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Abstract The mitochondrial membrane-associated carnitine
palmitoyltransferase system is a validated target for the treat-
ment of type 2 diabetes mellitus. To further facilitate struc-
ture-based drug discovery, we determined the crystal structure
of rat CPT-2 (rCPT-2) in complex with the substrate analogue
palmitoyl-aminocarnitine at 1.8 Å resolution. Biochemical anal-
yses revealed a strong effect of this compound on rCPT-2 activity
and stability. Using a computational approach we examined the
membrane association of rCPT-2. The protein interacts with the
membrane as a functional monomer and the calculations confirm
the presence of a membrane association domain that consists of
layers of hydrophobic and positively charged residues.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Cytosolic long-chain fatty acid (LCFA)-CoA esters are

transported into mitochondria by two carnitine acyltransferase

(CPT) enzymes in conjunction with a carnitine/acylcarnitine

translocase (CACT) [1]. CPT-1 is an integral membrane pro-

tein of the outer mitochondrial membrane and catalyzes the

transesterification of LCFA-CoA to acylcarnitine, which is

transferred into the mitochondrial lumen by CACT. CPT-2

converts acylcarnitine back to LCFA-CoA, thereby providing

substrates for b-oxidation.

Pharmacological attenuation of mitochondrial LCFA im-

port by inhibition of CPT-1 has been shown to ameliorate

the symptoms of diverse diseases such as type 2 diabetes mel-

litus (T2D), psoriasis and myocardial infarction in animal

models [2–5]. Modulation of CPT-1 activity has also been
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implicated in prevention of cardiac reperfusion injury [6], pan-

creatic insulin secretion [7], sepsis [8] and apoptosis [9].

The most advanced medicinal chemistry programs focus on

inhibitors of the CPT system in liver as a target for the treat-

ment of T2D. While chemically diverse CPT inhibitors have

been described [10], the class of non-hydrolyzable acylamino-

carnitine analogs of the CPT-1 product acylcarnitine are the

best characterized [2,3,11–14]. Recently, we reported the crys-

tal structure of rat CPT-2 (rCPT-2) in complex with ST1326

[15], which is an ureido-acylaminocarnitine. A derivative of

this inhibitor class, (S)-N-palmitoylated aminocarnitine (com-

pound 16 of the series described in [3]), is also a potent CPT-

directed inhibitor of mitochondrial LCFA import.

Here we report the elucidation of the binding mode of com-

pound 16 in complex with rCPT-2 by crystal structure analysis

at 1.8 Å resolution. Compound 16 more closely resembles the

physiological CPT-2 substrate palmitoyl-carnitine (only the es-

ter oxygen is exchanged against nitrogen) when compared to

ST1326. Improved resolution and data quality compared to

the rCPT-2 Æ ST1326 complex now allows for an accurate

superimposition of inhibited and uninhibited molecular struc-

tures of rCPT-2. Titration of rCPT-2 with compound 16 in a

fluorescence-based thermal shift assay revealed a pronounced

concentration dependent effect on the stability of the complex.

Analysis of the rCPT-2 structure with a novel computational

approach [16,17] substantiates that a previously identified

rCPT-2-specific sequence insertion [15,18] serves as membrane

anchor.
2. Materials and methods

Cloning, purification and the activity assay of His6-tagged rCPT-2
were performed as described [15]. Crystallization and the thermal shift
assay described herein were performed with rCPT-2 in a buffer
containing 25 mM Tris/HCl (pH 8), 0.15 M NaCl, 2 mM tris(2-carb-
oxyethyl)phosphine (TCEP) as reducing agent, 1% (w/v) b-octylgluco-
side (bOG) and 0.02% (w/v) NaN3. Compound 16
[R-3-(hexadecanoylamino)-4-(trimethylazaniumyl)butanoate] was syn-
thesized in-house according to Shinagawa et al. [3].

2.1. Thermal shift assay
The experimental design was adapted from a published fluorescence-

based thermal shift assay [19]. rCPT-2 (1 lM) was pre-incubated with
the fluorescence probe Sypro Orange (Molecular Probes) and com-
pound 16. The fluorescence signal was recorded on a Bio-Rad MyiQ
real-time PCR machine with an excitation wavelength of 490 nm and
an emission wavelength of 530 nm (the absorption and emission
maxima of Sypro Orange are 470 nm and 570 nm, respectively) and
blished by Elsevier B.V. All rights reserved.
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a heating rate of 1 �C/min. The fluorescence signal was corrected for
baseline drift due to thermal disintegration and photo bleaching of
the fluorescence probe. The melting points of rCPT-2 were obtained
by fitting first derivative plots of the fluorescence data produced with
Bio-Rad software to the first derivative of the equation described by
Pantoliano et al. [19]:
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Table 1
Data collection and refinement statistics

