame[8] and acid-corrected using a fractionation factor of 0.067‰ for a 75°C reaction temperature.[16] The resulting final values are labeled Δ47-RFAC (Reference Frame, Acid Corrected). All data discussed here can be found in Supplementary Table S1 (Supporting Information).

PPQ trap configuration

The samples presented here were cleaned through the PPQ trap in one of three configurations:

- **ColdPPQ** configuration: Data collected between May 2012 and October 2014, and during 3 days in the June 2015 measurement session. PPQ trap temperature held at −30°C. Gas equilibrated for 5 min, followed by 15 min of cryogenic pumping and collection.[16]
- **Stable Isotope Test** configuration: Data collected in November 2014. PPQ trap temperature varied between −10°C and −40°C. 5 min of equilibration followed by 15 min of cryogenic pumping and collection. (Note: samples only analyzed for 20–30 cycles each instead of 60–80).
- **WarmPPQ** configuration: Data collected between January and June 2015 (excluding 3 days where the system reverted to the ColdPPQ configuration). PPQ trap held between −10°C and −15°C. 10 min of cryogenic pumping and collection (no equilibration period).

In the ColdPPQ and WarmPPQ configurations, standard gases were measured alongside carbonate samples, allowing for calculation of Δ47-RFAC. In the Stable Isotope Test configuration, samples were measured over a 2-day period with no accompanying standard gases, thus prohibiting the conversion of raw Δ47 into Δ47-RFAC, but still allowing the comparison of δ13C and δ18O values, and the internal comparison of raw Δ47 values.

Carbonate standards

Two in-house carbonate standards were measured in this study. Carrara Marble (CM) is a high-temperature calcite standard similar to IAEA NBS 19, and the current batch has been measured at U of M since 2011. Carrara marble powders (both in-house standards and NBS 19) have been measured in other labs and have been found to have Δ47 values of 0.373 and 0.404‰,[8] Joulters Cay Ooids (OO) was added in 2014 to provide a lower temperature and aragonitic standard. OO is made up of Holocene aragonitic ooids collected by lab members from the Bahamas at a site with a mean annual temperature of ~22°C[16] (which would correspond to a Δ47 value of 0.704‰ using a recent calibration[16]).

