
The N-terminal domain of the Caulobacter crescentus CgtA protein does
not function as a guanine nucleotide exchange factorC

Bin Lin, Janine R. Maddock*
Department of Biology, University of Michigan, 830 N University, Ann Arbor, MI 48109-1048, USA

Received 30 June 2000; revised 4 October 2000; accepted 4 October 2000

First published online 22 December 2000

Edited by Ned Mantei

Abstract The Caulobacter crescentus GTP binding protein
CgtA is a member of the Obg/GTP1 subfamily of monomeric
GTP binding proteins. In vitro, CgtA displays moderate affinity
for both GDP and GTP, and rapid exchange rate constants for
either nucleotide. One possible explanation for the observed
rapid guanine nucleotide exchange rates is that CgtA is a
bimodal protein with a C-terminal GTP binding domain and an
N-terminal guanine nucleotide exchange factor (GEF) domain.
In this study we demonstrate that although the N-terminus of
CgtA is required for function in vivo, this domain plays no
significant role in the guanine nucleotide binding, exchange or
GTPase activity. ß 2001 Federation of European Biochemical
Societies. Published by Elsevier Science B.V. All rights re-
served.
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1. Introduction

The bacterial Obg proteins are GTP binding proteins [1^3]
that appear to play critical roles in regulating DNA replica-
tion and/or cell di¡erentiation [1,4]. Recently, it has been
shown that the Bacillus subtilis Obg protein is associated
with the ribosome [5], although the role that Obg plays in
ribosome biogenesis or function is unknown. It has been pro-
posed that the guanine nucleotide occupancy of the Obg pro-
teins is directly controlled by the relative cellular levels of
GTP and GDP [3,4,6,7] and not by the action of regulatory
proteins such as guanine nucleotide exchange factor (GEFs)
or guanine nucleotide activating proteins (GAPs). Thus, the
Obg-like proteins would be turned on (in the GTP bound
state) during growth conditions and o¡ (in the GDP bound
state) under starvation conditions and may function by com-
municating changes in the GTP pool to downstream path-
ways. GTP binding proteins regulated in this manner would
be expected to oscillate rapidly between the GTP and GDP
bound forms. Consistent with this model, we have shown that
the Caulobacter crescentus Obg protein, CgtA, displays a rap-
id exchange of either GDP or GTP, has a moderate binding
a¤nity for guanine nucleotides and a relatively slow GTP
hydrolysis rate [7].

CgtA is a 354 amino acid protein with the conserved GTP

binding domain con¢ned to the C-terminal half of the protein
[2]. Although conserved among Obg-like proteins, the role of
the glycine-rich N-terminal half of CgtA is unknown. Given
the rapid exchange of guanine nucleotides by CgtA observed
in vitro, one possibility is that the N-terminus of CgtA func-
tions as a GEF. If true, the rapid guanine nucleotide exchange
of CgtA would simply be due to the activities of the N-termi-
nal GEF, as has been proposed for the Escherichia coli signal
recognition particle receptor FtsY [8]. To test this hypothesis,
we examined the in vivo function and in vitro biochemical
properties of a truncated CgtA lacking the conserved N-ter-
minus. We show here that although the truncated CgtA mu-
tant fails to function in vivo, the mutant protein displays bio-
chemical properties similar to those of the full length protein.
Thus, the N-terminus of CgtA does not contribute to binding,
exchange or GTP hydrolysis by CgtA. These data are consis-
tent with a model whereby, in the absence of guanine nucle-
otide dissociation inhibitor, the guanine nucleotide bound
state of CgtA would be controlled by the relative cellular
concentration of GTP/GDP nucleotides in Caulobacter cells.

