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Abstract. The global carbon (C) balance is vulnerable to disturbances that alter terrestrial
C storage. Disturbances to forests occur along a continuum of severity, from low-intensity
disturbance causing the mortality or defoliation of only a subset of trees to severe stand-
replacing disturbance that kills all trees; yet considerable uncertainty remains in how forest
production changes across gradients of disturbance intensity. We used a gradient of tree
mortality in an upper Great Lakes forest ecosystem to: (1) quantify how aboveground wood
net primary production (ANPPw) responds to a range of disturbance severities; and (2)
identify mechanisms supporting ANPPw resistance or resilience following moderate
disturbance. We found that ANPPw declined nonlinearly with rising disturbance severity,
remaining stable until .60% of the total tree basal area senesced. As upper canopy openness
increased from disturbance, greater light availability to the subcanopy enhanced the leaf-level
photosynthesis and growth of this formerly light-limited canopy stratum, compensating for
upper canopy production losses and a reduction in total leaf area index (LAI). As a result,
whole-ecosystem production efficiency (ANPPw/LAI) increased with rising disturbance
severity, except in plots beyond the disturbance threshold. These findings provide a
mechanistic explanation for a nonlinear relationship between ANPPw and disturbance
severity, in which the physiological and growth enhancement of undisturbed vegetation is
proportional to the level of disturbance until a threshold is exceeded. Our results have
important ecological and management implications, demonstrating that in some ecosystems
moderate levels of disturbance minimally alter forest production.

Key words: canopy; carbon cycling; disturbance; leaf area index (LAI); light; mortality; net primary
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INTRODUCTION

Forests store 1.1 6 0.8 Pg carbon (C) annually in

biomass, soils, and organic matter (Pan et al. 2011) and

contain 60% of the Earth’s terrestrial C stocks (Mc-

Kinley et al. 2011). Yet the future strength of this large

terrestrial C sink is uncertain as disturbances increase in

global extent and frequency (Amiro et al. 2010, Pan et

al. 2011, Hicke et al. 2012). Severe stand-replacing

disturbance events such as high-intensity fire or clear-cut

harvest reduce rates of C storage by decreasing net

primary production (NPP) and increasing the rate at

which C is cycled back to the atmosphere through

decomposition (Amiro et al. 2010, Peckham et al. 2013).

Considerably less is known about how forest C storage

responds to disturbances such as extreme weather,

pathogens, insects, and age-related senescence that kill

or defoliate only a fraction of canopy dominant trees. As

a result, our understanding of how NPP responds to

disturbance is derived almost entirely from severe

disturbance events, limiting forecasts of C storage for

the range of disturbance severities represented across

landscapes (Goetz et al. 2012, Hicke et al. 2012).

The response of forest production to incremental

increases in disturbance severity is likely to proceed in

one of three ways (Fig. 1). The first potential response in

the short term is a linear decline in NPP with increasing

disturbance severity, which is collectively suggested by

studies of forest ecosystems following a single level of

disturbance severity, which show production losses are

approximately proportional to disturbance severity

(Hicke et al. 2012). The second is a precipitous,

nonlinear reduction in NPP at low disturbance severi-

ties, a response observed in aquatic ecosystems when a

subset of primary producers is lost from the community

(Cardinale et al. 2011). Lastly, studies conducted in

constructed prairie (e.g., Tilman et al. 2001) and in some

forests (Amiro et al. 2010, Hicke et al. 2012, Gough et al.

2013) suggest a nonlinear response, in which NPP is

insensitive (i.e., is resistant) or shows very rapid
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resilience to increasing disturbance levels or species loss

up to a threshold, after which production abruptly

declines. Here, resilience describes a temporary shift in

ecosystem structure and function, NPP in this case,

while resistance indicates a change in structure but not

functional stability, with recognition that different

functions have varying capacities for resilience and

resistance (Gunderson 2000). Strong evidence for one or

more of these relationships in forested ecosystems is

lacking because few studies have examined how the NPP

of an individual ecosystem changes across a disturbance

severity gradient, and those studies that have are

inconclusive (see Hancock et al. 2008).