The CM and OO standards were independently measured on a ThermoFinnigan Kiel III carbonate device connected to the same MAT 253 mass spectrometer as performed the clumped isotope measurements and on a ThermoFinnigan Kiel IV carbonate device connected to a second ThermoFinnigan MAT 253 mass spectrometer. Their stable isotopic compositions were determined by normalization of measured values to measured values of the IAEA standards NBS 18 and NBS 19. Final values for CM were 2.05 ± 0.04‰ for δ13C and −2.16 ± 0.09‰ for δ18O. OO was measured to have a composition of 4.77 ± 0.09‰ for δ13C and −0.16 ± 0.09‰ for δ18O, all relative to VPDB. In addition, two replicates of CM and two of OO
<table>
<thead>
<tr>
<th>University</th>
<th>Method</th>
<th>Column?</th>
<th>Temp. (°C)</th>
<th>Duration</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caltech</td>
<td>GC</td>
<td>Supelco Q-PLOT, 30 m × 530 μm i.d.</td>
<td>−10</td>
<td>40 min</td>
<td>[14]</td>
</tr>
<tr>
<td>Harvard University</td>
<td>Static PPQ trap</td>
<td>Porapak™ Q in glass U-trap</td>
<td>−12</td>
<td>unkn</td>
<td>[15]</td>
</tr>
<tr>
<td>Caltech, Johns Hopkins University, UCLA (automated sample prep device)</td>
<td>GC</td>
<td>Porapak™ Q 120/80 mesh, 122 cm length, 2.15 mm i.d.</td>
<td>−20</td>
<td>15 min</td>
<td>[20–22]</td>
</tr>
<tr>
<td>Yale University</td>
<td>GC</td>
<td>Supelco-Q-PLOT, 530 μm i.d., 30m long</td>
<td>−20</td>
<td>unkn</td>
<td>[23]</td>
</tr>
<tr>
<td>Tokyo Institute of Technology</td>
<td>GC</td>
<td>Supel-Q-Plot, 30 m × 0.53 mm i.d.</td>
<td>−10</td>
<td>40 min</td>
<td>[24]</td>
</tr>
<tr>
<td>University of Michigan (pre July 2011) (GC method)</td>
<td>GC</td>
<td>Porapak™ Q 1.5 cm filled, 6 mm o.d.</td>
<td>−17</td>
<td>unkn</td>
<td>[25]</td>
</tr>
<tr>
<td>ETH Zurich</td>
<td>Static PPQ trap</td>
<td>Porapak™ Q 80/120, 1.20 m × 2.15 mm i.d.</td>
<td>−20</td>
<td>30 min</td>
<td>[26]</td>
</tr>
<tr>
<td>Goethe University</td>
<td>GC</td>
<td>Supel-Q-Plot, 60–80 mesh</td>
<td>−35</td>
<td>unkn</td>
<td>[27]</td>
</tr>
<tr>
<td>Tulane University (now University of South Florida)</td>
<td>Static PPQ trap</td>
<td>Porapak™, 0.5” o.d., 185 mm filled</td>
<td>−15</td>
<td>unkn, passed through twice</td>
<td>[28]</td>
</tr>
<tr>
<td>Imperial College London</td>
<td>Static PPQ trap</td>
<td>Porapak™ Q</td>
<td>−35</td>
<td>unkn</td>
<td>[12]</td>
</tr>
<tr>
<td>Harvard University (in-line small sample prep)</td>
<td>Static PPQ trap</td>
<td>Porapak™ Q, 0.5” o.d. pyrex U-trap</td>
<td>−10 to −12</td>
<td>4-7 min</td>
<td>[29]</td>
</tr>
<tr>
<td>University of Michigan (July 2011 to Dec. 2014) (static PPQ trap method)</td>
<td>Static PPQ trap</td>
<td>Porapak™ Q material, 50–80 mesh</td>
<td>−30°C</td>
<td>5 min equilibration + 15 min transfer</td>
<td>[30]</td>
</tr>
<tr>
<td>University of Miami</td>
<td>Static PPQ trap</td>
<td>Porapak™ Q</td>
<td>−27°C to −30°C</td>
<td>unkn, <45 min</td>
<td>[29]</td>
</tr>
<tr>
<td>University of East Anglia</td>
<td>Static PPQ trap</td>
<td>Porapak™ Q</td>
<td>−20°C to −30°C</td>
<td>80 min</td>
<td>[30]</td>
</tr>
<tr>
<td>University of Michigan (new)</td>
<td>Static PPQ trap</td>
<td>Porapak™ Q, ~3” filled length, 6 mm o.d., 4 mm i.d.</td>
<td>−10°C to −15°C</td>
<td>10 min</td>
<td>This study</td>
</tr>
</tbody>
</table>

unkn = unknown. GC = gas chromatography.
were prepared on the clumped isotope prep-line without undergoing the PPQ trap cleaning step, and the measured δ13C and δ18O values were within error of values measured on the Kiel III and Kiel IV devices. This was done to test for biases introduced by differences between the Kiel devices and the clumped isotope reaction system (e.g., the clumped isotope system uses a common acid bath, whereas the Kiel devices use many separate reaction vessels where acid is added to each sample individually), and to identify baseline contaminant levels in an uncleaned sample.

Stable isotope values and small deltas (δ45, δ46, and δ47)

Although the ultimate result of a stable isotope measurement is a δ13C and/or δ18O value, the raw beam intensities (in millivolts) recorded by the mass spectrometer are first converted into “small delta” values that relate the abundance of CO2 molecules with a given heavier mass (45, 46 or 47) in the sample gas and reference gas relative to the most common isotopologue (mass 44). These small deltas are defined following Huntington et al.[14] and are calculated as:

\[
\delta^{4X} = \frac{5 \times Rst_{4X_1} - 1}{0.5 \times (Rst_{4X_1} - Rst_{4X_2})} \cdot Rsa_{4X} - 1
\]

where 4X is 45, 46, or 47. Rsa4X and Rst4X are defined as the ratio of the intensity of a given mass (4X, 45–47) to the intensity of mass 44 for the sample (Rsa) or reference gas (Rst). Rst4X_1 and Rst4X_2 are the half-cycle measurements of the reference gas preceding and following the sample gas measurement. The factor of 1000 commonly found at the end of this equation[14] has been removed to conform with IUPAC notation guidelines.[13] The δ46O value can be calculated from the measured δ46 value, and by assuming mass-dependent behavior of δ17O relative to δ18O, the δ13C value can be calculated from a δ17O-corrected δ46 value. The δ47 value is a metric for the total inventory of heavy isotopes, and is a convolution of the δ13C and δ18O values. As the behavior of δ45, δ46, and δ47 tracks the changing isotopic composition, these direct measurements are used in place of δ13C and δ18O values in this study.

