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ABSTRACT

Server Authentication on the Past, Present and Future Internet

by

James Douglas Kasten, Jr.

Chair: J. Alex Halderman

HTTPS is used for nearly all secure web communication, yet very little is known about

the security of HTTPS’ deployment overall on the Internet. In this work, we elucidate the

efficacy of HTTPS’ security through Internet-wide scanning and present novel solutions for

some of the most critical issues we discover.

Our analysis includes the first longitudinal study of the HTTPS ecosystem, and a study

of the HTTPS ecosystem during upheaval, including the community’s subsequent response.

This examination revealed not only the common practices, but also a number of alarming

trends. In this thesis, we focus on two of these issues. The first is that the PKI underlying

HTTPS has an extremely large attack surface, with 683 organizations able to sign certificates

for any domain. The second is that the cost of HTTPS is exorbitant. As evidence, we found

that only 12.9% of the Alexa Top 1 Million supported HTTPS and that 55% of servers

with browser-trusted certificates are not optimally configured. Furthermore, we find the

management of HTTPS is too burdensome. We discover 20% of certificates are removed

from servers after they have already expired.

In order to address the large attack surface of the PKI, we present CAge. CAge is a

technique that can reduce the attack surface of certificate authorities by 90% using simple

xii



inference techniques. The key observation is that CAs commonly sign for only a handful of

TLDs; in fact, 90% of CAs have signed certificates for domains in fewer than 10 TLDs, and

only 35% have ever signed a certificate for a domain in .com.

To decrease the cost of HTTPS, we present Let’s Encrypt, the first fully automated

and free certificate authority. The automation is enabled by a new protocol we developed,

ACME, which handles all of a CA’s operational duties. We implement client and server

ACME software which reduces the time required to deploy HTTPS to 30 seconds. We

additionally develop new validation techniques which improve the security of the PKI in

general.

Thesis Statement: Measurement-based security and automation can reduce the vulner-

abilities originating from both certificate authority practice and HTTPS server deployments.
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CHAPTER I

Introduction

TLS has become the narrow waist of the Internet for secure online transactions. Every

day, millions of Internet users rely on HTTPS to connect securely to online services such as

banking, e-mail, and e-commerce. However, most normal web traffic remains in cleartext

over HTTP [114].

This normal HTTP traffic is subject to two classes of network attacks: eavesdropping

and man-in-the-middle (MITM) attacks. Eavesdropping acknowledges the fact that the

content is not encrypted and that any party along the path of the communication can read

its content. Eavesdropping has obvious privacy implications, and it enables attacks like

session hijacking [108]. MITM attackers can both intercept and modify content. MITM

attackers can insert trojans in software downloads [54], modify webpages to perform DDoS

attacks [57], inject advertisements [77], and add cookies to users’ requests to track them [95].

Given all of the problems with HTTP and the recent revelations of global surveillance,

there has been a major push to deprecate HTTP altogether in favor of HTTPS [26]. Users

around the world have learned to associate the browser’s HTTPS lock icon with security,

but few users understand the implications and guarantees provided [130].

HTTPS helps to protect against passive and active attacks. HTTPS combines the

Transport Layer Security (TLS) protocol with a public-key infrastructure (PKI) based on

certificate authorities (CAs) that are trusted by the browser. When clients connect to a server

1



over TLS, the server presents its public key in the form of an X.509 certificate. The certificate

ties the domain name to a public key and is digitally signed by a CA. The CA is responsible

for verifying the identity of the website, usually for a small fee. Browsers maintain a set of

trusted root CAs and subsequently trust the purported identities of certificates signed by any

CA in this trusted set. In addition, these root CAs are typically able to sign certificates for

additional CAs, known as intermediate certificate authorities, which are trusted recursively

by the browser.

CA-signed certificates provide authentication and protect users in the presence of man-

in-the-middle adversaries. If certificate authorities are secure, trustworthy, and properly

verify the identity of websites before issuing certificates, it should be impossible to attain and

present a CA-signed certificate for a domain that you do not control. If an attacker attempts

to submit an invalid or untrusted certificate, the user is issued a strong warning urging

them to leave the site. In recent years the warnings have become increasingly effective at

deterring users from continuing onto the compromised site, requiring successful attackers to

subvert the CA system itself [19]. HTTPS’ authentication and security directly relies on

CAs performing their role correctly.

Unfortunately, it is impossible to determine if the CAs are performing in their expected

capacity. The difficulty of appraising the certificate ecosystem arises from the offline nature

of certificate signing and the chaining of intermediate certificates. The client can only

become aware of certificates when they are presented. Users of the system are unable to

monitor the certificate authorities’ activities or even determine the full set of certificate

authorities that they trust.

In order to understand this normally opaque security-critical infrastructure, we scanned

the Internet and retrieved all of the certificates available on port 443, the standard port used

for HTTPS. In Chapter II, “Analysis of the HTTPS Certificate Ecosystem”, we present the

first full systematic analysis of HTTPS certificates, including results from 110 scans over 14

months. This analysis granted us a new perspective on the health and state of PKI on the
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Internet.

To glean an additional viewpoint on the ecosystem, we studied HTTPS system adminis-

trators’ ability to maintain the security of their systems. In April of 2014, the Heartbleed

vulnerability was discovered within OpenSSL which left 24–55% of the HTTPS servers on

the Internet vulnerable. We scanned for the vulnerability and monitored the community’s

response, including the steps taken to rectify their systems. The Heartbleed analysis gave us

a unique perspective on operational security of HTTPS deployments. These two analyses

have uncovered the following pervasive problems with HTTPS, which we will address in

this thesis.

Massive Attack Surface

We found that 683 different organizations could sign trusted certificates for any domain

on the Internet. This presents an extremely large attack surface as attackers only have

to compromise the weakest CA to break the security of TLS. In recent years, there

have been several high-profile attacks [78, 112] and CA blunders [81] that resulted

in the signing of fraudulent certificates. For instance, in 2011, an attacker breached

the security of a relatively small Dutch CA named DigiNotar and created certificates

for dozens of popular sites, including *.google.com [8]. An ISP in Iran subsequently

abused this latter certificate to conduct man-in-the-middle attacks against Google

services [29]. We attempt to constrain compromised CAs in Chapter IV on CAge.

Misconfigured Servers

We discovered sites that deploy HTTPS are often misconfigured. 12.7% of servers

presented invalid certificate chains from trusted CAs, and only 45% were optimally

configured. This causes problems for the stability, reliability, and security of the

servers for end-users. Servers suffering from expired or misconfigured certificates will

often create meaningless errors for clients or potentially cover up more troublesome

problems. Regardless of the errors, they cause users to lose trust in the domain and

the certificate warning system in general.

3



Slow Patching Rate

Even if servers have initially been setup correctly, there are often necessary updates

to the software and configuration in order to maintain proper security. CRIME [98],

BEAST [115], Lucky 13 [20], Heartbleed [96], ShellShock [6], POODLE [40],

FREAK [5], and Logjam [17] all required attention and updates by affected parties. In

our study of Heartbleed [42] and POODLE [40], we found that system administrators

are slow to update their systems, and frequently do so incorrectly. Less than a quarter

of the Alexa Top 1 Million sites that were vulnerable to Heartbleed replaced their

certificates within the first week. Additionally, 14% did not change their private key,

thus providing no security benefit.

Low Adoption

HTTPS adoption, as a whole, remains low, even for popular websites. We found only

12.9% of the Alexa Top 1 Million sites supported HTTPS in our scans. HTTP has

outlived its usefulness. Governments have been exploiting HTTP by collecting web

traffic information en masse and exploiting packet-injection vulnerabilities [54,86].

Packet injection has been used by China to insert malicious JavaScript into traffic to

perform a distributed-denial-of-service (DDoS) attack against sites performing censor-

ship resistance [57]. Packet injection has been used to exploit browser vulnerabilities,

which grant the attacker full access to the victim’s computer [116]. Packet injection

has also been used to impersonate the victim’s target website [54]. Governments are

not the only guilty parties that have exploited HTTP, corporations have also been

exploiting the weaknesses afforded by HTTP. Verizon was discovered inserting per-

sistent tracking cookies into their customers’ HTTP headers [95]. Verizon claimed

no harm was done, but inserting tracking headers greatly eases mass surveillance and

increases the risk of being tracked by all websites the user visits. Advertising compa-

nies were found utilizing the Verizon tracker to target their markets [94]. Comcast has

been known to inject ads into their customer’s visited websites [77] and companies
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have colluded with Internet service providers for user search queries [55]. All of these

security and privacy concerns are mitigated by HTTPS. HTTPS has been found to be

an effective tool to hinder surveillance, stop censorship, and increase attribution. The

largest problem with HTTPS is that it is not deployed widely enough.

Based on the findings from our measurement research, we go on to propose a series of

mitigations and new systems that aim to improve the security of the Internet as a whole. In

Chapter IV we tackled the problem of the CAs’ massive attack surface. By further investigat-

ing CAs’ signing behavior, we determined that many individual CAs only sign certificates

for domains within a small number of TLDs. We developed metrics and algorithms to

automatically constrain CAs based on their past signing behavior. The technique reduces

the attack surface of the HTTPS PKI by over 90% (by one metric). In fact, had the system

been put in place before the DigiNotar hack [29], it would have prevented 300,000 users

from having their Gmail accounts attacked.

Low adoption makes it clear that the cost of adoption is too high. In purely economic

terms, the cost of adopting TLS outweighs the benefits for many system administrators.

Surveys and investigation into the process yielded the two largest costs of deploying TLS:

the time required to deploy TLS and the monetary cost of the certificate. The difficulty of

deploying TLS correlates well with our evidence of the slow patching rate and misconfigured

servers in our prior analysis.

The way we deploy HTTPS is fundamentally broken and does not allow for the widescale

adoption the Internet needs. The Internet needs a “free” certificate authority; free both

monetarily and in terms of system administrator time. Servers need to default to HTTPS,

and not require any additional human interaction to serve HTTPS. In Chapter V, we present

Let’s Encrypt, the first completely free and automated certificate authority that is trusted

by all major browsers. We developed a new protocol, Automated Certificate Management

Environment (ACME), which allows the certificate requestor’s interaction with the CA to

be fully automatic. IETF has formed a working-group to make ACME a formal standard
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and ACME will be used by Let’s Encrypt. We have open-sourced both client and server

implementations of ACME and expect further adoption by other CAs. In addition to solving

the original problems we set out to resolve with ACME, we also found solutions for other

long-standing PKI problems.

1.1 Summary of Main Contributions

Analysis of the HTTPS Certificate Ecosystem

We report the results of the first large-scale measurement study of the HTTPS certifi-

cate ecosystem. Using data collected by performing 110 Internet-wide scans over 14

months, we gain detailed and temporally fine-grained visibility into this otherwise

opaque area of security-critical infrastructure. We investigate the trust relationships

among root authorities, intermediate authorities, and the leaf certificates used by web

servers, ultimately identifying and classifying more than 1,800 entities that are able to

issue certificates vouching for the identity of any website. We uncover practices that

may put the security of the ecosystem at risk, and we identify frequent configuration

problems that lead to user-facing errors and potential vulnerabilities.

Analysis of HTTPS Updates and Patches

The Heartbleed vulnerability took the Internet by surprise in April 2014. The vulner-

ability, one of the most consequential since the advent of the commercial Internet,

allowed attackers to remotely read protected memory from an estimated 24-55% of

popular HTTPS sites. We monitored the community as they dealt with Heartbleed

and patched their systems. This illuminated problems with the deployment of HTTPS,

namely, the ability of system administrators to patch their systems effectively in

a timely manner. System administrators showed a clear willingness to patch their

systems, but oftentimes did so incorrectly.

Minimizing Certificate Authorities Attack Surface
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The existing HTTPS public-key infrastructure (PKI) uses a coarse-grained trust model:

either a certificate authority (CA) is trusted by browsers to vouch for the identity of

any domain or it is not trusted at all. More than a thousand root and intermediate

CAs can currently sign certificates for any domain and be trusted by popular browsers.

This violates the principle of least privilege and creates an excessively large attack

surface, as highlighted by recent CA compromises. We present CAge, a mechanism

that browser makers can apply to drastically reduce the excessive trust placed in CAs

without fundamentally altering the CA ecosystem or breaking existing practice. CAge

works by imposing restrictions on the set of top-level domains (TLDs) for which

each CA is trusted to sign. Our key observation, based on an Internet-wide survey

of TLS certificates, is that CAs commonly sign for only a handful of TLDs; in fact,

90% of CAs have signed certificates for domains in fewer than 10 TLDs, and only

35% have ever signed a certificate for a domain in .com. We show that it is possible

to algorithmically infer reasonable restrictions on CAs’ trusted scopes based on this

behavior, and we present evidence that browser-enforced inferred scopes would be a

durable and effective way to reduce the attack surface of the HTTPS PKI. We find that

simple inference rules can reduce the attack surface by nearly a factor of ten without

hindering 99% of CA signing activity over a six-month period.

Let’s Encrypt: A certificate authority to encrypt the entire Internet

Although HTTP has seen tremendous adoption, it is insecure by design. HTTPS offers

a base level of confidentiality, authenticity, and integrity, but it has yet to see wide

deployment across the Internet at large. At the heart of the problem are current CA

practices and deployment issues. We analyze current CA practices, CA marketing, and

CA costs, gaining valuable insight into the market at large. In response, we propose

and develop Let’s Encrypt, the first completely automated and free certificate authority.

We develop a new protocol, the Automated Certificate Management Environment

(ACME), in order to completely automate all processes of current domain validation
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certificate authorities. We examine the bureaucracy, costs, and deployment issues

related to becoming a browser-trusted CA. We introduce the first implementations of

ACME and the reasoning behind their design. Finally, we conclude by analyzing the

industry and community reception. Let’s Encrypt is scheduled for general availability

to the public the week of November 16, 2015.

This research has illuminated and identified the major problems within TLS. My thesis

solves many of the problems within HTTPS’s PKI and is currently being adopted by the

industry. This work will help the community further understand the inherent practical

problems with PKI in untrusted environments, provide valuable insight into solving these

problems, and provide a usable mechanism to automatically establish identification and

trust. Measurement-based security and automation can reduce the vulnerabilities originating

from both certificate authority practice and HTTPS server deployments.

1.2 Structure of Thesis

This thesis is organized into six parts. In Chapter II we illuminate the state of X.509

certificates through analyzing Internet-wide scans. In Chapter III we examine how system

administrators respond to massive vulnerabilities within TLS, acquiring new understanding

into certificate and TLS operational issues. In Chapter IV we offer a solution to CA signing

behavior and the proliferation of certificate authority trust. Finally, in Chapter V, we describe

the development and details of Let’s Encrypt, an automated certificate authority, to encrypt

the entire Internet. We conclude with Chapter VI on future work.
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CHAPTER II

Analysis of the HTTPS Certificate Ecosystem [43]

2.1 Introduction

Nearly all secure web communication takes place over HTTPS including online banking,

e-mail, and e-commerce transactions. HTTPS is based on the TLS encrypted transport pro-

tocol and a supporting public key infrastructure (PKI) composed of thousands of certificate

authorities (CAs)—entities that are trusted by users’ browsers to vouch for the identity of

web servers. CAs do this by signing digital certificates that associate a site’s public key with

its domain name. We place our full trust in each of these CAs—in general, every CA has the

ability to sign trusted certificates for any domain, and so the entire PKI is only as secure as

the weakest CA. Nevertheless, this complex distributed infrastructure is strikingly opaque.

There is no published list of signed website certificates or even of the organizations that

have trusted signing ability. In this work, we attempt to rectify this and shed light on the

HTTPS certificate ecosystem.

Our study is founded on what is, to the best of our knowledge, the most comprehen-

sive dataset of the HTTPS ecosystem to date. Between June 2012 and August 2013, we

completed 110 exhaustive scans of the public IPv4 address space in which we performed

TLS handshakes with all hosts publicly serving HTTPS on port 443. Over the course of 14

months, we completed upwards of 400 billion SYN probes and 2.55 billion TLS handshakes,

collecting and parsing 42.4 million unique X.509 certificates from 109 million hosts. On
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average, each of our scans included 178% more TLS hosts and 115% more certificates than

were collected in earlier studies of the certificate authority ecosystem [47], and we collected

736% more unique certificates in total than any prior study of HTTPS [63].

Using this dataset, we investigate two classes of important security questions, which

relate to the behavior of CAs and to site certificates.

Certificate Authorities We analyze the organizations involved in the HTTPS ecosystem

and identify 1,832 CA certificates, which are controlled by 683 organizations including

religious institutions, museums, libraries, and more than 130 corporations and financial

institutions. We find that more than 80% of the organizations with a signing certificate

are not commercial certificate authorities and further investigate the paths through which

organizations are acquiring signing certificates. We investigate the constraints on these CA

certificates and find that only 7 CA certificates use name constraints, and more than 40%

of CA certificates have no path length constraint. We identify two sets of misissued CA

certificates and discuss their impact on the security of the ecosystem.