In forests, compensatory subcanopy growth plays a

key mechanistic role in sustaining NPP following

moderate disturbances that defoliate or kill a fraction

of canopy-dominant trees (Le et al. 2007, Campbell et al.

2009). As upper-canopy trees senesce and gaps form,

newly available light may stimulate the growth of

previously light-limited vegetation (Edburg et al. 2011,

Nave et al. 2011, Yang et al. 2011). Although

compensatory growth is a well-established mechanism

sustaining production immediately following distur-

bance, the underlying mechanisms that stimulate or

suppress subcanopy production across a continuum of

disturbance severity are not well known (Sabo et al.

2008, Campbell et al. 2009). Identifying the mechanisms

that sustain or, conversely, cause production to decline

is critical to determining why and when C storage will

change as disturbance severity increases (Amiro et al.

2010, Hicke et al. 2012).
We build on biogeochemical studies at the University

of Michigan Biological Station (UMBS) centered on a
large-scale (39-ha) experimental disturbance in which all

mature aspen (Populus) and birch (Betulacea) were
killed by stem girdling in 2008. The experiment has

yielded mechanistic insight into C, nitrogen (N), and
water-cycling responses to moderate disturbance (Nave
et al. 2011, 2014, Gough et al. 2013, Matteo al. 2013, He

et al. 2014, Matheny et al. 2014a, b). Results in the first
five years following disturbance demonstrate that mean

NPP of the manipulated area was sustained despite the
mortality of more than a third of all canopy trees (Nave

et al. 2011, Gough et al. 2013). Here, we use a broad
gradient of disturbance severity, from 9% to 69%
senesced basal area, within the large manipulated area
to: (1) quantify how aboveground wood net primary

production (ANPPw) responds to a range of disturbance
severities and; (2) identify the primary mechanisms

sustaining production following moderate disturbance.
Given prior results from our site showing high resistance

to moderate disturbance at the landscape scale and
substantial reductions in production following severe

disturbance (Gough et al. 2013), we postulated that
ANPPw would respond nonlinearly to increasing distur-
bance severity, remaining stable as disturbance intensity

increases, before declining. We predicted that the
subcanopy would play a critical role in sustaining

ANPPw following disturbance, but at higher disturbance
levels mortality would be too severe to be fully offset by

compensatory subcanopy growth.

MATERIALS AND METHODS

Study site

We conducted our study at UMBS in northern

Michigan, USA (458350 N, 848430 W). The area has a
mean annual temperature of 5.58C and a mean annual

precipitation of 817 mm (1942–2003) (Gough et al.
2013). Prior to experimental disturbance, the landscape
was largely composed of century-old maturing aspen-

dominated forest that developed following massive
clear-cut harvesting and wildfires in the early 20th

century. Bigtooth aspen (Populus grandidentata), trem-
bling aspen (Populus tremuloides), and paper birch

(Betula papyrifera), all short-lived early-successional
species, once dominated the upper canopy and are

now in natural decline. Red oak (Quercus rubra) and red
maple (Acer rubrum) are gaining dominance in the upper

canopy, with lesser representation of sugar maple (Acer
saccharum), eastern white pine (Pinus strobus), and

American beech (Fagus grandifolia). The subcanopy, the
canopy stratum 1 to 5 m above the forest floor, is

dominated mainly by red maple and red oak, and also
includes American beech, sugar maple, Amelanchier
arboria (serviceberry), Acer pensylvanicum (striped ma-

ple), white pine, Pinus resinosa (red pine), and Ostrya
virginiana (American hophornbeam).Trees �8 cm diam-

FIG. 1. Three potential generalized responses of net
primary production to disturbance severity based on experi-
ments and observations in terrestrial and aquatic ecosystems:
(1) a linear decline (Hicke et al. 2012), (2) a nonlinear, high-
sensitivity response (Cardinale et al. 2011), and (3) a nonlinear,
threshold response (e.g., Tilman et al. 2001). Each response has
limited support from prior studies of disturbance or species
removal in aquatic or terrestrial ecosystems, with publications
providing evidence for each cited. A threshold response is
suggested by landscape-scale studies conducted at our study
site, the University of Michigan Biological Station (UMBS).
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eter at breast height (dbh, 1.37 m) have a stem density of

700–800 trees/ha, a basal area (BA) of ;25 m2/ha, and

the forest has a mean leaf area index (LAI) of 3.5.