RESULTS

Effect of PPQ trap temperature on yield

The custom-built reaction-extraction apparatus at the University of Michigan permits the direct quantification of yield through the PPQ trap as the sample gas is frozen into the same isolated volume equipped with an electric manometer before and after cleaning.[16] The yield is calculated as the pressure post-PPQ cleaning minus the background pressure divided by the pressure pre-PPQ cleaning minus the background pressure. The error on a single calculated yield is conservatively estimated at ±0.5% or less.

Figure 1 combines data from all three measurement configurations and relates yield to PPQ trap temperature. Yields of greater than 99% are routinely achieved for PPQ trap temperatures as low as −30°C and a duration of 5 min of equilibration followed by 15 min of cryogenic pumping/trapping. The yield drops to 97–98% between −30°C and −40°C. This indicates that gas is not being quantitatively transferred and collected. Some loss is expected (<1%) because this cleaning step is employed to remove contaminants and residual non-condensables, but yields of less than 99% suggest that not all the sample gas is being collected after cleaning.

In setting up the static PPQ trap at U of M, the duration and PPQ trap temperature were initially determined by assessing the yield through the PPQ cleaning step. A threshold of 99% yield was deemed satisfactory, and a combination of −30°C PPQ trap temperature and 5 min equilibration followed by 15 min of collection was sufficient to routinely achieve this level of yield.

The duration of the PPQ transfer step also contributes to the overall yield but was not explicitly tested in this study. Increasing the transfer duration for the coldest PPQ trap temperatures would likely have increased the yield. The duration of the transfer step in both the ColdPPQ and WarmPPQ configurations was deemed to be long enough if the yield was above 99%.

Contaminant removal

Ultimately, the purpose of the PPQ trap is to remove contaminants such as hydrocarbons and sulfur- and chlorine-containing compounds that cause isobaric interference on masses 47 and 48. One risk of using a warmer PPQ trap temperature is that contaminants will not be fully removed. The presence of contaminants is usually assessed through a comparison of the Δ48 value of samples and pure standard gases.[14] In the case where no standard gases were run (“Stable Isotope Tests” – November 2014), relative comparison of Δ48 between samples run at different PPQ trap temperatures (or not through the PPQ trap at all) can suffice to assess contaminant removal. Figure 2 shows the Δ48 offset (difference from the −20°C to −10°C mean value) for samples run at different PPQ trap temperatures, as well as samples
where the PPQ cleaning procedure was not performed. Samples run through the PPQ trap (at any temperature) had much lower Δ35 offsets than those that bypassed the PPQ cleaning step. Little to no additional decrease in Δ35 offset occurs between −10°C and −40°C. Samples from the November 2014 “Stable Isotope Tests” were also compared with standard gases run in previous and subsequent measurement sessions. The Δ46 values for samples run through the PPQ trap at any temperature were within acceptable limits, whereas samples that bypassed the PPQ trap had Δ35 values above acceptable limits. This demonstrates that even at temperatures as high as −10°C, the PPQ trap is effective in removing contaminants.

Effect of PPQ trap temperature on δ45, δ46, and δ47 values

Ideally, the PPQ cleaning step would remove contaminants while having no effect on the isotopic composition of the CO2. Figure 3 shows offsets in δ45, δ46, and δ47 relative to the PPQ trap temperature (with the absolute values of δ45, δ46, and δ47 on the right-hand axes). The isotopic values (δ45, δ46, and δ47) are constant for PPQ trap temperatures between −10°C and −20°C. Below −20°C, fractionation occurs, linearly driving δ45, δ46, and δ47 to lower values. The behavior of CM and OO is similar. To combine them, the fractionation is best illustrated as the offset from the mean isotopic value of unfractionated samples (those run at temperatures of −20°C or higher). The slopes of the lines shown in Fig. 3 have units of ‰/°C (abbreviated to ‰/°Cbe20), and will be referred to in future as dδX/DT, where 4X is 45, 46, or 47.

