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Abstract. Saprotrophic microbial communities in soil are primarily structured by the
availability of growth-limiting resources (i.e., plant detritus), a bottom-up ecological force.
However, foraging by native ungulates can alter plant community composition and the nature
of detritus entering soil, plausibly exerting an indirect, top-down ecological force that shapes
both the composition and function of soil microbial communities. To test this idea, we used
physiological assays and molecular approaches to quantify microbial community composition
and function inside and outside of replicate, long-term (60–80 yr) winter-foraging exclosures
in sagebrush steppe of Wyoming, USA. Winter foraging exclusion substantially increased
shrub biomass (2146 g/m2 vs. 87 g/m2), which, in turn, increased the abundance of bacterial
and fungal genes with lignocellulolytic function; microbial respiration (þ50%) and net N
mineralization (þ70%) also were greater in the absence of winter foraging. Our results reveal
that winter foraging by native, migratory ungulates in sagebrush steppe exerts an indirect, top-
down ecological force that shapes the composition and function of soil microbial
communities. Because ;25% of the Earth’s land surface is influenced by grazing animals,
this indirect top-down ecological force could function to broadly shape the community
membership and physiological capacity of saprotrophic microbial communities in shrub
steppe.
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INTRODUCTION

Soil food webs are thought to be structured by

bottom-up ecological forces via the production and

biochemistry of plant detritus, the growth-limiting

resource for saprotrophic metabolism in soil (Smith

and Paul 1990). However, accumulating evidence

indicates that soil microbial communities can be

influenced by top-down ecological forces, such as the

consumption of vegetation by grazing and browsing

animals, both large and small (Bardgett and Wardle

2003). For example, ungulate herbivores (e.g., Cervus

elaphus, North American elk) could potentially shape

microbial communities by altering the biochemical

composition of detritus (e.g., dead leaves and roots)

entering the soil food web (Hobbs 1996, Ruess et al.

1998, Bardgett and Wardle 2003), as well as through the

physiological responses of plants that are induced by

plant consumption (e.g., plant production [McNaugh-

ton 1985, Holland et al. 1992]). Ungulate herbivory can

therefore modify the bottom-up ecological forces that

structure soil food webs, thereby potentially linking their

consumptive behavior to the composition and function

of saprotrophic microbial communities in soil. For

example, the consumption of plants by ungulate

herbivores can influence microbial biomass and rates

of soil N cycling by altering plant community compo-

sition and the subsequent production of detritus (Frank

and Groffman 1998, Sankaran and Augustine 2004).

However, determining the extent to which large herbi-

vores alter community membership and physiological

function of soil microbial communities remains a gap in

our ecological knowledge (Patra et al. 2005).

Changes in plant composition elicited by herbivory

can alter the biochemistry of organic substrates that fuel

saprotrophic metabolism (Pastor et al. 1988, Bardgett

and Wardle 2003). For example, plants allocate photo-

synthate to grow or defend against herbivory, wherein

fast-growing plants rich in protein (i.e., N) have low

levels of metabolically costly plant defenses (e.g., tannins

and lignin [Herms and Mattson 1992]). Herbivores also

can change plant composition by preferentially consum-

ing the most protein-rich plant material (i.e., N

[McNaughton 1985, Hobbs 1996, Augustine and

McNaughton 1998]), which can lead to a dominance

of unpalatable plants whose litter slowly decays (Pastor

et al. 1988, Augustine and McNaughton 1998). For

example, intense moose (Alces alces) browsing on Isle

Royale, can over the long term, change forest compo-

sition from protein-rich deciduous trees (Populus tremu-

loides) to spruce (Picea glacua), which has high lignin
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and low protein concentrations (Pastor et al. 1988); this

change in forest composition slows soil N cycling (but

also see Kielland et al. 1997, Kielland and Bryant 1998).

Conversely, in the Serengeti grasslands of East Africa,

intense ungulate grazing shifted photosynthate alloca-

tion in graminoids from roots to shoots, causing rapid

regrowth of protein-rich leaves after defoliation, as well

as more rapid rates of soil N cycling (Ruess and

McNaughton 1987, Seagle et al. 1992, Ruess and Seagle

1994). Presently, we do not understand whether these

divergent biogeochemical responses arise from underly-

ing changes in microbial community composition,

function, or both.

In contrast to these examples, native migratory

ungulates in the Rocky Mountains of North America

have a limited forage choice during winter, which has

consequences for the subsequent composition of plant

communities. To escape deep snow, North American elk

(Cervus elaphus) and other migratory ungulates journey

from montane forests in autumn to low-elevation valleys

to find winter forage (Irwin 2002). In winter, protein-

rich forbs and grasses are dormant and hidden by snow;

thus, the portion of protein-poor browse (i.e., lignin-rich

shrubs) in their diet increases (Irwin 2002). In addition,

the energetic cost to search for grasses and forbs beneath

deep snow increases, making them less desirable (Parker

et al. 1984). Therefore, winter foraging by these animals

can decrease woody plant abundance and increase forb

and grass abundance in sagebrush steppe (Singer and

Renkin 1995, Chong et al. 2011), which has potential

consequences for saprotrophic microorganisms in soil.