In May 2008, the Forest Accelerated Succession

Experiment (FASET) was initiated to examine how

ecological succession and disturbance affect C cycling in

a broadly distributed regionally representative forest

ecosystem (Nave et al. 2011). All aspen and birch trees

(.6700) comprising 39% of the pre-treatment basal area

were stem girdled within a 39-ha area to test the primary

hypothesis that net ecosystem production (NEP) will

increase as the canopy becomes more biologically and

structurally complex, and as nitrogen (N) is reallocated

from early to later successional canopy dominants. Peak

disturbance within the large treatment area occurred in

2010, when 97% of all girdled trees had senesced and leaf

area index was 44% lower than pre-disturbance values

(Gough et al. 2013).

Our study encompasses a large gradient in distur-

bance severity, while minimizing the effects of variables

that could confound the relationship between produc-

tion and disturbance severity. Within the large manip-

ulated area, we defined disturbance severity in each of

21, 0.8-ha plots as the fraction of BA (�8 cm dbh) that

senesced from stem girdling; accordingly, we use

‘‘disturbance severity’’ and ‘‘fraction of senesced basal

area’’ interchangeably. We use this expression of

disturbance severity because basal area is a direct rather

than inferred or derived (e.g., LAI or biomass) measure

of forest structure available for every plot, and made

with high certainty (Gough et al. 2008). Plots were

located at 100-m intervals along seven transects

radiating from the base of the meteorological tower

(Gough et al. 2013). We estimated subcanopy and

canopy, and total ANPPw in all 21 plots using methods

below. Of the 21 plots, a subset of 10 ‘‘intensive’’ plots

with similar ANPPw values and tree species composition

prior to peak disturbance was selected for additional

analysis. Within each intensive plot, we established four

nonoverlapping 5 m radius subplots along each cardinal

axis from plot center for measurements of light,

percentage of foliar N, maximum leaf net CO2

assimilation, and canopy openness. Importantly, the

ANPPw and LAI of all plots and intensive plots only

were not correlated with the fraction of senesced basal

area prior to peak disturbance (P . 0.9), indicating no

preexisting relationship between forest production and

disturbance severity.

Aboveground wood net primary production (ANPPw)

We quantified ANPPw before and after peak distur-

bance. We use ANPPw as our primary expression of C

storage because it is quantified with high certainty and

closely parallels more comprehensive, data-intensive

measures of C uptake and storage (i.e., NEP, total

NPP) at our site (Gough et al. 2013). Aboveground

woody biomass (Ma) was estimated from dbh measure-

ments of all trees in each of the 21 treatment plots in

2006, 2010, and 2012. Every tree �8 cm dbh within a

plot was measured for specific dbh. Trees ,8 cm dbh

were assigned to diameter classes: ,2 cm, 2–3.9 cm, 4–

5.9 cm, and 6–7.9 cm. Site or region-specific allometric

equations were used to estimate Ma from dbh (Gough et

al. 2013). Mean annual ANPPw of upper canopy and

subcanopy strata was measured as the mean change in

total aboveground wood mass between census years,

providing a production value leading up to (2006–2010)

and following (2010–2012) peak disturbance (Gough et

al. 2013).

Litter trap leaf area index

Leaf area index estimated from litter traps (LAIt) was

calculated in 2006 for 20 of 21 plots and then annually

following disturbance in 6 of the 10 intensive plots.

Litterfall from three litter traps (0.264 m2 each) within

each plot was collected weekly during leaf-fall and

monthly otherwise, dried at 608C, separated by species,

and weighed. LAIt is the product of litterfall mass and

specific leaf area (SLA) values (Gough et al. 2013).

Hemispherical imaging

We used hemispherical images collected in intensive

measurement plots at peak LAI in 2013 to examine how

disturbance affected canopy structure. Images were

taken under diffuse sky conditions in four subplot

locations within each plot at ground level, 1 m, and 5 m

vertical heights using a leveled camera with an 1808

fisheye lens facing skyward. We derived estimates of

LAI and upper canopy openness (.5 m) using Gap

Light Analyzer (GLA Version 2.0) software with the

automatic optimal threshold algorithm applied (Nobis

and Hunziker 2005).