The magnitude of the fractionation in δ45, δ46, and δ47 values increases as the mass of the isotopeologues increases (dδ47/DT > dδ46/DT > dδ45/DT). For the November 2014 data shown in Fig. 3 (with CM and OO combined), these slopes are 0.0103 ± 0.0008, 0.0378 ± 0.0025, and 0.0519 ± 0.0035 ‰/°Cbe20, for δ45/DT, δ46/DT, and δ47/DT, respectively. When fitted separately, the slopes for CM are slightly steeper than for OO for all three masses (Supplementary Table S2, Supporting Information), but agree within error. Data collected during the June 2015 “Cold PPQ Tests” are noisier but show the same pattern (Supplementary Fig. S1 and Table S2, Supporting Information), indicating that this behavior is consistent on a timescale of months to years.

Because δ45, δ46, and δ47 are closely related to the δ13C and δ18O values, the same pattern seen in Fig. 3 can also be observed in the stable isotopic compositions (Supplementary Fig. S2, Supporting Information). δd13C/DT and δd18O/DT are 0.0097 and 0.0392 ‰/°Cbe20, respectively, for the November 2014 data with CM and OO combined.

Correction for fractionation of δ45, δ46, and δ47 values

The observed fractionations in δ45, δ46, and δ47 are consistent and linear. Therefore, the ‘true’ values of δ45, δ46, and δ47 can be reconstructed based on a linear shift of the data to a value that would have been measured if the sample were run at a PPQ trap temperature of −20°C (or higher). This can be accomplished with the following equation:

\[
\delta^{4Xn} = \delta^{4X} - \frac{\delta^{4X}}{\delta^{13C}} \frac{dT}{d\delta^{13C} + \delta^{18O}} (\text{PPQtrapTemp} + 20)
\]

where 4X = 45, 46, or 47 and the δdX/DT values are taken from Fig. 3 and have units of ‰/°Cbe20. The new small delta values (δ45n, δ46n, and δ47n) can then be used to calculate a corrected raw Δ47 (Δ47), as well as the new stable isotopic values (δ13Cn and δ18On). For samples run at −30°C, this corresponds to shifts of 0.103 ‰, 0.378‰, and 0.519 ‰ for δ45, δ46, and δ47, respectively (10 times dδ4X/DT from Fig. 3 for the 10° below −20°C at which the PPQ trap was held).

Effect of PPQ trap temperature on raw Δ47 values

Given that δ45, δ46, and δ47 are used to calculate the raw value of Δ47 (as defined by Huntington et al.141), the observed shifts in δ45, δ46, and δ47 at lower PPQ trap temperatures propagate through calculations and result in a shift in the raw value of Δ47. Direct comparison of the raw Δ47 values between measurement sessions is prohibited by the continuously changing reference frame, which can shift on weekly or longer timescales. During normal measurement sessions, standard gases are run daily alongside samples to continuously assess and quantify changes in the reference frame. Even within a measurement session that might last 4–6 weeks, the reference frame may shift enough to prohibit direct comparison of raw Δ47 values between the beginning and end of the session.

In November 2014, we ran samples in the “Stable Isotope Test” configuration over two consecutive days, a short enough interval to consider the reference frame fixed. These samples can be used to assess the effects of the fractionations in δ45, δ46, and δ47 on the raw value of Δ47. Each was only run for 20–30 cycles, about a third of the duration of a normal clumped isotope measurement. The long duration of typical clumped isotope measurements is necessary to reduce the standard error enough to allow for reasonable climatological interpretations of data (±0.005–0.010 ‰ or ±1–2°C). In this case, the error bars are larger (±0.02–0.04 ‰) than on a typical measurement, but the fractionation in raw Δ47 can still be seen.

Figure 2. Δ35 offset vs PPQ trap temperature for CM and OO measured in November 2014. Offset calculated from the mean of all replicates of CM or OO run at PPQ trap temperatures between −20°C and −10°C. “No PPQ” refers to samples that were reacted and measured without passing through the PPQ trap. Error bars represent 1 SE.
Figure 4 shows raw Δ_{47} offsets plotted against the PPQ trap temperature for the November 2014 "Stable Isotope Test" runs. Following the pattern seen in δ_{45}, δ_{46}, and δ_{47} values, a least-squares regression is fitted to the data with all data measured at temperatures higher than $-20°C$ "collapsed" to $-20°C$. The resulting regression line has a slope ($d\Delta_{47\text{raw}}/dT$) of $0.0037 \pm 0.0019 \text{‰}/°C$. For a sample run at $-30°C$, this would mean that the measured raw Δ_{47} value would be 0.037‰ lower, corresponding to a temperature roughly $8°C$ higher for samples in the range of earth surface temperatures. If CM and OO are treated separately, $d\Delta_{47\text{raw}}/dT$ of $0.0037 \pm 0.0019 \text{‰}/°C$ for OO and $0.0046 \pm 0.0024 \text{‰}/°C$ for CM. As with δ_{45}, δ_{46}, and δ_{47} values, CM has a larger shift in Δ_{47} per degree below $-20°C$ than OO. This difference is investigated using idealized data in a later section.