Data collection Compound 16

Space group C2221

Cell dimensions
a, b, c (Å) 95.3, 97.8, 312.1
Matthews’ coefficient (2 mol/AU) 2.5
Resolution (Å)a 50.0 �1.78 (1.89–1.78)
Rsym

b 3.4 (7.8)
I/rI 22.26 (12.71)
Completeness (%) 95.6 (91.0)
Redundancy 7.2 (6.4)
Refinement
Resolution (Å) 50.0–1.78
No. reflections 120296 (8937, working set)
Rwork/Rfree

c 17.7 (19.6)/22.3 (28.9)
No. atoms 11167
Protein 10085
Ligand 56 [20]d

Water 1076
B-factors (overall) 18.3
Protein 17.6
Ligand 18.9 [55.1]d

Water 24.3
R.m.s. deviations
Bond lengths (Å) 0.012
Bond angles (�) 1.278

aValues in parentheses are for the highest resolution shell (1.781–
1.827 Å).
bRsym =

P
jI(h)j � ÆI(h)æj/

P
I(h)j.

cR =
P

iFobsj � jFcalci/
P
j Fobsj,Rfree was calculated using a randomly

selected set (5%) of reflections.
dCompound 16. B-factor of single bOG attached to molecule A in
where F is the fluorescence dependent on temperature T, FN and FU are
the fluorescence prior to (native state) and after (unfolded state) the
thermal melting process, Tm is the melting point, DHun and DCp,un

are the enthalpy of protein unfolding and the change in protein heat
capacity during unfolding in the absence of ligand and R is the gas con-
stant. See supplementary Fig. 1 for fits.

2.2. Protein crystallization
rCPT-2 at 12–18 mg/ml was incubated with a 10-fold molar excess of

compound 16 and subsequently co-crystallized by vapor diffusion with
0.15 M DLDL-malic acid pH 7.0, 20% (w/v) PEG 3350 (Index 91, Hamp-
ton Research). Micro-seeds of unliganded rCPT-2 crystals were added
prior to drop setup. Crystals were flash frozen in liquid nitrogen after
exchanging excess mother liquor and Al’s oil against 100% (v/v) paraf-
fin oil.

2.3. Data collection and processing
A dataset for the rCPT-2 Æ compound 16 complex was collected from

a single crystal at 100 K with k = 0.9795 Å on beam line X10SA at
SLS, Villigen, Switzerland, processed and scaled with XDS [20]. Data
statistics are summarized in Table 1.

2.4. Structure solution and refinement
Molecular replacement was performed with the program Phaser [21]

using structure of PDB entry 2DEB [15] as search model. The final
model at 1.78 Å resolution was built using cycles of model building
in MOLOC [22] solvent building in autoBUSTER [23] and refinement
in Refmac [24]. For the final structure 93.4% of the residues lie in the
most favored, 6.2% in the additionally allowed regions and Leu 129 as
well as Asn 230 are outliers of the Ramachandran plot. Refinement
statistics are summarized in Table 1. CNS [25] was used for calculating
simulated annealing omit maps (1000 K starting temperature). Struc-
ture figures were prepared with PyMOL [26].

2.5. Calculation of rCPT-2 membrane interaction
Unlike transmembrane proteins, peripheral proteins do not span the

membrane. Therefore, they have no hydrophobic thickness, and their
DGtransfer depends on only three variables (D, s and u). Instead of
the hydrophobic thickness, we calculated the maximal membrane pen-
etration depths (D) for the membrane anchor of monotopic membrane
proteins. The tilt angle (s, and its directionality u) of peripheral pro-
teins was calculated as the angle between the bilayer normal and the
long molecular axis of the protein. The latter was defined as an axis
providing the minimal moment of inertia of the protein [27].

This computational approach for positioning of proteins in mem-
branes has been previously developed and tested for 109 transmem-
brane and 476 peripheral or integral monotopic membrane proteins
[16,17,28]. A protein is considered a rigid body that freely floats in
the fluid hydrocarbon core of a lipid bilayer. Free energy of the protein
was represented as sum of transfer energies of all its atoms from water
to the hydrocarbon core of the lipid bialyer (DGtransfer) and ionization
energies of charged residues (DGpK). The energy was optimized in a
coordinate system whose Z axis coincided with the bilayer normal. It
depends on only three variables (u, s, D):

DG ðu; s;DÞ ¼ DG þ DG ð2Þ
calc transfer pK
where D is a shift of the protein center along the Z axis, s is a tilt angle
of longitudinal protein axis relative to the Z axis (membrane normal),
u is a rotation angle that defines the direction of the tilt.