Plant communities can shape microbial community

composition by influencing the organic compounds that

enter soil from dead plant leaves and roots (Meier and

Bowman 2008, Taylor et al. 2014). Because plant taxa

differ in the types of organic compounds contained in

leaf and root detritus, substrates for saprotrophic

metabolism are provided in different proportions

depending on plant community composition. Generally,

bacteria enzymatically harvest energy from organic acids

and simple sugars. In contrast, some basidiomycete

fungi have lignolytic physiologies that enable them to

harvest energy by metabolizing polyphenolic com-

pounds, such as lignin, that protect more energetically

favorable cellulose and hemicellulose in the plant cell

wall (Swift et al. 1979). Taken together, these observa-

tions suggest that foraging by native ungulates in

sagebrush steppe may alter the composition and

function of soil microbial communities by modifying

abundance and species composition of woody plants,

forbs, and grasses.

Using molecular tools, we quantified microbial

community composition and function in the presence

and absence of foraging to assess the ecological influence

native ungulates may have on saprotrophic microbial

communities in sagebrush steppe. If foraging in winter

range exerts a direct or indirect, top-down effect on soil

microbial community composition and function, exclu-

sion of ungulate herbivores should increase shrub

abundance, which would favor fungal dominance and
a greater abundance of genes with lignocellulolytic

function. Because Basidiomycota are the primary agents
of lignin metabolism in soil, it follows that their relative

abundance should increase with greater shrub domi-
nance in the absence of winter foraging. Alternatively, if
ungulate foraging does not structure soil microbial

communities, there should be no difference in compo-
sition and function of saprotrophic soil microbial

communities in the presence or absence of large ungulate
herbivores. Here, we provide evidence that soil micro-

bial communities in the sagebrush steppe are structured
by the foraging behavior of migratory ungulates, which

thereby increases the occurrence of bacteria and fungi
with lignocellulolytic physiology.

METHODS

Site description

Soil and vegetation were collected in the Bridger-

Teton National Forest and National Elk Refuge (NER)
in Jackson Hole, Wyoming, USA (Table 1). The

predominant ecosystem on the valley floor is sagebrush
steppe (Knight 1994), and it composes winter range for

large ungulate herbivores. Fire is frequent in this dry-
mesic environment, winter precipitation is ample, and

the plant community is dominated by bunch grasses and
several varieties of Artemisia tridentata (Knight 1994).

Mean monthly precipitation is 27.5 mm (1930–2013),
and mean monthly temperature is 2.58C (National

Oceanic and Atmospheric Administration 2013). The
main native migratory ungulates are North American

elk (Cervus elaphus), moose (Alces alces), mule deer
(Odocoileus hemionus), American bison (Bison bison),

pronghorn (Antilocapra americana), and bighorn sheep
(Ovis canadensis). Approximately 60–80 years ago,
grazing exclosures were constructed throughout Jackson

Hole to understand the influence of ungulate foraging
on plant community composition in winter range (Table

1; see Plate 1). Although the exclosures vary in areal
extent, they all were constructed using 10 3 10 cm steel

wire mesh that extends from the soil surface to a height
of 3.7 m. Therefore, large ungulate herbivores are

excluded from foraging, while small herbivores can
move into and out of the exclosures. From 12–19 July

2013, we sampled four exclosures that represent
homogenous plant communities in sagebrush steppe.

These exclosures are primarily impacted by the winter
grazing of North American elk; American bison are

absent from three exclosure locations (D. R. Zak,
personal observation).

Elk are provided supplemental winter forage on the
National Elk Refuge (NER), which lies at the geo-

graphic center of our study. This activity, which has
taken place since 1912, has maintained a population of
;7500 individuals wintering on the NER. Although one

of our study sites lies within the NER, the others are
located at considerable distances in different drainage
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systems and represent separate areas of winter range

(Table 1). The Gros Ventre site lies in the remote

headwaters of the Gros Ventre River drainage, which is

;45 km northeast of the NER; the Hoback sites lie ;24

km directly south of the NER. The Hoback and Gros

Ventre sites are areas of winter range that are isolated

from the NER by local mountain ranges, whose deep

snow restrict the winter movement of elk, thereby

containing them on the NER. As such, the Gros Ventre

and Hoback sites are not impacted by animals moving

into and out of the NER during winter; rather, they are

impacted by local populations which winter on range

outside the NER.

Plant community composition

Long-term effects of ungulate foraging on plant

community composition were determined by inventory-

ing plant species composition, spatial structure, and

aboveground biomass inside and outside of four winter-

foraging exclosures (Table 1). Inside each exclosure, a 10

3 10 m plot was established at the center. We then

established a 10310 m plot, 10 m away from the outside

fenced edge of each exclosure; this plot had a matching

slope and aspect. Plant cover in this ecosystem is

discontinuous, with patches of bare ground and

localized accumulations of plant detritus occupying

intervening spaces. The patchy nature of plant cover,

bare soil, and detritus creates spatial heterogeneity that

is an important component of our rationale for how

plants affect saprotrophic microbial communities. We

made ocular estimates of shrub, forb, and graminoid

cover, as well as the cover of the organic horizon and

bare soil, within 10 1-m2 sampling frames that were

randomly located inside and outside each exclosure. We

used these data to simultaneously characterize the

composition and spatial structure of the plant commu-

nity.