Figure 3. Offsets of δ_{45}, δ_{46}, and δ_{47} vs PPQ trap temperature for samples run in November 2014. Offsets calculated from the average of all replicates of CM or OO run at a PPQ temperature between $-10°C$ and $-20°C$. Right axes show the measured, uncorrected value for CM and OO. Error bars represent 1 SE. Black lines are fitted through the combined CM + OO data as if all measurements made at $-20°C$ or warmer were "collapsed" to $-20°C$. Slopes ($d\delta_{4X}/dT$) for fitted lines are shown in each panel with the standard error estimate.

Effect of PPQ trap temperature on Δ_{47}-RFAC

In a normal measurement session, reference gases are run daily to constrain the reference frame. This reference frame takes into account changes in the non-linearity of the mass spectrometer and any stretching or compression of the Δ_{47} scale. It also takes into account variations in sample preparation through time. After the reaction step, CO2 derived from carbonate samples is treated identically to heated and equilibrated gases.
Figure 4. Offset in raw Δ_{47} vs PPQ trap temperature for CM and OO measured in November 2014. A line is fitted as if all measurements made at -20°C or warmer were ‘collapsed’ to -20°C, following the pattern observed in Fig. 3. Error bars represent 1 SE. These are larger than on typical clumped isotope measurements due to the shorter counting time (see text). The slope of the fitted (black) line is shown with the standard error estimate.

Therefore, any fractionation of gas that occurs in the cleaning step (or other preparation steps) should be fully accounted for in the reference frame correction.

If standard gases and carbonates are run at a cold temperature (e.g. -30°C), but are treated identically, a correction using Eqn. (4) will shift all sample gases and standards to higher values (in both δ^{47} and Δ_{47}), keeping the unknowns in the same position in the reference frame defined by the standard gases, and resulting in a different Δ_{47}-RFAC value in the PPQ shift-corrected data. Carbonates run at -30°C in June 2015 (the same temperature as the gas standards) showed an average shift of -0.037 ‰ in raw Δ_{47} and 0.005 ‰ in Δ_{47}-RFAC. In contrast, carbonates run at -40°C had a shift of -0.073 ‰ to -0.078 ‰ in raw Δ_{47} and -0.026 ‰ to -0.022 ‰ in Δ_{47}-RFAC (Supplementary Tables S1(c) and S1(d), Supporting Information). This magnitude shift in Δ_{47}-RFAC would lead to a temperature difference of $5–6^\circ$C for samples near earth surface temperatures, a large enough difference to change climatological interpretations.

Studying the effects of the fractionation through idealized calculations

To investigate the effect of the observed fractionations in δ^{45}, δ^{46}, and δ^{47} values on raw Δ_{47}, Δ_{47}-RFAC and the reference frame parameters, we can create synthetic gas and carbonate data and perturb it in different ways. We start by defining a reference frame (RF) with idealized parameters (RF1: SlopeEGL = 0.02, SlopeETF = 1.08, IntETF = 1.0), representing

Figure 5 compares Δ_{47}-RFAC of original data (“ColdPPQ”) with data corrected using Eqn. (4) (“ColdPPQ corrected”). The mean Δ_{47}-RFAC value of 0.410 ± 0.006 ‰ (1 SE) is unchanged between the ColdPPQ configuration and the ColdPPQ corrected for the PPQ shift. Both agree well with the mean for January 2015 (WarmPPQ configuration), which is 0.414 ± 0.004 ‰ (1 SE) (Fig. 5, left panel). In comparison, δ^{13}C shifts from 1.86 ± 0.10 ‰ (1 sd) to 1.95 ± 0.10 ‰ (1 sd) due to the PPQ-shift correction, bringing it into agreement with the WarmPPQ mean δ^{13}C value of 1.97 ± 0.03 ‰ (1 sd) (Fig. 5, right panel), and with the independent estimate of 2.04 ± 0.03 ‰ (1 sd) from the Kiel devices. δ^{45}, δ^{46}, δ^{47}, and δ^{18}O behave in the same way as δ^{13}C, with the correction bringing ColdPPQ data into agreement with WarmPPQ data.

