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Abstract

This paper examines some of the recent literature on the estimation of production functions. We focus on

techniques suggested in two recent papers, Olley and Pakes (1996), and Levinsohn and Petrin (2003). While

there are some solid and intuitive identification ideas in these papers, we argue that the techniques can suffer

from functional dependence problems. We suggest an alternative approach that is based on the ideas in these

papers, but does not suffer from the functional dependence problems and produces consistent estimates under

alternative data generating processes for which the original procedures do not.

1 Introduction

Production functions are a fundamental component of all economics. As such, estimation of production functions

has a long history in applied economics, starting in the early 1800’s. Unfortunately, this history cannot be deemed

an unqualified success, as many of the econometric problems hampering early estimation are still an issue today.

Production functions relate output to inputs (e.g. capital, labor). Perhaps the major econometric issue in

estimating production functions is the possibility that there are determinants of production that are unobserved to

the econometrician but observed by the firm. If this is the case, and if the observed inputs are chosen as a function

of these determinants (as will typically be the case for a profit-maximizing or cost-minimizing firm), then there is

an endogeneity problem and OLS estimates of the coefficients on the observed inputs will be biased. The literature

has devoted much attention to the problem of these biases and approaches to solving them (see, e.g. Marschak and

Andrews (1944), Hoch (1955, 1958, 1962), Mundlak (1961, 1963, 1996), Mundlak and Hoch (1965), Christensen,

Jorgenson, and Lau (1971), Christensen and Greene (1976), McElroy (1987), Panzar (1989), and Slade (1989).)

Over the past 20 years, techniques proposed by Olley and Pakes (1996) (OP) and Levinsohn and Petrin (2003)

(LP) to address this endogeneity problem have seen extensive use in the empirical literature, e.g. Pavcnik (2002),

Criscuola and Martin (2003), Fernandes (2003), Blalock and Gertler (2004), Alvarez and Lopez (2005), Sivadasan

(2009), Ozler and Yilmaz (2009), Topalova and Khandewal (2011), and numerous others. The essence of the OP

and LP techniques is that, under certain theoretical and statistical assumptions, one can invert optimal input

decisions to essentially allow an econometrician to ”observe” unobserved productivity shocks. More precisely, OP

identify conditions under which firm level investment (conditional on capital stock) is a strictly increasing function

of a scalar, firm-level, unobserved productivity shock. This strict monotonicity implies that one can invert this

investment demand function, and thus ”control for” the unobserved productivity shock by conditioning on a non-

parametric representation of that inverse function (i.e. a non-parametric function of capital stock and investment).
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In the first stage of the approach, one estimates the labor coefficient in the production function by regressing output

on the labor input and this non-parametric function. LP use a similar approach, but invert an intermediate input

demand function instead of an investment demand function to control for the unobserved productivity shock.

This paper first argues that there may be a problem with the first stage of these estimation procedures. More

specifically, under some simple data generating processes that are consistent with the stated assumptions of the

OP/LP models, the moment condition underlying the first stage estimating equation does not identifiy the labor

coefficient. The problem is one of functional dependence. Under these data generating process, one can show that

labor is a deterministic function of the set of variables that, in the OP/LP procedures, need to be non-parametrically

conditioned on. Hence, once one does this non-parametric conditioning, there is no variation in labor left to identify

the labor coefficient.1 We then explore alternative data generating processes, trying to find examples where this

functional dependence problem does not apply. We find only a limited set of data generating processes for which

the labor coefficient can be identified using the OP/LP first stage moments, characterize these processes, and argue

that they may be unrealistic in many industries.

We then propose an alternative estimation procedure that uses moment conditions very similar to those used by

OP and LP, but that avoid this functional dependence problem. Specifically, while OP and LP invert investment

(OP) and intermediate input (LP) demand functions that are unconditional on the labor input, we suggest inverting

investment or intermediate demand functions that are conditional on the labor input. While use of these conditional

input demand functions precludes identification of the labor coefficient using the first stage moments, we describe

how this coefficient can be estimated along with the other production function parameters using the second stage

moments (after the first stage moments are used to estimate auxiliary parameters). We also illustrate how our use

of conditional input demand functions allows for some more general data generating processes than the original OP

and LP procedures. Unlike the canonical OP and LP moment conditions, our moment conditions produce consistent

estimates if there are unobserved, serially correlated, firm-specific shocks to the price of labor, if labor is chosen

prior to other variable inputs (with a different information set), or if labor is dynamic and there are unobserved,

firm-specific adjustment costs of labor. Wooldridge (2009) proposes estimating the two sets of moments in LP (or

OP) simultaneously, and notes that doing this avoids the same functional dependence issue raised in a working paper

version of this paper. On the other hand, as we discuss in Section 4.3.2, the Wooldridge moments as written are

based on unconditional input demand functions and do not allow all the aforementioned data generating processes.

We start with a quick review of the various approaches that have been used to address this endogeneity problem

over the past 70 years. We then discuss the potential functional dependence issues in OP and LP and describe the

data generating processes necessary to avoid these functional dependence issues. We then present our alternative

moments and estimation procedure and discuss in what dimensions these alternative moments extend the data

generating processes that can be considered. Lastly, we perform a brief Monte-Carlo study. We consider some

data generating processes that are favorable to the LP moments, and some that are favorable to our alternative

moments, and as expected, each procedure performs better in the respective data generating process that is favorable

to it. Perhaps more interestingly, we then create misspecification by adding measurement error to the material

input variable. Neither our moments nor the LP moments produce consistent estimates, but estimates from our

moments are less sensitive than the LP moments to at least this form of misspecification.

2 Review of Literature on Production Function Estimation

We start with a brief review of the literature on estimation of production functions (borrowing liberally from

Griliches and Mairesse (1998)), ending with a detailed summary of the approaches of Olley and Pakes (1996,

henceforth OP) and Levinsohn and Petrin (2003, henceforth LP). OP and LP are the approaches which our work

1Susanto Basu made a less formal argument regarding this possible functional dependence problem as a discussant of an earlier
version of the Levinsohn-Petrin paper.
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most directly assesses and builds on.

For illustration purposes, consider a simple Cobb-Douglas production function in logs

(1) yit = β0 + βkkit + βllit + ωit + εit

where yit is the log of output, kit is the log of capital input, and lit is the log of labor input, all of which are

observed. There are two econometric unobservables, ωit and εit. The εit represent shocks to production or

productivity that are not observable (or predictable) by firms before making their input decisions at t. In contrast,

the ωit represent ”productivity” shocks that are potentially observed or predictable by firms when they make input

decisions. Intuitively, ωit might represent variables such as the managerial ability of a firm, expected down-time

due to machine breakdown, expected defect rates in a manufacturing process, soil quality, or the expected rainfall

at a particular farm’s location. εit might represent deviations from expected breakdown, defect, or rainfall amounts

in a given year. εit can also represent (potentially serially correlated) measurement error in the output variable.

The crux of the identification problem inherent in estimating such a production function is that the inputs kit

and lit are chosen by firms. This means that if the econometric unobservable ωit is observed (or partially observed)

by the firm prior to choosing kit and lit, then these choices will likely depend on ωit, creating correlation between

(kit, lit) and ωit, and rendering OLS estimates of βk and βl inconsistent. Observation of this endogeneity problem

dates back to Marschak and Andrews (1944).

2.1 Prior Approaches

One approach to address this endogeneity problem involved using panel data with fixed effects, first advocated by

Hoch (1955, 1962), Mundlak (1961, 1963), and Mundlak and Hoch (1965). The most basic of these approaches

involves assuming ωit = ωi, where the ”fixed effect” ωi is observed by the firm prior to choosing inputs. In

essence the assumption here is that all endogeneity problems are related to a time-invariant shock ωi. Under this

assumption standard fixed effect approaches can consistently estimate βk and βl. Unfortunately, this approach has

not worked well in practice - one common finding is unreasonably low estimates of βk and returns to scale. As noted

by Griliches and Mairesse (1998), this could be due to problems with the assumption that the only unobservable

generating endogeneity problems is time invariant, or it could be due to problems with data (since differencing can

exacerbate measurement error problems, e.g. Griliches and Hausman (1986)). In recent years, these approaches

have been generalized (e.g. Chamberlain (1982), Anderson and Hsiao (1982), Arellano and Bond (1991), Arellano

and Bover (1995), and Blundell and Bond (1998, 2000)) - see section 4.3.3.

A second approach has utilized information in firms’ first order conditions with respect to inputs. Early ap-

plications include Klein (1953), Solow (1957), Nerlove (1963), Griliches and Ringstad (1971), and Hall (1988).

Generally speaking, these approaches consider estimation of first order conditions regarding, e.g. choices of kit and

lit. These first order conditions depend on input (and output) prices, as well as the production function parame-

ters (the simplest illustration of this approach is the well known observation that in a Cobb-Douglas environment,

the first order conditions imply that the cost shares of each input equal the respective input elasticities). These

approaches, including the related idea of estimating cost functions (e.g. Christensen, Jorgenson, and Lau (1971),

Christensen and Greene (1976)), have been generalized in a number of dimensions, including some fairly rich theo-

retical and statistical models. A good example is McElroy (1987), who utilizes first order conditions in the context

of a production function more general than (1). McElroy not only considers a more flexible production function

(translog), but also a more flexible stochastic specification in which there are multiple structural unobservables

entering in different places in the production function (instead of only Hicks neutral shocks as in (1)) - specifically,

there is one such structural unobservable associated with each of the inputs, so, e.g., some firms are relatively more

efficient at using capital, and some are relatively more efficient at using labor. One caveat of these approaches is

that they typically rely on the assumption that input choices satisfy static first order conditions. This could be
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problematic if certain inputs were subject to significant dynamic issues, e.g. adjustment costs, or wedges between

purchase and resale prices. A particular worry with respect to this caveat might be the capital input, which in

many theoretical models has dynamic implications so that the static first order condition does not hold. In theory

one could construct first order conditions consistent with these dynamic implications, but these would 1) be con-

siderably more complicated than static first order conditions, and 2) likely require additional auxiliary assumptions

on the dynamic environment firms operate in.

As pointed out by Griliches and Mairesse (1998), a natural extension of the above ”first order condition”

approaches involves using input prices as ”instruments” for the observed inputs in (1), i.e. by simply regressing yit

on kit and lit, using pkit and plit as instruments. The idea here is that if input prices are exogenous (i.e. uncorrelated

with ωit+εit), and if input choices respond to these input prices (which they should), then these input prices provide

a source of exogenous variation in kit and lit with which to identify βk and βl. What is particularly nice about

this simple ”input price based IV” method is that its consistency does not require one to specify the relationship

between the inputs (kit and lit), and input prices using pkit and plit correctly. Hence, unlike the aforementioned

work that relies on using static first order conditions explicitly, it can produce consistent estimates even if the

inputs are dynamic in nature (though it will generally not be as efficient if the static first order conditions do hold).