Additionally, the aboveground biomass of shrubs,

forbs, and graminoids was measured within each 1-m2

sampling frame. Forbs and graminoids were clipped,

and species-specific allometric equations (Appendix A:

Table A1) were used to determine the aboveground

biomass of shrubs. Shrubs were clipped if they were

,5% of total plant cover. Clipped shrubs, forbs, and

graminoids were bagged separately, dried at 788C, and

weighed.

DNA extraction and soil characterization

To determine the effect of winter foraging on soil

microbial community composition and function, one 10
cm deep mineral soil sample (2.5 cm in diameter) was

collected from the center of each 1-m2 sampling frame
after the plant community was inventoried. The 10 soil

core samples from each site were composited, homog-
enized, stored on ice, and shipped to the University of

Michigan, where they were kept at�808C prior to DNA

extraction. Homogenized soil samples were passed
through a 2-mm sieve, from which genomic DNA was

extracted using a MO-BIO PowerLyzer PowerSoil DNA
Isolation Kit (MO-BIO laboratories, Carlsbad, Califor-

nia, USA), following manufacturer’s instructions. Trip-
licate extractions were performed on three subsamples of

composited soil from each winter-foraged and un-
foraged plot, providing a total of nine DNA extractions

from each site.
Total N, organic C, and soil pH were measured to

characterize soil properties. Soil pH was measured using
a glass electrode, which was inserted into a slurry

containing 10 g of soil and 10 mL of deionized water.
Total soil N was measured colorimetrically following

digestion in concentrated H2SO4 (Lachat Instruments,

Loveland, Colorado, USA). Organic C was determined
using a Leco CNS2000 Analyzer (LECO Corporation,

St. Joseph, Michigan, USA).

Bacterial and fungal abundance

Quantitative polymerase chain reaction (qPCR) was

performed to gain insight into the effect of large
herbivores on the abundance of soil bacteria and fungi.

Bacterial abundance was estimated using universal
primers Eub338F and Eub518R to amplify 180 bp of

the V3 region of the 16S rRNA gene (Fierer et al. 2005).
Fungal abundance was estimated using primers ITS1f

(Gardes and Bruns 1993) and 5.8S (Vilgalys and Hester
1990) to amplify a ;300 bp region of the fungal internal

transcribed spacer region (ITS). Both fungal and
bacterial assays were performed in triplicate on a

Stratagene MX3000P real-time PCR (Agilent Technol-
ogies, Santa Clara, California, USA) using Brilliant III

Ultra Fast SYBR Green qPCR Master Mix (Agilent)
following manufacturer’s instructions. Further details of

our qPCR assay can be found in Freedman and Zak

(2014).

TABLE 1. Physiographic and edaphic characteristics of winter foraging exclosures in northwestern
Wyoming.

Site Location Elevation (m) Soil type Year established Area (m2)

Gros Ventre 4383401000 N 2263 fine sandy loam 1958 3 721
11081804000 W

Lower Hoback 4381704500 N 1894 gravelly loam 1938 961
11083902700 W

Miller Butte 4383005200 N 1938 loam/silt loam 1958 10 920
11084204200 W

Upper Hoback 438180000 N 1951 gravelly loam 1938 961
11083903800 W
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Functional gene analysis

Following DNA hybridization and data preprocessing

(Lu et al. 2011), a subset of GeoChip 5.0 probes (n ¼
9097) were analyzed to examine the influence of large
herbivores on microbial taxonomic composition and

functional gene abundance. We included probes encom-
passing 18 bacterial and 15 fungal functional genes

classes that encode enzymes that depolymerize the
primary biochemical constituents of plant leaf litter:

starch, cutin, cellulose, hemicellulose, and lignin (Eisen-
lord et al. 2013). The signal intensities of GeoChip

hybridization spots were normalized by the Cy5-labeled
universal standard DNA across samples and by dividing

the signal intensity of each spot by the average intensity
of all positive spots within each sample. After normal-

ization, unreliable spots were removed if their original
signal intensities were below the noise level (,2000), the

signal-to-noise ratio (SNR) was �2.0, or the coefficient
of variation of the background was .0.8. All signal

intensities were log-normal transformed. Details of
further normalization steps can be found in the

supplemental material of Lu et al. (2011). We analyzed
bacterial and fungal genes separately (Appendix B:
Table B1); further details of our approach can be found

in Eisenlord et al. (2013).

Microbial activity

Microbial respiration, net N mineralization, and net

nitrification were measured to determine the long-term
influence of large herbivores on microbial activity. Three

30-g soil samples from each foraged and unforaged site
were brought to field capacity and incubated at 258C in

1-L Mason jars equipped with septa for headspace gas
sampling. Microbial respiration was estimated by

measuring CO2 accumulation in the headspace during
a 14-d incubation using a Trace 200 Series gas

chromatograph (Thermo Electron Corporation, Austin,
Texas, USA). To calculate net N mineralization and net

nitrification, the net production of NH4
þ and NO3

� (i.e.,
final � initial concentrations) in incubated soil samples

was measured using an AQ2 discrete analyzer (Seal
Analytical, Mequon, Wisconsin, USA).