2. Materials and methods

2.1. In vivo assay for cgtA160ÿ354 function
Wild type cgtA on a 2.25 kb PstI^HindIII fragment was cloned into

a pMR20 vector to generate pJM625. pJM1759 is a pMR20 vector
containing the cgtAK2E allele and an engineered NcoI site upstream
of the initiator methionine. The cgtAK2E allele was generated by site
directed mutagenesis using primer 5P-GGACCCCATGGAATTC-
TTGGACCA of cgtA in the pAlter1 vector (Promega) and the muta-
genized 2.25 kb PstI^HindIII fragment was inserted into pMR20.
pJM1761 contains the truncated cgtA160ÿ354 expressed from the native
cgtA promoter on pMR20. pJM1761 was created by generating a
NcoI site directly upstream of amino acid 160 by site directed muta-
genesis using primer 5P-CGCCTGAAGCCCATGGCCGATGTC.
The 0.91 kb NcoI^HindIII fragment was inserted into the NcoI^Hind-
III sites of pJM1759 resulting in a substitution of the cgtA coding
region with truncated cgtA. To assay for in vivo function of these
cgtA alleles, pJM1759, pJM1761 and pJM625 were introduced, sepa-
rately, into JM1108, a C. crescentus strain in which chromosomal
cgtA expression is exclusively under the control of the Pxyl promoter
(Skidmore and Maddock, unpublished). The ability of these alleles to
function was assayed on PYE agar plates containing 0.2% xylose
(PYE+Xyl) or 0.2% glucose (PYE+Glu) containing 2 Wg/ml oxy-tet-
racyclin and 20 Wg/ml kanamycin.

2.2. Protein puri¢cation
The C-terminal 160 amino acids of CgtA were expressed and puri-

¢ed from E. coli. The 0.91 kb NcoI^HindIII fragment containing
cgtA160ÿ354 was cloned into the pET28a expression vector (Novagen)
to create pJM865. Mid-log E. coli BL21(DE3) cells harboring pJM865
were induced with 1 mM isopropyl-L-D-thiogalactopyranoside (Gibco
BRL) for 3 h at 37³C in Luria broth (10 g peptone, 5 g yeast extract,
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10 g NaCl per l) containing 30 mg/l kanamycin. The expression of
CgtA160ÿ354 protein was monitored by sodium dodecyl sulfate^poly-
acrylamide gel electrophoresis (SDS^PAGE).

The CgtA160ÿ354 protein was puri¢ed as described for the full length
CgtA [7] except the Cibaron Blue chromatography step was omitted.
Brie£y, 1 l of induced cells was pelleted (6000Ug, 5 min, 4³C), resus-
pended in 50 ml TDG (50 mM Tris^HCl, pH 8, 1 mM dithiothreitol
and 10% glycerol) supplemented with 1 mM phenylmethylsulfonyl
£uoride, and lyzed in a French pressure cell. The cell extract was
then clari¢ed (28 000Ug for 30 min, 4³C), loaded on a 50 ml Toyo-
pearl DEAE-650M column (TosoHass), washed and eluted by a 0^200
mM KCl (200 ml) gradient. The CgtA160ÿ354 fractions were pooled,
concentrated to less than 2 ml by ultra¢ltration through YM-10 cel-
lulose membrane (Amicon), applied to a Superdex 75 (Amersham-
Pharmacia) gel ¢ltration column and eluted with TDG containing
100 mM KCl. Protein purity was examined by SDS^PAGE and the
concentration of CgtA160ÿ354 was determined by UV absorption in 6.0
M guanidium hydrochloride, 0.02 M phosphate bu¡er, pH 6.5 [9],
using the extinction coe¤cient predicted by ProtParam (http://
www.expasy.ch/tools/protparam.html).

2.3. Equilibrium binding assays
Guanine nucleotide equilibrium binding constants (KD) were deter-

mined by an equilibrium centrifugal ultra¢ltration assay [7,10] at 30³C
in 1U binding bu¡er (50 mM Tris^HCl (pH 8.0), 50 mM KCl, 2 mM
dithiothreitol, 5 WM ATP, 1 mM EDTA and 10% (w/v) glycerol)
supplemented with 12 mM MgCl2 unless otherwise indicated. [8-
3H]GDP (106 dpm/nmol; Amersham) and [K-32P]GTP (4U106 cpm/
nmol; Amersham) were used as ligands in the GDP and GTP binding
assays, respectively. Assays were performed in triplicate and the data
were analyzed by hyperbolic curve ¢tting.

2.4. Fluorescence measurements
Fluorescent guanine nucleotides, n-methyl-3P-O-anthranoyl-GDP

(mant-GDP) and -GTP (mant-GTP) were synthesized and puri¢ed,
as described [7,11]. Unless otherwise indicated, the £uorescence of
the mant-nucleotides was monitored at 30³C in 1U binding bu¡er
supplemented with 12 mM MgCl2 at an excitation wavelength of
361 nm (slit width of 1.5 nm) and an emission wavelength of 446
nm (slit width of 15 nm). Excitation spectra were generated from
1 WM unbound mant-GDP or mant-GTP or 1 WM mant-nucleotide
bound to 25 WM CgtA160ÿ354 protein at 30³C.