Site Certificates We analyze leaf certificates used by websites and find that the distribution

among authorities is heavily skewed towards a handful of large authorities, with three

organizations controlling 75% of all trusted certificates. Disturbingly, we find that the

compromise of the private key used by one particular intermediate certificate would require

26% of HTTPS websites to immediately obtain new certificates. We provide an up-to-date

analysis on the keys and signatures being used to sign leaf certificates and find that half of

trusted leaf certificates contain an inadequately secure 1024-bit RSA key in their trust chain

and that CAs were continuing to sign certificates using MD5 as late as April 2013. We find

that 5% of trusted certificates are for locally scoped names or private IP address space (and

therefore do not protect against man-in-the-middle attacks) and that 12.7% of hosts serving

certificates signed by trusted CAs are serving them in a manner that will cause errors in one

or more modern web browsers.
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Lastly, we examine adoption trends in the HTTPS ecosystem from the past year, discuss

anomalies we noticed during our analysis, and provide high-level lessons and potential paths

forward to improve the security of the HTTPS ecosystem security. We ultimately hope that

this global perspective and our analysis will inform future decisions within the security

community as we work towards a more secure PKI. In order to facilitate future research on

this critical ecosystem, we are releasing our dataset to the research community, including

42 million certificates and historical records of the state of 109 million HTTPS server IP

addresses. This data and up-to-date metrics can be found at https://scans.io/.

2.2 Background

In this section, we present a brief review of TLS, digital certificates and their respective

roles within the HTTPS ecosystem. We recommend RFC 5280 [36] for a more in-depth

overview of the TLS public key infrastructure.

Transport Layer Security (TLS) Transport Layer Security (TLS) and its predecessor

Secure Sockets Layer (SSL) are cryptographic protocols that operate below the application

layer and provide end-to-end cryptographic security for a large number of popular application

protocols, including HTTPS, IMAPS, SMTP, and XMPP [39]. In the case of HTTPS, when

a client first connects, the client and server complete a TLS handshake during which the

server presents an X.509 digital certificate, which is used to help identify and authenticate

the server to the client. This certificate includes the identity of the server (e.g. website

domain), a temporal validity period, a public key, and a digital signature provided by a

trusted third party. The client checks that the certificate’s identity matches the requested

domain name, that the certificate is within its validity period, and that the digital signature

of the certificate is valid. The certificate’s public key is then used by the client to share a

session secret with the server in order to establish an end-to-end cryptographic channel.
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Certificate Authorities Certificate authorities (CAs) are trusted organizations that issue

digital certificates. These organizations are responsible for validating the identity of the

websites for which they provide a digital certificate. They cryptographically vouch for the

identity of a website by digitally signing the website’s leaf certificate using a browser-trusted

signing certificate. Modern operating systems and web browsers ship with a set of these

trusted signing certificates, which we refer to as root certificates. In all but a small handful

of cases, all CAs are trusted unequivocally: a trusted CA can sign for any website. For

example, a certificate for google.com signed by a German University is technically no

more or less valid than a certificate signed by Google Inc., if both organizations control a

trusted signing certificate.

The set of root authorities is publicly known because it is included with the web browser

or operating system. However, root authorities frequently sign intermediate certificates,

which generally retain all of the signing privileges of root certificates. This practice not only

allows root authorities to store their signing keys offline during daily operation, but also

allows authorities to delegate their signing ability to other organizations. When a server

presents a leaf certificate, it must include the chain of authorities linking the leaf certificate

to a trusted root certificate. This bundle of certificates is referred to as a certificate chain.

We refer to certificates that have a valid chain back to a trusted root authority as trusted

certificates. It is important to note that while intermediate authorities provide additional

flexibility, the set of intermediate authorities is not publicly known until they are found in

the wild—we ultimately do not know the identity of the organizations that can sign any

browser-trusted certificate.

2.3 Related Work

Several groups have previously studied HTTPS deployment and the certificate ecosystem.

Most similar to our work, Holz et al. published a study in 2011 that focused on the dynamics

of leaf certificates and the distribution of certificates among IP addresses, and attempted to
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roughly classify the overall quality of served certificates. The study was based on regular

scans of the Alexa Top 1 Million Domains [1] and through passive monitoring of TLS

traffic on the Munich Scientific Research Network [64]. The group collected an average

212,000 certificates per scan and a total 554,292 unique certificates between October 2009

and March 2011, approximately 1.3% of the number we have seen in the past year. Their

passive experiments resulted in an average of 130,000 unique certificates. The aggregate

size across both datasets was not specified.

We are aware of two groups that have performed scans of the IPv4 address space in

order to analyze aspects of the certificate ecosystem. In 2010, the Electronic Frontier

Foundation (EFF) and iSEC partners performed a scan over a three-month period as part of

their SSL Observatory Project [47]. The project focused on identifying which organizations

controlled a valid signing certificate. The EFF provided the first recent glimpse into the

HTTPS certificate ecosystem, and while their study was never formally published, we owe

the inspiration for our work to their fascinating dataset. Heninger et al. later performed a

scan of the IPv4 address space in 2012 as part of a global study on cryptographic keys [63].

Similarly, Yilek et al. performed daily scans of 50,000 TLS servers over several months

to track the Debian weak key bug [132]. We follow up on the results provided in these

earlier works, adding another data point in the study of Debian weak keys and other poorly

generated keys.

Most recently, Akhawe et al. published a study focusing on the usability of TLS warnings

presented by web servers, deriving the logic used by web browsers to validate certificates,

and making recommendations on how to better handle these error conditions [18]. Akhawe

et al. also discuss differences in how OpenSSL and Mozilla NSS validate certificates, which

we arrived at simultaneously.

Our study differs from previous work in the methodology we applied, the scope of our

dataset, and the focus of our questions. While Holz et al. explored several similar questions

on the dynamics of leaf certificates, the dataset we consider is more than 40 times larger,
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which we believe provides a more comprehensive view of the certificate ecosystem. The

certificates found by scanning the Alexa Top 1 Million Domains provide one perspective on

the CA ecosystem that is weighted towards frequently accessed websites. However, many

of the questions we address are dependent on a more comprehensive viewpoint. The CA

ecosystem is equally dependent on all certificate authorities and, as such, we are interested

in not only the most popular sites (which are likely to be well configured) but also the

potentially less visible certificates used by smaller sites and network devices. This difference

is clearly visible in the number of CA certificates seen among the Alexa Top 1 Million sites.

If our study had been founded only on these domains, we would have seen less than 30% of

the trusted certificate authorities we uncovered, providing us with a less accurate perspective

on the state of the ecosystem. Similarly, we build on many topics touched on by the EFF

study, but we present updated and revised results, finding more than 3.5 times the number of

hosts serving HTTPS than were seen three years ago and a changed ecosystem. Ultimately,

we consider a different set of questions that are more focused on the dynamics of CAs and

the certificates they sign, using a dataset that we believe provides a more complete picture

than any previous study.

2.4 Methodology

Scan EFF [47] Ps & Qs [63] First Representative Latest Total
Date Completed 2010-8 2011-10 2012-6-10 2013-3-22 2013-8-4 Unique

Hosts with port 443 Open 16,200,000 28,923,800 31,847,635 33,078,971 36,033,088 (unknown)
Hosts serving HTTPS 7,704,837 12,828,613 18,978,040 21,427,059 24,442,824 108,801,503
Unique Certificates 4,021,766 5,758,254 7,770,385 8,387,200 9,031,798 42,382,241
Unique Trusted Certificates 1,455,391 1,956,267 2,948,397 3,230,359 3,341,637 6,931,223
Alexa Top 1 Mil. Certificates (unknown) 89,953 116,061 141,231 143,149 261,250
Extd. Validation Certificates 33,916 71,066 89,190 103,170 104,167 186,159

Table 2.1: Internet-wide Scan Results — Between June 6, 2012 and August 4, 2013, we
completed 110 scans of the IPv4 address space on port 443 and collected HTTPS
certificates from responsive hosts.

Our data collection (which is ongoing as this paper goes to press) involves repeatedly
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surveying the certificate ecosystem through comprehensive scans of the IPv4 address space

conducted at regular intervals. In this section, we describe how we perform these scans,

collect and validate X.509 certificates, and finally, analyze our data.

Each scan consists of three stages: (1) discovering hosts with port 443 (HTTPS) open

by enumerating the public address space, (2) completing a TLS handshake with responsive

addresses and collecting the presented certificate chains, and (3) performing certificate

parsing and validation. The scan process requires 18 hours to complete, including flushing

all changes to the backend database, and is implemented in approximately 13,000 SLOC of

C. The scans in this work were conducted using the regular office network at the University

of Michigan Computer Science and Engineering division, from a single Dell Precision

workstation with a quad-core Intel Xeon E5520 processor and 24 GB of memory. The access

layer of the building runs at 10 Gbps and the building uplink to the rest of the campus is an

aggregated 2 × 10 gigabit port channel.

2.4.1 Host Discovery

In the first stage of each scan, we find hosts that accept TCP connections on port 443

(HTTPS) by performing a single-packet TCP SYN scan of the public IPv4 address space

using ZMap [44]. We choose to utilize ZMap based on its performance characteristics—

ZMap is capable of completing a single packet scan of the IPv4 address space on a single

port in approximately 45 minutes. Using ZMap, we send a single TCP SYN packet to

every public IPv4 address and add hosts that respond with a valid SYN-ACK packet to an

in-memory Redis queue for further processing. Our previous work finds an approximate

2% packet drop rate when performing single packet scans on our network [44]. In order to

reduce the impact of packet loss on our long-term HTTPS results, we also consider hosts

that successfully completed a TLS handshake in the last 30 days for follow-up along with

the hosts found during the TCP SYN scan.
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2.4.2 Collecting TLS Certificates

In the second processing stage, we complete a TLS handshake with the hosts we

identified in the first stage and retrieve the presented certificate chain. We perform these TLS

handshakes in an event-driven manner using libevent and OpenSSL [93, 127]. Specifically,

we utilize libevent’s OpenSSL-based bufferevents, which allow us to define a callback that is

invoked after a successful OpenSSL TLS negotiation. The retrieval process runs in parallel

to the TCP SYN scan and maintains 2,500 concurrent TLS connections.

In order to emulate browser validation, we designed a custom validation process using

the root browser stores from Apple Mac OS 10.8.2, Windows 7, and Mozilla Firefox. We find

that a large number of web servers are misconfigured and present incomplete, misordered,

or invalid certificate chains. OpenSSL validates certificates in a more stringent manner

than most web browsers, including Mozilla Firefox and Google Chrome, which utilize

Mozilla NSS [101] to perform certificate validation. To simulate the behavior of modern

web browsers, we take the following corrective steps:

1. If the presented chain is invalid, we attempt to reorder the certificate chain. This

resolves the situation when the correct intermediate certificates are provided, but are

in the incorrect order.

2. We add previously seen intermediate authorities into OpenSSL’s root store. This

allows us to validate any certificate signed by a previously encountered intermediate

CA regardless of the presented certificate chain.

3. Following each scan, we check certificates without a known issuer against the set of

known authorities and revalidate any children for which there is a newly found issuer.

This resolves the case where an intermediate is later found in a subsequent scan.

We parse collected TLS certificates using OpenSSL and maintain a PostgreSQL database

of parsed data and historical host state.
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2.4.3 Reducing Scan Impact

We recognize that our scans can inadvertently trigger intrusion detection systems and

may upset some organizations. Many network administrators perceive port scans as the

preliminary step in a targeted attack and in most cases are unable to recognize that their

systems are not being uniquely targeted or that our research scans are not malicious in

nature.

In order to minimize the impact of our scans and to avoid triggering intrusion detection

systems, we scanned addresses according to a random permutation over a twelve hour period

from a block of 64 sequential source IP addresses. When we perform a host discovery scan,

an individual destination address receives at most one probe packet. At this scan rate, a

/24-sized network receives a probe packet every 195 s, a /16 block every 0.76 s, and a /8

network block every 3 ms on average. In the certificate retrieval phase, we perform only one

TLS handshake with each host that responded positively during host discovery.

In order to help users identify our intentions, we serve a simple webpage on all of the IP

addresses we use for scanning that explains the purpose of our scanning and how to request

that hosts be excluded from future scans. We also registered reverse DNS records that

identify scanning hosts as being part of an academic research study. Throughout this study,

we have coordinated with our local network administrators to promptly handle inquiries and

complaints.

Over the course of 14 months, we received e-mail correspondence from 145 individuals

and organizations. In most cases, notifications were informative in nature—primarily

notifying us that we may have had infected machines—or were civil requests to be excluded

from future scans. The vast majority of these requests were received at our institution’s

WHOIS abuse address or at the e-mail address published on the scanner IPs. In these cases,

we responded with the purpose of our scans and excluded the sender’s network from future

scans upon request. Ultimately, we excluded networks belonging to 91 organizations or

individuals and totaling 3,753,899 addresses (0.11% of the public IPv4 address space). Two
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requests originating from Internet service providers accounted for 49% of the excluded

addresses. During our scans, we received 12 actively hostile responses that threatened to

retaliate against our institution legally or via denial-of-service (DoS) attacks on network. In

2 cases we received retaliatory DoS traffic, which was automatically filtered by our upstream

provider.

We discuss the ethical implications of performing active scanning and provide more

details about the steps we take to reduce scan impact in our previous work [44].

2.4.4 Data Collection Results

We completed 110 successful scans of the IPv4 address space, completing 2.55 billion

TLS handshakes, between June 6, 2012 and August 4, 2013. Like to Holz et al. [64], we

note that a large number of hosts on port 443 do not complete a TLS handshake. In our case

we find that only 67% of hosts with port 443 open successfully complete a TLS handshake.

We retrieved an average of 8.1 million unique certificates during each scan, of which

3.2 million were browser trusted. The remaining 4.9 million untrusted certificates were

a combination of self-signed certificates (48%), certificates signed by an unknown issuer

(33%), and certificates signed by a known but untrusted issuer (19%). In total, we retrieved

42.4 million distinct certificates from 108.8 million unique IP addresses over the past eleven

months. Of the hosts that performed complete TLS handshakes, an average of 48% presented

browser-trusted X.509 certificates.

In our largest and most recent scan on August 4, 2013, we retrieved 9.0 million cer-

tificates from 24.4 million IP addresses of which 3.3 million were browser trusted. We

show a comparison with previous work in Table 2.1. We also note that over 95% of trusted

certificates and over 98% of hosts serving trusted certificates are located in only ten countries,

shown in Table 2.2.

In this study, we choose to perform non-temporal analysis on the results from a rep-

resentative scan, which took place on March 22, 2013 (highlighted column in Table 2.1).
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Country Authorities Certificates Hosts

United States 30.34% 77.55% 75.63%
United Kingdom 3.27% 10.88% 18.15%
Belgium 2.67% 3.29% 1.51%
Israel 1.63% 2.56% 0.87%
Netherlands 2.18% 1.32% 0.49%
Japan 3.38% 1.06% 1.19%
Germany 21.28% 0.88% 0.35%
France 3.98% 0.38% 0.14%
Australia 0.81% 0.34% 0.11%
Korea 1.41% 0.24% 0.09%

Table 2.2: Top 10 Countries Serving Trusted Certificates

We choose to focus on the results from a single point-in-time instead of considering all

certificates found over the past year due to varying lifespans. We find that organizations

utilize certificates of differing validity periods and that in some cases, some devices have

presented a different certificate in all of our scans. If we considered all certificates from

the past year instead instead of what was hosted at a single point in time, these short lived

certificates would impact the breakdown of several of our statistics.

2.4.5 Is Frequent Scanning Necessary?

Frequent repeated scans allow us to find additional certificates that would not otherwise

be visible. We can illustrate this effect by considering the 36 scans we performed between

January 1 and March 31, 2013 and analyzing the number of scans in which each certificate

was seen. We find that 54% of browser-trusted certificates appeared in all 36 scans and that

70% of trusted certificates appear in more than 30 of our 36 scans. However, surprisingly,

we find that 33% of self-signed certificates appeared in only one scan during the three month

period. Many of these self-signed certificates appear to be served by embedded devices that

generate new certificates on a regular basis. We found an average of 260,000 new certificates

per scan during this period. The distribution is shown in Figure 2.1. Ultimately, we find

that there are considerable advantages to scanning more frequently in obtaining a global
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perspective on the certificates valid at any single point in time, as well as the changing

dynamics of the ecosystem over extended periods.

2.4.6 Server Name Indication Deployment

Both Holz [64] and Akhawe [18] cite Server Name Indication (SNI) as one of the reasons

they choose to scan the Alexa Top 1 Million Domains and perform passive measurement

instead of performing full IPv4 scans. Server Name Indication is a TLS extension that

allows a client to specify the hostname it is attempting to connect to from the start of the

TLS negotiation [30]. This allows a server to present multiple certificates on a single IP

address and to ultimately host multiple HTTPS sites off of the same IP address that do not

share a single certificate. Because we connect to hosts based on IP address in our scans and

not by hostname, we would potentially miss any certificates that require a specific hostname.

In order to better understand the deployment of SNI and its impact on our results, we

scanned the Alexa 1 Million Domains [1] using the same methodology we used for scanning

the IPv4 address space. Of the Alexa Top 1 Million Domains, 323,502 successfully per-

formed TLS handshakes and 129,695 of the domains presented browser-trusted certificates.

Of the domains that completed a TLS handshake, only 0.7% presented certificates we had

not previously seen in the most recent scan of the IPv4 address space. We cannot bound the

number of hosts missed due to the deployment of SNI and it is clear that a small number of

websites are adopting SNI, but we believe that our results are representative of certificate

usage patterns. One reason SNI has not seen widespread deployment is because Internet

Explorer on Windows XP does not support SNI. Although Windows XP market share is on

the decline, it still represents more than a third of all operating system installations [100].