Statistical analyses

All statistical analyses were conducted in the software

program RStudio (version 0.98.501; R Development
Core Team 2014), and significance was accepted at a ¼
0.05. To determine the effect of large-herbivore exclu-
sion on plant composition, ordinations were created

from principal coordinate analysis (PCoA) based on the
percentage cover of forbs, shrubs, graminoids, organic

horizon, and mineral soil, for exclosed and unexclosed
plots using the Bray-Curtis dissimilarity metric (Bray

and Curtis 1957). Pearson’s r correlation coefficients
were calculated to explore the relationship of each

aforementioned cover variable with PCoA axis 1 or 2.
Permutational multivariate analysis of variance (per-

MANOVA; Anderson 2001) was used to determine the

significance of plant compositional differences between

treatments. Plots of 1 m2 were considered nested

replicates nested within each treatment plot, with site

and treatment as main factors. PerMANOVA allows

variation to be partitioned according to the experimen-

tal design, and significance is determined by permuta-

tions (Anderson 2001). In addition, nested ANOVAs

were used to determine differences in shrub, forb,

graminoid, organic horizon, and mineral soil percentage

cover between treatments.

Nested ANOVAs also were used to determine if

ungulate foraging led to differences in microbial

respiration, net N mineralization, and net nitrification

over the 14-day incubation, as well as fungal and

bacterial abundance. Three replicates for each foraged

and unforaged plot were analyzed, with site and

treatment as main factors; replicates were nested within

treatment. One-way ANOVAs were used to determine

whether the exclusion of large herbivores led to

differences in shrub, forb, and graminoid biomass, as

well as differences in edaphic properties. Biomass and

edaphic data were log-transformed prior to analysis.

The GeoChip data matrix from microarray image

analysis was normalized to relative abundance by

dividing the signal intensity of each individual probe

by the total signal intensity of all probes in each sample.

The normalized data matrix was analyzed at the gene

level (i.e., all genes associated with starch, cutin,

cellulose, hemicellulose, and lignin), by summing the

normalized signal intensity of all probes attributable to a

specific gene and dividing by the number of probes

representing a given gene, in order to account for

different numbers of probes for any given gene included

on GeoChip. Ordinations were created from PCoA

based on the normalized signal intensity of each gene of

interest. The Bray-Curtis dissimilarity metric was used,

and Pearson’s r correlation coefficients were calculated

to explore the relationship of each functional gene with

PCoA axis 1 or 2.

The effect of large-herbivore foraging on the taxo-

nomic composition of fungal and bacterial functional

assemblages was similarly analyzed using multivariate

statistics. The GeoChip data matrix, which included

probes associated with starch, cutin, cellulose, hemicel-

lulose, and lignin, was converted into a presence–

absence data matrix and reorganized by taxonomic

order associated with each probe. This matrix was

normalized by summing the presence–absence values of

probes associated with each taxonomic order for a given

sample, and dividing by the total number of probes

associated with a given taxonomic order. Principal

coordinate analysis was used to obtain ordinations

based on the normalized presence–absence GeoChip

data matrix using the Bray-Curtis dissimilarity metric.

Pearson’s r correlation coefficients were calculated to

explore the relationship between bacterial and fungal

orders with each PCoA axes.
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PerMANOVA was used to determine if ungulate

foraging altered the taxonomic composition, as indicat-
ed by GeoChip, and functional composition of fungi

and bacteria in the soil. PerMANOVA does not
distinguish if dissimilarity between groups is the result

of differences in location in multivariate space, differ-
ences in each group’s relative dispersion, or both
(Anderson 2001). Therefore, permutational analysis of

multivariate dispersions (PERMDISP; Anderson 2006)
was used to determine if significant differences between

treatments resulted from differences in assemblage
heterogeneity (i.e., the relative dispersion of each

treatment from their centroid mean). Similarity Percent-
age (SIMPER; Clarke and Warwick 2001) was used to

ascertain the contribution of each functional gene or
microbial order to average dissimilarity between grazing

treatments.

RESULTS

Soil properties and plant biomass

Soil pH (ANOVA; F1,6 ¼ 0.43; P ¼ 0.56) and soil N
(ANOVA; F1,6 ¼ 0.36; P ¼ 0.57) did not differ between

foraging treatments. However, soil organic C increased
from 20.3 mg C/g in the presence of herbivores to 23.9

mg C/g in the herbivores-excluded treatment (ANOVA;
F1,6¼ 0.16; P¼ 0.05), indicating that soil organic matter

(Table 1) accumulated in the absence of ungulate
herbivores.