If, in contrast, the gases and carbonates were run through the PPQ at (even slightly) different temperatures, Eqn. (4) will shift the gases and carbonates by different amounts, changing the carbonates’ positions relative to the reference frame defined by the standard gases, and resulting in a different Δ_{47}-RFAC value in the PPQ shift-corrected data. Carbonates run at -30°C in June 2015 (the same temperature as the gas standards) showed an average shift of -0.037 ‰ in raw Δ_{47} and 0.005 ‰ in Δ_{47}-RFAC. In contrast, carbonates run at -40°C had a shift of -0.073 ‰ to -0.078 ‰ in raw Δ_{47} and -0.026 ‰ to -0.022 ‰ in Δ_{47}-RFAC (Supplementary Tables S1(c) and S1(d), Supporting Information). This magnitude shift in Δ_{47}-RFAC would lead to a temperature difference of $5–6^\circ$C for samples near earth surface temperatures, a large enough difference to change climatological interpretations.
typical conditions for our instrument over recent measurement sessions, and create synthetic gas data that fits this reference frame (see Supporting Information). We also define carbonates with a range of compositions (δ13C and δ18O values between −30‰ and +30‰, raw Δ47 value between −1.5‰ and 0.5‰). For both gases and carbonates, we perturb these ‘true’ values as if these samples were run through a PPQ trap held at −30°C. The shifted gases are then used to calculate a new reference frame (RF2: SlopeEGL = 0.02015, SlopeETF = 1.0797, IntETF = 1.0355) (Supplementary Figs. S5 and S6, Supporting Information), which is used to calculate new Δ47-RFAC values for the shifted carbonates. We assess the magnitude of the shift in raw Δ47 and Δ47-RFAC values of synthetic carbonate data through two quantities, dΔ47/dT and Δ47-RFAC/dT, which represent the change in raw Δ47 or Δ47-RFAC per °C below −20°C (%/°Cb20).

Higher (lower) dΔ47/dT values are found for samples with lighter (heavier) bulk isotopic compositions (Supplementary Fig. S3, Supporting Information). CM has lower δ13C, δ18O, and Δ47-RFAC values than OO, so would be expected to have a larger dΔ47/dT value based on this result. At the mean compositions of CM and OO in the synthetic data, the dΔ47/dT values are 0.0042 and 0.0040 %/°Cb20, respectively. The observed values of dΔ47/dT are 0.0046 ± 0.0024 %/°Cb20 for CM and 0.0032 ± 0.0033 %/°Cb20 for OO. These synthetic dΔ47/dT values were calculated using the δ4X/dT values from Fig. 2, where CM and OO were treated together. When CM and OO are treated separately, all three δ4X/dT values are slightly larger for CM than for OO. When these sample-specific δ4X/dT values are used instead, the newly calculated dΔ47/dT values (0.00477 for CM, 0.00329 for OO) match the observed values more closely.

With the two reference frames, we can also assess the effects of the fractionation on Δ47-RFAC. Changes in Δ47-RFAC caused by the fractionation are less than ±0.001 %/°Cb20 for all bulk isotopic compositions tested (Supplementary Fig. S7, Supporting Information). This leads to a maximum shift of 0.01 % for a sample run at a PPQ trap temperature of −30°C, but less than 0.003 % for most common earth surface isotopic compositions (±5‰ in δ13C and δ18O values).

DISCUSSION

Effects on previously published data from U of M

The discovery that δ13C, δ18O, and raw Δ47 values are fractionated when CO2 gas is passed through a PPQ trap at −30°C is initially worrisome for a lab that has published several manuscripts using this procedure over the last 3 years.[116–119] However, as demonstrated above, the Δ47-RFAC values are unchanged (<0.005‰ difference), as long as gas standards and samples are treated identically, which has been the practice. Therefore, any published Δ47-RFAC data or calculated temperatures are unaffected by the discovery of this fractionation.