Of course, these ”input price based IV” methods rely on the researcher observing variation in input prices across

firms, and the assumption that these input prices are exogenous. Griliches and Mairesse (1998) note a number of

reasons to potentially question this assumption. For it to hold, e.g., the observed price differences across firms

cannot capture input quality differences across firms, or different firms’ choices of location on a downward sloping

input supply curve.

Much of the motivation behind the OP (and LP) approaches is related to the caveats described above. For

example, unlike pure fixed effect approaches, OP and LP do allow for input endogeneity with respect to a time

varying unobservable. Unlike many of the first order condition approaches, they can allow for subsets of inputs to

be dynamic in nature, yet do not require explicit solution of complicated dynamic first order conditions related to

those inputs. And lastly, unlike the ”input price based IV” methods, they do not require the econometrician to

observe exogeneous, across-firm variation in input prices.

Of course, relaxing these assumptions does not come without costs. One needs a new set of statistical and the-

oretical restrictions to produce identification in the OP and LP models. As detailed extensively below, potentially

strong other assumptions need to be made regarding, e.g. similarities in the environments that different firms face,

what variables are in firms’ information sets when different inputs are chosen, and limiting the amount of unob-

served heterogeneity in production functions across firms. We see this paper as contributing to the literature by 1)

clarifying these statistical and theoretical restrictions, 2) pointing out some significant caveats of these statistical

and theoretical restrictions related to functional dependence issues, and 3) proposing some alternative (but very

similar) estimators that avoid these functional dependence problems. It is important to point out that while we

relax a few of the assumptions of OP/LP and avoid the functional dependence issue, the key assumptions behind

our approach remain the same. Our approach, like OP and LP, relies critically on timing assumptions, a scalar

unobservable assumption, and a monotonicity assumption. These potentially strong assumptions are what allow

for the relaxed assumptions in other dimensions described above. Naturally, whether one chooses our approach

or that of the other estimation methods, one should strive for transparency regarding key assumptions and then

motivate the appropriateness of those assumptions for the relevant empirical context.

2.2 Olley/Pakes and Levinsohn/Petrin

Behind the OP and LP identification strategy is a discrete time model of dynamically optimizing firms. Typically

the primitives of the model are assumed to satisfy the following three assumptions:

Assumption 1 Assumption 1: (Information Set) The firm’s information set at t, i.e. Iit, includes current and
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past productivity shocks {ωiτ}tτ=0 but does not include future productivity shocks {ωiτ}∞τ=t+1. The transitory shocks

εit satisfy E [εit|Iit] = 0.

Assumption 2 Assumption 2: (First Order Markov) Productivity shocks evolve according to the distribution

p(ωit+1|Iit) = p(ωit+1|ωit)

This distribution is known to firms and stochastically increasing in ωit.

Assumption 3 Assumption 3: (Timing of Input Choices) Firms accumulate capital according to

kit = κ(kit−1, iit−1)

where investment iit−1 is chosen in period t− 1. Labor input lit is non-dynamic and chosen at t.

Assumptions (1) and (2) are straightforward - firms do not observe ωit until time t, but the distribution

p(ωit+1|ωit) defines what the firm knows about the distribution of future productivity shocks. Assumption (3)

distinguishes the capital and labor inputs. The labor input is non-dynamic in the sense that a firm’s choice of

labor for period t has no impact on the future profits of the firm. In contrast, capital is assumed to be a dynamic

input subject to an investment process. Importantly, Assumption (3) implies that the period t capital stock of the

firm was actually determined at period t− 1, i.e. kit ∈ Iit−1. Intuitively, the restriction behind this assumption is

that it takes a full period for new capital to be ordered, delivered, and installed. This assumption will be important

in generating the moment conditions used for estimation. Neither OP nor LP precisely define the data-generating

process (DGP) determining lit. One of the contributions of this paper is to think about this DGP more formally,

which we do in Section 3.

In the above model, firms’ optimal investment decisions iit are policy functions resulting from a dynamic

optimization problem. Under additional assumptions on primitives of the model, OP derive two crucial properties

of these policy functions. To save space, we simply state these as additional, high-level, assumptions

Assumption 4 Assumption 4: (Scalar Unobservable) Firms’ investment decisions are given by

(2) iit = ft(kit, ωit)

Assumption 5 Assumption 5: (Strict Monotonicity) ft(kit, ωit) is strictly increasing in ωit.

Assumption (4) states that investment is a function of the state variables kit and ωit (lit is not a state variable

because it is non-dynamic and chosen at t). Griliches and Mairesse (1998) note that Assumption (4) places strong

implicit restrictions on additional firm-specific econometric unobservables in the model. For example, it rules out

any unobserved heterogeneity across firms in adjustment costs of capital, in demand or labor market conditions

(unless they evolve independently over time), or additional unobservables entering other parts of the production

function as in McElroy (1987). On the other hand, the indexing of f by t does allow differences in these variables
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across time.2 Assumption (5) is a consequence of the assumptions that p(ωit+1|ωit) is stochastically increasing in

ωit and that ωit positively affects the marginal product of capital - together these imply that firms with higher ωit’s

have higher expected marginal products of capital in the future, and thus engage in more investment. Formally

proving this requires using dynamic programming methods and can be a challenge in more complicated models.

Mechanically speaking, all the results here and in later sections can apply to production functions more general than

Cobb-Douglas given that Assumptions 1 through 5 hold (so, e.g., they cannot be applied to production functions

with multidimensional unobservables like McElroy (1987)).

The econometrician is presumed to observe inputs lit and kit, output yit, and investment levels iit for a panel

dataset of firms with N → ∞ and fixed T . We assume that inputs and outputs are measured in comparable

physical units across observations (extensions to this are discussed in Section 4.3.4.) Estimation in OP proceeds in

two stages, each stage corresponding to a distinct moment condition. To form the ”first stage” moment condition,

note that Assumptions (4) and (5) imply that one can invert the investment policy function

(3) ωit = f−1
t (kit, iit)

to write the productivity shock as a (unknown) function of observables. Substituting this into the production

function, we get:

(4) yit = β0 + βkkit + βllit + f−1
t (kit, iit) + εit = βllit +Φt(kit, iit) + εit

Because f−1
t is the solution to a potentially complicated dynamic programming problem, deriving its functional

form would require additional computation and specifying additional primitives (e.g. the evolution of industry-

wide input prices or demand conditions over time). To avoid this, OP treat f−1
t non-parametrically. This clearly

precludes identification of β0 and βk using this equation, so these are combined into a composite term Φt(kit, iit)

that is treated non-parametrically.

The first stage of OP then generates GMM estimates ̂βl and ̂Φt(kit, iit) using the moment condition

(5) E [εit | Iit] = E [yit − βllit − Φt(kit, iit) | Iit] = 0

If one uses a polynomial approximation to Φt, this can be as simple as running OLS of yit on lit and the polynomial.

For the ”second stage” moment condition, Assumptions (1) and (2) imply we can decompose ωit into its

conditional expectation at time t− 1, and an innovation term, i.e.

ωit = E[ωit | Iit−1] + ξit = E[ωit | ωit−1] + ξit = g(ωit−1) + ξit

where by construction E[ξit | Iit−1] = 0. Substituting this into the production function gives

yit = β0 + βkkit + βllit + g(ωit−1) + ξit + εit(6)

= β0 + βkkit + βllit + g(Φt−1(kit−1, iit−1)− β0 − βkkit−1) + ξit + εit(7)

where the second line follows from the definition of Φt(kit, iit).

2If firm-specific variables such as exogenous labor input prices are observed by the econometrician, they can be included in (2).
However, the premise of most of this literature is that such variables are either not available or not believed to be exogenous. If one
observed exogenous, across-firm, variation in all input prices, estimating the production function using input price based IV methods
might be preferred to OP/LP related methodology (due to fewer auxiliary assumptions). In other words, OP/LP (and the methods we
suggest) are probably most useful when one does not observe any exogenous across-firm variation in input prices, or when one observes
exogenous across-firm variation in input prices for only a subset of the inputs (for the latter, see, e.g., Doraszelski and Jaumandreu
(2013)).
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Given that E[ξit | Iit−1] = 0 and E [εit | Iit] = 0, the second stage of OP’s estimation procedure uses the

following moment condition:

(8) E[ξit + εit | Iit−1] = E[yit − β0 − βkkit − βllit − g(Φt−1(kit−1, , iit−1)− β0 − βkkit−1) | Iit−1] = 0

where estimation proceeds by ”plugging in” the first stage estimates of ̂βl and ̂Φt−1 into the second stage moment.

Note that the two sets of moments, (5) and (8), that identify the production function parameters and the functions

Φt and g can be thought of in the semiparametric moment restriction framework of Ai and Chen (2003) (and as

pointed out by Wooldridge (2009), could be thought of as IV estimators). While these moment conditions could

be estimated jointly as in Ai and Chen or Wooldridge (2009), estimation using a two-stage ”plug-in” approach

is consistent (see Ai and Chen (2007)) and popular in the empirical literature for computational reasons. Joint

estimation requires a numeric, non-linear search over all the parameters of the model (including those representing

the functions Φt and g), which can be time-consuming and/or unreliable. The two-stage approach requires at

most two sequential smaller dimensional searches, and if Φt is specified using polynomials or kernels, the first stage

estimation of βl and Φt−1 can be done analytically. On the other hand, as pointed out by Wooldridge (2009), there

are advantages to estimating the moment conditions jointly, e.g. potential efficiency gains from information in the

covariances of the moments (though this is not necessarily the case, see Ackerberg, Chen, Hahn and Liao (2014)),

and more straightforward asymptotic standard errors (see Chen, Hahn, Liao, and Ridder (2013)).

LP take a related approach. The key difference is that instead of using the investment demand equation to

”invert” out ωit, they use the demand function for an intermediate input mit (e.g. electricity, fuel, or materials).

More specifically, they consider the following production function

(9) yit = β0 + βkkit + βllit + βmmit + ωit + εit

and replace Assumptions (4) and (5) with

Assumption 6 Assumption 4b: (Scalar Unobservable) Firms’ intermediate input demand is given by

(10) mit = ft(kit, ωit)

Assumption 7 Assumption 5b: (Strict Monotonicity) ft(kit, ωit) is strictly increasing in ωit.