Consistent with an increase in soil organic C, the
exclusion of ungulate herbivores increased total plant

biomass by ;12-fold, which was 179 g/m2 in the
presence of large herbivores and 2199 g/m2 in their

absence (ANOVA; F1,6 ¼ 4.4; P ¼ 0.08). Additionally,
large-herbivore exclusion led to a ;25-fold increase in

shrub biomass (87 vs. 2146 g/m2; foraged vs. unforaged
treatment means, respectively; P ¼ 0.07; Fig. 1). The

Gros Ventre site had an aberrantly low shrub biomass in
the absence of large herbivores; when this site was

removed from our analysis, shrub biomass (ANOVA;
F1,5¼9.8; P¼0.026), and total plant biomass (ANOVA;
F1,5 ¼ 9.3; P ¼ 0.03) became significantly different

between treatments.
Shrub biomass accounted for ;50% of total plant

biomass in the presence of large herbivores and 98% of
total plant biomass in their absence, a response

consistent with our hypothesis. Specifically, exclusion
of large herbivores increased the biomass of Artemisia

tridentata var. vaseyana and Artemisia tridentata var.
tridentata. Together, these shrubs accounted for ;40%
of shrub biomass in the absence of large herbivores; the
remainder was composed by Persia tridentata and, in

some cases, Artemisa arbuscula. Although forb biomass
in the presence of ungulate herbivores (65 g/m2) was two

times greater than in their absence (33 g/m2), this
difference was not statistically significant (Fig. 1;

ANOVA; F1,6 ¼ 3.2; P ¼ 0.12). In addition, we found
no difference in graminoid biomass between treatments

(Fig. 1; ANOVA; F1,6 ¼ 0.95; P ¼ 0.51), even though

graminoid biomass was ;30% greater in the presence of

large herbivores (26.5 g/m2 vs. 19.8 g/m2). The

nonsignificant results we report above plausibly arise

from the limited degree of replication (n ¼ 4) at the

treatment level.

Plant community composition

The exclusion of large herbivores significantly

changed plant composition (perMANOVA; pseudo-

F1,79 ¼ 32.4; P , 0.001). For example, plant communi-

ties in the presence of ungulate herbivores were clearly

separated along principal coordinate analysis (PCoA)

axes 1 and 2, which accounted for 43% and 14% of plant

community variation, respectively (Fig. 2). Shrub

percentage cover was significantly and positively corre-

lated to PCoA axis 1 (r ¼ 0.97; P , 0.001), whereas

mineral soil (r¼�0.80; P , 0.0001), forb (r¼�0.50; P ,

0.001), and graminoid (r¼�0.24; P , 0.05) cover were

significantly and negatively correlated to PCoA axis 1.

Graminoid (r ¼ 0.70; P , 0.001), organic horizon (r ¼
0.56; P , 0.001), and forb presence (r¼ 0.50; P , 0.001)

were significantly and positively correlated with PCoA

axis 2, but mineral soil (r ¼ �0.55; P , 0.001) was

negatively correlated with PCoA axis 2.

The exclusion of large herbivores increased shrub

cover (16% vs. 48%; ANOVA; F1,73¼ 94.3; P , 0.001).

Conversely, foraging exclusion decreased forb cover

(17% vs. 11%; ANOVA; F1,73 ¼ 44.8; P , 0.001),

graminoid (19% vs. 9%; ANOVA; F1,73 ¼ 14.2; P ,

0.01), and mineral soil cover (41% vs. 20%; ANOVA;

F1,73 ¼ 40.5; P , 0.001). However, herbivore exclusion

did not change the percentage cover of the organic

horizon (8% vs. 9%; ANOVA; F1,73 ¼ 0.29; P ¼ 0.59).

FIG. 1. Forb, graminoid, and shrub biomass in foraged and
unforaged treatments. Values are treatment means, and error
bars indicate 6SE. Forb and graminoid biomass were not
significantly different between treatments (P ¼ 0.12 and P ¼
0.51, respectively). Shrub biomass was marginally statistically
different between treatments (P ¼ 0.07) due to unusually low
shrub biomass in the unforaged treatment at the Gros Ventre
study site (316.7 g/m2). When this site was removed from our
analysis, shrub biomass became statistically significant (P ¼
0.026).
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Microbial activity

Microbial respiration was ;1.5 times greater in the

absence of large herbivores, relative to rates in their

presence (616 vs. 935 lg CO2/g soil; ANOVA; F1,16 ¼
5.7; P ¼ 0.03). Similarly, net N mineralization was

greater when large herbivores were excluded (7.01 lg N

g soil), compared to rates in their presence (4.10 lg N/g

soil; ANOVA; F1,16 ¼ 23.7; P , 0.001). However, net

nitrification was similar between treatments (1.66

vs. 1.33 lg N/g soil; ANOVA; F1,16 ¼ 3.1; P ¼ 0.098).

The significantly greater rates of soil respiration and net

N mineralization in the absence of large herbivores

provide evidence that foraging exclusion accelerated soil

C and N cycling rates, likely due to greater litter

production from greater shrub abundance.

Microbial community abundance

Bacterial 16S rDNA gene copy number was not

significantly different in the presence and absence of

large herbivores (6.6 3 105 vs. 8.3 3 105 copies/g soil;

ANOVA; F1,11¼ 1.8; P¼ 0.21), despite the fact that the

abundance of this gene was 25% greater in the absence

of large-herbivore foraging. Similarly, there was no

effect of foraging exclusion on the relative abundance of

the fungal ITS gene copy number (2.33 105 vs. 2.73 105

copies/g soil; ANOVA; F1,9 ¼ 0.78; P ¼ 0.40).