We used hemispherical images to estimate total LAI

for all 10 intensive plots, since we did not have a complete

LAIt record of all sites over time, and to calculate the

LAI of the upper canopy strata (�5 m height). We

calibrated estimates of LAI from hemispherical images

(LAIh) against LAIt measurements, applying a linear

correction to LAIh. The two independently derived

estimates of LAI were strongly correlated (y ¼ 2.6191x

� 2.5146; r2¼ 0.87; P¼ 0.008).

Light distribution

We quantified the subcanopy fraction of absorbed

photosynthetically active radiation (fAPAR) in intensive

plots as PAR absorbed between 5 m height and ground

level. A BF2 sunshine sensor (Delta-T Devices, Cam-

bridge, UK) on a meteorological tower measured total

and diffuse PAR above the canopy. Separate PAR

sensors (SQ-110 Quantum Sensor, Apogee Instruments,

Logan, Utah, USA) were stationed at ground level and 5

m above the forest floor in four subplot locations within

each plot and connected to a central datalogger. To

minimize sunflecks, we quantified fAPAR .4 hours

when light was .85% diffuse (e.g., Tobin and Reich

2009), and to reduce the influence of solar angle, the

ELLEN J. STUART-HAËNTJENS ET AL.2480 Ecology, Vol. 96, No. 9



PAR time-series from each sensor was averaged.

Because of poor diffuse conditions or sensor failure in

three plots, we report results from 7 of 10 plots.

Production efficiency

We evaluated production efficiency across the gradi-

ent of disturbance severity. Plot level production

efficiency was estimated in our 10 intensive plots as the

ratio of ANPPw to LAIh (McCrady and Jokela 1998).

Leaf physiological, morphological, and

nitrogen measurements

We examined whether subcanopy leaf nutrient status,

morphology, and photosynthesis varied with distur-

bance severity. We measured the light-saturated net CO2

assimilation (Amax) at 5 m height of 2–4 fully developed

subcanopy leaves in situ in each of four subplots within

the intensive plots using a LiCor-6400 Portable Photo-

synthesis System (LI-COR Incorporated, Lincoln, Ne-

braska, USA). When available, red oak and red maple

were sampled because of their broad dominance in the

subcanopy; American beech, the third most dominant

subcanopy species, was selected when either red oak or

red maple was not present. Following Amax measure-

ments, we harvested leaves to obtain leaf mass per area

(LMA) and leaf percent N. Processed leaves were dried

at 608C, ground in a Wiley mill, and leaf N concentra-

tion quantified using a CHN analyzer.

Statistical analyses

We used piecewise regression to evaluate whether

ANPPw exhibited a threshold response to rising

disturbance severity. We chose a piecewise analysis

because of a priori observations of high resistance to

moderate disturbance at our site (Gough et al. 2013),

and because this approach is suitable for testing our

hypothesis that production is sustained until a threshold

of disturbance is exceeded. Piecewise regression is a

‘‘broken-stick’’ modeling approach used extensively for

identifying ecological thresholds and slope transitions

(Toms and Lesperance 2003). The procedure iteratively

fits multiple linear segments separated by a breakpoint

and requires that the following criteria are met: (1) the

slope coefficients before and after a threshold are

significantly different according to the F statistic; (2)

the threshold or breakpoint separating segments is

significant according to the F statistic; and (3) the

adjusted r2 of the piecewise regression is greater than

that of the default single-segment linear regression

model. If all criteria are not met, the procedure applies

a single-segment linear regression model.