Assumptions (4b) and (5b) again allow one to invert ωit as a function of observables, i.e. ωit = f−1
t (kit,mit),

analagously to the above. Assumption (4b) is consistent with a model in which lit and mit are non-dynamic

inputs that are chosen simultaneously at t, after the firm has observed ωit - what is crucial is that ωit is the

only unobservable entering the intermediate input demand function. Like in OP, this places restrictions on the

underlying model, e.g. that firms operate in the same labor and material input markets (or identical labor and

material input markets), and that they operate in the same output market with either homogeneous goods or

completely symmetric product differentiation (or identical output markets). Given these restrictions, Assumption

(5b) is verified by LP under mild assumptions on primitives.

Other than this, LP proceeds identically to OP. The first stage involves using the equation

yit = β0 + βkkit + βllit + βmmit + f−1
t (kit,mit) + εit(11)

= βllit +Φt(kit,mit) + εit(12)
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and the moment condition

(13) E [εit | Iit] = E [yit − βllit − Φt(kit,mit) | Iit] = 0

to obtain estimates ̂βl and ̂Φt(kit,mit). These estimates are plugged in to the second stage moment condition

(14)

E[ξit+εit | Iit−1] = E[yit−β0−βkkit−βllit−βmmit−g(Φt−1(kit−1,mit−1)−β0−βkkit−1−βmmit−1) | Iit−1] = 0

to obtain estimates ̂β0,
̂βk, and

̂βm. LP suggest bootstrapping to obtain standard errors, while Pakes and Olley

(1995) provide analytic standard error estimators.

2.3 Discussion

As noted by Levinsohn and Petrin, there are a number of advantages to using an intermediate input mit rather than

investment iit as a way of ”inferring” unobserved productivity. First, theoretically it can be considerably easier to

verify Assumption (5b) than Assumption (5) - verifying (5) requires analysis of a dynamic programming problem,

but as intermediate inputs are typically assumed to be non-dynamic inputs, verifying (5b) does not. Second, in

practice investment data can be lumpy, e.g. in firm or plant level datasets one often sees iit = 0. This casts doubt

on Assumption (5) (strict monotonicity), at least for the observations where iit = 0. While the OP procedure can

be adapted to work in this weakly monotonic situation, it requires discarding data with zero investment, which

LP note can sometimes be a significant portion of the data. Moreover, lumpiness might also occur at points other

than iit = 0, which is more problematic.

Another important advantage of LP using an intermediate input is related to the critique by Griliches and

Mairesse (1998). In OP, Assumption (4) rules out any firm-specific unobservables (other than the productivity

shock ωit) affecting investment demand. This, for example, rules out unobserved capital adjustment costs that

vary across firms, as well as unobserved, firm-specific shocks to investment prices. The LP method does not rule

such shocks out - since the intermediate input and labor are non-dynamic inputs that only affect current profits,

there is no reason for mit to depend on these shocks (conditional on kit and ωit). Of course, LP has an analagous

restriction regarding unobserved, firm-specific shocks to the price of intermediate inputs and labor. However, this

distinction is not symmetric, since OP also rules out these material or labor price shocks (except for the special

case where they are independent across time). The reason is that if, e.g., unobserved wage shocks are serially

correlated, the current wage is related to the marginal revenue product of capital in the future, and thus current

investment should depend on the current wage, violating Assumption (5). So in summary, neither OP nor LP allow

serially correlated, unobserved heterogeneity (across firms) in prices of labor or intermediate inputs, while only OP

rules out unobserved heterogeneity (across firms) in the price of investment or capital adjustment costs.

Lastly, note that one can extend these methods to situations where the econometrician actually observes firm-

specific variation in the prices of inputs. If these are assumed exogenous, OP/LP can be applied - the prices can

simply be included in the appropriate input demand functions above and used as instruments. For example, if

exogenous variation in pmit and plit across firms is observed, these variables should be included in the intermediate

input equation, i.e. mit = ft(kit, ωit, p
m
it , p

l
it), and included in the instrument set Iit. That said, both OP/LP

make many auxiliary assumptions, so if one observed exogenous, firm-specific variation in all input prices, it might

be preferrable to use simple ”input price based IV” methods, i.e. regress yit on kit, lit, and mit using pkit, p
l
it and

pmit as instruments. This would provide consistent estimates without the OP/LP auxiliary assumptions. Of course,

the observed price differences across firms need to be exogenous, i.e. the differences cannot capture input quality

differences or different firms’ choices of location on a downward sloping input supply curve. Having credibly

exogenous, observed, variation in the costs of all inputs is fairly rare. Perhaps more likely is a case where one

observes exogenous variation in prices of a subset of the instruments. In this case, pure ”input price based IV”
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methods are generally not possible, and we feel that techniques related to OP/LP are valuable. Doraszelski and

Jaumandreu (2013) estimate a model where this is the case.3

3 Functional Dependence Problems

This paper argues that even if the above assumptions hold, there are identification problems with these methodolo-

gies. The issue is one of functional dependence in the first step of the respective procedures. We illustrate these

issues in the LP context, though one can make very similar arguments in the OP context. To give a brief intuition

behind the result, consider a parametric version of the first stage of LP, i.e. where instead of treating (10) (and its

inverse) non-parametrically, one actually uses the parametric FOC corresponding to a Cobb-Douglas production

function. The first order condition for mit (conditional on kit, lit, and ωit) is

βmK
βk
it L

βl
it M

βm−1
it eωit =

pm
py

assuming firms are price takers in both input and output markets.4 Inverting this equation for ωit and substituting

into the production function results in:

(15) yit = ln(
1

βm

) + ln(
pm
py

) +mit + εit

Since βl does not enter this expression, a moment condition in εit based on this equation (which is analagous to

the first stage of LP) cannot be informative on βl.
5

While the above result might not hold for more general functional forms of the production function, the LP

and OP procedures treat the inverted FOCs non-parametrically, which makes identification tougher. The first step

moment condition (13) used to estimate βl in LP is equivalent to the partially linear model studied by Robinson

(1988). His condition for identification of βl (Equation 3.5, see also Ai and Chen (2003) Assumption 3.3 and

discussion) is that

(16) E
[

{lit − E [lit|kit,mit, t]} {lit − E [lit|kit,mit, t]}′
]

is positive definite

An immediate observation is that if lit is functionally dependent on kit, mit, and t (i.e. lit is only a function of

kit,mit, and t), this condition does not hold. Intuitively, the problem here is that. lit is fully determined by the

values of kit,mit, and t, so there is no source of variation in lit (conditional on kit,mit, and t) to identify βl. So we

focus our discussion on investigating possible data-generating-processes for lit and ask the question whether these

DGPs generate this functional dependence.

Perhaps the simplest possible DGP for lit is analogous to that for mit (equation (10)) , i.e.

(17) lit = ht(kit, ωit)

This assumes that like mit, labor has no dynamic implications and is chosen with full knowledge of ωit. With this

3In contrast to OP and LP, they treat the inverted input demand function parametrically. They have two good reasons for this.
First, including observed input prices in the inverted function increase the dimensionality of the function and make non-parametric
treatment more challenging. Second, since the production function has already been modelled parametrically, one can obtain parametric
forms of input demand fuctions for non-dynamic inputs without significant auxiliary assumptions. Doraszelski and Jaumandreu also
extend the OP/LP model to one in which observed firm R&D expenditures affect the evolution of ωit, an important idea that could
also be applied in the context of our estimation procedure.

4This version of the first order condition assumes that εit is pure measurement error in yit (if εit was an unanticipated shock to
output, the expectation of exp(εit) would enter the first order condition as well).

5The above analysis uses the choice of mit conditional on levels of kit, lit, and ωit. This is most naturally interpreted in the
case where mit is chosen after lit. One obtains the same result if one solves simultaneously for optimal choices of both mit and lit
conditional on levels of kit and ωit, and plugs the inverted FOC for mit into the production function.
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DGP, substituting the inverted (10) into (17) results in

lit = gt(kit, f
−1
t (kit,mit))

which states that lit is functionally dependent on kit, mit, and t, and implies that the identification condition (16)

fails. Intuitively, in equation (12), the contribution of labor to output cannot be separately identified from the

non-parametric function Φt(kit,mit).

That said, while (17) might be the simplest specification for the data generation process (DGP) for lit, it is

not the only possibility. Our goal now is to search for an alternative DGP for lit (and possibly for mit) that does

not suffer this functional dependence problem and is consistent with the basic assumptions of the LP (and OP)

procedure(s).

First, consider adding firm-specific input prices to the above model of input choice, e.g. prices of labor (plit)

and materials (pmit ). Generally speaking, both of these firm-specific input prices will affect a firm’s choices of

both lit and mit (i.e. conditional on pmit , decreasing plit will generally increase a firm’s optimal level of both lit

and mit.) Therefore, these input prices would need to be observed by the econometrician, because otherwise (10)

would violate the scalar unobservable assumption necessary for the LP inversion. Since intermediate input demand

depends on these firm-specific input prices, they end up in the first step non-parametric function, i.e.

(18) E [εit | Iit] = E
[

yit − βllit − Φt(kit,mit, p
l
it, p

m
it ) | Iit

]

= 0

and there is again a functional dependence problem, as there are no variables that shift lit but do not enter Φt.

Another possibility, allowing labor to have dynamic effects, doesn’t help for the same reason. lit−1 becomes a state

variable of the problem, but since both mit and lit both depend on lit−1, there is still functional dependence.

One way to eliminate the functional dependence problem is to assume that there is ”optimization error” in lit.

By optimization error, we mean that there is a optimal level of lit (e.g. given by (17)), but that for some reason

the firm chooses that optimal level plus noise (that is independent over time and of other errors in the model).

One example of this could be workers calling in sick.6 Such optimization error induces variation in lit conditional

on kit, mit, and t, and hence the first step can consistently estimate βl. However, note that the methodology is

not compatible with similar optimization error in mit, since this would violate the scalar unobservable assumption

required to invert (10) and obtain ωit. The context of sick days is a good way to illustrate this point with some

applied relevance. Suppose that mit are material inputs used in production and that when workers are out sick, less

of these materials are used. If the econometrician’s measure of mit is the actual level of material input used (which

is negatively affected by sick days), there is implicitly optimization error in both lit and mit, and because of this

optimization error in mit the first step will not produce consistent estimates of βl. However, if the econometrician’s

measure of mit is the planned level of material input used (i.e. planned/ordered prior to the realization of sick days,

and thus unaffected by sick days), there is only optimization error in lit and the first step will produce consistent

estimates of βl. In contrast, the i.i.d. ”optimization error” in lit DGP might not be a good representation of

a situation where firms’ labor choices are distorted by exogenous union issues. This is because union issues are

unlikely to be i.i.d. over time, and hence either planned or used material inputs are likely to respond to the

(unobserved) union shocks, violating the scalar unobservable assumption. Note that classical measurement error in

lit (i.e. noise in observed labor that does not affect output) is problematic because of standard measurement error

problems, and classical measurement error in mit is problematic because it again violates the scalar unobservable

assumption that is crucial for the inversion.