Transfer energy of a protein was calculated using the implicit solva-
tion model:
DGtransfer ¼
X

i

ASAir
W�M
i f ðziÞ ð3Þ

where ASAi is the accessible surface area of atom i, and rW�M
i is the

solvation parameter of atom i (its transfer energy from water to mem-
brane interior expressed in kcal/mol per Å2). ASA were determined
using the subroutine SOLVA from NACCESS (kindly provided by
Hubbard and Thornton, Department of Biochemistry and Molecular
Biology, University College London) with radii of Chothia [29], with-
out hydrogen atoms, and with a probe radius of 1.4 A.

All atomic solvation parameters were previously derived from the
partition coefficients of organic compounds between water and decadi-
ene [30]. These parameters are normalized by the effective concentra-
tion of water, which changes gradually in a narrow region between
the lipid head group region and the hydrocarbon core. We used a sig-
moidal water concentration profile, as determined in EPR studies on
spin-labeled phospholipids [31]:

f ðziÞ ¼ 1=ð1þ eðjzi j�z0Þ=kÞ ð4Þ
brackets.
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The characteristic distance k of this profile was chosen as 0.9 Å. All
charged residues of the protein were considered neutral in the mem-
brane hydrocarbon core. The corresponding ionization energy was de-
scribed by the Henderson–Hasselbalch equation, where the ionization
energy of each residue k is distributed between its charged side-chain O
or N atoms proportional to their relative accessible surface areas ASAi:

DGpK ¼ 2:3RT
XN

k¼1

ðpH� pKkÞ
XMi

i¼1

ðASAi=ASAtot
k Þf ðziÞ

" #
ð5Þ

where ASAtot
k is total ASA of all charged atoms in this residue, and pK

values of Asp, Glu, Lys and Arg residues are chosen as described pre-
viously [16] the penalty for His is zero, since it is uncharged at pH 7.
Global energy minimization was performed by combining a grid scan
and the Davidon–Fletcher–Powell method [16]. Heteroatoms were not
included in the calculations.
3. Results and discussion

3.1. Overall structure and compound 16 binding mode

The overall fold and positions Ca atoms of the present and

previously reported rCPT-2 structures are essentially identical

with a root-mean-square-deviation (RMSD) of 0.23–0.47 Å

(Table 2). Compound 16 is located in a large tunnel that pen-

etrates rCPT-2. The hydrophilic head-group of the molecule

binds to the centre of that tunnel with direct hydrogen-bonds

to the side-chains of residues Tyr120, His372, Ser488, Thr499

and Ser590 (Fig. 1A and B). The C15-alkyl part of the ligand

occupies the essentially hydrophobic tunnel from the centre of

the molecule to the surface. While the overall topology of

rCPT-2 is retained in the inhibited and uninhibited states of

the enzyme, the superimposition of these two states emphasizes

a rearrangement of active site residues occurring upon ligand

binding (Fig. 1A and B). The electron density of the side-chain

of Tyr120 is better defined in the structures with bound inhib-

itor as compared to uninhibited rCPT-2 (data not shown) and

indicates that the hydroxyl oxygen of Tyr120 moves approxi-

mately 4 Å towards the ligand binding site. This movement

establishes the hydrogen bonding network also involving resi-

dues Asp376 and Arg498, which is important for the alignment

of a conserved water molecule and proper substrate binding in

the active site [15]. The entire catalytic loop of rCPT-2 span-

ning residues His372–Gly377 undergoes a change in conforma-

tion upon binding of compound 16 in order to position Asp376

in the hydrogen network. The ability of the catalytic loop to

adopt different conformations is emphasized by a peptide-

plane flip between residues Asp376 and Gly377 in the com-

pound 16 complex structure (Fig. 1B). No correlation exists

between the orientation of the peptide-plane and presence of
Table 2
Pairwise RMSD of rCPT-2 structure superimpositionsa

Superimposition RMSD (Å)

rCPT-2 Æ compound 16
(chain A)b – compound 16 (chain B)

0.26

rCPT-2 Æ compound 16
(chain A) – 2DEBc (chain A, uninhibited)

0.23

rCPT-2 Æ compound 16
(chain A) – 2FW3d (ST1316)

0.42

rCPT-2 Æ compound 16
(chain B) – 2FW3 (ST1316)