To measure nucleotide exchange rate constants, 1 WM mant-nucle-
otide was prebound with 2 WM CgtA160ÿ354. Dissociation of the pro-
tein^mant-nucleotide complex was initiated by rapid addition of ex-
cess non-£uorescent GDP (150-fold) in a £uorometer (Shimadzu RF-
5301PC) equipped with a Hi-Tech SFA-20 stopped-£ow apparatus.
The decrease in £uorescence intensity (excitation slit width of 5 nm;
emission slit width of 20 nm) was monitored at 20 ms intervals, and
the data were ¢tted to a monophasic (y � A� Be3kdx ; for mant-GDP
and mant-GTP) or biphasic (y � A� Be3kd1x � Ce3kd2x ; for mant-
GTP) exponential decay equation. The dissociation rate constant,
kd, of each nucleotide was determined by averaging the results from
a minimum of 10 trials.

The intrinsic GTPase activity of CgtA proteins was determined by
monitoring the decrease in £uorescence of the protein^mant-GTP
complex when bound mant-GTP is converted to bound mant-GDP.
One WM mant-GTP was prebound to excess CgtA160ÿ354 protein (ap-
proximately 25 WM). The £uorescence was recorded over 3 h at 1 min
intervals, and the data were ¢tted to a single turnover hydrolysis
equation [7]. The rate constant (kh) and half-life (t1=2) were deter-
mined by averaging results from three trials.

3. Results and discussion

3.1. The cgtA160ÿ354 allele does not function in vivo
We have constructed a strain of C. crescentus, JM1108, in

which cgtA expression is exclusively under the control of the
Pxyl promoter (Skidmore and Maddock, unpublished). The
activity of Pxyl promoter is strictly dependent on xylose, being
fully induced in PYE+Xyl and repressed when xylose is re-
moved from the growth medium (PYE+Glu; [12]). Repression
of Pxyl : :cgtA results in a reduction, but not an elimination of
CgtA protein levels, and impaired cell growth (Skidmore and
Maddock, unpublished). The slow growth of JM1108 in glu-
cose can be exploited to assay for CgtA function by comple-
mentation with mutant alleles of cgtA on episomal plasmids.
JM1108 cells containing a plasmid-borne wild type cgtA allele
(pJM625) displayed robust growth regardless of whether the
chromosomal copy of cgtA was expressed (PYE+Xyl) or not
(PYE+Glu)(Fig. 1). Xylose independent growth was also ob-
served for JM1108 harboring a cgtAK2E mutant (pJM1759)
indicating that this amino acid substitution did not a¡ect
CgtA function. In contrast, JM1108 cells containing the
empty pMR20 vector only or the cgtA160ÿ354 allele
(pJM1761) grew well when the chromosomal cgtA allele was
expressed (PYE+Xyl) but poorly when it was not (PYE+Glu)
(Fig. 1). These data indicate that the N-terminus of CgtA is
critical for proper CgtA function, either because CgtA160ÿ354

is not su¤cient for function, or because the N-terminus of
CgtA is necessary for correct protein folding or stability.

3.2. CgtA160ÿ354 binds guanine nucleotides with similar a¤nity
to wild type CgtA

Induction of CgtA160ÿ354 from pJM865 resulted in the ac-
cumulation of a prominent V20 kDa protein (data not
shown). Unlike the wild type CgtA protein, the truncated
protein does not bind Cibacron Blue 3GA agarose (Sigma)
and therefore we puri¢ed CgtA160ÿ354 by DEAE anion-ex-
change followed by Superdex Gel-¢ltration. The identity of
CgtA160ÿ354 was veri¢ed by N-terminal sequence analysis
and shown to begin, as predicted, with the amino acid se-
quence ADVGLV.

CgtA160ÿ354 binds radiolabeled GDP and GTP with mod-
erate a¤nity as determined by equilibrium centrifugal ultra-
¢ltration. At 30³C in 12 mM Mg2�, the equilibrium binding
constants, KD, for GDP and GTP were 1.5 þ 0.2 and 1.1 þ 0.3
WM, respectively, compared with 0.52 þ 0.03 and 1.11 þ 0.13
WM as previously reported for full length CgtA [7]. Thus,
the a¤nity of CgtA160ÿ354 for GTP was similar to that of

Fig. 1. CgtA protein lacking the N-terminal 159 amino acids does
not function in vivo. C. crescentus JM1108 cells containing plasmids
pMR20 (vector control), pJM625 (wild type cgtA), pJM1759
(cgtAK2E), pJM1761 (cgtA160ÿ354) were streaked onto PYE+Xyl
and PYE+Glu plates, as indicated. Shown here are a key and repre-
sentative plates incubated at 30³C for 2 days.