A second, similar, DGP that can eliminate the functional dependence problem involves changing the assumption

6Note the difference between our ”optimization error” and the ”optimization error” described by Mundlak (1996). We are simply
adding exogenous noise to the desired input level (workers exogenously calling in sick). Mundlak describes ”optimization error” due
to incomplete information, for example, firms choose labor input based on an expected price of labor, but the realized price of labor is
different, making their choice of labor input seem suboptimal ex post.
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that lit and mit are chosen with the same information set. Consider a point in time, t − b, sometime between

period t − 1 and t (i.e. 0 < b < 1).7 First, note that if one assumes lit is chosen at t − b and mit is chosen at t,

there is a problem because in such a model, optimal mit will generally directly depend on the previously chosen

level of lit. Since lit enters (10), the first step moment becomes

(19) E [εit | Iit] = E [yit − βllit − Φt(kit, lit,mit) | Iit] = 0

which obviously precludes identification of βl in the first step. However, one can alternatively consider the reverse

situation, i.e. where mit is chosen at t− b and lit is chosen at t. Suppose there is some unanticipated firm-specific

shock to the price of labor (or demand), κit, that is realized between the points t−b and t (i.e. it is not in the firm’s

information set (Iit−b) when mit is chosen, but it is in the firm’s information set (Iit) when lit is chosen). Such

a shock will vary lit independently of kit, mit,and t, and thus will eliminate the functional dependence problem.

This shock κit does not need to be observed by the econometrician, but if it is unobserved, it must be i.i.d. over

time (otherwise the optimal mit+1 will depend on κit, violating the scalar unobservable assumption). Another

assumption that is required in this DGP is that the firm observes ωit when choosing mit at time t − b (perhaps

more intuitively that ω does not evolve between time t− b and time t). Otherwise the non-parametric function of

mit and kit will not perfectly control for ωit in the moment condition.

These functional dependence problems (and possible assumptions that avoid them) generalize to the first step

of the OP procedure that alternatively uses the investment function to control for productivity variation.. Firm

specific input prices (observed or unobserved) and dynamics in lit generally do not break the functional dependence,

but optimization error in lit or i.i.d, firm-specific wage (or output price) shocks after iit is chosen do. There is one

additional DGP that breaks the functional dependence problem in the OP setup. Continuing with the above setup

with the ”subperiod” t − b, assume that ω evolves between t − 1, t − b, and t according to a first order Markov

process, i.e.

(20) p(ωit−b|Iit−1) = p(ωit−b|ωit−1)

and

(21) p(ωit|Iit−b) = p(ωit|ωit−b)

Suppose also that lit is chosen at time t− b with information set Iit−b, while iit is chosen at time t with information

set Iit.

In this case, a firm’s optimal investment will follow

(22) iit = ft(kit, ωit)

while a firm’s optimal labor input will not be a function of ωit, but of ωit−b, i.e.

lit = gt (ωit−b, kit)

Since ωit−b cannot generally be written as a function of kit and iit, lit will not generally be functionally dependent

on kit and iit, allowing consistent estimation of βl in the first step. Note the intution behind this - labor is chosen

without perfect information about what ωit is, and this incomplete information is what generates variation in lit

conditional on the non-parametric function f−1
t (kit, iit). However, note that this DGP does need to rule out a firm’s

7Note that we continue to assume that production occurs ”on the period”, i.e. at periods t− 1 and t. Note that this intermediate
period, t− b, does not need to have a literal interpretation in terms of time. What we are simply trying to do is allow different inputs
to be chosen with different information sets, and with this heuristic device, an ”input chosen at t” is chosen with more information
than is an ”input chosen at t− b”, which is chosen with more information than is an ”input chosen at t− 1”.
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choice of lit having dynamic implications. If labor did have dynamic effects, then lit would directly impact a firm’s

choice of iit. As a result, lit would directly enter the first stage non-parametric function and prevent identification

of βl in that first stage.8

3.1 Discussion

To summarize, it appears that the first stage of the OP and LP procedures correctly identify βl only under three

very specific DGPs - 1) i.i.d. optimization error in lit (and not in mit (or iit)) 2) i.i.d. shocks to the price of labor

or output after mit (or iit) is chosen but prior to lit being chosen, or 3) (in the OP context) labor is non-dynamic

and chosen at t− b as a function of ωit−b, while iit is chosen at t. Note that in practice, one probably would not

literally observe the functional dependence problem described above (if one were using polynomials to approximate

the non-parametric function, functional dependence would arise in the form of collinearity between lit and the

terms in the polynomial approximation.) In other words, it is likely that estimation of (5) or (13) will produce an

actual numerical estimate of βl. Our point is that unless one believes that one of these three DGPs is generating

the data (and additionally that these DGPs are the only reasons why there is no functional dependence), this is

simply not a consistent estimator of βl.

4 Our Alternative Procedure

We now propose an alternative estimation procedure that avoids the functional dependence problems discussed

above. Perhaps just as importantly, it also relaxes other assumptions typically made in applications of OP and

LP. Specifically, our model allows there to be exogenous, serially correlated, unobserved firm-specific shocks to

the price of labor, or firm-specific unobserved adjustment costs to the labor input. It also allows the labor input

to have dynamic effects (e.g. hiring or firing costs) more generally. We emphasize that the approach is only

a slight adaptation of the OP/LP methodologies, and essentially relies the same moment conditions. The main

difference between our approach and OP and LP is that in our approach, we invert ”conditional” rather than

”unconditional” input demand functions to control for unobserved productivity. This results in a first stage that

does not identify the coefficients on variable inputs (e.g. labor). Instead, all coefficients are all estimated in the

second stage. However, as we shall see, the first stage will still be important to ‘net out’ the untransmitted error

εit from the production function. We start by showing how our method works using the LP intermediate input

function before showing the extension to using the OP investment function.

4.1 The Basic Procedure

Consider the following ‘value-added’ production function

(23) yit = β0 + βkkit + βllit + ωit + εit

with the alternative assumptions

Assumption 8

8Note why this DGP does not solve the functional dependence problem in the context of the LP model. In the LP model, if lit is
chosen before mit, then mit will directly depend on lit, making βl unidentified in the first stage. In OP, even if lit is chosen before iit,
iit does not depend on lit (as long as one maintains the assumption that labor is non-dynamic). This is because iit, unlike mit, is not
directly linked to period t outcomes, and thus lit will not affect a firm’s optimal choice of iit.
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Assumption 9 Assumption 3c: (Timing of Input Choices) Firms accumulate capital according to

kit = κ(kit−1, iit−1)

where investment iit−1 is chosen in period t− 1. Labor input lit has potential dynamic implications and is chosen

at period t, period t− 1, or period t− b (with 0 < b < 1)

Assumption 10 Assumption 4c: (Scalar Unobservable) Firms’ intermediate input demand is given by

(24) mit = ˜ft(kit, lit, ωit)

Assumption 11 Assumption 5c: (Strict Monotonicity) ˜ft(kit, lit, ωit) is strictly increasing in ωit.

First, note that we consider a ‘value added’ production function in the sense that the intermediate inputmit does

not enter the production function to be estimated. One interpretation of this is that the gross output production

function is Leontief in the intermediate input, where this intermediate input is proportional to output (e.g. see

our Monte-Carlo specification). Another follows the existing literature on value-added production functions, see,

e.g. Bruno (1978) and Diewert (1978). As discussed in those papers, as well as in Basu and Fernald (1997),

the assumptions behind the existence of a meaningful value-added production function are subtle and non-trivial.

We would not suggest applying our procedure to gross output production functions that are not Leontief in the

intermediate input(s) (i.e. production functions where mit enters (23)). This is because Bond and Söderbom

(2005) (for the Cobb-Douglas case) and Gandhi, Navarro, and Rivers (2014) (for the general case) have shown that

under the scalar unobservable assumptions of OP, LP, and our procedure, these gross output production functions

are not identified without imposing further restrictions of the model. If one is interested in doing this, it is likely

preferable to use an approach where OP/LP-like moments are augmented by first order conditions or revenue

share equations, e.g. LP (Appendix B) and Doraszelski and Jaumandreu (2013), who do this in the context of a

Cobb-Douglas production function, or Gandhi, Navarro, and Rivers (2014), who show how to do this much more

generally.

Moving to the assumptions of the model, Assumption (3c) generalizes Assumption (3) by allowing labor to have

dynamic implications, i.e. choice of lit not only affects current profits, but future profits, e.g. through hiring or

firing costs. Note that this implies that lit is part of the state space of the firm’s dynamic problem. We can allow

lit to be chosen at period t (and thus a function of Iit), chosen at period t− 1 (and thus a function of only Iit−1),

or at some point in-between (with an intermediate information set)

Assumption (4c) represents the crucial conceptual difference between our procedure and LP. The difference

between Assumption (4b) and Assumption (4c) is that we are using a conditional input demand function to control

for unobserved productivity, while LP uses an unconditional (or less conditional) input demand function. More

precisely, (24) is the input demand function for mit conditional on lit, while (10) is the input demand function for

mit not conditional on lit. While our conditional input demand function might be most naturally thought of as

representing a situation where mit is chosen after lit, it can equally well represent a situation where mit and lit are

chosen simultaneously.9 As does Assumption (4) and (4b), Assumption (4c) rules out production functions with

multiple structural unobservables like McElroy (1987). Assumption (5c) is the strict monotonicity assumption

9There is no loss of generality in representing maxlit,mit
{·} as maxlit

{
maxmit|lit {·}

}
. Note that LP’s unconditional (on lit)

intermediate input demand equation, i.e. mit = ft(kit, ωit), is most naturally interpreted as a situation where lit and mit are chosen
simultaneously as a function of the current state (kit, ωit).
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necessary for the inversion - since mit is still a non-dynamic input, it is straightforward to apply the invertibility

proof of LP to obtain this result.

Given these assumptions, we can follow LP, invert intermediate input demand ωit = ˜f−1
t (kit, lit,mit) and

substitute into the production function, i.e.