2.5 Certificate Authorities

The security of the HTTPS ecosystem is ultimately dependent on the set of CAs that

are entrusted to sign browser-trusted certificates. Except in a small handful of cases, any
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Figure 2.1: CDF of Scan Presence by Certificate — We performed 36 scans from 1/2013
to 3/2013. Here, we show the number of scans in which each certificate was
found. We note that over 30% of self-signed certificates were only found in one
scan.
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Figure 2.2: CDF of Leaf Certificates by CA — We find that 90% of trusted certificates are
signed by 5 CAs, are descendants of 4 root certificates, and were signed by 40
intermediate certificates.
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Figure 2.3: Validity Periods of Browser Trusted Certificates — Trusted CA certs are be-
ing issued with validity periods as long as 40 years, far beyond the predicted
security of the keys they contain.
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organization with control of a signing certificate that chains to a browser-trusted root can sign

a leaf certificate for any domain. As such, the entire ecosystem is as fragile as the weakest

CA. However, because there is no central, public registry of browser-trusted intermediate

authorities, the organizations that control these signing certificates may be unknown until

certificates they have signed are spotted in the wild. In this section, we describe the CAs we

found during our scans and some of the practices they employ.

2.5.1 Identifying Trusted Authorities

We observed 3,788 browser-trusted signing certificates between April 2012 and August

2013 of which 1,832 were valid on March 22, 2013. All but seven of these signing certificates

can sign a valid browser-trusted certificate for any domain. This is 25% more than were

found by the EFF in 2010 and more than 327% more than were found by Ristic [113]. Holz

et al. find 2,300 intermediate certificates in their active scanning [64]. However, this count

appears to represent both browser-trusted and untrusted intermediates, of which we find

121,580 in our March 22 scan and 417,970 over the past year. While the raw number of

signing certificates and HTTPS ecosystem as a whole have grown significantly over the past

three years, we were encouraged to find that the number of identified organizations has not

grown significantly.

These 1,832 signing certificates belong to 683 organizations and are located in 57

countries. While a large number of countries have jurisdiction over at least one trusted

browser authority, 99% of the authorities are located in only 10 countries. We show the

breakdown in Table 2.2. We classified the types of the organizations that control a CA

certificate, which we show in Table 2.3. We were surprised to find that religious institutions,

museums, libraries, and more than 130 corporations and financial institutions currently

control an unrestricted CA certificate. Only 20% of organizations that control signing

certificates are commercial CAs. We were unable to identify 15 signing certificates due to

a lack of identification information or ambiguous naming. We also note that while there
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has been a 2% increase in the raw number of valid signing certificates over the past year,

we have found negligible change in the number of organizations with control of a signing

certificate.

2.5.2 Sources of Intermediates

Organizations other than commercial CAs control 1,350 of the 1,832 (74%) browser-

trusted signing certificates, which raises the question of who is providing intermediate

certificates to these organizations. We find that 276 of the 293 academic institutions along

with all of the libraries, museums, healthcare providers, and religious institutions were signed

by the German National Research and Education Network (DFN), which offers intermediate

certificates to all members of the German network. DFN provided CA certificates to 311

organizations in total, close to half of the organizations we identified. While DFN has

provided a large number of intermediate authorities to German institutions, we find no

evidence that any are being used inappropriately. However, as we will discuss in Section 2.9,

the attack surface of the certificate ecosystem could be greatly reduced by limiting the scope

of these signing certificates.

The largest commercial provider of intermediate certificates is GTE CyberTrust So-

lutions, Inc., a subsidiary of Verizon Business, which has provided intermediate signing

certificates to 49 third-party organizations ranging from Dell Inc. to Louisiana State Uni-

versity. Comodo (under the name The USERTRUST Network) provided intermediates to

42 organizations and GlobalSign to 20. We also saw a number of commercial authorities

that provided a smaller number of certificates to seemingly unrelated entities. For example,

VeriSign, Inc. provided intermediates for Oracle, Symantec, and the U.S. Government;

SwissSign AG provided certificates for Nestle, Trend Micro, and other Swiss companies;

StartCom Ltd. provided certificates for The City of Osmio, Inc. and WoSign, Inc; QuoVadis

Limited provided certificates for Migros and the Arab Bank Switzerland Ltd.; Entrust.net

provided signing certificates to Disney, Experian PLC, and TDC Internet; and Equifax
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provided intermediates to Google Inc. This is not a clandestine practice, and several CAs

advertise the sale of subordinate CA certificates.

Several corporations had a company authority in browser root stores. Approximately 30

of the 149 certificates in the Mozilla NSS root store belonged to institutions that we did not

classify as commercial CAs, including Visa, Wells Fargo, Deutsche Telekom AG and the

governments of France, Taiwan, Hong Kong, Japan, Spain, and the United States.

2.5.3 Distribution of Trust

While there are 683 organizations with the ability to sign browser-trusted certificates,

the distribution is heavily skewed towards a small number of large commercial authorities

in the United States. The security community has previously expressed concern over the

sheer number of signing certificates [47], but it also worth considering the distribution of

certificates among various authorities. An increasing number of signing certificates may in

fact be a healthy sign if it indicates that authorities are using the new certificates in order to

reduce the impact of compromise.

As shown in Figure 2.2, we find that more than 90% of browser-trusted certificates are

signed by the 10 largest commercial CAs, are descendants of just 4 root certificates, and are

directly signed by 40 intermediate certificates. Several large companies have acquired many

of the smaller, previously independent commercial CAs. Symantec owns Equifax, GeoTrust,

TC TrustCenter, Thawte, and VeriSign; GoDaddy owns Starfield Technologies and ValiCert;

and Comodo owns AddTrust AB, eBiz Networks, Positive Software, RegisterFly, Registry

Pro, The Code Project, The USERTRUST Network, WebSpace-Forum e.K., and Wotone

Communications. These consolidations ultimately allow three organizations (Symantec,

GoDaddy, and Comodo) to control 75% of the browser-trusted certificates seen in our study.

We list the top 10 parent organizations in Table 2.4 and the top 10 commercial CAs in

Table 2.5.

There is a long history of commercial CA compromise [29, 112, 120]. In each of these
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cases, web browsers and operating systems explicitly blacklisted the compromised signing

certificate or misissued certificates [29, 102]. However, if a compromised signing certificate

had signed for a substantial portion of the Internet, it would potentially be infeasible to

revoke it without causing significant disruption to the HTTPS ecosystem [88]. As such, we

would hope that large commercial authorities would distribute signing among a number of

intermediate certificates. However, as seen in Figure 2.2, the exact opposite is true. More

than 50% of all browser-trusted certificates have been directly signed by 5 intermediate

certificates and a single intermediate certificate has signed 26% of currently valid HTTPS

certs. If the private key for this intermediate authority were compromised, 26% of websites

that rely on HTTPS would need to be immediately issued new certificates. Until these

websites deployed the new certificates, browsers would present certificate warnings for

all HTTPS communication. While it is not technically worrisome that a small number of

organizations control a large percentage of the CA market, it is worrying that large CAs are

not following simple precautions and are instead signing a large number of leaf certificates

using a small number of intermediates.

2.5.4 Browser Root Certificate Stores

Microsoft, Apple, and Mozilla all maintain a distinct set of trusted signing certificates,

which we refer to as root authorities. Google Chrome utilizes the OS root store in Windows

and Mac OS and utilizes the root store maintained by Mozilla on Linux. Combined, the

three groups trust 348 root authorities, but there are large discrepancies between the root

certificates trusted by each organization. For example, as can be seen in Table 2.6, Windows

trusts 125 additional authorities that are not present in any other OS or browser.

The differences in the root stores lead to 463 partially trusted CAs. All but a small

handful of the partially trusted authorities belong to government, regional, or specialty

issuers. Only one of the partially trusted CAs, ipsCA, advertised itself as a commercial

authority and sold certificates to the global market. Incidentally, the company claims to
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be “recognized by more than 98% of today’s desktops” [10]. It fails to mention that its

certificates are not trusted in Mozilla Firefox or on Mac OS.

Further investigation indicates that ipsCA was in the Mozilla root store in 2009, but was

removed after several violations including the issuance of embedded-null prefix certificates,

the unavailability of OCSP servers, and the issuance of leaf certificates with validity periods

beyond the lifetime of the root CA certificate [131].

These 463 partially trusted authorities have little presence on the Internet. In total, they

have signed certificates for only 51 domains in the Alexa Top 1 Million and for one domain

in the Alexa Top 10,000 which belongs to mci.ir, an Iranian telecommunications company.

Of the 348 root certificates, 121 of the authorities never signed any leaf certificates seen

in our study, and 99.4% of the leaf certificates trusted by any browser are trusted in all

browsers.

2.5.5 Name Constraints

While it is not an inherently poor idea to provide signing certificates to third-party

organizations, these certificates should be restricted to a limited set of domains. Instead, all

but 7 CAs in our March 22 scan can sign for any domain. X.509 Name Constraints [65]

provide a technical mechanism by which parent authorities can limit the domains for which

an intermediate signing certificate can sign leaf certificates. Optimally, signing certificates

provided to third-party organizations, such as universities or corporations, would utilize

name constraints to prevent potential abuse and to limit the potential damage if the signing

certificate were compromised.

We find that only 7 trusted intermediate authorities out of 1,832 have name constraints

defined, of which 3 were labeled as Comodo testing certificates. The remaining 4 are:

1. An intermediate provided by AddTrust AB to the Intel is limited to small a number of

Intel owned domains.

2. An intermediate controlled by the U.S. State Department and provided by the U.S.
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Government root authority is prevented from signing certificates with the .mil top-

level domain.

3. An intermediate provided to the Louisiana State University Health System is limited

to a small number of affiliated domains.

4. A root certificate belonging to the Hellenic Academic and Research Institutions

Certification Authority is restricted to the .gr, .eu, .edu, and .org domains.

2.5.6 Path Length Constraints

A signing authority can limit the number of intermediate authorities that can appear below

it in a certificate chain by specifying an X.509 path length constraint [65] on the intermediate

certificates that it signs. This is frequently used to prevent intermediate authorities from

further delegating the ability to sign new certificates.

In our dataset, we find that 43% of signing certificates do not have any path length

restriction defined. While this may not be a concern for large commercial CAs, we note

that more than 80% of the intermediate authorities belonging to other types of organizations

(e.g. corporations, academic, and financial institutions). While we saw little evidence of

non-commercial CAs providing signing certificates to third-party organizations, we did

observe governments using their intermediate authority to sign subordinate CA certificates

for corporations within their country.

2.5.7 Authority Key Usage

All of the browser-trusted leaf certificates in our study were signed using an RSA key.

As shown in Table 2.8, over 95% of browser trusted certificates were signed with 2048-bit

RSA keys. We also note 6 browser-trusted authorities with ECDSA keys belonging to

Symantec, Comodo, and Trend Micro. However, we found no trusted certificates that were

signed using a ECDSA certificate.

Surprisingly, we find that 243 (13%) of the browser-trusted signing certificates were
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signed using a weaker key than they themselves contained. In all of these cases, the weakest

key was the root authority. While only 58 (15.2%) of the 348 browser root authorities

utilize 1024-bit RSA keys, these keys were used to indirectly sign 48.7% of browser-trusted

certificates. In all of these cases, the CA organization also controlled a browser-trusted

2048-bit root certificate that could be used to re-sign the intermediate certificate.

NIST recommends that the public stop using 1024-bit keys in 2016 based on the expected

computational power needed to compromise keys of this strength [24]. However, as seen in

Figure 2.5, more than 70% of CA certificates using 1024-bit keys expire after this date and

57% of roots using 1024-bit RSA keys have signed children that expire after 2016. Figure 2.3

shows how certificate authorities are using certificates valid for up to 40 years—far beyond

when their keys are expected to be compromisable. Most worryingly, it does not appear

that CAs are moving from 1024-bit roots to more secure keys. As shown in Figure 2.4,

we find only a 0.08% decrease in the number of certificates dependent on a 1024-bit root

authority in the past year. In 2012, 1.4 million new certificates were issued that were rooted

in a 1024-bit authority, and 370,130 were issued between January and April 2013.

2.6 Leaf Certificates and Hosting

Over the last 14 months, we collected 6.93 million unique trusted certificates. In our

March 22 scan, we observed 3.2 million unique trusted certificates from 21.4 million hosts.

In this section, we discuss the dynamics of these trusted leaf certificates and the hosts serving

them.

2.6.1 Keys and Signatures

Public Keys In line with previous studies, we find that over 99% of trusted leaf certificates

contain RSA public keys. We provide a breakdown of leaf key types in Table 2.9. Over the

course of the past year, we found 47 certificates that contain ECDSA public keys; none were

present in our March 22 scan and none were browser trusted. Recently, Google began to use
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ECDSA certificates for several services. However, these sites are only accessible through

the use of server name indication (SNI) and so do not appear in our dataset.

We find 2,631 browser-trusted certificates using 512-bit RSA keys, which are known

to be easily factorable, and 73 certificates utilizing 768-bit keys, which have been shown

to be factorable with large distributed computing efforts [75]. While a large number of

these certificates were found being actively hosted, only 16 have not yet expired or been

revoked. No browser-trusted authorities have signed any 512-bit RSA keys since August 27,

2012. We were further encouraged to find that less than 4% of valid trusted certificates used

1024-bit keys.

Weak Keys Previous studies have exposed the use of weak keys in the HTTPS space [63,

84,132]. We revisit several of these measurements and provide up-to-date metrics. Following

up on the study performed by Heninger et al. [63], we find that 55,451 certificates contained

factorable RSA keys and are served on 63,293 hosts, a 40% decrease in the total percentage

of hosts with factorable keys, but only a slight decrease (1.25%) in the raw number of hosts

found using factorable keys since 2011. Three of the factorable certificates are browser

trusted; the last was signed on August 9, 2012. 2,743 certificates contained a Debian weak

key [28], of which 96 were browser trusted, a 34% decrease from 2011 [63]. The last

browser-trusted certificate containing a Debian weak key was signed on January 25, 2012.

Signature Algorithms In line with the results presented by Holz et al. [64], we find that

98.7% of browser-trusted certificates are signed using SHA-1 and RSA encryption. We

find 22 trusted certificates with MD2-based signatures and 31,325 with MD5 signatures.

Due to known weaknesses in these hash functions, no organizations should currently be

using them to sign certificates. The last certificate signed with MD5 was issued on April 17,

2013 by Finmeccanica S.p.A., an Italian defense contractor, more than 4 years after Sotirov

et al. published “MD5 considered harmful today” [120]. We provide a breakdown of leaf

certificate signature types in Table 2.10.
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Certificate Depth Similarly to the EFF and Holz et al., we find that the vast majority

(98%) of leaf certificates are signed by intermediate authorities one intermediate away

from a root authority. However we find that 61 root authorities directly signed 41,000 leaf

certificates and that there exist leaf certificates as many as 5 intermediates away from a

root authority. All but a handful of the authorities 4 or more intermediates away from a

browser-trusted root belonged to agencies within the U.S. Federal Government.

We are not aware of any vulnerabilities created by having a long certificate chain.

However, it is worrisome to see leaf certificates directly signed by root authorities, because

this indicates that the root signing key is being actively used and may be stored in a network-

attached system, raising the risk of compromise. If the signing key were to be compromised,

the root certificate could not be replaced without updating all deployed browser installations.

If an intermediate authority were used instead to sign these leaf certificates, then it could be

replaced by the root authority without requiring browser updates, and the root could be kept

offline during day-to-day operation.

2.6.2 Incorrectly Hosted Trusted Certificates

We find that 1.32 million hosts (12.7%) serving once-valid browser-trusted leaf certifi-

cates are misconfigured in a manner such that they are inaccessible to some clients or are

being hosted beyond their validity period. We show a breakdown of reasons that certificates

are invalid in Table 2.11. We note that Mozilla Network Security Services (NSS) [101], the

certificate validation library utilized by many browsers, caches previously seen intermedi-

ates. Because of this, many certificates with invalid trust chains will appear valid in users’

browsers if the intermediate authorities have previously been encountered.

Approximately 5.8% of hosts are serving now-expired certificates, which will be con-

sidered invalid by all browsers. We find that 22% of certificates are removed retroactively

after their expiration and that 19.5% of revoked certificates are removed after they appear

in a certificate revocation list (CRL). We show the distribution of when certificates are
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removed from servers in Figure 2.6. Another 42.2% of hosts are providing unnecessary

certificates in the presented trust chain. Although this practice has no security implications,

these additional certificates provide no benefit to the client and ultimately result in a slight

performance degradation.

Holz et al. report that 18% of all certificates are expired. However, this statistic reflected

all certificates, over 25% of which are self-signed and would already raise a browser error.

We instead consider only certificates signed by browser-trusted authorities, which would

otherwise be considered valid.

2.6.3 Invalid Authority Types

We find that 47 (2.6%) of the 1,832 browser-trusted signing certificates are not denoted

for signing TLS certificates for use on the web. Of these 47 signing certificates, 28 (60%)

are designated for signing Microsoft or Netscape Server Gated Crypto certificates, a now

obsolete cryptographic standard that was used in the 1990s in response to U.S. regulation on

the export of strong cryptographic standards [111].

The remaining 19 signing certificates are designated for combinations of Code Signing,

E-mail Protection, TLS Web Client Authentication, Time Stamping, and Microsoft Encrypted

File System. These intermediate certificates were not found in any browser or operating

system root stores but were found being served on public web servers. It does not appear that

any of these authorities were signing certificates inappropriately; nobody was attempting

to sign a TLS Web Server Authentication certificate using an authority marked for another

use. Instead, we found that individuals and organizations were mistakenly using valid code

signing and e-mail certificates as the TLS leaf certificate on their websites.