We used simple linear regression to examine how

disturbance severity related to forest structural, func-

tional, and environmental metrics, including production

efficiency, canopy openness, LAIh, Amax, LMA, and leaf

percentage N. Linear regression was used for these

analyses because we had no a priori knowledge of how

these response variables mathematically relate to distur-

bance severity. To test whether plots beyond the

disturbance threshold had statistically lower production

efficiencies, we applied a linear regression to plots

exhibiting resistance to disturbance and evaluated

whether plots beyond the threshold were outside of the

regression 95% confidence interval; our limited intensive

plot sample size (n ¼ 10) precluded the application of a

piecewise regression. All statistical analyses used SPSS

12.5 (SPSS 2005) or R 3.1.0 (R Development Core Team

2014) statistical software. Relationships were considered

significant when P , 0.1. For continuity among figures,

we illustrate non-intensive plots with open circles,

disturbance-resistant intensive plots with filled circles,

and disturbance-sensitive plots beyond the threshold as

half-filled circles.

RESULTS

Production and disturbance severity

Our piecewise regression analysis yielded support for

a threshold response of forest production to rising

disturbance severity. Two-segment piecewise models

expressing absolute and relative changes in ANPPw with

rising disturbance severity had higher adjusted r2 values

than single-segment linear models, the slope coefficients

for each linear segment were significantly different, and

the threshold values were highly significant (Table 1).

Production was relatively stable across the gradient of

disturbance severity spanning 9–69% senesced basal

area, with ANPPw significantly declining only at the

highest levels according to both two-segment models.

Though our sample size at the highest level of

disturbance severity is small (n ¼ 3 plots with .60%
senesced basal area), our analysis suggests that absolute

and relative changes in ANPPw were significant when

the fraction of senesced basal area within a plot

exceeded 66% and 61%, respectively (Fig. 2, Table 1).

ANPPw values below the disturbance threshold were

comparable to those of a nearby undisturbed forest

(Gough et al. 2013).

Canopy structural and environmental responses to

increasing disturbance severity

Canopy structure varied substantially across the

gradient of disturbance severity, affecting the light

environment of the subcanopy. The LAIh of the upper

canopy (.5 m vertical height) decreased significantly

with increasing disturbance severity, indicating that plot

scale leaf area has not fully recovered five years

following the girdling treatment at the highest distur-

bance levels (Fig. 3a). Upper canopy openness, a

measure of canopy gap size, increased by 50% across

the gradient of disturbance (Fig. 3b), with subcanopy

light availability increasing in parallel (Fig. 3c). Mean

subcanopy fAPAR more than doubled from low to high

disturbance severities.

Ecosystem responses to disturbance

As disturbance severity increased, the subcanopy

played an increasingly important role in maintaining
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production. At low levels of disturbance, both the upper

canopy and subcanopy sustained ANPPw, with the

relative contribution of the subcanopy increasing as

disturbance severity increased. From low to high levels

of disturbance, subcanopy production increased nearly

10 times following peak disturbance and contributed

40% to total ANPPw in highly disturbed plots (Fig. 4a);

however, the response of subcanopy ANPPw was lower

in plots exceeding the disturbance threshold (Fig. 4b).

As disturbance severity increased, production efficien-

cy trended significantly upward (Fig. 5). Production

TABLE 1. Two-segment and single-segment regression coefficients and statistics for relationships between absolute and relative (%)
changes in ANPPw (DANPPw) and disturbance severity.

DANPPw

Two-segment Single-segment

Coef. 95% CI P Adj. r2 Coef. 95% CI P Adj. r2

Absolute I 450.3 373.6 0.0303 0.49 I 745.0 534.2 0.0132 0.25
s1 �86.49 410.9 0.6851 S �1743 1225 0.0117
s2 �1783 901.4 0.0012
T 0.6608 0.0233 ,0.0001

Relative I 19.88 26.74 0.1630 0.25 I 36.02 34.31 0.0537 0.04
s1 26.82 29.83 0.0959 S �54.70 78.69 0.1890
s2 �58.96 51.57 0.0387
T 0.6103 0.0601 ,0.0001

Notes: I¼ intercept; s1¼ linear slope for segment 1 (x , T ); s2¼ linear slope for segment 2 (x . T ); T¼ threshold or breakpoint;
S ¼ slope of single-segment linear function; Coef.¼ Coefficient; CI¼ confidence interval; Adj.¼ Adjusted.