(25) yit = β0 + βkkit + βllit +
˜f−1
t (kit, lit,mit) + εit = ˜Φt(kit, lit,mit) + εit

Since we follow LP and treat ˜f−1
t non-parametrically, the first three terms are clearly not identified and are

subsumed into ˜Φt(kit, lit,mit) = β0 + βkkit + βllit + ωit, resulting in the following first stage moment condition

(26) E [εit | Iit] = E
[

yit − ˜Φt(kit, lit,mit) | Iit
]

= 0

Unlike LP, (26) does not permit estimation of βl in the first stage. However, it does produce an estimate
̂

˜Φt(kit, lit,mit) of ˜Φt(kit, lit,mit). We propose estimating βl along with the other production function parameters

in the second stage using the following second stage conditional moment.

(27) E[ξit+εit | Iit−1] = E[yit−β0−βkkit−βllit−g(˜Φt−1(kit−1, lit−1,mit−1)−β0−βkkit−1−βllit−1) | Iit−1] = 0

where ˜Φt−1 is replaced by its estimate from the first stage. Note that this moment condition is essentially identical

to that used by LP (i.e. equation (14)), except for the fact that since ˜Φt−1 now contains the labor term, it also

needs to be subtracted out inside the g function.

As usual, it is easiest to transform conditional moments into unconditional moments for actual estimation. It

is important to note that since our second stage requires estimating an additional parameter (βl) as compared to

LP, we require an additional unconditional moment relative to LP. To illustrate, consider a simple model where

ωit = ρωit−1 + ξit. Suppose the first stage is performed by OLS regression of yit on a high-order polynomial in

(kit, lit,mit) to obtain
̂

˜Φt(kit, lit,mit). If labor is assumed to be chosen after time t− 1 (implying lit will generally

be correlated with ξit), a natural set of four second stage moment conditions to estimate the three production

function parameters (β0, βk, and βl) and ρ is

(28)

E[
(

yit − β0 − βkkit − βllit − ρ · (˜Φt−1(kit−1, lit−1,mit−1)− β0 − βkkit−1 − βllit−1)
)

⊗

⎛

⎜

⎜

⎜

⎝

1

kit

lit−1

˜Φt−1(kit−1, lit−1,mit−1)

⎞

⎟

⎟

⎟

⎠

] = 0

In contrast, second stage LP estimation based on (14) only requires three moments, though as exemplified in the

LP empirical work, one could alternatively utilize all four moments (or more than four using other components of

Iit−1) and have overidentifying restrictions.10

In some industries, one might be willing to assume that labor is chosen by the firm at t− 1, i.e. lit ∈ Iit−1 (or

alternatively make the assumption that ωit is not observed by the firm until period t + 1). This is a potentially

strong assumption, but it might be plausible in situations where there are significant hiring or firing costs, or labor

market rigidities, possibly due to government regulation. In this case, one could add lit to the information set (or

10There are many ways to estimate the model based on the second stage moments. For example, the Appendix in LP illustrates how
one can do second step estimation with a non-linear search over just (βk, βl). A similar approach can work here, where one only has
to search over (βk, βl) rather than over (β0, βk, βl) and the parameters of g (see our Monte-Carlo code). Relatedly, a prior version
of this paper illustrated the approach with a second step moment in ξit rather in ξit + εit. As noted by Gandhi, Navarro, and Rivers
(2014), the moment in ξit + εit can be used more generally, e.g. in some cases where the investment or intermediate input variable is
only weakly monotonic in ωit. Note that there are additional conditional moment conditions implied by the model related to inputs
further in the past. Whether these are used as additional moments is typically a matter of preference.
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replace lit−1 with lit in the instrument set if one wanted to keep the model exactly identified), i.e.

(29)

E[
(

yit − β0 − βkkit − βllit − ρ · (˜Φt−1(kit−1, lit−1,mit−1)− β0 − βkkit−1 − βllit−1)
)

⊗

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

kit

lit

lit−1

˜Φt−1(kit−1, lit−1,mit−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

] = 0

This stronger assumption will generally lead to more precise estimates.

4.2 Discussion

In the context of the intermediate input function approach, we see a number of advantages of using our conditional

intermediate input demands over LP’s unconditional intermediate input demands. First, because we do not

attempt to estimate βl in the first step, we avoid the functional dependence issues in the LP first stage. As a result,

consistent estimates of βl do not rely on DGPs that involve optimization error in lit (and none in mit), or i.i.d.

firm-specific wage or output price shocks that are realized after the firm’s choice of mit (though our approach can

provide consistent (but not as efficient) estimates of βl under such DGPs). Second, as noted above, this model

is consistent with labor being a dynamic input. With such dynamics, in the case where mit and lit are chosen

simultaneously, Assumption (4b) does not generally hold, since unconditional on lit, mit will depend on lit−1.

However, Assumption (4c) does hold, since conditional on lit, lit−1 should not affect a firm’s optimal choice of mit.

Third, estimation using our moments (26) and (27) produces consistent estimates under some DGPs where

the canonical LP moments (13) and (14) do not. One important example is a situation in which there is across-

firm variation in exogenous wage conditions (or adjustment costs to dynamic labor) that is potentially serially

correlated over time. Suppose that this wage (or adjustment cost) variation is not observed by the econometrician.

In this case, the conditional intermediate input demand function does not depend on the wage/adjustment cost, i.e.

conditional on lit, a firm’s choice of mit does not depend on the wage/adjustment cost. On the other hand firms’

optimal choices of mit given only kit, i.e. the unconditional intermediate input demand function, do generally

depend on the unobserved wage/adjustment cost. In other words, Assumption (4c) does hold, while Assumption

(4b) does not. Of course, it should be noted that if there are unobserved shocks to either prices of intermediate

inputs or demand conditions, neither Assumption (4b) or Assumption (4c) hold, i.e. neither the conditional or

unconditional approach will produce consistent estimates. To summarize with respect to the above and the

discussion in Section 2.1, consider serially correlated, exogenous, unobserved shocks to the costs of kit, lit, and mit.

OP cannot allow any of these shocks, LP can allow those relating to kit, but not those relating to lit and mit, and

our proposed moments can allow those relating to kit and lit, but not those relating to mit.

4.3 Extensions

4.3.1 Investment Function Approach

One can also use our methodology with the investment demand function of OP, replacing the unconditional invest-

ment demand function i = ft(kit, ωit) with a conditional (on lit) investment demand function iit = ft(kit, lit, ωit).

As above, this precludes identification of βl in the first stage - again, in our view this is a benefit as it avoids the

first stage functional dependence issues. After a first stage that estimates yit = ˜Φt(kit, lit, iit) + εit, the second

stage moments

E[ξit + εit|Iit−1] = E[yit − β0 − βkkit − βllit − g(˜Φt−1(kit−1, lit−1, iit−1)− β0 − βkkit−1 − βllit−1)|Iit−1]
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can be used to estimate the parameters. As when using the intermediate input demand function, this procedure is

consistent with labor having dynamic effects. However, unlike when using the intermediate input demand function,

it is not generally consistent with other unobservables entering either the iit or lit decisions. Any unobservable

other than ωit that directly impacts investment, e.g. a firm specific shock to the price or adjustment costs of

capital, is clearly problematic. Less obviously, serially correlated unobservables that affect the lit decision, e.g.

firm specific wage shocks, will generally also affect the iit decision directly since iit is a dynamic decision variable.

For example, a firm facing low wages today expects to face low wages in the future, and hence invests more today.

As a result, the inversion is problematic. The reason the intermediate input demand function approach of LP is

more robust to these additional serially correlated unobservables is because intermediate inputs have no dynamic

aspects to them, i.e. they only impact current output.

4.3.2 Joint Estimation

Wooldridge (2009) suggests an alternative implementation of the OP/LP moments that involves minimizing the

first and second stage moments simultaneously. For example, in the LP model, he suggests estimating all the

parameters simultaneously using the moment conditions

(30) E

[

εit | Iit
ξit + εit | Iit−1

]

= E

[

yit − βllit − Φt(kit,mit) | Iit
yit − β0 − βkkit − βllit − g(Φt−1(kit−1,mit−1)− β0 − βkkit−1) | Iit−1

]

= 0

As pointed out by Wooldridge, there are several advantages to this approach. First, the joint approach avoids

the functional dependence issue described above. Even if lit is functionally dependent on mit, kit, and t, βl can

be identified by the second set of moments. This highlights the fact that the functional dependence issue is

not a problem with the moments used by OP and LP - it is a problem with how OP and LP use those moments

sequentially, i.e. where one attempts to identify βl using only the first stage moments. Other advantages of the joint

approach are potential efficiency gains, and simpler standard error calculations. There are also disadvantages of the

joint approach - in particular, the joint approach requires a non-linear search over β0, βk, βl, and the parameters

representing the two unknown functions Φt and g. This is more time consuming and likely more error prone than

the two-stage approach, which can often be performed with a non-linear search over just βk and βl (if Φt and g

are represented by polynomials, the first stage can be estimated using OLS, and in the second stage, OLS can be

used to concentrate out the parameters of g - see the Appendix).

Note that if one applied the idea of Wooldridge directly to our proposed moments (26) and (27), one gets

something slightly different than (30), i.e.

(31)

E

[

εit | Iit
ξit + εit | Iit−1

]

= E

[

yit − ˜Φt(kit, lit,mit) | Iit
yit − β0 − βkkit − βllit − g(˜Φt−1(kit−1, lit−1,mit−1)− β0 − βkkit−1 − βllit−1) | Iit−1

]

= 0

Specifically, (30) is a restricted version of (31), a version where ˜Φt(kit, lit,mit) is assumed to be linear in lit. The

distinction also exactly corresponds to our distinction between moments based on the unconditional intermediate

input demand function (the Wooldridge moments (30)) and moments based on the conditional intermediate input

demand function (31) . For the same reasons as discussed above, we prefer (31) because it makes fewer assumptions

- (31) allows serially correlated unobserved wage shocks, allows dynamic labor with adjustment costs, and allows

materials to be chosen after labor (e.g. labor chosen at t− b as a function of ωit−b). On the other hand, (30) does

not allow this. One could also use the two sets of moments to test this restriction - if one models and interprets
˜Φt as a flexible parametric polynomial (rather than a non-parametric function), one could use a simple Wald or

LR test for the restrictions that the linear coefficient on l in ˜Φ(k, l,m) equals βl and all other coefficients involving

l equal 0 (note that this is related to the overidentifying restrictions tests performed by OP and LP).
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4.3.3 Relation to Dynamic Panel Methods

Interestingly, the form of our suggested estimators make them fairly easy to compare to estimators used in an

alternative literature, the dynamic panel literature. This is important because up to now, researchers interested

in estimating production functions have essentially been choosing between the OP/LP general approach versus the

dynamic panel approach without a clear description of the similarities and differences of the identifying assumptions

used in the two methods. We briefly discuss the differences and distinct advantages and disadvantages of both

approaches.