2.6.4 Certificate Revocation

Certificate authorities can denote that previously issued certificates should no longer

be trusted by publishing their revocation in a public certificate revocation list (CRL). The
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location of authority CRLs are listed in each signed certificate. In order to understand why

certificates are being revoked, we fetched and parsed the CRLs listed in all browser-trusted

certificates. We find that 2.5% of browser-trusted certificates are eventually revoked by

their authority. We present a breakdown of revocation reasons in Table 2.12. While RFC

5280 [36] strongly encourages issuers to provide “meaningful” reason codes for CRL entries,

we find that 71.7% of issuers who revoked certificates do not provide reasons for any of

their revocations.

While 2.5% of certificates are eventually revoked, we find that only 0.3% of hosts

presenting certificates in our scan were revoked. We expect that this is because the site

operators will request a certificate be revoked and simultaneously remove the certificate

from the web server. As can be seen in Figure 2.6, more than 80% of certificates are removed

proactively and were not seen again after the time of their revocation.

WebTrust for Certificate Authorities [11], an audit mandated by the three major root

stores, requires that authorities maintain an online repository that allows clients to check for

certificate revocation information. However, we find that 14 trusted signing certificates from

9 organizations fail to include revocation data in at least some of their certificates, and in 5

cases do not supply revocation data in any of their signed certificates.

2.7 Unexpected Observations

We observed a variety of unexpected phenomenon during our scans over the past year.

We describe these observations here.

2.7.1 CA Certs with Multiple Parents

Of the 1,832 browser-trusted signing certificates we found, 380 shared their subject,

public key, and subject key identifier with another browser-trusted certificate forming 136

groups of “sibling” CA certificates. Because of this, leaf certificates can have more than one

parent from the browsers’ point of view. We find that only 37.4% of browser trusted leaf
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certificates have a single parent; 38.7% have two parents; 12.3% have three; 11.3% have

four; and a small number have 5–9 valid parents. Depending on which parent is presented in

a trust chain, the perceived validity of the leaf certificate can change. For example, if the

presented intermediate certificate has expired, then the leaf certificate will be considered

invalid. We note that subject key identified sometimes also specifies additional constraints

such as a constraint on issuer serial number. However, we find that only a handful of

certificates contain additional constraints.

In 86 of the 136 groups of sibling certificates, the signing certificates had differing

validity periods. In four sets, one of the certificates was revoked, in a separate four sets,

each authority was in a different browser or OS root store, and in 49 cases the authorities

were signed by different parent authorities. While previous studies found evidence of this

phenomenon, we were not aware of the prevalence of this behavior. We are not aware of

any security vulnerabilities that are introduced by this practice, but we do find that 43,674

(1.35%) of the browser-trusted certificates are presented with the incorrect parent, which

limits their perceived validity (e.g. the presented CA certificate expires earlier the leaf

certificate, but another parent exists with a later expiration date).

2.7.2 CA Certs with Negative Path Lengths

We find that 1,395 browser-trusted CA certificates have a negative path length constraint,

which renders them unable to sign any certificates due to a path length restriction earlier in

the trust chain. These malformed intermediate certificates were signed by the Government

of Korea and provided to educational institutions ranging from elementary schools to univer-

sities, libraries, and museums. However, because they are still technically CA certificates,

web browsers including Mozilla Firefox and Google Chrome will not recognize them as

valid leaf certificates.

We do not include these certificates when referring to the set of browser-trusted au-

thorities because they are unable to sign any certificates and therefore do not have the
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same influence as other valid authorities. However, we note that some less common client

implementations may fail to properly check the path length constraint and incorrectly treat

these as valid. One of these CA certificates, issued to a Korean elementary school, was

compromised by Heninger [62], who factored the 512-bit key a few hours after the certificate

expired.

2.7.3 Mis-issued CA Certificates

We found one mis-issued signing certificate during the course of our study, which was

issued for *.EGO.GOV.TR, by Turktrust, a small Turkish certificate authority. We found the

certificate served as a leaf certificate on what appeared to be an unconfigured IIS server on a

Turkish IP address. We saw 487 certificates that were signed by Turktrust over the course

of our study. All were for Turkish organizations or the Turkish Government; we saw no

evidence of other mis-issued certificates.

The certificate was later found by Google after being used to sign a Google wildcard

certificate [78] and was revoked by Turktrust on December 26, 2012. It was last seen in our

scans on December 27, 2012.

2.7.4 Site Certificates with Invalid Domains

We find that 4.6% (149,902) of browser-trusted certificates contain a common name

(CN) or subject alternate name for a locally scoped domain or private IP address. Because

these names are not fully qualified, the intended resource is ambiguous and there is no

identifiable owner. As such, these local domain names frequently appear on more than one

certificate. In one example, there are 1,218 browser-trusted certificates for the domain mail

owned by organizations ranging from the U.S. Department of Defense to the Lagunitas

Brewing Company.

The vast majority of certificates appear to be related to mail services. Of the 157,861

certificates with locally scoped names, 25,964 contain the name exchange (Microsoft

34



Exchange Mail Server) and 99,773 contain a variation on the name mail. More than

100,000 of the certificates contain a domain ending in .local.

We suspect that certificates include these locally scoped names in order to facilitate

users that are part of an Active Directory domain in connecting to their local Exchange mail

server. In this scenario, the integrated DNS service in Active Directory will automatically

resolve locally scoped names to the correct server on the domain. However, these clients

will receive a name mismatch error if the TLS certificate presented by the Exchange Server

does not match the locally scoped name that was originally resolved. Instead of requiring

users to use the fully qualified domain name (FQDN) of the Exchange Server unlike other

servers on the domain, certificate authorities include the local name of the Exchange server.

In the case of certificates ending in .local, Active Directory Forests are generally rooted

in an FQDN. In cases where organizations have not registered an FQDN for their forest,

Active Directory elects to use the .local TLD.

Unfortunately, this practice does not provide security against man-in-the-middle attacks.

It is trivial to procure a certificate with the same locally scoped name as another organization.

Because there is no identifiable owner for the domain, both certificates are equally valid,

and the subsequent certificate can be used to impersonate the original organization.

2.8 Adoption Trends

We observe a steady, linear increase in nearly all aspects of HTTPS adoption between

June 2012 and April 2013, as shown in Figure 2.7. Most notably, there is a 23.0% increase

in the number of Alexa Top 1 Million domains serving trusted certificates and a 10.9%

increase in the number of unique browser-trusted certificates found during each scan. During

this time, the Netcraft Web survey finds only a 2.2% increase in the number of active sites

that respond over HTTP [99]. Based on the Netcraft Survey, we find an 8.5% increase in

the number of websites utilizing HTTPS from 1.61% to 1.75%. This indicates that the

increase in the number of certificates is not solely dependent on the growth of the Internet,
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but that there is an increase in the adoption of HTTPS in existing sites. We also note a 16.8%

increase in the number of extended validation certificates, a 19.6% increase in the number

of hosts serving HTTPS on port 443, and an 11.1% increase in the total number of TLS

certificates over this period.

The market share of each authority did not change drastically over the past year. In terms

of number of valid signed leaf certifictes, Symantec grew 6%, GoDaddy 13%, and Comodo

17%. During this time, there was a 10.9% increase in the global number of unique valid

browser-trusted certificates. StartCom, a smaller authority based in Israel that offers free

basic certificates, grew by 32% over the course of the year, from 2.17% to 2.56% market

share. We plot the growth of the top authorities in Figure 2.8.

2.9 Discussion

Analyzing the certificate authority ecosystem from a global perspective reveals several

current practices that put the entire HTTPS ecosystem at risk. In this section, we discuss our

observations and possible paths forward.

Ignoring Foundational Principles The security community has several widely accepted

best practices such as the principle of least privilege and defense in depth. However, these

guidelines are not being well applied within one of our most security critical ecosystems. For

instance, there are several technical practices already at our disposal for limiting the scope

of a signing certificate, including setting name or path length constraints and distributing

leaf certificates among a large number intermediate certificates. There are clear cases for

using these restrictions, but the vast majority of the time, CAs are not fully utilizing these

options.

One example of how defense in depth successfully prevented compromise can be seen

in the 1,400 signing certificates that were mis-issued to organizations in South Korea

(Section 2.7.2). In this case, a path length constraint on a grandparent certificate prevented
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this error from becoming a massive vulnerability. To put this in context, if defense in

depth had not been practiced, the erroneous action of a single certificate authority would

have tripled the number of organizations controlling a valid signing certificate overnight.

Unfortunately, while a path length constraint was in place for this particular situation, more

than 40% of CA certificates do not have any constraints in place to prevent this type of error

and only a small handful use name constraints.

In a less fortunate example, Turktrust accidentally issued a signing certificate to one of

its customers that ultimately signed a valid certificate for *.google.com (Section 2.7.3). If

name or path constraints had been applied to Turktrust’s CA intermediate certificate, the

incident could have been avoided or, at the very least, reduced in scope. In other situations,

the risk associated with compromise of a single signing certificate could be decreased by

simply spreading issuance across multiple certificates (Section 2.5.3).

Standards and Working Groups The CA/Browser Forum is a voluntary working group

composed of certificate authorities and Internet browser software vendors. The group has

recently attempted to resolve many of the security risks previously introduced by certificate

authorities, and in November 2011, they adopted guidelines for certificate authorities [31]

that touch on many of the concerns we raise.

However, with only 20% of the organizations controlling signing certificates being

commercial certificate authorities and less than 25% of commercial authorities participating

in the workgroup, there remains a disconnect. It is unclear how many organizations are aware

of the existence of the baseline standard, but it is clear that a large number of organizations

are either unaware or are choosing to ignore the forum’s baseline requirements. One example

of this non-adherence can be seen in the agreement to cease the issuance of certificates

containing internal server names and reserved IP addresses. Despite the ratification of

this policy, more than 500 certificates containing internal server names and which expire

after November 1, 2015 have been issued since July, 1, 2012 by CA/B Forum members
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(Section 2.7.4).

Without any enforcement, members of the CA/Browser Forum have disregarded adopted

policies and we expect that other organizations are unaware of the standards. There is still

work required from the security community to reign in these additional authorities and to

follow up with members that are disregarding existing policies.

Browsers to Lead the Way Web browser and operating system maintainers are in a

unique position to set expectations for certificate authorities, and it is encouraging to see

increasing dialogue in the CA/Browser Forum. However, browsers also have a responsibility

to commit resources towards a healthier ecosystem. Many new, more secure technologies are

dependent on support in common browsers and web servers. Without browser compatibility,

certificate authorities lack incentive to adopt new, more secure options regardless of support

from the security community.

This can immediately be seen in the deployment of name constraints. We find that the

vast majority of the CA certificates issued to non-CAs are used to issue certificates to a small

number of domains and, as such, could appropriately be scoped using name constraints with

little impact on day-to-day operations. Restricted scopes have been shown to greatly reduce

the attack surface of the CA ecosystem [74], and with 80% of existing signing certificates

belonging to organizations other than commercial certificate authorities, there is a clear

and present need for name constraints (Section 2.5). However, Safari and Google Chrome

on Mac OS do not currently support the critical server name constraint extension. As a

result, any certificate signed using an appropriately scoped CA certificate with the extension

marked as critical will be rejected on these platforms. Therefore, while there is community

consensus on the value of server name constraints, progress will be slow until all browsers

support the extension.

Failing to Recognize Cryptographic Reality It is encouraging to find that over 95% of

trusted leaf certificates and 95% of trusted signing certificates use NIST recommended key
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sizes [25]. However, more than 50 root authorities continue to use 1024-bit RSA keys, the

last of which expires in 2040—more than 20 years past recommended use for a key of this

size (Section 2.5.7). Authorities are not adequately considering long-term consequences

of authority certificates and need to anticipate what the cryptographic landscape will be

in the future. Many of these root certificates were signed prior to guidelines against such

long-lived CA certificates. However, today, we need to be working to resolve these past

errors and preparing to remove now-inappropriate root CAs from browser root stores.

2.10 Conclusion

In this work, we completed the largest known measurement study of the HTTPS certifi-

cate ecosystem by performing 110 comprehensive scans of the IPv4 HTTPS ecosystem over

a 14 month period. We investigated the organizations that the HTTPS ecosystem depends

on and identified several specific practices employed by certificate authorities that lead to

a weakened public key infrastructure. We provided updated metrics on many aspects of

HTTPS and certificate deployment along with adoption trends over the last year. Lastly, we

discussed the high-level implications of our results and make several recommendations for

strengthening the ecosystem. Our study shows that regular active scans provide detailed

and temporally fine-grained visibility into this otherwise opaque area of security critical

infrastructure. We are publishing the data from our scans at https://scans.io/ in the hope that

it will assist other researcher in further investigating the HTTPS ecosystem.
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Organization Type Organizations Authorities Leaf Certificates Hosts

Academic Institution 273 (39.79%) 292 (15.93%) 85,277 (2.46%) 85,277 (0.92%)
Commercial CA 135 (19.67%) 819 (44.70%) 3,260,454 (94.20%) 3,260,454 (76.33%)
Government Agency 85 (12.39%) 250 (13.64%) 17,865 (0.51%) 17,865 (0.23%)
Corporation 83 (12.09%) 191 (10.42%) 30,115 (0.87%) 30,115 (4.80%)
ISP 30 (4.37%) 58 (3.16%) 8,126 (0.23%) 8,126 (1.55%)
IT/Security Consultant 29 (4.22%) 88 (4.80%) 22,568 (0.65%) 22,568 (0.98%)
Financial Institution 17 (2.47%) 49 (2.67%) 2,412 (0.06%) 2,412 (0.03%)
Unknown unknown 15 (0.81%) 2,535 (0.07%) 2,535 (0.02%)
Hosting Provider 7 (1.02%) 12 (0.65%) 10,598 (0.30%) 10,598 (14.70%)
Nonprofit Org 7 (1.02%) 15 (0.81%) 11,480 (0.33%) 11,480 (0.11%)
Library 5 (0.72%) 6 (0.32%) 281 (0.00%) 281 (0.00%)
Museum 4 (0.58%) 4 (0.21%) 35 (0.00%) 35 (0.00%)
Healthcare Provider 3 (0.43%) 4 (0.21%) 173 (0.00%) 173 (0.00%)
Religious Institution 1 (0.14%) 1 (0.05%) 11 (0.00%) 11 (0.00%)
Military 1 (0.14%) 27 (1.47%) 9,017 (0.26%) 9,017 (0.27%)

Table 2.3: Types of Organizations with Signing Certificates — We found 1,832 valid
browser-trusted signing certificates belonging to 683 organizations. We classified
these organizations and find that more than 80% of the organizations that control
a signing certificate are not commercial certificate authorities.

Parent Company Signed Leaf Certificates

Symantec 1,184,723 (34.23%)
GoDaddy.com 1,008,226 (29.13%)
Comodo 422,066 (12.19%)
GlobalSign 170, 006 (4.90%)
DigiCert Inc 145,232 (4.19%)
StartCom Ltd. 88,729 (2.56%)
Entrust, Inc. 76,990 (2.22%)
Network Solutions 62,667 (1.81%)
TERENA 42,310 (1.22%)
Verizon Business 32,127 (0.92%)

Table 2.4: Top Parent Companies — Major players such as Symantec, GoDaddy, and
Comodo have acquired smaller CAs, leading to the 5 largest companies issuing
84.6% of all trusted certificates.

Organization Signed Leaf Certificates

GoDaddy.com, Inc. 913,416 (28.6%)
GeoTrust Inc. 586,376 (18.4%)
Comodo CA Limited 374,769 (11.8%)
VeriSign, Inc. 317,934 (10.0%)
Thawte, Inc. 228,779 (7.2%)
DigiCert Inc 145,232 (4.6%)
GlobalSign 117,685 (3.7%)
Starfield Technologies 94,794 (3.0%)
StartCom Ltd. 88,729 (2.8%)
Entrust, Inc. 76929 (2.4%)

Table 2.5: Top Certificate Authorities — The top 10 commercial certificate authorities
control 92.4% of trusted certificates present in our March 22, 2013 scan.
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Systems Valid In Roots CAs Signed

Windows Only 125 283 24,873
Mozilla Only 2 3 23
Apple Only 26 30 3,410

Windows & Mozilla 32 97 12,282
Windows & Apple 31 47 9,963
Mozilla & Apple 3 3 0

All Browsers 109 1,346 8,945,241

Table 2.6: Differences in Browser and OS Root Stores — While there are significant
differences in the root certificates stores, 99.4% of trusted certificates are trusted
in all major browsers.

Type Root Authorities Recursively Signed

ECDSA 6 (1.8%) 0 (0%)
RSA (1024-bit) 53 (16.0%) 1,694,526 (48.6%)
RSA (2028-bit) 202 (61.0%) 1,686,814 (48.4%)
RSA (4096-bit) 70 (21.2%) 102,139 (2.9%)

Table 2.7: Key Distribution for Trusted Roots — The distribution of keys for root certifi-
cates shipped with major browsers and OSes.