The δ13C and δ18O data measured in the ColdPPQ configuration, on the other hand, are affected by the PPQ trap fractionation. For a PPQ trap temperature of −30°C, the δ13C and δ18O values, respectively, become 0.10 % and 0.36 % higher than if the sample was run at −20°C or warmer. This translates to a difference of 0.34–0.36‰ in the δ18Owater value, depending on the isotopic composition and calibration used. All samples run in the ColdPPQ trap configuration are equivalently affected, so any interpretation of relative changes in δ18O, δ13C, or δ18Owater values would not be compromised. A change of 0.35‰ in the absolute value of δ18O or δ18Owater or a change of 0.10‰ in the absolute value of δ13C is small enough that it does not change any published conclusions.

Lessons for using static PPQ traps in future

As the field of clumped isotope paleothermometry continues to expand, more and more labs are independently beginning to make this challenging measurement. Some of those labs will choose to use the “static PPQ” set up, and will need to determine the ideal PPQ trap temperature for their individual sample preparation device. This study serves to demonstrate the need for care when initially choosing PPQ trap temperature. High yield (>99%) alone is not sufficient. In this study, samples run at PPQ trap temperatures between −20°C and −30°C had yields above 99% but were still fractionated in δ47, δ46, and δ48. For samples run at the coldest PPQ trap temperatures, increasing the duration of the transfer step would probably have increased the yield, but would not be guaranteed to avoid the observed fractionation, as seen in the −25°C and −30°C samples. In order to determine the ideal PPQ trap temperature and duration, it must be determined if the sample CO2 is faithfully maintaining its isotopic composition through the cleaning step.

To determine the proper PPQ trap temperature, we recommend measuring samples at a variety of temperatures while monitoring yield, δ47, δ46, δ47, Δ47, and Δ48. The ideal temperature is one where all contaminants are removed (low Δ48), but δ45, δ46, δ47 and Δ47 values fall within a plateau. That way, there is a buffer such that if the PPQ trap temperature changes by ±1–2°C, it would still be safely out of the range of temperatures at which fractionation occurs. Duration of the transfer step is also a factor. Due to the lengthy sample preparation process for clumped isotopes (~1 h/sample), saving time (even a few minutes per sample) is prized. Therefore, within a plateau of temperatures at which there is no fractionation, but contaminants are still effectively removed, we prefer the higher end (~15°C to −10°C in this case) to allow for quicker transfer of gas. It is possible that PPQ trap temperatures higher than −10°C would also be acceptable, but such temperatures were not tested in this study.

CONCLUSIONS

The clumped isotope paleothermometry technique requires additional cleaning steps beyond those used for traditional stable isotope studies in order to remove molecules that cause isobaric interferences on masses 47 and 48. This is often accomplished by passing CO2 derived from calcium carbonate through a U-trap (or equivalent) packed with Porapak™ Q material, a porous polymer adsorbent that traps contaminants but allows CO2 to pass. Here, we demonstrate that if the PPQ trap temperature is too cold, δ13C, δ18O and raw Δ47 values will be fractionated with the magnitude of the offset increasing as the PPQ trap temperature decreases.
below –20°C. The yield of gas through the PPQ trap, on the other hand, is maintained at >99% for PPQ trap temperatures as low as –30°C, resulting in an interval between –20°C and –30°C where yields are high, but isotopic fractionation is occurring. If samples and standards are prepared identically, the reference frame correction will account for fractionations in δ47 and Δ47, and Δ47-RFAC will be unaffected. If samples are prepared at (even slightly) different PPQ trap temperatures from standard gases, the disparity in fractionation between the two will cause a shift in Δ47-RFAC at a rate of 0.004–0.005‰/°Cb20. This can be corrected using a simple linear correction of δ45, δ46, and δ47 that is then translated through to the Δ47-RFAC, δ13C, and δ18O values. This study acts as a guide to other labs using or planning to use the static PPQ trap cleaning method in the preparation of samples for clumped isotope analysis, and puts forward a technique.

Acknowledgements
S.V.P. was funded by the NSF Ocean Sciences (OCE) Postdoctoral Research Fellowship. I.Z.W. was funded by the University of Michigan E&ES Department Turner Award, and student grants from AAPG and SEG. K.C.L. was funded by an NSF EAR grant 1123733. The authors also thank L. Wingate and the U of M Stable Isotope Laboratory.

REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article at the publisher’s website.