As developed by work such as Chamberlain (1982), Anderson and Hsiao (1982), Arellano and Bond (1991),

Arellano and Bover (1995), and Blundell and Bond (1998, 2000), the dynamic panel (DP) literature essentially

extends the fixed effects literature to allow for more sophisticated error structures. We consider a simplified version

of these models that is closest to our model.

(32) yit = β0 + βkkit + βllit + ωit + εit

where ωit follows an AR(1) process, i.e. ωit = ρωit−1 + ξit. Like in our model, assume that εit is i.i.d. over time

and uncorrelated with Iit and that ωit is correlated with kit and lit ∀t, but that the innovation ξit, is uncorrelated

with Iit−1,i.e.all input choices prior to t.

The dynamic panel literature might proceed by ”ρ-differencing” this model, i.e.

(33) yit − ρyit−1 = β0 (1− ρ) + βk (kit − ρkit−1) + βl (lit − ρlit−1) + ξit + (εit − ρεit−1)

and estimating the model using the moment condition

(34)

E [ξit + (εit − ρεit−1) | Iit−1] = E [(yit − ρyit−1)− β0 (1− ρ)− βk (kit − ρkit−1)− βl (lit − ρlit−1) | Iit−1] = 0

This moment condition is similar to our proposed second stage moment condition E [ξit + εit | Iit−1] = 0. What is

most relevant is the alternative assumptions under which they were derived. The DP approach does not need the

assumptions that generate invertibility of the variable input demand function. So, e.g., it can allow for unobserved

cost shocks to all inputs, unlike our approach, which does not allow such shocks to the price of mit. On the other

hand, the DP derivation seems to rely on the linearity of the ωit process - in contrast, OP, LP, and our approach can

treat the first-order markov process completely non-parametrically. There are other differences between the models.

For example, the DP literature can be extended to allow for a fixed effect αi in addition to the AR(1) process,

while generally speaking, this is challenging in our context because it would tend to violate the scalar unobservable

assumption. The DP literature also can also potentially allow future values of the intermediate input or investment

variable to depend on past εit’s, while our approach cannot. On the other hand, as elaborated on in OP, the scalar

unobservable assumption of OP/LP and our approach makes it fairly straightforward to extend the methodologies

to address endogenous exit (selection) from a sample - this would be considerably harder in the DP context. In

summary, both approaches require strong (but different) assumptions. In some cases, a-priori beliefs about a

particular production process and/or data considerations may guide choices between the two approaches. In other

cases, one may want to try both techniques. Finding that estimates are consistent across multiple techniques with

different assumptions is surely more convincing than only using one.

4.3.4 Units of Measure

The above discussion has implicitly assumed an ”ideal” data scenario where all the variables are measured in

physical units that are equivalent across firms. While lit is often measured in physical units (number of workers,

or number of hours), output and inputs such as capital and materials are probably most frequently measured in
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monetary units. When output or an input is measured in monetary values, there are a few things that must be

considered to apply the above techniques.

First, assume that firms are price takers in both input and output markets. The first question is whether the

prices of equivalent inputs or output vary across firms.11 If there is no variation in prices, then the monetary units

are comparable across firms and one can apply the above techniques straightforwardly. On the other hand, if the

prices of those equivalent inputs (or output) do vary across firms, then the monetary units are not comparable across

firms (see, e.g. Klette and Griliches (1996)). In this case, the price variation must be observed for straightforward

application of the above techniques. When the price variation is observed, then one can easily divide by prices to

obtain measures of physical units and one can apply the above (note that the observed input and output prices

need to be included in the intermediate input (or investment) demand function). Note that the observed input

prices could also be used as additional instruments for the moment conditions under appropriate assumptions (e.g.

that those input prices are exogenous) - see, e.g. Doraszelski and Jaumandreau (2013).

Alternatively, consider a situation where firms face downward sloping output demand curves (and/or upward

sloping input supply curves). In this case, one will generally need to assume that firms are all facing identical

demand/supply curves - otherwise firms will have different intermediate input (or investment) demand functions

(i.e. the scalar unobservable Assumption (4), (4b), or (4c) will be violated). But even if this is true, there is still

a problem since firms will generally be operating on different points of those demand and supply curves. Because

of the resulting price differences, monetary values of inputs or output will again generally not be comparable across

firms. If one observes the price differences of equivalent inputs or outputs, one can again construct measures of

equivalent physical units and apply the above. If one does not observe the price differences, then other techniques

are required - see Klette and Griliches (1996), De Loecker (2011), and De Loecker and Warzynski (2012) for recent

methodological advances for this situation.

5 Monte-Carlo Experiments

The discussion above implies that whether OP, LP, or our procedure generates consistent estimates of the production

function parameters depends on the underlying DGP. What we instead focus on in our Monte-Carlo experiments

is how the various procedures perform under misspecification. Specifically, we consider misspecification where the

intermediate input or investment variable is measured with error. In this case, none of the procedures produce

consistent estimates, but we illustrate (in at least one setup) that our procedure appears less affected by this

misspecification than OP and LP. Note that since the original version of the paper, others have proposed newer

methods of explicitly addressing measurement error in inputs - Hu and Huang (2011) propose a method to explicitly

deal with such measurement error in these approaches based on observing multiple proxies and deconvolution

methods, and Kim, Petrin, and Song (2013) also allow for measurement error in capital.

Our Monte-Carlo setup extends Syverson (2001) and Van Biesebroeck (2007), who consider a simple dynamic

model of firm investment and production that is analytically solvable (which considerably eases computation burden

and reliability issues for Monte-Carlo purposes). The parameters of the model were chosen to match a couple of key

moments in the Chilean data used by LP. The full model setup is described in the Appendix, but the basics are as

follows. Productivity follows a first-order AR(1) process. Firms make optimal choices of investment in the capital

stock to maximize the expected (discounted) value of future profits, where there are convex capital adjustment

costs, and as above, the period t capital stock is determined by investment at t−1 (i.e. Kit = (1−δ)Kit−1+Iit−1) .

Material inputs mit are chosen at t, while labor input lit is either chosen at t or at t− b (in the latter case, labor is

chosen with only knowledge of ωit−b, not ωit). The production function is assumed Leontief in (and proportional

11When we describe measures of inputs and outputs as being equivalent across firms, we are ruling out a situation where input
or output price differences across firms reflect differences in quality. If one thinks that quality differences are important, monetary
measures of input or outputs may be superior to (non-equivalent) physical measures, though as noted below, using monetary measures
requires an assumption that firms face the same menu of prices (menu over different quality levels).
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to) materials, i.e.

Yit = min
{

β0K
βk
it L

βl
it exp(ωit) , βmMit

}

exp(εit)

where β0 = 1, βk = 0.4, βl = 0.6, and βm = 1. Given the Leontief first order condition holds, this means that we

can proceed using the following ”structural value added” (see Gandhi, Navarro and Rivers (2014)) (log) production

function

yit = β0 + βkkit + βllit + ωit + εit

The other free parameters of the model were chosen such that the steady state of the model approximately matches

the overall relationship between capital and labor in the Chilean data used by LP. Specifically, in our baseline

specifications, 95% of the variation in capital in the data is across-firm variation, and the R2 of a regression of capital

on labor is approximately 0.5. Importantly, to match these two ”moments” of the Chilean data, we needed to allow

unobserved heterogeneity across firms in capital adjustment costs (see the Appendix for details). This violates

the scalar unobservable assumption if one is using the investment variable of OP, and highlights the advantages

of the LP intermediate input variable approach over the investment variable approach as described earlier - i.e.

the intermediate input approach (either with the LP moments or our moments) allows unobserved variation across

firms in investment prices or capital adjustment costs. As a result, we primarily compare results using LP with

the intermediate input variable, to our approach also using the intermediate input variable.

We consider two base DGPs. The first, DGP1, is favorable to our procedure in that we add aspects to the

DGP under which our moments produce consistent estimates but the LP moments do not. First, we assume that

firms face different (unobserved to the econometrician) wages, where the wage process for firm i follows an AR(1)

process. Second, we assume labor is chosen at time time t− b, where b = 0.5 and where ω follows an AR(1) process

both between ωit−1 and ωit−b and between ωit−b and ωit. Details are in the Appendix. As discussed in Section 3,

the reason that our moments produce consistent estimates in this DGP is because we use the conditional (on lit)

intermediate demand function, while LP does not.12

The second DGP (DGP2) is favorable to LP. There is no wage variation across firms, and labor is chosen at t

with full information on ωit, so the model is consistent with the LP moments. We add simple optimization error

in labor, where the labor variable is essentially the optimal level of labor plus i.i.d. noise. As noted above, this

seems to be the simplest way to overcome the functional dependence issue in a way that is consistent with the LP

assumptions (recall that choice of mit cannot respond to the optimization error in lit, so in this DGP the mit that

is observed needs to be ”planned materials”, i.e. the mit chosen prior to the realization of optimization error in

lit.) While our procedure also should produce consistent estimates with this DGP, we suspect that our estimates

will not be as efficient as LP, since in this case, the LP moments can be seen as a restricted version of our moments

(where that additional restriction is valid). In the context of our moments, the additional (valid) restriction is that
˜Φt is linear in lit (with the coefficient βl).

We also consider a third DGP (DGP3) that is a combination of the above two, i.e. it includes optimization

error in lit, serially correlated wage variation across firms, and labor being chosen at time t − b. Neither the LP

moments nor our moments produce consistent estimates under DGP3. While our procedure produces consistent

estimates under DGP1 or DGP2 individually, it does not produce consistent estimates under the combination of

them because in DGP2, the mit that is observed depends on lit without optimization error. Hence, the inverted

12Note that along with the assumption that firms are price takers in input and output markets, this particular ”proportional in Mit”
Leontief specification avoids Gandhi, Navarro, and Rivers (2014) critique of using these techniques with Leontief production functions.
More specifically, in this setup, capital and labor will not be idled unless the firm chooses to shutdown (if the scaled price of materials
is somehow less than the price of output), and if the firm shuts down they would presumably not be in the data set. Moreover, there is
not even this type of optimal shut down in our Monte-carlos, since there is no across firm variation in the price of materials or output.
See the appendix for more details.
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materials demand function that is used, i.e. a function of the observed lit with optimization error, is not correct.13,14

In each of these 3 DGPs, we start with a base case in which there is no measurement error in the materials

variable.15 We then add increasing levels of such i.i.d. measurement error. Again, as soon as this measurement

error is added, neither LP nor our procedure produce consistent estimates - our goal is to see how sensitive the

various procedures are to the additional measurement error. The top third of Table 1 contains results for DGP1

- in the first row, there is 0 measurement error in the material input variable, and in later rows, the level of this

measurement error is increased. Measurement error of, e.g., 0.1 indicates that the measurement error is of a

magnitude that increases the variance of mit by 10%.