Microbial taxonomic and functional composition

Foraging exclusion changed the taxonomic composi-

tion of the soil bacterial community (perMANOVA;

pseudo-F1,23¼ 2.9; P¼ 0.041; Fig. 3A), but did not alter

bacterial assemblage heterogeneity (PERMDISP; F1,23¼
2.11; P ¼ 0.16), as indicated by GeoChip. Bacterial

taxonomic assemblages in the winter-foraged and

unforaged treatments were separated by PCoA 1 and

2, which together accounted for 53% of the variation in

taxonomic assemblages (Fig. 3A). Fifty-five out of 73

bacterial orders were significantly and negatively corre-

lated with PCoA axis 1 (Pearson’s r correlation

coefficients from �0.93 to �0.41; Appendix C: Table

C1). Actinomycetales correlated most significantly and

negatively with PCoA axis 1 (Appendix C: Table C1; r¼
�0.93 and P , 0.0001). Furthermore, SIMPER analysis

indicated that bacterial taxonomic composition exhibit-

ed a 7% average dissimilarity between treatments, with

the order Synergistales driving the majority of this

difference (3.7%).

Fungal taxonomic composition (as indicated by

GeoChip) was marginally altered by the presence of

large-herbivore foraging (perMANOVA; pseudo-F1,23¼
2.5; P ¼ 0.08; Fig. 3B), and were similarly dispersed in

ordination space (PERMDISP; F1,22 , 0.001; P¼ 0.99).

FIG. 2. Principal coordinate analysis (PCoA) visualizing
shifts in plant composition and structure due to ungulate
foraging. The open symbol is the centroid of the foraged
treatment and the solid symbol is the centroid of the unforaged
treatment. Error bars indicate 6SE. The percentage variation
accounted for by each axis is shown in parentheses on the axis
label. PerMANOVA revealed plant composition between
treatments was significantly different (P , 0.001). Shrub
percentage cover (r ¼ 0.97; P ¼ 0) was positively significantly
correlated to PCo axis 1. Mineral soil (r¼�0.80; P , 0.0001),
forbs (r¼�0.50; P , 0.0001), and graminoids (r¼�0.24; P ,
0.05), were significantly and negatively correlated to PCo axis 1.
Graminoid (r¼ 0.70; P , 0.001), organic horizon (r¼ 0.56; P ,
0.001), and forbs (r ¼ 0.50; P , 0.001) were significantly and
positively correlated with PCo axis 2. Mineral soil (r¼�0.55; P
, 0.001) was negatively correlated with PCo axis 2.

FIG. 3. PCoA visualizing shifts in (A) bacterial and (B)
fungal community composition in response to ungulate
foraging. The open symbol is the centroid of the foraged
treatment and the solid symbol is the centroid of the unforaged
treatment. Error bars indicate 6SE. The percentage variation
accounted for by each axis is shown in parentheses on the axis
label. Distance matrices were constructed using Bray-Curtis
dissimilarity metric based on the presence/absence of all fungal
and bacterial orders from functional assemblages. Pairwise
comparison with PerMANOVA simulations found significant
differences in treatment effects on bacterial community
composition (P¼ 0.042), and marginally significant differences
in fungal community composition (P¼ 0.075).
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Fungal taxonomic assemblages shifted along PCoA axis

1 and 2, which together accounted for 43% of the

variation (Fig. 3B). Fourteen out of 29 fungal orders

were significantly (P , 0.05) and negatively correlated

to PCoA axis 1 (Appendix C: Table C2). The fungal

order Agaricales most strongly and negatively correlated

with PCoA axis 1 (r ¼ �0.90, P , 0.0001). SIMPER

analysis indicated that fungal richness exhibited 8%
average dissimilarity between treatments; the order

Microascales predominately contributed to this differ-

ence. We found no difference in the relative abundance

of Basidomycotina in the presence and absence of

ungulate herbivores.

Microbial community functional composition

Large-herbivore exclusion significantly altered bacte-

rial functional composition (perMANOVA; pseudo-F1,

23 ¼ 6.1; P ¼ 0.02), but did not alter assemblage

heterogeneity (PERMDISP; F1,22 ¼ 0.92; P ¼ 0.35).

Bacterial functional assemblages in the presence and

absence of large herbivores separated along PCoA axis 1

and 2, which together accounted for 69% of the

variation (Fig. 4A). Genes encoding enzymes that

depolymerize starch, cellulose, and hemicellulose (al-

pha-amylase, cellobiase, and alpha-L-arabinofuranosi-

dase, respectively) had the strongest negative correlation

with PCoA axis 1 (Appendix C: Table C3). In addition,

12 out of 18 lignocellulolytic genes correlated with the

exclusion of foraging (Appendix C: Table C3). SIMPER

analysis revealed that bacterial functional assemblages

exhibited a mean dissimilarity of ;4%, and the gene

amyX, which encodes starch-hydrolyzing isoamylase,

contributed most to dissimilarity between treatments.

Large-herbivore exclusion did not change the compo-

sition of fungal functional genes (perMANOVA;

pseudo-F1,23 ¼ 2.05; P ¼ 0.15). However, fungal

functional assemblages in the herbivore treatments

largely separated along PCoA 2, which, together with

PCoA 1 accounted for 64% of variation (Fig. 4B).