FIG. 2. (a) Absolute (r2 ¼ 0.57 and P ¼ 0.0012) and (b)
relative (r2 ¼ 0.48, P ¼ 0.0014) changes in plot aboveground
wood net primary production (ANPPw) before (2006–2010) and
after (2010–2012) peak disturbance in relation to disturbance
severity expressed as the fraction of senesced tree basal area.
Solid and half-solid circles are the 10 intensive plots and open
circles are the remaining 11 plots, with half-solid circles
representing the two intensive plots past the threshold. Dashed
lines are fitted piecewise regression segments.

FIG. 3. Mean (6SE) (a) plot upper canopy leaf area index
(LAIh) (r

2¼ 0.45, P¼ 0.0348), (b) upper canopy openness (r2¼
0.40, P ¼ 0.0487), and (c) subcanopy fraction of absorbed
photosynthetically active radiation (fAPAR) (r2 ¼ 0.46, P ¼
0.0645) in relation to disturbance severity, expressed as the
fraction of senesced basal area. Data are for intensive plots,
with half-solid circles representing plots past the disturbance
threshold.
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efficiency (ANPPw/LAIh) nearly doubled across the

gradient of disturbance severity, increasing because

ANPPw remained stable in disturbance-resistant plots

as LAIh declined. Plots that exceeded the disturbance

threshold, however, had relatively low production

efficiencies, falling below the 95% confidence interval

for disturbance-resistant plots.

Subcanopy leaf physiological, nitrogen, morphological

responses to disturbance

Disturbance-related increases in subcanopy growth

and in production efficiency of the ecosystem coincided

with leaf-level changes that are characteristic of sun-

adapted leaves. For example, we observed almost a

twofold increase in red oak foliar N concentrations

across a subplot gradient in upper-canopy openness

(Fig. 6a). Red maple leaf percentage N responded

similarly, with a significant 30% increase from low to

high disturbance severity (Fig. 6b). American beech

foliar N concentrations were not significantly correlated

with canopy openness (Fig. 6c). Concomitant to the

general trend of increasing foliar N in subcanopy

vegetation was a significant increase in Amax with rising

canopy openness for all three subcanopy species (Fig.

6d–f ). In red oak and red maple there was a twofold

increase in Amax, with red oak showing the greatest

absolute increase. Subcanopy leaves also responded

morphologically to increasing light availability as

canopy gaps formed from disturbance. Red maple

doubled its LMA across the gradient of canopy

openness (Fig. 6h), while red oak and American beech

LMA did not change (Fig. 6g, i ).

DISCUSSION

We have shown that forest production can exhibit

high resistance to a range of disturbance levels, with the

subcanopy playing a key role in compensating for the

mortality of canopy trees. Our finding that production

was sustained following the senescence of nearly two-

thirds of the upper canopy trees within a plot indicates a

nonlinear response to rising disturbance severity in this

forest ecosystem. We found that as disturbance severity

increased, an incremental enhancement in subcanopy

photosynthetic capacity, and consequently subcanopy

ANPPw, offset declines in the upper canopy until the

disturbance threshold was exceeded. We attribute this

increase in subcanopy production to higher light

availability and physiological competency, which to-

gether likely drove increases in ecosystem-scale produc-

tion efficiency. At the highest levels of disturbance

severity, physiological and growth enhancements in the

subcanopy did not sufficiently compensate for produc-

tion losses from disturbance, though the reason for

declining wood NPP beyond the threshold is not entirely

FIG. 4. (a) The relative contribution of plot-scale subcano-
py aboveground wood net primary production (ANPPw) to
total ANNPw in relation to disturbance severity expressed as
the fraction of senesced basal area (r2 ¼ 0.48 and P¼ 0.0014),
and (b) the relative change before and after peak disturbance in
upper canopy and subcanopy ANPPw (r2¼0.58 and P¼0.002).
Solid and half-solid circles are the 10 intensive plots and open
circles are the remaining 11 plots, with half-solid circles
representing the two intensive plots past the disturbance
threshold.