The first row demonstrates that, as expected, even without measurement error the LP moments do not produce

what appear to be consistent estimates. On the other hand, our moment conditions do appear to produce consistent

estimates when there is no measurement error. Interestingly, as we change the level of measurement error in mit,

the LP estimate of the labor coefficient is considerably more sensitive, ranging from way below the true value of 0.6

with no measurement error, to considerably above the true value when there is lots of such error. Estimates using

our moment conditions are again fairly stable, though there seems to be a small positive bias as the measurement

error increases from 0.

The middle third of Table 1 contains results from DGP 2. As noted above, with no measurement error, both

our procedure and the LP procedure effectively find the true coefficients on labor and capital. Also as expected,

the LP estimates are considerably more precise than those using our moments. However, as measurement error

in materials is added, the LP labor coefficient increases and the LP capital coefficients decrease away from the

true parameters. The capital parameter using our moments seem to be relatively unaffected by the measurement

error in materials, while the labor coefficients do move somewhat. However, generally speaking the LP coefficient

estimates seem more affected by the measurement error than do the coefficient estimates based on our moments.

The last third of Table 1 contains results from DGP 3. Again, neither procedure is consistent in this case,

even without measurement error in mit. But without the measurement error, the estimates based on our moments

are closer to the truth than the LP estimates. Moreover, we again find that our estimates are much less sensitive

than the LP estimates to measurement error. For βl and βk, our moments generate estimates that are at most

only about 10% away from the truth. In contrast, the LP estimate of the labor coefficient, for example, varies

between 0.47 and 0.68. These results suggesting that our moments are more robust to misspecification than the

LP moments seem consistent with results in a working paper version of this paper. There, using the actual Chilean

data, we found that while results using our moments were relatively robust across a variety of intermediate input

proxies (materials, electricity, fuels), results using the LP moments were more variable.

Lastly, we tried the OP estimator using investment to recover unobserved productivity. As noted previously,

given our use of firm-specific capital adjustment costs to reproduce observed patterns in the data, OP will not be

consistent under any of these DGPs. In fact, the misspecification due to the firm specific adjustment costs seems

to dwarf any misspecification due to measurement error (now in the investment variable). As a result, regardless

of the level of that measurement error or the specification, we obtain labor coefficients estimates of approximately

0.82 to 0.87 (Table 2). This again highlights how the general idea of Levinsohn and Petrin to use the intermediate

13This turns out to not matter in DGP2 because in DGP2, mit can be written as a function of just kit and ωit, and thus including
the incorrect lit is irrelevant. As noted in the appendix, our procedure would produce consistent estimates under a combination of
DGP1 and DGP2 if DGP2 were altered such that the mit that is observed optimally responds to the optimization error in lit. We did
not use this alternative DGP2, because under this alternative assumption, LP is not consistent.

14For comparison purposes, standard OLS estimates of the production function across these three DGPs produces labor coefficients
between 0.85 and 0.95 and capital coefficients between 0.06 and 0.17.

15As pointed out in a prior version of this paper, there is a identification caveat using our suggested moments in all three of these
DGPs. More specifically, there is a ”global” identification issue in that the moments have expectation zero not only at the true
parameters, but also at one other point on the boundary of the parameter space where β̂k = 0, β̂l = βl + βk, and the estimated AR(1)
coefficient on ω equals the AR(1) coefficient on the wage process. One can easily calculate that at these alternative parameter values,
the second stage moment equals the innovation in the wage process, which is orthogonal to kit and lit−1. This ”spurious” minimum
is a result of labor satisfying a static first order condition, and we suspect it would not occur were labor to have dynamic implications,
nor when the alternative moments (29) are assumed. As such, we ignore this spurious minimum in our Monte-Carlos.
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input to invert productivity (particularly in the context of our alternative moment conditions) may be preferable

to the original OP idea of using investment.

6 Conclusions

We argue that some popular production function estimation techniques introduced by Olley and Pakes (1996) and

Levinsohn and Petrin (2003) may suffer, at least conceptually, from a functional dependence problem. We propose

an alternative, though quite related, estimator that avoids this functional dependence problem. The alternative

estimator differs from OP and LP in that it inverts input demand functions that are conditional on choice of

labor input (while OP/LP invert unconditional input demand functions). We show how this allows for more

general underlying DGPs than does LP, similar to how LP allowed for some more general DGPs than did OP. In

comparison to Wooldridge’s (2009) stacked version of LP’s moments (again based on unconditional input demands),

our moments based on conditional input demands are strictly less restrictive. Again, this means that our estimator

is strictly more general than that proposed by Wooldridge, e.g. allowing unobserved heterogeneity in labor input

prices across firms, allowing labor to have dynamic implications, and allowing labor to possibly be chosen prior to

materials with a different information set. As might be expected, this generality and robustness in comparison

to Wooldridge and LP does come at an efficiency cost, i.e. when the assumptions behind the unconditional input

demand function approach are in fact correct, estimates based on our conditional approach are less efficient. These

findings are born out by Monte-Carlo experiments that compare performance of the estimators under various DGPs

that are sometimes consistent with the assumptions behind the estimators and sometimes not.
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7 Monte-Carlo Setup

We now describe our Monte-Carlo setup. We consider a panel of 1000 firms over 10 time periods. The parameters
of the model are chosen such that the capital and labor series approximate key aspects of the Chilean data used in
LP. Specifically, in our baseline specifications, 95% of the variation in capital in the data is across–firm variation
(vs within-firm variation), and the R2 of a regression of capital on labor is approximately 0.5.

7.1 Production Function and Productivity Shocks

We use a production function that is Leontief in the material input, i.e.

(35) Yit = min
{

β0K
βk
it L

βl
it e

ωit , βmMit

}

eεit

where β0 = 1, βk = 0.4, βl = 0.6, and βm = 1. Note that in this specification, material input is proportional to
output. This is perhaps the most natural Leontief specification, corresponding to a situation where a specific,
fixed, amount of the material input needs to be used to produce one unit of output (e.g. some specific amount of
metal required to produce a can to hold food, some amount of wood required to produce an item). εit is mean 0
measurement error with standard deviation 0.1 that is distributed iid over firms and time. The productivity shock
ωit follows the following AR(1) process

(36) ωit = ρωit−1 + ξit

where ρ = 0.7. The variances of the normally distributed innovation ξit (σ2
ξ) and the initial value ωi0 (σ2

ωi0
) are

set such that the standard deviation of ωit is constant over time and equal to 0.3.

7.2 Choice of Labor and Material Inputs

As described in Section 5, our specifications differ in how they model the DGP generating the labor (and material)
inputs. In all specifications, we assume that labor and materials are not dynamic inputs, i.e. a firm’s choice of Lit

and Mit has no implication for profitability after period t. As noted in the main text, our procedure is consistent
if labor has dynamic implications. We did not allow this in our Monte-Carlo’s - for speed and reliability purposes
we wanted a model where the firms dynamic programming problem can be solved analytically. When the only
dynamic input is capital, we can extend Syverson (2001) and Van Biesebroeck (2007) to obtain a model for which
the optimal investment level can be solved analytically. An alternative would be to follow Bond and Söderbom
(2005), allow dynamics (e.g. adjustment costs) in both capital and labor and solve the model numerically.

We consider two main data generating processes. DGP1 allows there to be firm specific (unobserved to the
econometrician) wage shocks, and also allows Lit to be chosen prior to period t, i.e. without full knowledge of ωit.
DGP1 is favorable to our procedure in that our conditional input demand approach produces consistent estimates,
but the LP unconditional approach does not. In contrast, DGP2 does not allow firm specific wage shocks, and Lit

is chosen with knowledge of ωit. However, DGP2 does add optimization error to Lit (while there is no optimization
error in Mit). DGP2 is favorable to LP, as the LP procedure produces consistent estimates. While our procedure
also produces consistent estimates, we expect them to have higher standard errors than those generated by LP.

More specifically, DGP1 first allows labor to be chosen at time period t− b (we set b = 0.5). We can think of
decomposing the AR(1) process (36) into two subprocesses. First ωit−1 evolves to ωit−b, at which point in time
the firm chooses labor input (as a function of ωit−b). Then, after Lit is chosen, ωit−b evolves to ωit. We use the
following model of the evolution of ω between sub-periods:

ωit−b = ρ1−bωit−1 + ξAit(37)

ωit = ρbωit−b + ξBit

Thus, when b > 0, firms have less than perfect information about ωit when chosing Lit, and when b increases, this
information decreases. Note that this is consistent with the AR(1) coefficient in (36) since ρ1−bρb = ρ. Also for
consistency with (36), we impose that V ar(ρbξAit+ ξBit) = V ar (ξit) and that the variance of ξAit is such that the

variance of ωit−b is constant over time. This defines V ar
(

ξAit

)

≡ σ2
ξA

and V ar
(

ξBit

)

≡ σ2
ξB

, and intuitively implies

that σ2
ξA

is decreasing in b and σ2
ξB

is increasing in b.
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In DGP1 firms also face different wages where the (ln) wage process for firm i follows an AR(1) process

ln(Wit) = 0.3 ln(Wit−1) + ξWit

where the variances of the normally distributed innovation ξWit (σ2
ξW

) and the initial value ln(Wi0) are set such that

the standard deviation of ln(Wit) is constant over time and equal to 0.1. Relative to a baseline in which all firms
face the mean log wage in every period (1), this wage variation increases the within-firm, across-time, standard
deviation of ln(Lit) by about 10%.

Given DGP1, firms optimally choose Lit to maximize expected profits by setting (with the difference between
the price of output and the price of the material input normalized to 1):

Lit = β
1

1−βl
0 β

1
1−βl

l W
−1

1−βl
it K

βk
1−βl
it e

(
1

1−βl

)(
ρbωit−b+

1
2σ

2
ξB

)

Note that DGP1 is not subject to the critique of Gandhi, Navarro and Rivers (2014) of Leontief production
functions (as noted in footnote 12 of the main paper). They discuss how in the context of a Leontief production
function, e.g.