Table 1
Biphasic dissociation rate constants of mant-GTP from CgtA and
CgtA160ÿ354

Protein Mg2�
(mM)

kd (s31) Amplitude of kd
fast/kd slow

CgtA160ÿ354 0.5 4.6 þ 0.1 0.94 þ 0.01 3.6
12 4.0 þ 0.1 0.94 þ 0.01 0.19

CgtA 12 3.1 þ 0.1 1.02 þ 0.01 0.48

FEBS 24491 19-1-01

B. Lin, J.R. Maddock/FEBS Letters 489 (2001) 108^111 109



the full length protein and the a¤nity for GDP was approx-
imately three-fold weaker than that of wild type CgtA. These
data show that the N-terminus of CgtA does not play a sig-
ni¢cant role in the association of CgtA with guanine nucleo-
tides. Moreover, these data are consistent with the observa-
tion that a temperature sensitive mutation in the N-terminus
of the B. subtilis Obg protein had the same a¤nity for guanine
nucleotides as the wild type Obg [6].

We also examined the guanine nucleotide binding proper-
ties of CgtA160ÿ354 with mant-GDP and mant-GTP (Fig. 2).
CgtA160ÿ354 displayed an excitation pro¢le similar to that of
full length CgtA [7]. Binding of CgtA160ÿ354 to mant-GTP and
mant-GDP led to an increase in mant-nucleotide £uorescence
with an optimal excitation wavelength of 361 nm (Fig. 2).
CgtA160ÿ354 bound to mant-GTP resulted in a 2.3-fold en-
hancement of £uorescence intensity over free mant-GTP
(Fig. 2), whereas the mant-GDP £uorescence increased only
1.4-fold upon binding to CgtA160ÿ354. This increase in mant-
nucleotide £uorescence further demonstrates that the trun-
cated CgtA protein binds guanine nucleotides. CgtA160ÿ354

does, however, result in a higher £uorescence increase of the
mant-GTP than does the full length CgtA (2.3- and 1.5-fold,
respectively). This increase in £uorescence may re£ect an in-
crease in the hydrophobicity of the guanine nucleotide binding
pocket in the absence of the N-terminus of CgtA. Like wild
type CgtA, CgtA160ÿ354 also required Mg2� for GTP but not
GDP binding (data not shown).

3.3. The GTPase activity of CgtA160ÿ354 is equivalent to that of
wild type CgtA

We used the greater £uorescence of the CgtA160ÿ354^mant-
GTP complex relative to the CgtA160ÿ354^mant-GDP complex
to determine the rate of hydrolysis. The intrinsic GTPase ac-
tivity of CgtA160ÿ354 was measured by monitoring the reduc-
tion in £uorescence that accompanied the single-turnover con-
version of bound mant-GTP to bound mant-GDP [7]. Curve
¢tting the decrease in £uorescence to a single exponential hy-

drolysis function gave a single turnover rate constant, kh, of
5.3U1034 s31 or a t1=2 of 22 þ 2 min. The GTPase activity of
CgtA160ÿ354 is almost identical to that reported for wild type
CgtA (kh = 5.0U1034 s31, t1=2 = 23 þ 2 min) measured under
the same conditions [7]. Thus, removal of the N-terminal 159
amino acids of CgtA has no e¡ect on the GTPase activity of
the protein.

3.4. The N-terminus of CgtA is not necessary for the rapid
exchange of guanine nucleotides

The in vitro exchange of guanine nucleotides by CgtA has
been previously shown to be 103^105-fold faster than that of
the well-characterized eukaryotic Ras-like GTP binding pro-
teins [7]. One model proposed to explain the rapid exchange
was that CgtA is a bimodal protein with a Ras-like GTP
binding domain at its C-terminus and GEF activity at its
N-terminus [7]. If this is true, removal of the GEF domain
should result in a slower guanine nucleotide exchange rate
constant than that of the full length protein. To test this
model we determined the exchange rate constant of
CgtA160ÿ354 for both mant-GTP and mant-GDP using
stopped-£ow £uorospectroscopy. The dissociation of the
mant-nucleotide was monitored by the £uorescence decrease
that accompanied the displacement of bound mant-nucleotide
by excess unlabeled nucleotide. The observed ¢rst order dis-
sociation rate constants for mant-GDP and mant-GTP were
1.11 þ 0.01 and 1.03 þ 0.04 s31, respectively. These rates are
comparable to those of full length CgtA (1.43 þ 0.04 and
1.28 þ 0.02 s31, respectively) under similar conditions [7].
Therefore, the N-terminus of CgtA does not play a role as
a GEF.