FIG. 5. Plot production efficiency following peak distur-
bance in relation to disturbance severity expressed as the
fraction of senesced basal area. The (solid) regression line and
(dashed) 95% confidence interval lines are for intensive plots
exhibiting resistance to disturbance (solid circles; r2¼ 0.63 and
P ¼ 0.0183), with the two plots beyond the disturbance
threshold (half-solid) significantly lower than the regression
mean. Production efficiency is annual woody net primary
production (ANPPw) divided by leaf area index (LAIh).
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clear. These results provide a mechanistic basis for

functional resistance across a broad range of distur-

bance severities, showing that rates of compensatory

growth were commensurate with disturbance severity

until a threshold was reached.

A nonlinearly relationship between production and

disturbance can be inferred from separate studies

showing that forest growth changes very little or not

at all following a single level of low-intensity disturbance

(Granier et al. 2008, Amiro et al. 2010, Hicke et al. 2012,

Gough et al. 2013) and, conversely, declines significantly

at high disturbance severities (Campbell et al. 2004,

Amiro et al. 2010). A high disturbance threshold,

however, is not supported by terrestrial ecosystem

models that simulate declines in production (Bond-

Lamberty et al. 2014), and aquatic studies showing high

functional sensitivity to the loss of a subset of primary

producers (Cardinale et al. 2011). A nonlinear response

to increasing disturbance severity by some ecosystems

has important implications, indicating that some eco-

systems undergo substantial structural shifts without a

corresponding functional change.

We found that sustained production in disturbance-

resistant plots corresponded with canopy structural

changes that improved production efficiency rather than

with rapid leaf area replacement. Production efficiency

(ANPPw/LAIh) increased in disturbance-resistant plots

because ANPPw was stable as upper canopy LAIh
declined; contrastingly, production efficiency was signif-

icantly lower in plots beyond the disturbance threshold.

Unlike severe stand-replacing disturbance, more mod-

erate disturbances that kill only a subset of trees increase

rather than decrease canopy complexity (Cole and

Lorimer 2005), which may increase the efficient use of

FIG. 6. (a–c) Leaf percentage nitrogen, (d–f ) leaf maximum net CO2 assimilation (Amax), and (g–i) leaf mass per area (6SE) of
subcanopy species at ;5 m height in relation to subplot canopy openness. Data are for subplots nested within intensive plots, with
half-solid circles illustrating those beyond the disturbance threshold. Regressions lines are shown when P � 0.1.
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growth-limiting resources (Niinemets 2007, Campbell et

al. 2009, Hardiman et al. 2011, 2013b). The heteroge-

neous distribution of tree mortality following the

girdling treatment at our site has significantly increased

canopy gaps and more evenly distributed foliage

vertically throughout the canopy (Hardiman et al.

2013a), structural features that are linked to higher leaf

photosynthesis as light becomes more evenly distributed

and penetrates deeper into the canopy (Niinemets 2007).

In addition, a disturbance-related shift toward a

younger, mixed canopy age structure at our site may

have improved mean plant resource acquisition, with

younger trees in a tropical forest, for example, exhibiting

higher water transport rates than larger, older trees

(Landsberg and Waring 1997).

At our site, subcanopy leaf physiology, morphology,

and N status responses were generally proportional to

disturbance-related changes in canopy openness and

light availability, even in the most highly disturbed plots.

With an increase in canopy openness, subcanopy leaves

became more light-acclimated, with foliar N concentra-

tions similar to those of upper canopy leaves at our site

(Nave et al. 2011). Additionally, subcanopy species

displayed significant increases in maximum leaf net CO2

assimilation across the disturbance gradient. LMA

showed similar trends, though a morphological change

was only significant in red maple. Other studies report

comparably rapid leaf-level acclimation of nutrient

status, physiology, and morphology to improved light

availability (Naidu and DeLucia 1997, Niinemets 2007).

Undisturbed vegetation growth responded rapidly to

tree mortality, compensating for production losses from

senescent trees except at the highest levels of distur-

bance. The relative contribution of upper canopy and

subcanopy vegetation to production was dependent

upon the severity of disturbance, with subcanopy trees

contributing more to ANPPw as disturbance levels

increased. A similar production trade-off between upper

canopy and subcanopy vegetation was observed follow-

ing thinning in coniferous forest ecosystems (Sabo et al.