(38) Yit = min
{

β0K
βk
it L

βl
it e

ωit ,m(Mit)
}

eεit

it is possible that the Leontief ”first-order condition”

(39) m(Mit) = β0K
βk
it L

βl
it e

ωit

might not hold. The intuition for their argument is as follows. Suppose Kit and Lit are chosen prior to Mit being
chosen. Suppose that between these two points in time, the price of Mit rises precipitously (and unexpectedly),
such that the revenue from selling output doesn’t even cover the cost of the material input required to produce that
output (i.e. ignoring the ”sunk” costs of already purchased Kit and Lit). In this case, firms would not generally
choose Mit to satisfy (39), and thus the data could contain points where

Yit �= β0K
βk
it L

βl
it e

ωit+εit

invalidating all the above procedures. However, in our Monte-Carlo setup where output is proportional to material
input (i.e. m(Mit) = βmMit, which could be the most plausible Leontief specification for many material inputs),
this is not a problem. This is because firms will either satisfy (39) or produce 0 output (the latter if the price of
Mit unexpectedly rises enough after the other inputs are chosen), and if they produce zero, they will presumably
not be in the dataset of firms that are operating and thus not be a problem for estimation. Moreover, in our
Monte-Carlos the price of material inputs (and output) are constant across firms anyway, so firms never want to
let capital and labor go unutilized and produce 0.16

In contrast to DGP1, in DGP2 firms face identical wages and Lit is chosen at period t (i.e. b = 0). These
changes are needed to make the model consistent with the assumptions of LP. Moreover, we need something to
break the functional dependence issue, so we add optimization error to Lit. More specifically, let Lerr

it be the
firms choice of labor including optimization error. We assume that

Lerr
it = Lite

ξlit

where ξlit ∼ N(0, σ2
ξl
) is optimization error that is distributed iid over firms and time (and independent of everything

else in the model). We set σξl = 0.37, which also increases the within-firm, across-time, standard deviation of
ln(Lit) by about 10%.

Constructing this DGP such that LP produces consistent estimates is somewhat subtle. If the firm observes
Lerr
it prior to choosing the material input, they will typically choose

Merr
it = β0K

βk
it Lerrβl

it eωit

16Note that in this example, a fully non-parametric first stage regression of Yit on Kit, Lit, and Mit to recover εit is not strictly
needed given the assumed Leontief functional form. For example, one could alternatively regress Yit on just Mit to recover εit, or
similarly, use the Leontief FOC directly. In our Monte-Carlos, we do the fully general first stage (perhaps sacrificing some efficiency)
because that corresponds to our more general procedure.
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This is a problem if the econometrician observes Merr
it as the material input measure, as this would violate the

scalar unobservable assumption of LP (Assumption (4b)). So instead we assume that the econometrician observes
Mit instead of Merr

it , where

Mit = β0K
βk
it L

βl
it e

ωit

One interpretation of this is that, after observing ωit, firms commit to ”planned” optimal Lit and Mit. However,
workers are randomly sick, and when more workers are sick less materials are used, so that the firm ends up using
Lerr
it and Merr

it and producing17

Yit = β0K
βk
it Lerrβl

it eωiteεit

What the econometrician is assumed to observe are Yit, Kit, L
err
it , and Mit. The interpretation of observing Mit

is that what is reported in the data is planned (or ordered) materials, i.e. prior to the realization of sick days and
Lerr
it .
In DGP2, both LP and our procedure produce consistent estimates. While we do not present results for this,

one can consider an alternative DGP2, call it DGP2b, where Merr
it is observed instead of Mit. In DGP2b, LP

does not produce consistent estimates, but our suggested procedure does (since conditional on Lerr
it , the scalar

unobservable assumption is not violated). We also consider the combination of DGP1 and DGP2, i.e. a DGP that
includes across firm wage variation, labor chosen at t − b, and optimization error in Lit. In this setup, neither
LP nor our procedure produce consistent estimates (see the main text for a discussion of why our procedure does
not produce consistent estimates under DGP1 + DGP2, even though it provides consistent estimates under DGP1
or DGP2 separately). While we again do not present results, our procedure would produce consistent estimates
under DGP1 + DGP2b, while LP would not.

For all three DGPs (DGP1, DGP2, and DGP3 = DGP1 + DGP2), we additionally add various levels of
measurement error to the observed material input. As noted in the main text, this renders both LP and our
approach inconsistent. However, we find that estimation based on the LP moments appears to be more sensitive
to this measurement error than does estimation based on our moments.

7.3 Investment Choice and Steady State

In contrast to non-dynamic labor and material inputs, we assume that capital is a dynamic input. Specifically,
capital is accumulated through investment according to

Kit = (1− δ)Kit−1 + Iit−1

where (1− δ) = 0.8, and investment is subject to convex adjustment costs given by

ci(Iit) =
φi

2
I2it

where 1/φi is distributed lognormally across firms (but constant over time) with standard deviation 0.6. While
the existence of this unobserved heterogeneity in adjustment costs is consistent with the LP procedure and our
procedure, it is not consistent with the scalar unobservable assumption in the OP context. This renders OP
estimates inconsistent in all our Monte-Carlos. We included it because without this heterogeneity it was extremely
hard (in steady state, see below) to match the within-firm vs across-firm variation in capital and the correlation
between capital and labor of the Chilean datasets as discussed above.18

As described Syverson (2001) and Van Biesebroeck (2007), under the assumption of constant returns to scale, a
pared-down version of the above can be solved analytically using Euler equation techniques. We have verified that
their analytic result can be generalized to allow for the extensions in the above model, i.e. persistent across firm

17In theory, the Leontief critique of GNR could apply here. For example, if between the point in time in which Lit is chosen and
Lerr
it is realized, there is a large enough unexpected positive shock to the price of the material input, it is possible that if Lerr

it > Lit,
the firm would not want to increase material input levels over Mit, i.e. the unexpected supply of labor would optimally go unutilized.
However, in our setup, there are no such shocks to the price of material input (or output), so everything is internally consistent. Note
also that when the econometrician observes planned materials,as in this DGP, one cannot simply estimate the model directly off the
Leontief first order condition.

18Without heterogeneity in φi, the only way our DGPs can match 95% of the variation in Kit being ”across-firm variation” is by
setting the persistence of the productivity process ωit extremely high. But when this persistence is extremely high, it implies a very
high correlation between Kit and Lit which contradicts the R2 of a fixed effects regression of Lit on Kit of only about 50% in the
Chilean data, unless one includes unrealistic amounts of optimization error or wage variation.
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variation in wages, labor being chosen at t−b, and optimization error in Lit. Specifically, an Euler equation approach
implies the following optimal investment rule (where β is the discount factor, set to 0.95 in our Monte-Carlos):

Iit =
β

φi

∞
∑

τ=0

(β (1− δ))
τ

(

βk

1− βl

)

β
1

1−βl
0

[

β
βl

1−βl

l e
1
2β

2
l σ

2

ξl − β
1

1−βl

l e
1
2σ

2

ξl

]

e

[(
1

1−βl

)
ρτ+1ωit+

−βl
1−βl

ρτ+1
W ln(Wit)+

1
2

(
−βl
1−βl

)2
σ2
ξW

∑τ
s=0 ρ

2(τ−s)
W + 1

2

(
1

1−βl

)2
ρ2
b(ρ

2τσ2
ξa+

∑τ
s=1 ρ2(τ−s)σ2

ξ)+
(

1
1−βl

)(
1
2σ

2

ξb

)]

Note that because of the constant returns to scale, optimal investment does not depend on current capital stock -
the only firm specific variables that it depends on are ωit, φi, and ln(Wit) (the latter because it is serially correlated
over time).

For our experiments, we did not want our results to depend on an arbitrary, exogenous, initial distribution of
capital stock across firms (one would also need to somehow specify correlations between Ki0 and (ωi0,φi,ln(Wi0)).
Instead, we decided to take data from the steady state distribution of firms implied by our model. To do this, we
simply started all firms with Ki0 = 0, and simulated firms into the future. Our 10 periods of data are taken from
a point in time where the impact of the initial values appeared minimal, i.e. the steady state.

7.4 Estimation

We estimate the following Leontief-derived value-added production function

Yit = β0K
βk
it L

βl
it e

ωiteεit

(or in DGP2 the same with Lit replaced with Lerr
it ). When we use our procedure or LP, we use Mit to invert the

productivity shock, and when we run OP, we use Iit
19.

For our procedure, our first stage is simply OLS of yit on kit, lit, and mit. More generally, one would want
higher order polynomials in the explanatory variables, but because in our setup, optimal mit is actually a linear
function of kit, lit, and ωit, we simply used a first order polynomial. In the second stage, our estimation is based
on the following moments (where ˜β0 = ln(β0)) :
(40)

E[
(

yit − ˜β0 − βkkit − βllit − ρ · (˜Φt−1(kit−1, lit−1,mit−1)− ˜β0 − βkkit−1 − βllit−1)
)

⊗

⎛

⎜

⎜

⎝

1
kit
lit−1

˜Φt−1(kit−1, lit−1,mit−1)

⎞

⎟

⎟

⎠

] = 0

However, to reduce the dimension of the non-linear search (and presumably increase speed and reliability for

our experiments), we don’t use these moments directly. Instead we ”concentrate-out” two of the parameters ˜β0

and ρ. More specifically, for a hypothetical guess of the parameters βk and βl, we construct

̂
˜β0 + ωit(βk, βl) =

̂

˜Φt(kit, lit,mit)− βkkit − βllit

where, again,
̂

˜Φt(kit, lit,mit) is the predicted value from the first stage. We then regress
̂

˜β0 + ωit(βk, βl) on
̂

˜β0 + ωit−1(βk, βl), noting that the residuals of this regression are the implied values of the innovations in omega,

i.e. ̂ξit(βk, βl). Note that this regression implicitly makes these innovations mean zero and uncorrelated with
ω̂it−1(βk, βl), so it is similar to enforcing the first and fourth moments in (40). While generally one might want to
do this regression using higher order polynomials in the explanatory variable, we again simply do it linearly, since
our true DGPs use a linear AR(1) process for ωit. We then search over βk and βl space to find ̂βk and ̂βl that
minimize the following moment conditions

(41) E[̂ξit(βk, βl)⊗
(

kit
lit−1

)

] = 0

19As noted, one could also use our moments along with Iit as the variable to recover the productivity shock , but because of the
unobserved heterogeneity in φi in our Monte-Carlo setup, this would, like OP, not generate consistent estimates.
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Our estimate of ρ is given by the slope coefficient of the regression of
̂

˜β0 + ωit(βk, βl) on
̂

˜β0 + ωit−1(βk, βl) evaluated

at ̂βk and ̂βl.
For our LP estimates, we use the canned STATA routine (Levinsohn, Petrin, and Poi (2004)), edited to again

use linear approximations (since according to the DGP, the true functions were in fact linear). Our results were
very similar when we used the default routine based on cubic approximations.. For our OP results, we also use the
canned LP STATA routine modified to use the investment variable, but here we use the default cubic approximation,
since the dynamic investment function is not linear.
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