Key Type Authorities Signed Leaves

ECDSA 6 (0.3%) 0 (0%)
RSA (1024-bit) 134 (7.3%) 133,391 (4.2%)
RSA (2048-bit) 1,493 (78.9%) 3,034,751 (95.3%)
RSA (4096-bit) 198 (10.5%) 16,969 (0.5%)

Table 2.8: Key Distribution for Trusted Signing Certificates

Key Type All Trusted Valid Trusted

RSA (≤ 512-bit) 2,631 (0.1%) 16
RSA (768-bit) 73 (0.0%) 0
RSA (1024-bit) 341,091 (10.5%) 165,637
RSA (1032–2040-bit) 23,888 (0.7%) 105
RSA (2048-bit) 2,816,757 (86.4%) 2,545,693
RSA (2056–4088-bit) 1,006 (0.0%) 921
RSA (4096-bit) 74,014 (2.3%) 65,780
RSA (> 4096-bit) 234 (0.0%) 192
DSA (all) 17 (0.0%) 7
ECDSA (all) 0 (0.0%) 0

Table 2.9: Trusted Leaf Certificate Public Key Distribution
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Figure 2.4: Temporal Trends in Root Key Size — We find that 48.7% of browser-trusted
leaf certificates are dependent on 1024-bit RSA based root authorities, contrary
to recommended practice [24].
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Figure 2.5: Expiration of 1024-bit Root Certificates — This figure shows when trusted
1024-bit RSA CA certificates expire. We note that more than 70% expire after
2016 when NIST recommends discontinuing the use of 1024-bit keys.
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Figure 2.6: CDF of Certificate Removal — We find that 20% of expiring certificates and
19.5% of revoked certificates are removed retroactively (to the right of 0 days).
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Type Trusted Certificates

SHA-1 with RSA Encryption 5,972,001 (98.7%)
MD5 with RSA Encryption 32,905 (0.54%)
SHA-256 with RSA Encryption 15,297 (0.25%)
SHA-512 with RSA Encryption 7 (0.00%)
MD2 with RSA Encryption 21 (0.00%)
Other 29,705 (0.49%)

Table 2.10: Trusted Leaf Certificate Signature Algorithms

Status Hosts

Expired 595,168 (5.80%)
Not Yet Valid 1,966 (0.02%)
Revoked 28,033 (0.27%)
No Trust Chain 654,667 (6.30%)
Misordered Chain 25,667 (0.24%)
Incorrect Chain 11,761 (0.14%)

Unnecessary Root 4,365,321 (42.2%)

Optimally Configured 4,657,133 (45.0%)

Table 2.11: Common Server Certificate Problems — We evaluate hosts serving browser-
trusted certificates and classify common certificate and server configuration
errors. The number of misconfigured hosts indicates that procuring certificates
and correctly configuring them on servers remains a challenge for many users.

Revocation Reason Revoked Certificates

Cessation Of Operation 101,370 (64.9%)
Not Provided 31514 (20.2%)
Affiliation Changed 7,384 (4.7%)
Privilege Withdrawn 5,525 (3.5%)
Unspecified 4,523 (2.9%)
Superseded 3,887 (2.5%)
Key Compromise 1,945 (1.2%)
Certificate Hold 45 (0.0%)
CA Compromise 2 (0.0%)

Total 156,195

Table 2.12: Reasons for Revocation — We find that 10,220 (2.5%) of the browser trusted
certificates seen in our study were eventually revoked. Both of the “CA Com-
promised” revocations were due to the DigiNotar compromise [29].
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Figure 2.7: Growth in HTTPS Usage — Over the past 14 months, we observe between
10-25% growth of all aspects of HTTPS usage.
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Figure 2.8: Change in Authority Market Share — In this figure, we show the individual
growth of the top 10 most prolific certificate authorities.
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CHAPTER III

The Matter of Heartbleed [42]

3.1 Introduction

In March 2014, researchers found a catastrophic vulnerability in OpenSSL, the cryp-

tographic library used to secure connections in popular server products including Apache

and Nginx. While OpenSSL has had several notable security issues during its 16 year

history, this flaw—the Heartbleed vulnerability—was one of the most impactful. Heartbleed

allows attackers to read sensitive memory from vulnerable servers, potentially including

cryptographic keys, login credentials, and other private data. Exacerbating its severity, the

bug is simple to understand and exploit.

In this work, we analyze the impact of the vulnerability and track the server operator

community’s responses. Using extensive active scanning, we assess who was vulnerable,

characterizing Heartbleed’s scope across popular HTTPS websites and the full IPv4 address

space. We also survey the range of protocols and server products affected. We estimate that

24–55% of HTTPS servers in the Alexa Top 1 Million were initially vulnerable, including

44 of the Alexa Top 100. Two days after disclosure, we observed that 11% of HTTPS sites in

the Alexa Top 1 Million remained vulnerable, as did 6% of all HTTPS servers in the public

IPv4 address space. We find that vulnerable hosts were not randomly distributed, with more

than 50% located in only 10 ASes that do not reflect the ASes with the most HTTPS hosts.

In our scans of the IPv4 address space, we identify over 70 models of vulnerable embedded
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devices and software packages. We also observe that both SMTP+TLS and Tor were heavily

affected; more than half of all Tor nodes were vulnerable in the days following disclosure.

Our investigation of the operator community’s response finds that within the first

24 hours, all but 5 of the Alexa Top 100 sites were patched, and within 48 hours, all

of the vulnerable hosts in the top 500 were patched. While popular sites responded quickly,

we observe that patching plateaued after about two weeks, and 3% of HTTPS sites in the

Alexa Top 1 Million remained vulnerable almost two months after disclosure.

In addition to patching, many sites replaced their TLS certificates due to the possibility

that the private keys could have been leaked and is the focus of this thesis. We analyze

certificate replacement and find that while many of the most popular websites reacted

quickly, less than a quarter of Alexa Top 1 Million sites replaced certificates in the week

following disclosure. Even more worryingly, only 10% of the sites that were vulnerable

48 hours after disclosure replaced their certificates within the next month, and of those

that did, 14% neglected to change the private key, gaining no protection from certificate

replacement.

Finally, starting three weeks after disclosure, we undertook a large-scale notification

effort and contacted the operators responsible for the remaining vulnerable servers. By

contacting the operators in two waves, we could conduct a controlled experiment and

measure the impact of notification on patching. We report the effects of our notifications,

observing a surprisingly high 47% increase in patching by notified operators.

We draw upon these observations to discuss both what went well and what went poorly

in the aftermath of Heartbleed. By better understanding the lessons of this security disaster,

the technical community can respond more effectively to such events in the future.

1

1This chapter is an excerpt from “The Matter of Heartbleed” [42]. I specifically collected and analyzed the
data from the certificate replacement and revocation sections and helped write the sections included.
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3.2 Background

On April 7, 2014, the OpenSSL project publicly disclosed the Heartbleed vulnerability,

a bug in their implementation of the TLS Heartbeat Extension. The vulnerability allowed

attackers to remotely dump protected memory—including data passed over the secure

channel and private cryptographic keys—from both clients and servers. In this section, we

provide a brief history of OpenSSL, the Heartbeat Extension, and details of the vulnerability

and its disclosure.

3.2.1 OpenSSL: A Brief History

OpenSSL is a popular open-source cryptographic library that implements the SSL and

TLS protocols. It is widely used by server software to facilitate secure connections for

web, email, VPN, and messaging services. The project started in 1998 and began tracking

vulnerabilities in April 2001.

Over the last 13 years, OpenSSL has documented six code execution vulnerabilities that

allowed attackers to compromise private server data (e.g., private cryptographic keys and

messages in memory) and execute arbitrary code. The project has faced eight information

leak vulnerabilities, four of which allowed attackers to retrieve plaintext, and two of which

exposed private keys. Two of the vulnerabilities arose due to protocol weaknesses; the

remainder came from implementation errors.

The Heartbleed bug reflects one of the most impactful vulnerabilities during OpenSSL’s

history for several reasons: (1) it allowed attackers to retrieve private cryptographic keys

and private user data, (2) it was easy to exploit, and (3) HTTPS and other TLS services have

become increasingly popular, resulting in more affected services.

3.2.2 TLS Heartbeat Extension

The Heartbeat Extension allows either end-point of a TLS connection to detect whether

its peer is still present, and was motivated by the need for session management in Datagram
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01 length length bytes e7f0d31...

HeartbeatRequest

02 length length bytes dc06848...

HeartbeatResponse

type length payload random padding

Figure 3.1: Heartbeat Protocol. Heartbeat requests include user data and random padding.
The receiving peer responds by echoing back the data in the initial request along
with its own padding.

TLS (DTLS). Standard implementations of TLS do not require the extension as they can

rely on TCP for equivalent session management.

Peers indicate support for the extension during the initial TLS handshake. Following

negotiation, either end-point can send a HeartbeatRequest message to verify connectivity.

The extension was introduced in February 2012 in RFC 6520 [117], added to OpenSSL on

December 31, 2011, and released in OpenSSL Version 1.0.1 on March 14, 2012.

HeartbeatRequest messages consist of a one-byte type field, a two-byte payload

length field, a payload, and at least 16 bytes of random padding. Upon receipt of the request,

the receiving end-point responds with a similar HeartbeatResponse message, in which it

echoes back the HeartbeatRequest payload and its own random padding, per Figure 3.1.

3.2.3 Heartbleed Vulnerability

The OpenSSL implementation of the Heartbeat Extension contained a vulnerability that

allowed either end-point to read data following the payload message in its peer’s memory

by specifying a payload length larger than the amount of data in the HeartbeatRequest

message. Because the payload length field is two bytes, the peer responds with up to 216

bytes (˜64 KB) of memory. The bug itself is simple: the peer trusts the attacker-specified

length of an attacker-controlled message.

The OpenSSL patch adds a bounds check that discards the HeartbeatRequest message
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Date Event

03/21 Neel Mehta of Google discovers Heartbleed
03/21 Google patches OpenSSL on their servers
03/31 CloudFlare is privately notified and patches
04/01 Google notifies the OpenSSL core team
04/02 Codenomicon independently discovers Heartbleed
04/03 Codenomicon informs NCSC-FI
04/04 Akamai is privately notified and patches
04/05 Codenomicon purchases the heartbleed.com domain
04/06 OpenSSL notifies several Linux distributions
04/07 NCSC-FI notifies OpenSSL core team
04/07 OpenSSL releases version 1.0.1g and a security advisory
04/07 CloudFlare and Codenomicon disclose on Twitter
04/08 Al-Bassam scans the Alexa Top 10,000
04/09 University of Michigan begins scanning

Table 3.1: Timeline of Events in March and April 2014. The discovery of Heartbleed
was originally kept private by Google as part of responsible disclosure efforts.
News of the bug spread privately among inner tech circles. However, after
Codenomicon independently discovered the bug and began separate disclosure
processes, the news rapidly became public [61, 107].

if the payload length field exceeds the length of the payload. However, while the bug is easy

to conceptualize and the fix is straight-forward, the potential impact of the bug is severe:

it allows an attacker to read private memory, potentially including information transferred

over the secure channel and cryptographic secrets [51, 109, 122].

3.2.4 Heartbleed Timeline

The Heartbleed vulnerability was originally found by Neel Mehta, a Google computer

security employee, in March 2014 [61]. Upon finding the bug and patching its servers,

Google notified the core OpenSSL team on April 1. Independently, a security consulting

firm, Codenomicon, found the vulnerability on April 2, and reported it to National Cyber

Security Centre Finland (NCSC-FI). After receiving notification that two groups indepen-

dently discovered the vulnerability, the OpenSSL core team decided to release a patched

version.
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The public disclosure of Heartbleed started on April 7, 2014 at 17:49 UTC with the

version 1.0.1g release announcement [107], followed by the public security advisory [106]

released at 20:37 UTC; both announcements were sent to the OpenSSL mailing list. Several

parties knew of the vulnerability in advance, including CloudFlare, Akamai and Facebook.

Red Hat, SuSE, Debian, FreeBSD and ALT Linux were notified less than 24 hours before

the public disclosure [61]. Others, such as Ubuntu, Gentoo, Chromium, Cisco, and Juniper

were not aware of the bug prior to its public release. We present a timeline of events in

Table 3.1.

3.3 Patching

In this section, we discuss the patching behavior that occurred subsequent to the disclo-

sure.

3.3.1 Popular Websites

Popular websites did well at patching. As mentioned above, only five sites in the Alexa

Top 100 remained vulnerable when Al-Bassam completed his scan 22 hours after disclosure.

All of the top 100 sites were patched by the time we started our scans, 48 hours after

disclosure. Our first scan of the Alexa Top 1 Million found that 11.5% of HTTPS sites

remained vulnerable. The most popular site that remained vulnerable was mpnrs.com,

ranked 689th globally and 27th in Germany. Similarly, all but seven of the vulnerable top

100 sites replaced their certificate in the first couple of weeks following disclosure. Most

interestingly, godaddy.com, operator of the largest commercial certificate authority, did not

change their certificates until much later. The other six sites are mail.ru, instagram.com,

vk.com, sohu.com, adobe.com, and kickass.to.

As shown in Figure 3.2, while many Alexa Top 1 Million sites patched within the first

week, the patch rate quickly dropped after two weeks, with only a very modest decline

between April 26 and June 4, 2014. While top sites in North America and Europe were
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initially more vulnerable than Asia and Oceania (presumably due to more prevalent use

of OpenSSL-based servers), they all followed the same general patching pattern visible in

Figure 3.2.

3.3.2 Internet-Wide HTTPS

As can be seen in Figure 3.2, the patching trend for the entire IPv4 address space differs

from that of the Alexa Top 1 Million. The largest discrepancy occurs between April 22,

14:35 EDT and April 23, 14:35 EDT, during which the total number of vulnerable hosts fell

by nearly a factor of two, from 4.6% to 2.6%. This dropoff occurred because several heavily

affected ASes patched many of their systems within a short time frame. The shift from

4.6% to 3.8% between 14:35 and 22:35 on April 22 reflects Minotavar Computers patching

29% of their systems, ZeXoTeK IT-Services patching 60%, and Euclid Systems patching

43%. Between April 22, 22:35 and April 23, 06:35, Minotavar Computers continued to

patch systems. The last major drop from 3.4% to 2.6% (06:35–14:35 on April 23) was

primarily due to Minotavar Computers patched remaining systems, and to a lesser extent,

Euclid Systems and Vivid Hosting.

3.3.3 Comparison to Debian Weak Keys

In 2008, a bug was discovered in the Debian OpenSSL package, in which the generation

of cryptographic keys had a severely limited source of entropy, reducing the space of possible

keys to a few hundred thousand. The lack of entropy allowed attackers to fully enumerate the

SSL and SSH keys generated on Debian systems, thus making it vital for Debian OpenSSL

users to generate fresh replacement keys.

Yilek et al. measured the impact of the vulnerability and patching behavior by performing

daily scans of HTTPS servers [132]. Given the similarities in the severity and nature of

remediation between this event and Heartbleed, we compared the community’s responses to

both disclosures.
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Figure 3.2: HTTPS Patch Rate. We track vulnerable web servers in the Alexa Top
1 Million and the public IPv4 address space. We track the latter by scanning in-
dependent 1% samples of the public IPv4 address space every 8 hours. Between
April 9 and June 4, the vulnerable population of the Alexa Top 1 Million shrank
from 11.5% to 3.1%, and for all HTTPS hosts from 6.0% to 1.9%.

A key methodological issue with conducting such a comparison concerns ensuring

we use an “apples-to-apples” metric for assessing the extent of the community’s response

to each event. The comparison is further complicated by the fact that our Heartbleed

measurements sample a different 1% of the Internet each scan. We do the comparison by

framing the basic unit of “did an affected party respond” in terms of aggregate entities very

likely controlled by the same party (and thus will update at the same time). To do so, we

define an entity as a group of servers that all present the same certificate during a particular

measurement. This has the potential for fragmenting groups that have partially replaced

their certificates, but we argue that this effect is likely negligible since the number of entities

stays roughly constant across our measurements. Note that this definition of entity differs

from the “host-cert” unit used in [132], in which groups were tracked as a whole from the

first measurement.

Figure 3.3 shows for both datasets the fraction of unfixed entities to the total number of
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Figure 3.3: Comparison of the Patch Rates of the Debian PRNG and Heartbleed Vul-
nerabilities. The y-axis is normalized at 8.7 days, indicated by the vertical
striped line. Thus, the fraction of unpatched entities at a given time is relative
to the fraction at 8.7 days after disclosure, for each dataset. Except for the
points marked by ◦, for each measurement the size of the Debian PRNG entity
population was n = 41,200±2,000, and for Heartbleed, n = 100,900±7,500.
Due to a misconfiguration in our measurement setup, no Heartbleed data is
available days 58–85.

entities per measurement. We consider an entity as “fixed” in the Debian PRNG dataset if

the certificate now has a strong public key (and previously did not), otherwise “unfixed”. For

our Heartbleed IPv4 dataset (labelled “patch”), we deem an entity as “fixed” if all servers

presenting the same certificate are now no longer vulnerable, “unfixed” otherwise.

This data shows that entities vulnerable to Heartbleed patched somewhat more quickly

than in the Debian scenario, and continue to do so at a faster rate. It would appear that aspects

of the disclosure and publicity of Heartbleed did indeed help with motivating patching,

although the exact causes are difficult to determine.

Note that for the Debian event, it was very clear that affected sites had to not only patch

but to also issue new certificates, because there was no question that the previous certificates

were compromised. For Heartbleed, the latter step of issuing new certificates was not as
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pressing, because the previous certificates were compromised only if attackers had employed

the attack against the site prior to patching and the attack indeed yielded the certificate’s

private key.