0.46

aRMSD for rCPT-2 Æ compound 16-2H4T (P1) [18] = 0.43–0.47 Å.
bC2221.
cC2221.
dP212121.
the aminocarnitine inhibitors since the peptide-flip occurs

neither in the ST1326 complex or uninhibited structures nor

in the rCPT-2 structure solved by Hsiao et al. [18]. Compound

16 and ST1326 are nearly isosteric with regard to ligand struc-

ture but the peptide-flip induces differences in the ligand pock-

ets of rCPT-2 in the complex structures. The distance from the

carbonyl-oxygen of the Asp376–Gly377 peptide bond to the

acylic b carbon atom of compound 16 is 6.3 Å (6.27 Å) in

chain A (chain B), whereas the equivalent distance to the linker

nitrogen of ST1326 is 5.04 Å. Gly377 immediately precedes

helix a17 (residues Val378–Thr394) of rCPT-2. The carbonyl-

oxygen of the Asp376–Gly377 peptide bond in the compound

16 complex is situated within hydrogen bonding distance

(2.99 Å and 3.14 Å for chain A and B) to the amino-nitrogen

atoms of Val378, Ala379 and Val380.

Important questions raised by these observations are under

which conditions the peptide-flip is energetically favored and

whether this peptide-flip can also occur in L-CPT-1. Interest-

ingly, the average B-factor of all catalytic loop atoms is

13.2 Å2 (chain A), which is significantly lower than the average

B-factor of the entire protein and is also true for the uninhib-

ited state of rCPT-2. This implies that the observed features

are likely due to two discrete conformations and not a result

of high loop flexibility. The presence of a conserved proline

residue could render the catalytic loop of CPT-1 isoforms less

flexible than that of CPT-2. Bridging the approximately 5 Å

gap between the scaffold of the established aminocarnitine

compounds and the Asp376–Gly377 is feasible for a medicinal

chemistry program and, therefore, this peptide bond could

provide a novel anchor point for isoform-specific CPT

inhibitors.
3.2. Compound 16 complex and implications for protein stability

Compound 16 inhibits rCPT-2 with an IC50 of 210 ± 34 nM

(Fig. 1C) as determined with our activity assay which is similar

to the inhibition observed in the presence of ST1326

(IC50 = 240 nM) [15]. This implies that the link between the

aminocarnitine head-group and the acyl-moiety can be subject

to chemical optimization in order to improve, e.g., chemical

tractability, stability and physico-chemical properties.

The fluorescence-based thermal shift assay produced a melt-

ing point (Tm) of 47.6 ± 0.1 �C for uninhibited rCPT-2

(Fig. 1D, supplementary figure 1). This value is in good agree-

ment with the Tm of 47.0 ± 0.5�C determined with circular

dichroism (data not shown). The Tm is elevated in a concentra-

tion dependent manner in the presence of compound 16, which

stabilizes rCPT-2 with a half-maximal effective concentration

of 190 ± 91 nM. A threefold molar excess of compound 16

leads to an increase in the melting point by approximately

10 �C. This pronounced effect on the stability of rCPT-2 can

be attributed to improved interactions between the amino-

and carboxy-terminal domains as well as stabilization and

extension of the hydrophobic core of rCPT-2 due to binding

of compound 16 at the domain interface (Fig. 1A). In rCPT-

2 b-strands 1 and 16 constitute the major domain contact

and line the hydrophobic acyl-tunnel that accommodates the

alkyl moiety of compound 16. The results of the thermal shift

assay corroborate those of the activity assay in demonstrating

that compound 16 is a high-affinity inhibitor of rCPT-2 in vitro

and that these assays can be used for the examination of ligand

binding to detergent-solubilized rCPT-2. However, the effect of
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Fig. 1. Binding of compound 16 to rCPT-2: (A) stereo-diagram of the superimposition of the rCPT-2 Æ compound 16 complex (green, residues His372
to Gly377 of catalytic loop in cyan) and uninhibited rCPT-2 (brown, catalytic loop in yellow; PDB code 2DEB) is shown. Residues Tyr120, Asp 376,
and the catalytic His372 are displayed as stick models. Compound 16 (magenta) is shown with its surrounding Fo–Fc-simulated annealing omit
electron density map (pink) contoured at 3r. (B) Stereo-view of the peptide-plane flip (red arrow) between Asp376 and Gly377 of the catalytic loop.
The compound 16 complex (green; hydrogen-bonds are depicted as dashed black lines), the ST1326 complex (gray) and the uninhibited structure
(brown, with its fortuitous C16 ligand) are shown. The conserved water molecule of the complex structures is shown as red sphere. The structure of
compound 16 is compared to those of ST1326 and palmitoyl-carnitine in the right panel. (C) Inhibition of 30 nM rCPT-2 by compound 16. The data
were fitted using a 3 parameter equation describing a background corrected dose–response curve. (D) Increase of Tm caused by binding of compound
16 to 1 lM rCPT-2. Data in panels C and D were processed with GraFit (Erithacus Software Ltd.), means ± S.D. of three (two) independent
experiments are shown, respectively.
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the detergent, bOG, on the activity of CPT-2 [32,33] and on the