2008, Campbell et al. 2009). The subcanopy contribu-

tion to total ANPPw of up to 40% that we observed

following peak disturbance was comparable to the upper

limits reported for other forests following moderate

disturbance (Mission et al. 2007, Sabo et al. 2008). A

rapid and relatively large subcanopy response to

disturbance at our site was possible because an intact

sapling layer existed prior to disturbance (Gough et al.

2010). Additionally, subcanopy fAPAR increased sig-

nificantly following disturbance owing to relatively low

upper-canopy LAIh values at our site of 1.1 to 3.2, with

Beer’s Law dictating a nonlinear increase in light

transmission through the upper canopy as LAI declines

(Binkley et al. 2013). Patchy tree mortality in forests

with high upper canopy LAI values would not prompt

the same increase in light transmission and therefore not

be expected to stimulate a comparably high subcanopy

growth response (O’Hara et al. 2007).

Large declines in ANPPw beyond the disturbance

threshold were associated with significantly lower

subcanopy ANPPw and production efficiencies, but not

diminished leaf level nutrient status or physiological

capacity. These results, though informed by a limited

sample size, indicate that declining production at the

highest levels of disturbance was caused by stunted

subcanopy growth rather than by lower leaf photosyn-

thesis at the time of measurements. The precise cause of

diminished subcanopy growth in plots beyond the

disturbance threshold is not known, but could be the

result of initial temporary photoinhibition as light

availability increased (Mulkey and Pearcy 1992, Naidu

and DeLucia 1997), water limitation as forest floor

radiation increased evaporation (Gray et al. 2002,

Matheny et al. 2014), or poor subcanopy establishment

prior to disturbance (Campbell et al. 2009). Though

NPP at our site is nitrogen (N) limited (Nave et al.

2009), leaching following disturbance was minimal

(Nave et al. 2011, 2014), consistent with our observation

that foliar nitrogen concentrations were comparable in

plots before and after the disturbance severity threshold.

Nevertheless, an unexpectedly small sample size beyond

the disturbance threshold precludes a more definitive

interpretation of what caused an abrupt loss of

functional resistance.

Our findings have implications for forest C manage-

ment as moderate disturbances broadly increase in

frequency and extent (Amiro et al. 2010, Hicke et al.

2012). Our results suggest that management strategies

aimed at preventing low-intensity disturbances from

pathogens and insects, for example, may not be required

to maintain C storage in biomass. Additionally,

moderate disturbances may minimally alter forest C

storage while increasing ecologically desirable physical

complexity, an outcome that is in stark contrast to

severe stand-replacing disturbances that greatly reduce

ecosystem complexity (Seymour et al. 2002, Hardiman et

al. 2013a). Physical complexity introduced through

moderate disturbance may instead sustain or enhance

ecosystem services, including animal biodiversity and

nutrient retention (Thompson et al. 2011), a notion that

forms the basis for emergent sustainable forest manage-

ment approaches that balance partial timber harvests

and ecological objectives (Franklin et al. 2002).

We caution that sustained production following

moderate disturbance is not universal, with sensitivity

to disturbance varying among ecosystems (Amiro et al.

2010, Cardinale et al. 2011). Forest ecosystems that are

severely resource limited prior to disturbance may be

more vulnerable to disturbances that further reduce the

availability of growth-limiting resources (Waring et al.

1981, McMurtrie et al. 1994). For example, small

disturbance-related changes in water availability pro-

duced comparably large changes in ecosystem function-

ing in already severely water-limited ecosystems

(Breshears et al. 2009, Carnicer et al. 2011). Further

uncertainty remains in understanding how the timing,
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distribution, and cause of tree mortality affects produc-

tion resilience (Gough et al. 2013). Finally, we note that
wood NPP resilience may not track other C fluxes

following disturbance, since detritus and biomass pools
respond differently in space and time to perturbation
(Harmon et al. 2011, Anderson-Teixeira et al. 2013);

thus, the implications of disturbance severity gradients
for the total C balance (i.e., NEP) remain uncertain.

Elucidating the underlying mechanisms that support
functional resilience or, at high disturbance severities,

functional decline is critical to improving forecasts of C
storage as disturbances increase globally (Williams et

al. 2012).
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