Given this distinction, we also measured whether entities changed their certificates after

patching Heartbleed.2 To do so, we now define an entity as a group of servers that all present

the same certificate during both a particular measurement and all previous measurements.

We regard an entity as “unfixed” if any server presenting that certificate is vulnerable at any

time during this time frame and “fixed” otherwise. Again, we argue that fragmentation due

to groups having their servers only been partially patched is likely negligible. We label this

data as “cert change” in Figure 3.3. We see that while entities patched Heartbleed faster than

the Debian PRNG bug, they replaced certificates more slowly, which we speculate reflects a

perception that the less-definitive risk of certificate compromise led a number of entities to

forgo the work that reissuing entails.

3.4 Certificate Ecosystem

Heartbleed allowed attackers to extract private cryptographic keys [122]. As such, the

security community recommended that administrators generate new cryptographic keys and

revoke compromised certificates [58]. In this section, we analyze to what degree operators

followed these recommendations.

3.4.1 Certificate Replacement

To track which sites replaced certificates and cryptographic keys, we combined data

from our Heartbleed scans, Michigan’s daily scans of the HTTPS ecosystem [43], and ICSI’s

Certificate Notary service [22]. Of the Alexa sites we found vulnerable on April 9 (2 days

after disclosure), only 10.1% replaced their certificates in the month following disclosure

(Figure 3.4). For comparison, we observed that 73% of vulnerable hosts detected on April 9

2See Section 3.4.1 for a discussion on the replacement of public/private key pairs in addition to certificates.
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Figure 3.4: Certificate Replacement on Vulnerable Alexa Sites. We monitored certifi-
cate replacement on vulnerable Alexa Top 1 Million sites and observe only 10%
replaced certificates in the month following public disclosure.
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patched in that same time frame, indicating that most hosts who patched did not replace

certificates. In addition, it is striking to observe that only 19% of the vulnerable sites that

did replace their certificates also revoked the original certificate in the same time frame, and

even more striking that 14% re-used the same private key, thus gaining no actual protection

by the replacement.

We find that 23% of all HTTPS sites in the Alexa Top 1 Million replaced certificates

and 4% revoked their certificates between April 9 and April 30, 2014. While it may seem

inverted that fewer vulnerable sites changed their certificates compared to all HTTPS sites

in the Alexa Top 1 Million, our first scan was two days after initial disclosure. We expect

that diligent network operators both patched their systems and replaced certificates within

the first 48 hours post disclosure, prior to our first scan.

The ICSI Certificate Notary provides another perspective on changes in the certificate

ecosystem, namely in terms of Heartbleed’s impact on the sites that its set of users visit

during their routine Internet use. In Figure 3.5, we show the difference in certificate

replacement between March and April 2014. For the first four days after public disclosure

on April 7, we observed a large drop in the number of servers with the same certificate as

on April 6, indicating a spike in new certificates. After that, certificate changes progressed

slowly yet steadily for the rest of the month. This matches our expectations that a number of

operators patched their systems prior to our scans and immediately replaced certificates.

Ultimately, while popular websites did well at patching the actual vulnerability, a

significantly smaller number replaced their certificates, and an even smaller number revoked

their vulnerable certificates.

3.4.2 Certificate Revocation

When a certificate or key can no longer be trusted, sites can request the issuing CA

to revoke the certificate. CAs accomplish this by publishing certificate revocation lists

(CRLs) and supporting the Online Certificate Status Protocol (OCSP) for live queries. Even
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though most vulnerable hosts failed to revoke old certificates, we observed about as many

revocations in the three months following public disclosure as in the three previous years.
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after the disclosure. The jumps reflect GlobalSign (first) and GoDaddy (rest).
However, only 4% of HTTPS sites in the Alexa Top 1 Million revoked their
certificates between April 9 and April 30, 2014.

Prior to the vulnerability disclosure, we saw on average 491 (σ=101) revocations per day

for certificates found in our scans. As seen in Figure 3.6, in the days following disclosure, the

number of revocations dramatically increased. The sudden increases were due to individual

CAs invalidating large portions of their certificates. Most notably, GlobalSign revoked

56,353 certificates over two days (50.2% of their visible certificates), and GoDaddy, the

largest CA, revoked 243,823 certificates in week-long bursts over the following three months.

GlobalSign’s large number of revocations were precipitated by a major customer, CloudFlare,

revoking all of their customers’ certificates [110].

Revoking such a large number of certificates burdens both clients and servers. Clients

must download large CRLs, which CAs must host. GlobalSign’s CRL expanded the most,
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from 2 KB to 4.7 MB due to CloudFlare revoking all of their certificates. CloudFlare

hesitated to revoke their certificates, citing its significant cost, which they estimated would

require an additional 40 Gbps of sustained traffic, corresponding to approximately $400,000

per month [110].

StartCom, a CA that offers free SSL certificates, came under fire for continuing their

policy of charging for revocation after the Heartbleed disclosure [92]. However, revocation

places a sizable financial strain on CAs due to bandwidth costs [13, 110].
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Figure 3.7: Affected CRLs. The CRLs with the greatest expansion during April 2014.
Note that Go Daddy Secure Certificate Authority–G2 uses 51 different CRLs,
presumably limiting the size of each to avoid large CRL downloads caused by
popular cryptographic libraries [80].

Unsurprisingly, CAs actively try to limit revocation costs. There has been a recent push

in browsers to eliminate CRL usage in favor of OCSP and other custom techniques. Neither

Firefox nor Chrome perform CRL checks for any certificates by default anymore. Internet

Explorer does, however, with CAPI, the Windows certificate validation library. CAPI will

only download and cache a CRL if 50 OCSP responses have been cached for a particular CA.
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CAs are aware of this practice and attempt to curtail the cost of revocation bandwidth further

by splitting up their revocations into many distinct files. When the CRLs are downloaded

from a particular certificate, they contain only a fraction of the CA’s total revocation list.

Although this diminishes the security afforded by downloading the CRL, it saves the CA

money [80].

Interestingly, the largest CRLs did not increase in size dramatically after the disclosure.

Figure 3.8 shows the expansion of the five largest CRLs. All five of the CRLs follow a linear

growth pattern and appear largely unaffected by the disclosure. This is in stark contrast to

Figure 3.7 which shows the changes in the five CRLs that exhibited the largest increase in

volume after disclosure. All five CRLs were inconsequential prior to the disclosure, and

are composed of large commercial CAs. The commercial CAs, who service several popular

websites and pay more servicing the CRLs, have a larger incentive to avoid the increased

costs.
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3.5 Notification

Three weeks after the initial disclosure a large number of hosts remained vulnerable, and

we began notifying the system operators responsible for unpatched systems. This endeavor

provided us with an opportunity to study the impact of large-scale vulnerability notification.

In this section we describe our notification methodology and analyze the reactions to our

notifications and its impact on patching.

3.5.1 Methodology

In order to find the appropriate operators to contact, we performed WHOIS lookups

for the IP address of each vulnerable host appearing in our April 24, 2014 scan of the full

IPv4 address space. We used the “abuse” e-mail contact extracted from each WHOIS record

as our point of notification. We chose to use WHOIS abuse emails because they struck

us as more reliable than emails from other sources. There also appeared to be less risk in

offending a network operator through contacting the abuse contact. For example, many

emails extracted from certificate Subject fields were not valid emails, and we observed

several WHOIS records with comments instructing anything related to spam or abuse be

sent to the abuse contact rather than the technical contact.

Our scan found 588,686 vulnerable hosts. However, we excluded embedded devices—

which accounted for 56% of vulnerable hosts—because administrators likely had no avenue

for patching many of these devices at the time. The remaining 212,805 hosts corresponded

to 4,648 distinct abuse contacts. Approximately 30,000 hosts belonged to RIPE and Amazon

each. Because neither of these organizations directly manage hosts, we omitted them from

our notifications.

To measure the impact of our notifications, we randomly split the abuse contacts into two

groups, which we notified in stages. We sent notifications to the first half (Group A) on April

28, 2014, and the second half (Group B) on May 7, 2014. Our notification e-mail introduced

our research and provided a list of vulnerable hosts, information on the vulnerability, and a
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Figure 3.9: Patch Rates of Group A vs Group B. The patch rates for our two notification
sets show that notification had statistically significant impact on patch rate.

link to the EFF’s Heartbleed recovery guide for systems administrators.

3.5.2 Patching Behavior

To track patching behavior, we conducted regular scans of the known vulnerable hosts

every eight hours. We considered a contact as having reacted and begun patching if we found

at least one host in the list we sent to the contact as patched. Figure 3.9 shows a comparison

of the patch rates between the two groups. Within 24 hours of the initial notification, 20.6%

of the Group A operators had begun to patch, whereas only 10.8% of Group B contacts (not

yet notified) had reacted. After eight days (just before the second group of notifications),

39.5% of Group A contacts had patched versus 26.8% in Group B. This is a 47% increase in

patching for notified operators.

Fisher’s Exact Test yields a one-sided p-value of very nearly zero for the null hypothesis

that both groups reflect identical population characteristics. We thus conclude that our
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notification efforts had a statistically significant positive effect in spurring notified sites

to patch. Our second round of notifications followed a similar pattern as the first. As

Group A’s rate of patching had decreased at that point, Group B caught up, resulting in

both converging to around 57% of contacts having reacted within a couple of weeks of

notification.

We also investigated the relationship between the reactions of network operators (per

Section 3.5.3) and their patching behavior. First, we sent our notification message in English,

possibly creating a language barrier between us and the contact. We analyzed the Group A

responses and found that email responses entirely in English had no statistically significant

difference in the corresponding patching rate than for responses containing non-English text

(Fisher’s Exact Test yielded a two-sided p-value of 0.407).

We did, however, find statistically significant differences between each of the categories

of responses framed below in Section 3.5.3, as shown in Figure 3.10, with human responders

patching at the highest rate. Within the first day post-notification, 48% of human responders

had begun patching, while none of the other categories had a patch rate higher than 32%.

The second strongest reactions came from contacts configured to send automated re-

sponses. 32% had reacted after one day, and 75% had reacted after three weeks. This

indicates that operators using a system to automatically process notifications and complaints

will still often react appropriately.

Over 77% of the contacts never responded. After one day, 20% of such contacts had

conducted some patching; after three weeks, 59% had. Right before Group B’s notifications,

the patch rate of these contacts was statistically significantly higher than Group B’s patch

rate. This shows that even when system operators do not respond when notified, they often

still patch vulnerable systems.
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Figure 3.10: Patch Rates for Different Response Types. Conditioning on the sort of reply
we received for a given notification reveals statistically significant differences.

3.5.3 Responses

In our first group of notifications, on April 28, 2014, we contacted 2,308 abuse contacts

and received email responses from 514 contacts. Of these 59 (11%) were clearly human-

generated, 197 (38%) were automated, and 258 (50%) were delivery failures. We received

16 automated emails where we subsequently received a human response; these we classified

as human (thus, in total we received 530 emails). The vast majority of responses (88%) were

in English; other common languages included Russian, German, Portuguese, and Spanish.

We classified a positive response as one that thanked us or stated their plan to remedy

their vulnerable hosts. The human-generated responses were overall very positive (54/59),

with only three that we deemed neutral, and two negative. The two negative responses

questioned the legality of our scan despite our explicit explanation that we did not exploit

the vulnerability.

Automated messages came in four forms: confirmations (24%), tickets (44%), trackers
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(23%), and miscellaneous bounces (9%; primarily out-of-office notices and “no longer

working here” messages). Confirmation emails confirmed the receipt of our notification;

tickets provided a reference or ticket identifier to associate with our notification message;

and trackers were tickets that also explicitly provided a link to a support site to track progress

on opened tickets. Curiously, 21 of the 45 trackers did not provide the credentials to log into

the support website, 2 provided invalid credentials, and 3 did not have our ticket listed on

their support site. In the week following our notification, we were informed that 19 tickets

were closed, although only 4 provided any reasoning.

Out of the 258 delivery failure replies, 197 indicated the recipient did not receive our

notification. Other error messages included full inboxes or filtering due to spam, and several

did not describe a clear error. We observed 30 delayed and retrying emails, but all timed-out

within three days.

3.5.4 Network Operator Survey

We sent a brief survey to positive human responders, where all questions were optional,

and received anonymous submissions from 17 contacts. Surprisingly, all 17 expressed

awareness of the vulnerability and stated their organizations had performed some remediation

effort prior to our notification, typically through informing their clients/customers and

patching machines if accessible. When we asked why might the hosts we detected still

be vulnerable, the most common responses were that they did not have direct control over

those servers, or their own scans must have missed those hosts. It appears ignorance of the

vulnerability and its threat did not play a factor in slow patching, although our sample size

is small. When asked if they replaced or revoked vulnerable certificates, nine said yes, two

said no, and one was unaware of the recommendation. Finally, we asked if these contacts

would like to receive notifications of similar vulnerabilities in the future. Twelve said yes,

two said no, and the others did not respond. This again demonstrates that our notifications

were in general well-received.

64



3.6 Discussion

Heartbleed’s severe risks, widespread impact, and costly global cleanup qualify it as a

security disaster. However, by analyzing such events and learning from them, the community

can be better prepared to address major security failures in the future. In this section, we use

our results to highlight weaknesses in the security ecosystem, suggest improved techniques

for recovery, and identify important areas for future research.

HTTPS Administration. Heartbleed revealed important shortcomings in the public key

infrastructure that underlies HTTPS. One set of problems concerns certificate replacement

and revocation. As discussed in Section 3.4, only 10% of known vulnerable sites replaced

their certificates, and an astounding 14% of those reused the existing, potentially leaked,

private key. This data suggests that many server administrators have only a superficial

understanding of how the HTTPS PKI operates or failed to understand the consequences

of the Heartbleed information leak. This underscores the importance for the security

community of providing specific, clear, and actionable advice for network operators if

similar vulnerabilities occur in the future. Certificate management remains difficult for

operators, highlighting the pressing need for solutions that enable server operators to

correctly deploy HTTPS and its associated infrastructure.

One of the ironies of Heartbleed was that using HTTPS, a protocol intended to provide

security and privacy, introduced vulnerabilities that were in some cases more dangerous

than those of unencrypted HTTP. However, we emphasize that HTTPS is ultimately the

more secure protocol for a wide variety of threat models. Unfortunately, only 45% of the

Top 1 Million websites support HTTPS, despite efforts by organizations such as the EFF

and Google to push for global HTTPS deployment.

Revocation and Scalability. Even though only a small fraction of vulnerable sites re-

voked their certificates, Heartbleed placed an unprecedented strain on certificate authorities

and revocation infrastructure. In the three months following public disclosure, about as many
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revocations were processed by CAs as in the three years proceeding the incident. Wholesale

revocation such as required by an event like Heartbleed stresses the scalability of basing

revocation on the distribution of large lists of revoked certificates. As a result, CAs were

backlogged with revocation processing and saddled with unexpected financial costs for CRL

distribution—CloudFlare alone paid $400,000 per month in bandwidth [110]. The com-

munity needs to develop methods for scalable revocation that can gracefully accommodate

mass revocation events, as seen in the aftermath of Heartbleed.

Support for Critical Projects. While not a focus of our research, many in the community

have argued that this event dramatically underscores shortcomings in how our community

develops, deploys, and supports security software. Given the unending nature of software

bugs, the Heartbleed vulnerability raises the question of why the Heartbeat extension was

enabled for popular websites. The extension is intended for use in DTLS, an extension

unneeded for these sites. Ultimately, the inclusion and default configuration of this largely

unnecessary extension precipitated the Heartbleed catastrophe. It also appears likely that

a code review would have uncovered the vulnerability. Despite the fact that OpenSSL is

critical to the secure operation of the majority of websites, it receives negligible support [89].

Our community needs to determine effective support models for these core open-source

projects.

Notification and Patching. Perhaps the most interesting lesson from our study of Heart-

bleed is the surprising impact that direct notification of network operators can have on

patching. Even with global publicity and automatic update mechanisms, Heartbleed patch-

ing plateaued two weeks after disclosure with 2.4% of HTTPS hosts remaining vulnerable,

suggesting that widespread awareness of the problem is not enough to ensure patching.

However, as discussed in Section 3.5, when we notified network operators of the unpatched

systems in their address space, the rate of patching increased by 47%. Many operators

reported that they had intended to patch, but that they had missed the systems we detected.

Although Internet-wide measurement techniques have enabled the mass detection of
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vulnerable systems, many researchers (including us) had assumed that performing mass

vulnerability notifications for an incident like Heartbleed would be either too difficult or

ineffective. Our findings challenge this view. Future work is needed to understand what

factors influence the effectiveness of mass notifications and determine how best to perform

them. For instance, was Heartbleed’s infamy a precondition for the high response rate we

observed? Can we develop systems that combine horizontal scanning with automatically

generated notifications to quickly respond to future events? Can we standardize machine-

readable notification formats that can allow firewalls and intrusion detection systems to

act on them automatically? What role should coordinating bodies such as CERT play in

this process? With additional work along these lines, automatic, measurement-driven mass

notifications may someday be an important tool in the defensive security arsenal.

3.7 Conclusion

In this work we analyzed numerous aspects of the recent OpenSSL Heartbleed vulnera-

bility, including (1) patching behavior, and (3) impact on the certificate authority ecosystem.