partition of compound 16 into detergent micelles remains

debatable and further studies for example by isothermal calo-

rimetry are desirable to resolve this uncertainty.

3.3. Membrane association of rCPT-2

The role of the sequence insertion comprising residues

Asn179–Asn208 as membrane anchor [15,18] could be further
established by means of a computational method [16]. For the

complex of rCPT-2 and compound 16 we calculated a maximal

membrane penetration depth of 4.5 ± 1.0 Å, a tilt angle of

69 ± 6� and DGtransfer of �8.2 kcal/mol (Fig. 2). Similar values

could be calculated for rCPT-2 in its uninhibited form and for

the complex with ST1326 (data not shown). Besides limitations

in the assumptions made for the algorithm, the calculated ori-

entations of different rCPT-2 structures are slightly affected by
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Fig. 2. Membrane association of rCPT-2: (A) a-helices, b-sheets and
loops are depicted as green, blue and gray cartoon, respectively. The
insert (yellow, hydrophobic residues are shown as orange stick models)
is proposed to submerge into the hydrophobic core of the luminal
aspect of the inner mitochondrial membrane, which is indicated by
orange spheres. A single bOG molecule bound to the insert is shown as
light-brown stick model. The amino- and carboxy-termini are indi-
cated with blue and red spheres, respectively. Basic residues important
for membrane association are shown as cyan stick models. The arrow
traces the proposed entrance of the substrate palmitoyl-carnitine into
the catalytic site via the transporter CACT [15]. (B) same as A but in
stereo view and rotated 90� to the back so that the planes of the
membrane and the figure coincide. Only the insert comprising a-helices
8–10 with the adjacent b-strands 2 and 3 are shown.
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conformers of flexible side-chains at the protein surface and,

therefore, could potentially be biased by crystal packing and

resolution of the X-ray structures. Nevertheless, the results of

our calculations support the notion that rCPT-2 interacts with

the mitochondrial membrane as a monomer. We observed

loosely packed dimers of rCPT-2 in crystal structures with

space group C2221. However, the exposed non-polar regions

of two molecules do not form a continuous surface at one side

of the dimer, as would be expected for a functional self-associ-

ated state of rCPT-2. The calculated position of the inner mito-

chondrial membrane as shown in Fig. 2 coincides very well with

a layer of hydrophobic residues of the membrane association

domain. In this model hydrophobic residues such as Phe188,

Phe194, Leu191, Leu199, Leu206, Pro196 and Val207 would

submerge into the core of the membrane. Electron density indi-
cating specific binding of a bOG molecule to the insert supports

this interpretation. A layer of positively charged residues from

the insert (Lys182, Arg190, Arg193) would facilitate associa-

tion with the polar hydrophilic head-groups of cardiolipin mol-

ecules of the inner mitochondrial membrane [15]. This layer of

basic amino acids is extended further at the core of the protein

molecule by Lys56, Lys104, Lys107, Lys534, Lys537, Lys544

and several more residues. From the calculated membrane

model no direct contact of these latter residues to polar groups

of the membrane can be inferred (Fig. 2A). However, the model

assumes a planar geometry for the membrane and does not take

into account membrane curvature [34]. A curved membrane

would enable a tight contact with the protein surface support-

ing the proposed path of the substrate palmitoyl-carnitine from

the membrane, potentially facilitated by the transporter CACT,

into the catalytic site of the enzyme. This mode of substrate

channeling into rCPT-2 would be in line with the intriguing

concept of mitochondrial microcompartmentation proposed

by Murthy and Pande [35].

In summary, the structure of rCPT-2 in complex with com-

pound 16 provides further insight into the ligand binding mode

and conformational flexibility of rCPT-2 that could be used in

the design of novel selective CPT inhibitors. The analysis of

the membrane binding by computational tools confirms the

hypothesis of a membrane association domain and provides

an indication of the localization of inner the mitochondrial

membrane with respect to rCPT-2, which is important for

the understanding of the acylcarnitine transport through the

membrane.
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