Moreover, all fungal lignocellulolytic genes were signif-

icantly and negatively correlated to PCoA axis 1, which

marginally separated the herbivore treatments. (Fig. 4B;

Appendix C: Table C4). Together, these results suggest

that exclusion of large herbivores promoted the presence

of bacterial and fungal lignocellulolytic functional genes,

which occurred simultaneously with greater shrub

abundance and soil organic matter content.

DISCUSSION

Saprotrophic microbial communities in soil are

thought to be structured by bottom-up ecological forces

governing resource availability (Smith and Paul 1990);

however, our observations provide evidence that this

relationship can be modified by the foraging behavior of

native ungulates. For example, herbivore consumption

of shrubs reduced total plant biomass, which plausibly

arose because A. tridentata, the most prevalent shrub in

our study, is not tolerant to heavy browsing or

trampling (Bilbrough and Richards 1993). Winter

foraging further led to an increase in forb cover, likely

because forbs emerge following snowmelt, the time when

many ungulates have already migrated to higher

elevations, and the forbs thus avoid consumption

(Caldwell 1985, Irwin 2002). Taken together, the

seasonal migration of native ungulates from high

elevations in summer to the valley floor in winter

reduced shrub cover and biomass, thereby changing

plant composition, which, in turn, modified taxonomic

composition, functional potential, and activity (i.e.,

respiration and net N mineralization) of soil microbial

communities. Our observations are consistent with the

idea that winter foraging by migratory ungulates exerts

an indirect, top-down ecological force that structures the

composition and function of soil microbial communities.

Soil organic C was greater in the absence of ungulate

herbivores, which may be driven by the greater

production of slowly decomposing litter from a higher

shrub abundance. Shrubs play an important role in

FIG. 4. PCoA visualizing shifts in (A) bacterial and (B)
fungal functional assemblages in response to ungulate foraging.
The open symbol is the centroid of the foraged treatment and
the solid symbol is the centroid of the unforaged treatment.
Error bars indicate 6SE. The percentage variation accounted
for by each axis is shown in parentheses on the axis label.
Distance matrices were calculated using Bray-Curtis dissimi-
larity metric based on the normalized signal intensity of all
relative gene variants responsible for leaf litter decay. PerMA-
NOVA revealed significant differences in treatment effects for
bacterial functional genes (P ¼ 0.015) but not for fungal
functional genes (P ¼ 0.153).
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nutrient regulation in semi-arid ecosystems because their

litterfall increases soil organic matter beneath them,

relative to adjacent areas outside the shrub canopy

(Charley and West 1977). Therefore, the greater shrub

biomass and cover may account for ;9% increase in soil

organic C in the absence of ungulate herbivores

compared to their presence. Additionally, A. tridentata

presumably contributed to this increase in soil organic C

because its tissues have a high lignin : N ratio as

compared to co-occurring graminoids and forbs in

sagebrush steppe (Shaw and Harte 2001, Hooker et al.

2008). The initial lignin content in plant litter is inversely

related to the litter decay rate (Prescott 2005), as most

saprotrophic microorganisms lack the physiological

capacity to oxidize this polyphenolic compound (Paus-

tian et al. 1997). Therefore, lignin from plant detritus

enters the resistant pool of soil organic matter, which

increases soil organic C (Paustian et al. 1997). Thus,

lower amounts of soil organic C in the presence of

ungulate herbivores plausibly arises from the negative

effect of these large animals on A. tridentata, which, in

turn, may have decreased the production of lignified

detritus and organic matter accumulation.

Nitrogen mineralization and respiration rates were

greater when large herbivores were excluded; these rates

also may be driven by increased litter input to soil from

a more abundant shrub community. In semi-arid

ecosystems, shrubs increase rates of net N mineraliza-

tion (Charley and West 1977) and microbial activity

(Bolton et al. 1993) due to the localization of litterfall

beneath them. Additionally, the accumulation of organ-

ic matter can increase soil respiration and regulate net N

mineralization beneath A. tridentata (Burke et al. 1989).

Therefore, the greater biomass of A. tridentata in the

absence of ungulate foraging likely increased the

amount of plant material entering the soil food web.

This likely increased soil organic C, which, in turn, led to

more rapid rates of net N mineralization and microbial

respiration. This response occurred despite the relatively

high lignin :N of Artemisia litter.

Our results differ from others who found ungulate

grazing increased net N mineralization (Frank and

Groffman 1998, Frank et al. 2000). This contrasting

response was driven by ammonium and urea released

from ungulate (i.e., elk and bison) urine and fecal pellets

(Frank and Groffman 1998, Tracy and Frank 1998,

Frank et al. 2000), as well as greater rates of root

exudation from grasses that can stimulate soil microbial

activity (Hamilton and Frank 2001). Ungulate excreta

had not impacted soil C and N cycling in our study,

because microbial respiration and net N mineralization

were greater in the absence of these animals. In our

study area, elk urine and fecal pellets are largely

deposited during winter, after which N could be lost to

leaching as the winter snow pack ablates. Further, elk

pellets can persist for decades in this relatively arid

environment (E. Cole, personal communication), which

would slow the release of N from them. North American

elk also primarily occupy our sites during winter, with

lower numbers of big horn sheep and mule deer. It is

plausible that the greater abundance of bison, which

avoid shrubs, may exert an influence on soil N cycling

that differs from elk and other ungulates that occupy

winter range in our study area (Frank and Groffman

1998). In our study, greater rates of microbial respira-

tion and net N mineralization in the absence of winter

grazing likely arises from greater detrital production

from shrubs.