We found that the vulnerability was widespread, and estimated that between 24–55% of

HTTPS-enabled servers in the Alexa Top 1 Million were initially vulnerable, including

44 of the Alexa Top 100. Sites patched heavily in the first two weeks after disclosure, but

patching subsequently plateaued, and 3% of the HTTPS Alexa Top 1 Million sites remained

vulnerable after two months. We further observed that only 10% of vulnerable sites replaced

their certificates compared to 73% that patched, and 14% of sites doing so used the same

private key, providing no protection.

We also conducted a mass notification of vulnerable hosts, finding a significant positive

impact on the patching of hosts to which we sent notifications, indicating that this type of

notification helps reduce global vulnerability. Finally, we drew upon our analyses to frame

what went well and what went poorly in our community’s response, providing perspectives

on how we might respond more effectively to such events in the future.
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CHAPTER IV

CAge: Taming Certificate Authorities by Inferring

Restricted Scopes [74]

4.1 Introduction

Every day, millions of Internet users rely on HTTPS to secure transactions such as online

banking, e-mail, and e-commerce against malicious eavesdroppers or tampering through

man-in-the-middle attacks. HTTPS combines the Transport Layer Security (TLS) protocol

with a public-key infrastructure (PKI) based on certificate authorities (CAs) that are trusted

by the browser. Each server presents its public key in the form of an X.509 certificate

corresponding to its domain name and digitally signed by a CA, which is responsible for

verifying the identity of the website, usually for a small fee. Browsers maintain a set of

trusted root CAs and subsequently trust the purported identities of certificates signed by any

CA in this trusted set. In addition, these root CAs are typically able to sign certificates for

additional CAs, known as intermediate certificate authorities, which are trusted recursively

by the browser.

CA-signed certificates help protect users in the presence of man-in-the-middle adver-

saries, but they cannot protect users from compromise of the CAs themselves. In recent

years, there have been several high-profile attacks on CAs that resulted in the signing of

fraudulent certificates. For instance, in 2011, an attacker breached the security of a rela-
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tively small Dutch CA named DigiNotar and created certificates for dozens of popular sites,

including *.google.com [29]. An ISP in Iran subsequently abused this latter certificate

to conduct man-in-the-middle attacks against Google services. Of course, attackers do not

require a malicious or compromised ISP to utilize illegitimate certificates; they can also

use DNS cache poisoning attacks [73], intercept and modify traffic on an insecure wireless

network, or use ARP spoofing on a local subnet.

Preventing DigiNotar-style attacks is difficult, because there are currently very few

technical restrictions on what trusted CAs can sign for—once they convince a browser they

are trustworthy, they are given an unrestricted capability to vouch for any domain name they

choose. This ability leads to an enormous attack surface: an attacker who compromises any

one of over 1200 CAs can then impersonate any website that relies on HTTPS. The status

quo violates the principle of least privilege: DigiNotar should not have had the capability to

sign certificates for Google, nor should a CA run by a small university in the United States

be allowed to sign certificates for another country’s intelligence agency, such as a website in

the .gov.ir domain. In other words, each CA’s trust should come with a limited scope.

One way to limit the scope of CA trust is to designate a set of top-level domains (TLDs),

such as .com or .uk, within which each CA may sign. Indeed, we present data that suggests

that most CAs currently only sign certificates for sites in a small number of TLDs, and

conversely, that sites in most TLDs utilize only a small set of CAs. Many CAs appear

to sign exclusively for domains belonging to a single organization, and others appear to

operate within a specific country, sector, or both. Although this suggests that TLD-based

restrictions could be fruitful, realizing them within the existing PKI is a challenge. The

X.509 name constraints extension (see Section 4.3) introduced the ability to explicitly

declare such restrictions in new CA certificates, but it requires participation from each root

or intermediate CA, as well as implementation in all client systems, and has seen almost no

adoption.

Rather than relying on each CA to explicitly declare a TLD scope, we explore the
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possibility that browser makers could infer such scopes without CA participation. We

propose a mechanism called CAge that creates a profile of each CA based on the TLDs of

publicly visible certificates it has previously signed. If a browser later encounters a certificate

for a site in a TLD a CA has never been observed to sign before, this can be treated as

evidence of suspicious behavior. These restrictions can be implemented without cooperation

from the certificate authorities, at the risk that CAs will change their behavior over time and

begin signing for certificates outside their previous pattern. Empirically, however, we find

that this rate of change is quite low, that inferred scopes generated with simple algorithmic

rules would result in a low false-positive rate, and that the CAge approach would allow

browser makers to dramatically reduce the attack surface of the HTTPS PKI.

Outline We begin in Section 4.3 with a discussion of related work. In Section 4.4, we

analyze data from an Internet-wide survey of HTTPS certificates to examine the current

practices and distribution of CA’s signing. Supported by evidence from this dataset, in

Section 4.5, we give a detailed description of the CAge approach for inferring TLD-based

restrictions. In Section 4.6, we quantitatively evaluate CAge’s performance, and in Sec-

tion 4.7 we describe a prototype implementation in the form of a browser extension. Finally,

we conclude in Section 4.8.

4.2 Background

In this section, we present a brief background of X.509 and its extensions that are

relevant for this paper. For a more in-depth background on the TLS public key infrastructure,

we recommend RFC 5280 [36].

When a browser connects over HTTPS, the server presents an X.509 certificate. The

certificate includes an identity (such as the domain name of the server), a validity period, a

public key, and a digital signature over the rest of the certificate. The browser checks that

the certificate’s identity matches the domain the browser is attempting to connect to, that the
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certificate is still valid, and that the digital signature of the certificate is correct. The public

key is then used to authenticate or transmit a shared secret with the server, which is, in turn,

used to establish an end-to-end secure channel.

The certificate’s digital signature is signed by a trusted Certificate Authority (CA) which

is in charge of verifying the identity of the website. When the server presents its certificate,

it also includes the certificate of the CA responsible for signing. The signing-CA’s certificate

may also in turn have been signed by another CA, in which case, this second CA is also

included in the bundle of certificates sent to the browser. This bundle of certificates is

referred to as a certificate chain, and the browser only trusts it if one of the CAs in the chain

is in a trusted set of root CAs that are built into the browser.

4.3 Related Work

Given the documented problems with CAs [29, 112, 134, 135], it is not surprising that

providing authentication on the Internet is an active research topic. Many researchers have

suggested using new authentication techniques or making changes to the authentication

infrastructure. Multi-path probing [21, 88, 129] has been suggested as a way to move

away from certificate authorities. The technique necessitates the availability and access to

trusted notaries, which presents problems for captive portals and sites presenting multiple

certificates. The suggested changes to the CA infrastructure focus on making certificate

signing transparent and publicly verifiable [46, 82]. The work needs widespread support

with implementation and testing before the effects of these systems can be seen. CAge

instead works with existing authentication mechanisms and does not require collaboration

with CAs or additional infrastructure.

Quick local improvements on the security of the current CA system have also been

proposed and adopted in limited form. The idea of certificate pinning, where the browser

remembers which certificates belong to each domain, has been used to various degrees by

existing software. Google Chrome uses certificate pinning for Google’s own websites [52],
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while CertPatrol [85], a Firefox extension, allows the user to pin all certificates that they

encounter and warns the user when a certificate changes. However, CertPatrol’s fine

granularity of control, frequent false positives, and required knowledge deters all but the

most dedicated users. Soghoian and Stamm proposed CertLock [119], which pins the country

code of the CA to the domain. The design is aimed at preventing compelled certificate

creation attacks in which a government forces a CA to issue false certificates. The technique

can work fairly well for U.S. domains being attacked by foreign governments; however, due

to the dominance of the U.S. in the CA market, the proposal’s true effectiveness is uncertain.

Our solution, CAge, pins information about the CA rather than the specific domain and does

not demand additional knowledge from the user. CAge does not protect against a specific

attack, but rather aims to decrease the attack surface of the PKI in general.

Scopes on certificate authorities have also been proposed through X.509 Name Con-

straints. X.509 Name Constraints [36] is a certificate extension with the ability to restrict

CAs to a particular set of domains. All trusted certificates must conform to the name

constraint extensions in their certificate chain. Implementation and adoption of the accepted

standard has been slow. There is only one trusted CA that is currently constrained with the

extension, the “Hellenic Academic and Research Institutions RootCA 2011”, which was

adopted in Firefox 11.0 [9]. Name constraints’ reluctant adoption is likely due to the high

cost of enforcement. Since browsers only have direct control over their root CAs, browsers

would have to force tight constraints directly on the root CAs. Complicating matters, root

CA certificates have an average lifetime of more than 20 years. Long certificate lifetimes

require these constraints to be forecast far into the future, which is both difficult and prone

to error. Wide-scale adoption of name constraints also requires all existing certificates to be

reissued under constrained CAs, requiring a long-term transitional plan. CAge is able to

leverage knowledge of the complete CA system and is able to differentiate the constraints be-

tween roots and specialty intermediaries. Root CAs are tightly constrained to their intended

purpose and intermediaries are known and constrained to their previously demonstrated
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behavior. CAge can be applied immediately by browsers without CA collaboration, making

immediate adoption feasible.

4.4 Analyzing the CA Infrastructure

Currently, important aspects of browser trust behavior and CA signing practices are

surprisingly opaque to outside observers. For example, certificate chaining allows browser-

trusted root CAs to delegate their signing authority to third parties by issuing intermediate

CA certificates; this can be done in private and at any time, making it impossible to determine

the full trusted set of CAs by analyzing browser software alone. Furthermore, CAs typically

do not publish the set of domains for which they have issued certificates, making it difficult

to study their patterns of signing behavior in practice.

To understand these aspects of the HTTPS PKI, we analyzed a large corpus of certificates

collected with an Internet-wide scan of HTTPS servers recently conducted in a study by

Heninger et al. [63] The study exhaustively probed the IPv4 address space on TCP port 443

(the default port for HTTPS) and collected every certificate chain presented by a responding

server. The resulting data, from October 2011, provides a recent and comprehensive view of

the TLS certificate landscape. It includes responses from 7.7 million hosts, which returned

more than 5.8 million distinct certificates.

First, we determined which of the certificates would be trusted by the major web browsers

and extracted the set of intermediate CAs that issued them from the provided certificate

chains. We started with the 317 root and intermediate CAs1 that are directly trusted by

Mozilla, Apple, Microsoft, and OpenSSL (Google Chrome defaults to the platform’s trusted

key store). We then used the OpenSSL API to test each of the collected certificate chains for

validity. We deemed a certificate valid if it was not expired at the time of the scan and there

existed a chain of valid CA certificates rooted by a directly trusted CA certificate. In all,

there were 1,956,267 valid certificates (comprising 2,558,492 unique domain names) issued

1Unless otherwise noted, we distinguish CAs by subject and subject key identifier.
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Figure 4.1: CAs Signing for Top 5 TLDs — This figure shows the cumulative distribu-
tion of signed domains within the top five TLDs and how many trusted CAs
accounted for each fraction. A small number of large CAs dominate.

by 1207 CAs.

The number of certificates signed by each CA varied considerably. The top 20 CAs

were responsible for more than 80% of valid certificates. Figure 4.1 shows the cumulative

distribution of signed domains within the top five TLDs and the number of CAs responsible

for signing each fraction. Over 90% of all signed .com domain names used certificates

issued by just 25 certificate authorities.

Despite this lop-sided distribution of CA size, each of the 1207 CAs had the ability

to issue trusted certificates for any domain name. To examine how much of this authority

each CA exercised, we extracted the set of domain names that each CA had directly issued

certificates for, and then examined the set of TLDs to which these domains belonged. We

found that 89% of CAs had signed for domains in fewer than 10 unique valid TLDs [66],

with the majority (65.8%) of CAs signing for domains in either zero or one TLD.2

Figure 4.2 shows the top 25 TLDs by number of signed domains, together with the

fraction of total signed domains that are in each TLD and the number of CAs that issued

2A CA can sign for zero valid TLDs if it does not sign domain certificates directly but instead signs other
intermediate CA certificates, for example.
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Figure 4.2: Top 25 TLDs for Signed Domains — This graph shows both the fraction of
signed domains falling within each of the top 25 TLDs (red) and the number of
CAs that sign for at least one of these domains (green). Although .com is by
far the most common TLD, 65% of CAs have never signed a certificate for a
.com domain. Less common TLDs include signed domains from even smaller
fractions of CAs, suggesting that the ability to sign for all domains is unused by
the vast majority of CAs.

certificates within each TLD. Although .com accounts for 51% of signed domains, fewer

than 35% of trusted CAs had signed a certificate for even a single .com domain, and only

20% had signed for 10 or more such certificates. There were 787 CAs that had never signed

for a .com domain. Similarly, fewer than 11% of CAs had signed certificates in the .uk

TLD, and only 6.6% had signed for 10 or more in the .uk domain.

To better understand why most CAs seem to be issuing certificates within so few TLDs,

we manually investigated many of the trusted CAs. One reason for these sparse signing

practices is that many of the CAs belong to private companies and organizations and are

used for domains under their control. For instance, more than 200 German universities and

research institutions are browser-trusted CAs; their impact on statistics for the .de TLD

is clearly visible in Figures 4.1 and 4.2. Many corporations including Ford, Disney, Wells

Fargo, and Migros also have trusted CA certificates. We observed that they generally limit
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their signing practices to a few specific second-level domains. For instance, the Walt Disney

CA signs almost exclusively for domains under *.disney.com. However, we note that

some of these CAs may sign for additional private domains that do not show up in our data

set of publicly accessible HTTPS servers.

Another reason appears to be that many smaller CAs focus their business within a specific

geographic region and tend to sign domains under a country-specific TLD. (We noted that

29% of CAs signed for domains within only a single TLD and not in .com.) For example,

the public AusCERT CA signs 97% of their certificates under the .au and .nz TLDs, and

the Coop Swiss company signs exclusively within .ch. The infamously compromised

CA, DigiNotar, specialized in the Dutch market and issued 93% of its certificates to .nl

domains.3

4.5 Our Proposal

Our analysis in the previous section suggests that the vast majority of CAs do not

need or use the authority they have—to issue a trusted certificate for any domain in any

TLD. Leaving these CAs with such unconstrained signing power leaves Internet security

unnecessarily vulnerable: an adversary can choose the weakest of over 1200 CAs to attack

in order to gain complete signing authority for any domain. In this section, we propose

CAge, a browser-based approach that restricts CA signing to TLDs in which they have

already signed. We argue that this would improve the ecosystem security of the HTTPS PKI

without impairing how it is used today.

CAge consists of two phases, an initialization phase and an enforcement phase. In

the initialization phase, we collect certificates from an Internet-wide scan and infer rules

from the observed current CA signing practices. Browsers then deploy CAge as a browser

extension in the enforcement phase to restrict CAs to these inferred scopes and handle

3DigiNotar was already defunct at the time of our scan, so this figure is based on December 2010 data from
the EFF SSL Observatory [49].
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Figure 4.3: CA/TLD Matrix — This figure shows a matrix of CAs that have signed for
certificates in TLDs. Each position is colored if the corresponding CA (row) has
signed for at least one (blue) or ten (green) domains in the corresponding TLD
(column). Each axis is sorted by total domains signed, putting the most prolific
CA at the top and most common TLD at the left. The width of the TLD columns
are scaled by the percentage of certificates made up in that column—.com is
visible as the left-most column, as it accounts for over 50% of the total domains
signed. A significant portion of this matrix is empty, illustrating the sparse
nature of CA signing practices.

exceptions. We describe these phases in more detail below.

4.5.1 Initialization and Rule Inference

Prior to deploying CAge, the browser maker needs to develop an initial set of restricted

scopes to apply to existing CAs. However, creating justifiable rules for existing CAs

necessitates knowledge of the current CA market. Given the distributed design of the CA

system, a comprehensive scan of HTTPS must be performed like the one completed by

Heninger et al. [63]. Such a scan can be used to determine the observable list of intermediate

certificate authorities, as well as the domains for which they have directly signed certificates.

After scanning and collecting the raw data, we infer rules and restrictions for the CAs,

based on current practices. As stated earlier, there are many CAs that have never signed

for particular top-level-domains. If the user was presented such a certificate, there is a
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high probability that the certificate is fraudulent and the user should be alerted. As a first

approach, CAge can generate the inferred scopes by looking at the TLDs for which each CA

has previously signed. If a CA has signed for any domains in a particular TLD, the inferred

rules will allow the CA to continue to sign for that TLD, which will be referred to as the

TLD policy.

Rules are stored for each CA as a set of regular expressions that governs the domains

they are allowed to sign. For example, a CA may have the regular expressions .*\.au and

.*\.nz, allowing it to sign for two TLDs. This allows for the rule inference to be extendable

to other algorithms in the future. In general, rules should be generated from an algorithm

taking the CAs and their signed domains as input and producing the CA restrictions as

output. CAs could be constrained to second-level domains or more specific rules could

be required for larger TLDs, factoring in the cost of false positives, and both the size and

brittleness of the rule set. We explain variations on our generation algorithm in Section 4.6.1.

4.5.2 Enforcement and Exception Handling

Once CAge has inferred CA signing rules from the collected scans, CAge relies on

browsers to enforce these rules during certificate validation. Browsers have a strong incentive

to protect their users from fraudulent certificates, making them a natural place to enforce

these restrictions.