Interestingly, the mant-GTP dissociation data ¢t a biphasic
exponential decay equation better than a single exponential
decay. At 12 mM Mg2� the majority (V85%) of the dissoci-
ation is slow (0.94 þ 0.01 s31) while the remaining dissociation
(15%) is fast (4.0 þ 0.1 s31). Even after a prolonged incubation
at 30³C (20 min) there was no signi¢cant change in the ratio
of the amplitudes of these two phases indicating that they

Fig. 2. The CgtA160ÿ354 protein binds to mant-nucleotides. Shown is
the excitation spectra (emission at 446 nm) of 1 mM free mant-
GTP and mant-GTP bound to 25 WM CgtA160ÿ354 at 30³C. Shown
are the relative excitation spectra of mant-GDP (dashed line),
CgtA160ÿ354^mant-GDP without (thick gray line) or with 12 mM
Mg2� (thick black line), and CgtA160ÿ354^mant-GTP without (thin
gray line) or with 12 mM Mg2� (thin black line). The spectrum of
the free mant-GTP overlays that of the free mant-GDP (data not
shown).

Fig. 3. CgtA160ÿ354 displays biphasic mant-GTP dissociation.
CgtA160ÿ354^mant-GTP complexes were generated by prebinding
1 WM mant-GTP and 2 WM CgtA160ÿ354 in 0.5 mM (circles) or
12 mM Mg2� (triangles). These complexes were rapidly mixed with
excess GDP (150 mM) and the change in the relative £uorescence
intensity over time was monitored. Shown are the pooled data from
10 trials with a biphasic ¢t shown by the solid line. Relative £uores-
cence intensity = A� Be3kd1x � Ce3kd2x.

FEBS 24491 19-1-01

B. Lin, J.R. Maddock/FEBS Letters 489 (2001) 108^111110



were not likely due to contaminating mant-GDP (a product of
hydrolysis) or due to the inactivation of CgtA160ÿ354. More-
over, the relative abundance of these two putative
CgtA160ÿ354^mant-GTP complexes showed strong Mg2� de-
pendency. When the Mg2� concentration in the exchange re-
action was lowered to 0.5 mM, the rate constants of either
phase did not change but their relative amplitude was almost
reversed (Table 1 and Fig. 3). To examine whether the bipha-
sic exchange was a unique feature of the truncated CgtA, we
reexamined the dissociation of mant-GTP from wild type
CgtA and found that CgtA also displayed a biphasic mant-
GTP exchange pro¢le with a similar Mg2� dependence (data
not shown). Since the rate constants of these two phases were
very similar, we overlooked the biphasic nature of the GTP
exchange in our initial analysis of CgtA. The nature of the
biphasic dissociation is unknown. We have recently reported a
similar biphasic dissociation of mant-nucleotides from the E.
coli GTP binding protein Era [13]. It will be of interest to
determine whether a similar rapid and biphasic dissociation
is observed in other bacterial GTP binding proteins.

These data clearly demonstrate that the N-terminus of
CgtA does not act as a GEF as had been proposed, but not
experimentally tested, for the E. coli protein, FtsY [8]. More-
over, we have recently shown that the E. coli Era protein also
displays a rapid guanine nucleotide exchange rate constant
[13]. We have also observed that other bacterial GTP binding
proteins share more amino acid similarity in the conserved
GTP binding pocket with each other than with the well-char-
acterized, GEF-controlled eukaryotic ras-like proteins, raising
the possibility that low a¤nity and rapid exchange of guanine
nucleotides may be a hallmark feature of these bacterial GTP
binding proteins.

What might be the cellular role of the N-terminal domain?
One possibility is that this domain is required for the inter-

action of CgtA with other cellular proteins. The interaction
between these putative targets and the N-terminus of CgtA is
not likely to be a¡ected by structural di¡erences between the
GTP- and GDP-bound states, as guanine nucleotide binding
appears to be mediated through the C-terminus of the protein.
More likely, the N-terminus may be involved in anchoring
CgtA to its cellular target via protein^protein interactions.
Recently, it has been shown that the B. subtilis Obg protein
interacts with the ribosome, speci¢cally interacting with Rpl13
[5]. It will be of interest to see if the N-terminal domain is
necessary for this interaction.
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