Winter-foraging exclusion promoted the presence of

bacterial functional genes that encode enzymes that

metabolize lignified plant litter. Bacterial genes encoding

for enzymes that depolymerize starch, cellulose, hemi-

cellulose, and lignin (i.e., compounds found in high

abundance in A. tridentata [Kinney and Sugihara 1943]),

were highly correlated with winter-foraging exclusion

(Appendix C: Table C3). In addition, foraging exclusion

altered bacterial and fungal assemblages by favoring

taxa with lignocellulolytic physiology. Among bacteria,

winter-foraging exclusion promoted the occurrence of

organisms in the Actinomycetales order, which have

lignolytic physiological capacities (Kluepfel and Ishaque

1982), as well as Synergistales, which can ferment starch

(Maune and Tanner 2012). Among fungi, winter-

foraging exclusion promoted Agaricales and Microa-

scales, orders which encompass a wide range of

physiological and ecological attributes. Common Agari-

cales in soil have the physiological capacity to oxidize

lignin and other polyphenols, and Microascales are

implicated in the saprotrophic decay of plant detritus

(Sakayaroj et al. 2011). However, we are unable to

resolve the specific attributes of fungi in our study with

the microarray analysis we report; it also likely

contributed to our inability to detect differences in

Basidiomycotina occurrence between treatments. None-

theless, the compositional and functional responses that

we have documented appear to arise from the increase in

A. tridentata biomass in the absence of winter foraging,

which likely increased lignin-rich litter detritus produc-

tion, thereby providing additional substrate for organ-

isms mediating plant litter decay (Raich and Schlesinger

1992, Högberg and Ekblad 1996, Osono 2007).

The greater abundance of A. tridentata when winter

foraging was excluded likely favored soil bacteria with

lignocellulolytic physiologies. Evidence for this assertion

comes from the significant differences in bacterial

taxonomic and functional assemblages between treat-

ments (perMANOVA; P ¼ 0.042 and P ¼ 0.015,

respectively), paired with nonsignificant PERMDISP

results (P ¼ 0.16 and P ¼ 0.35, respectively), together

indicating bacterial assemblages were compositionally

distinct between large-herbivore treatments. Moreover,

bacterial taxa with lignocellulolytic function (e.g.,

Actinomycetales), as well as genes encoding enzymes

that depolymerize starch, cellulose, and hemicellulose

(a-amylase, cellobiase, and a-L-arabinofuranosidase,
respectively) accounted for compositional differences

ANNA R. PESCHEL ET AL.2390 Ecology, Vol. 96, No. 9



in bacterial assemblages between winter-foraged and

unforaged treatments (Appendix C: Tables C1 and C3).

The increase in A. tridentata biomass with winter-

foraging exclusion presumably constrained the soil

microbial community by selecting for bacterial taxa

better able to enzymatically harvest lignified plant litter.

In contrast, fungal communities in large-herbivore

treatments were functionally equivalent, but composi-

tionally distinct. Fungal functional assemblages were

similar (perMANOVA; P ¼ 0.15), but taxonomic

assemblages were marginally different (perMANOVA,

P ¼ 0.076). The significant difference in taxonomic

composition suggests competitive displacement within

the fungal community in the absence of winter foraging,

a response that did not affect the functional potential of

this community. Our assessment of functional potential

relied on the presence–absence of genes with known

lignocellulolytic function, which may not provide a level

of resolution that could resolve competitive mechanisms

fostering compositional differences between winter-

foraged and unforaged treatments. Nonetheless, our

observations suggest that some level of functional

equivalency occurred in the fungal communities of the

two herbivore treatments, consistent with the recent

observations of Talbot et al. (2014). It is plausible that

differences in efficiency of enzymes that mediate the

same biochemical process, as well as the differences in

substrate-use efficiency among fungal taxa, lie at the

heart of these observations. In summary, our results

provide evidence that winter foraging by native migra-

tory ungulates in the sagebrush steppe can exert an

indirect top-down ecological force that shapes soil

microbial communities. Understanding how grazing

animals influence the composition and function of soil

microorganisms is of broad ecological significance

because these organisms mediate the cycling of C and

N within all terrestrial ecosystems. Therefore, changes to

microbial composition and function have the potential

to modify the rate at which these elements cycle at local,

regional, and global scales (Zak et al. 2011). Further-

more, understanding the ecosystem-level effects of large

herbivores is of global importance, because .25% of the

Earth’s land surface is affected by the activity of grazing

and browsing animals (Asner et al. 2004). While our

study was conducted in the sagebrush steppe of North

America, our observations suggest that links may occur

PLATE 1. Winter foraging exclosures at one of our study sites. Winter foraging by elk and other large ungulates has decreased
shrub abundance, which in turn caused a change in the composition and functions of soil microbial communities. Photo credit:
D. R. Zak.
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among foraging animals, plant communities, and the

composition and function of saprotrophic microbial

communities in other ecosystems where herbivory is an

important ecological process.
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