Normally, browsers verify that HTTPS certificates have a valid signature chain to a

trusted root. With CAge, browsers additionally compare the domain to the set of regular

expression rules inferred for that certificate’s intermediate (signing) CA. If the domain does

not fall within the allowed rules for the given CA, CAge alerts the user with a warning,

explaining that the website’s origin is certified by an unusual source. CAge also asks the user

if they want to send the violation to the browser maker for further inspection. This feedback

allows the browser to potentially verify the authenticity of the certificate via other means,

while respecting the user’s privacy. The browser may use techniques such as multi-path
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probing [129] to aid the user in authenticating the domain.

4.5.3 Updating

Keeping the rule set accurate and current is crucial to keeping a low false positive rate

and avoiding user habituation to clicking through warning messages. The CAge rule set

must be updated as CA policies change and new CAs emerge. Luckily, browser makers

are in a good position to provide updates to users, based on newly discovered certificates

reported collectively by users. Updates to the CA signing rules can be pushed to users

through standard browser update mechanisms.

Any update mechanism based on inferred rules runs the risk of being gamed by attackers;

for example, if an attacker compromises a CA that is not currently allowed to sign for

a domain in the .com TLD, the attacker can request that the CA sign a legitimate .com

domain, owned by the attacker. Under a naive rule set update approach, inferred TLD

rules will soon change to allow this CA to sign for the .com TLD, and the attacker can

use the previously compromised CA to sign for other .com domains fraudulently. This

means the browser maker cannot simply look to long-standing valid certificates in order

to validate new TLD rules once an attacker knows of the system. Although the browser

maker could query certificate authorities about the legitimacy of signings and changes to

rules, attackers can still increase the scope of all publicly-signing intermediate certificate

authorities. A CA might not turn away business for a domain simply because they have

not signed for the top-level domain in the past. While CAge would still protect users from

illegitimate certificates signed by certificate authorities that do not sign publicly (including

private organizations, root CAs and inactive intermediates), inferred TLD updates would

severely increase the attack surface.

For this reason, the CAge rule set is updated on a per domain basis. When a domain

exception is reported, the domain is added to a “watchlist” and is manually verified before the

specific certificate’s domain is whitelisted and pushed as an update. We show in Section 4.6.2
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that these updates are infrequent and thus allow manual inspection and verification.

New CAs, without any recorded behavior, may specify their intended scope to the

browser maker in advance to avoid the whitelist update mechanism for their domains. While

this might be seen as an additional hurdle for new CAs entering the market, ultimately, the

authority to say whether or not a particular CA is trusted lies with the browser.

4.6 Evaluation

In this section, we quantitatively evaluate CAge’s performance in experiments based on

real world data.

4.6.1 Attack Surface Reduction

CAge reduces the overall attack surface by restricting the scope of certificate authorities,

but a metric is required to evaluate the effectiveness of CAge quantitatively and to compare

various rule inference algorithms. Our goal is to quantify the relative risk of damage that

could be caused by an attacker-compromised CA. Treating each signed valid domain as a

protected entity, we approximate the attack surface by:

∑
c∈CAs

domains[c]

where domains[c] is the number of domains that a given CA c can sign. Currently, all

CAs can sign for all domains; therefore, domains[c] is equal to the number of signed valid

domains for all c.4 Under the CAge policy that restricts CA scopes by TLD, domains[c]

is the total number of valid domains across all the TLDs that c is permitted to sign. For

example, if a CA is allowed to sign for only .com because they signed for 100 of the 1.3

million .com domains in the dataset, domains[c] for that CA would be 1.3 million.

While this attack surface metric is by no means complete, it does provide a simple and

4There were not any trusted CAs that contained name constraints in the November 2011 scan.
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intuitive first-order approximation that allows us to compare the relative risks of different

CA restriction policies quantitatively.

As mentioned in Section 4.5.1, a very simple approach would be to only allow a CA to

sign for top-level domain names the CA had previously signed, the TLD policy. Applied to

our data set, the TLD policy results in a 75% decrease in attack surface than current practice.

We can improve this result by modifying the inference procedure to only allow a CA to

sign for domains in a TLD if it has previously signed for a minimum threshold t of unique

domains in that TLD. Domains signed by CAs that do not meet the policy cut-off can either

be viewed as suspicious anomalies or manually inspected, labeled as an exception, and

whitelisted within the database. Figure 4.3 provides a visualization of this attack surface for

two policies. When requiring the CA to sign for 25 domains before allowing authorization

over the complete TLD (t = 25), the attack surface is reduced to 11.1% of the original.

Figure 4.4 shows the attack surface of the TLD policy as it becomes more strict.

CAge may also be evaluated based on its ability to stop recent CA compromises. In the

Comodo attack that occurred in March 2011 [112], an attacker issued fraudulent certificates

for .com domains signed by “CN=UTN-USERFirst-Hardware”, a relatively large CA which

had signed over 25,000 other .com certificates previously. Due to these signing practices,

CAge would have been unable to protect against the Comodo attack. Similarly, all but two

of the top 20 CA certificates have signed domains from over 100 unique TLDs, limiting the

usefulness of restricting these large CAs to the TLDs they currently sign.

However, the vast majority of CAs do not sign for such a diverse market allowing CAge

to provide protection during a CA compromise. For instance, CAge would have detected

the DigiNotar compromise. The EFF’s SSL Observatory [49] data, which was collected

a year before the attack, shows that the issuer of the fraudulent *.google.com certificate,

“DigiNotar Public CA 2025” [8], had not signed certificates for any .com domains. Had

CAge been implemented at the time, it would have prevented the attacker from using the

*.google.com against Internet users in Iran.
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Figure 4.4: Attack Surface Metric — HTTPS PKI Attack Surface under the basic TLD
rule inference policy. Threshold refers to the number of domains signed before
the TLD is added to the CA’s scope. Even restricting CAs to the TLDs they have
previously signed reduces the attack surface to 25% of the status quo.

4.6.2 CAge Durability

Although the attack surface metric provides a quantifiable goal, it should not be the

only factor when considering the inferred rule set. The minimum attack surface can be

attained by pinning every domain to the CA that signed their certificate in the data set.

This policy would provide the minimum attack surface, but the constraints would be very

brittle and CAge would require a very large rule set that needed to be updated frequently. In

addition, excessive false positives are not tolerable in any system, as users learn to ignore

warnings [123]. Simply finding the policy with the minimum attack surface is not enough;

CAge should attempt to capture the CA’s de facto policies to avoid brittleness of the rule set.

In order to test the durability of our inferred rules, we acquired a second data set in April

2012 (6 months after the original scan) to test the viability of our solution. We found that

the large majority of domains observed in newly issued certificates conformed to our rules,

supporting our hypothesis that the TLDs that CAs sign for are generally stable. The basic

TLD policy with t = 1 accommodated 99.84% of new certificates. Table 4.1 summarizes
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TLD Violating Violating Total Issued % Violated
CAs Domains Domains

com 10 27 519174 0.005
org 12 22 50531 0.044
net 14 28 46300 0.060
de 8 30 34160 0.088
uk 5 8 33113 0.024
jp 3 4 30699 0.013
au 3 3 21768 0.014
edu 2 3 20498 0.015
nl 6 20 19076 0.105
ca 5 6 16716 0.036

Total 152 1506 937137 0.161

Table 4.1: TLD rule violations — For the top 10 TLDs, we evaluated the certificates seen
in April 2012 that contained domains violating inferred rules generated from
data collected in October 2011 using a TLD policy with t = 1. Violating CAs
represents the number of CAs that were not previously seen signing for this
TLD in October 2011, but were observed signing for it in April 2012. Violating
Domains represents the number of unique domains issued by Violating CAs in
that TLD, while total issued domains represents the number of domains observed
in new certificates seen in April. As shown by the percentage violation (domains
/ total issued domains), the vast majority of new certificates conform to the
generated rules.

new certificates for domains in the top 10 TLDs. Our results show that only a handful of CAs

signed for TLDs they had not previously signed. While several smaller and less stable TLDs

had certificates with domains that violated our previous rules, all of the violations could be

fixed by simply whitelisting the 1506 domains in the browser’s rule set. CAge required an

average of fewer than 10 domain updates per day over the 6 month period. Using a more

restrictive TLD policy with t = 25 results in 10,035 violating domains (98.93% conformed).

4.7 Implementation

We have developed a CAge prototype in the form of a Firefox extension. We imple-

mented the simple lenient policy, described in the previous section, in which certificate

authorities can sign for any TLD they have previously signed. Better policies could be
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obtained, but this simple policy is unlikely to produce many false positives, and achieves

good theoretical results. The CAge extension downloads the current set of rules and known

CAs from our CAge server over HTTPS upon installation. CA certificates are identified

by their SHA1 fingerprint and rules are stored as regular expressions within the extension.

When the browser is presented a TLS certificate, the browser forwards it to the CAge

extension where it is matched against the current rules database. In addition to the standard

rules table enabling the issuer to sign certificates, the CAge extension also contains tables for

globally blacklisted CAs, locally ignored hosts, local rule sets, a local certificate white list,

and a session certificate white list. These tables allow for the customization and protection

against known threats to which users have grown accustomed.

If the extension cannot find an appropriate rule for the incoming certificate, it stops the

connection and sends a request for updates to the CAge server over HTTPS5. The request

contains a time stamp of the last extension update and synchronizes with the server if it is out

of date. If the extension is still unable to resolve the certificate, it prompts the user, asking if

they would like to query the CAge server with the domain name for more information.

The CAge prototype appears to be non-intrusive in our daily use. It has been used for

normal browsing for four months and we have observed zero false positives while using the

TLD policy with a threshold of one.

4.8 Conclusion

In this chapter, we presented CAge, a mechanism for inferring TLD-based restricted

scopes for HTTPS CAs. Based on the empirical observation that the vast majority of

browser-trusted CAs do not utilize their technically unconstrained signing power, we argue

that each CA should be restricted to signing for domains within a limited set of TLDs. We

show how such restrictions can be realized in practice by profiling past CA signing behavior,

and we find that such an approach would dramatically reduce the attack surface of the

5The CAge extension uses a pinned certificate to avoid MITM attacks using fraudulent certificates
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HTTPS PKI with a low rate of false alarms over time.

While browsers have a positive record of revoking compromised CA certificates once a

breach is discovered, we believe much more can be done to proactively mitigate the damage

caused by attacks against CAs and to provide defense-in-depth to the HTTPS PKI. Given

the relative ease with which CAge could be deployed by browsers, we strongly encourage

browser developers to adopt this approach to help combat the growing threats that HTTPS

users face.
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CHAPTER V

Let’s Encrypt

5.1 Introduction

HTTP has seen tremendous success, but it is inherently insecure. HTTP is vulnerable to

network attacks, including session hijacking, surveillance, and fine-grained censorship [57,

59,108]. HTTPS defends against network attackers by providing confidentiality, authenticity,

and integrity to HTTP. Although there have been several vulnerabilities found within the

protocol and implementations of TLS recently [5, 20, 40, 96, 115], by far the largest problem

with HTTPS is it has not seen universal adoption. We found that only 12.9% of sites had

enabled HTTPS with a trusted certificate in our scans of the Alexa Top 1 million [43].

HTTPS’s relatively small deployment can be attributed to pure economics. The cost and

benefits are borne upon two different parties. System administrators bear the cost of

deploying TLS while the benefits are seen by users who are often unable or ill-equipped

to modify their behaviour based on the security of the server. Further, like most security

features, the value of TLS deployment is difficult to determine. The risk and cost of an

attack is not easily estimated. We can attempt to fight economics and continue to try and

force system administrators to internalize the benefits of HTTPS deployment, or we can

yield to market forces and simply reduce the costs of deploying HTTPS. Through surveys

of system administrators, we discovered two primary impediments to deploying HTTPS:

the financial cost of the TLS certificate and the system administrator time necessary to setup
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HTTPS. Ideally, system administrators should not feel there is a cost at all. In order to see

wide-scale adoption of HTTPS and the long-term security of the Internet, we must reduce

the cost of deployment to virtually zero. Configuring TLS on servers should be effortless

for system administrators and financially free.

Reducing the monetary price of certificates depends on reducing the cost of issuing

certificates. If we assume a perfectly competitive market, or a benevolent certificate authority,

the certificate authority should charge the marginal cost of issuing the certificates. There are

many fixed costs for certificate authorities. The CA must buy the required infrastructure

and pay for the yearly audits, but the marginal cost of issuing each certificate is extremely

small. Issuing 1,000,000 certificates is not much more expensive than issuing 100. The

marginal cost of the CA only encompasses the validation of the domain names and the

necessary increased bandwidth. If the validation mechanism can avoid human interaction,

the marginal cost of issuing a certificate is practically zero. In Section 5.2.2 we evaluate the

current validation mechanisms in use by CAs.

Reducing the system administrator time necessary to manage HTTPS is more compli-

cated. There are several steps to setting up HTTPS, and setting up HTTPS varies across

devices. First, system administrators must figure out that they need a certificate and navigate

the convoluted market; snake-oil terminology is rampant, and prices of certificates range

from free to several hundreds of dollars. The user will have to generate a private key, gener-

ate a certificate signing request (CSR), and perform the verification steps required by the CA.

Then the user must figure out how to configure their server with the certificate and certificate

chain file to deploy HTTPS. All of these steps involve esoteric commands and they often

require the user to blindly follow a tutorial. This process takes system administrator’s over

an hour to attain and install a certificate on their system, a task which generally must be

completed every year. If the system administrator forgets to renew their certificate, users

will encounter certificate warnings when accessing the site, driving away business.

Assuming the user does manage to deploy HTTPS, they often do so incorrectly. Sites
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are often misconfigured and do not support the latest protocol and cipher suites. We

discovered that only 45% of server certificate chains were optimally configured and that

12.7% of sites serving once-valid browser-trusted certificates are misconfigured in a manner

such that they are inaccessible to some modern clients [43]. We found that of the Alexa

Top 1 Million domains that support HTTPS, 40.9% only support TLS 1.0 [40], and we

found that only 44% of connections supported forward secrecy [96]. Supporting the latest

protocols and cipher suites is important to maintain the security of HTTPS connections.

Furthermore, vulnerabilities are regularly discovered within TLS that necessitate server

modification. [5, 40, 96]. In our analysis of Heartbleed, we experimented with system

administrator notifications and found them surprisingly effective. We observed a 47%

increase in patching over the control group. System administrators are willing to patch,

though they may need prompting either because they are unaware that they are vulnerable

or because they may need detailed instructions. The servers themselves should be able to

provide updates to the configurations based on newly publicized vulnerabilities in the same

way that users can receive security updates from their package managers. Setting up and

deploying HTTPS safely and correctly cannot be laborious.

In order to achieve our goals, humans must be removed from both the CA and client

processes. Everything must be automated: attaining the certificate, the initial HTTPS setup,

renewal, and the necessary configuration updates. Current certificate authorities generally

charge for the service and we must rethink their process to create an equivalent service that

is completely automated. In this Chapter, we present Let’s Encrypt, the first completely

automated and free certificate authority. Through the development of a new protocol, ACME,

we have developed a method to allow users to deploy HTTPS with a single command, and

we have reduced the time taken to deploy HTTPS from an hour down to 30 seconds.

Let’s Encrypt is run by the Internet Security Research Group (ISRG), and it launches to

the public the week of November 16, 2015.

In Section 5.2, we describe the current process for validating, attaining, and installing a
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certificate for HTTPS. In section 5.3, we will describe ACME, a new protocol under IETF

review that automates all aspects of certificate authorities. In Section 5.4, we describe and

discuss the merits of the challenges. In Sections 5.5, we attempt to solve other long-standing

HTTPS PKI issues. Finally, in Section 5.6, we discuss the current ACME implementations

used by Let’s Encrypt, and we describe the process of becoming a CA in Section 5.7.

5.2 Status Quo

Setting up TLS for a web server is surprisingly difficult. Users generally have to rely

on a manual that is fraught with esoteric terms and instructions. In general, the first step is

to find a trusted “certificate authority,” which in and of itself can be confusing. Prices of

certificates can range from free to thousands of dollars, and CA websites are notoriously

plastered with spurious marketing. Assuming that the user has decided on a CA, the CA

generally requires that the user first register and submit all of their information. The CA

will then request a certificate signing request (CSR). The user must figure out that they need

to generate a public/private key pair and the associated CSR, generally through command

line tools.

Next, the certificate authority needs to prove that the user has authority over the domain.

Typically, this is done by sending a special token via email to the WHOIS contact. The user

will respond to the email and then wait a few minutes to a few hours for the final authorization.

Once authorization is complete, most certificate authorities will require a form of payment

before sending instructions for downloading the certificate and its associated certificate

chain.

Once the user has downloaded the necessary files, they will again follow another guide

for setting up TLS on their specific web server. This requires enabling the necessary modules

for HTTPS, making the web server listen on port 443, installing the certificates appropriately,

and configuring TLS. The system administrator must determine which protocols should

be allowed and which cipher suites should be supported. The guides often fail to provide
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instructions for desirable optional features like HSTS, OCSP stapling, and performance

improvements.

In order to maintain security, system administrators must also keep their software up-to-

date and respond to the latest TLS protocol vulnerabilities. Fixing the latest vulnerabilities

often requires more than a patch. Oftentimes the system administrator has to reconfigure

the web server. In the case of Heartbleed, this required updating OpenSSL, revoking the

original certificate (which may have required paying more money), generating a new key,

revalidating the domain, and retrieving and installing the new certificate.

At the very least, the system administrator must repeat the process before the certificate

expires. Most certificates have a validity period of between one and three years, yet many

system administrators do not renew their certificates on schedule. In our analysis from

Chapter II, we found that 20% of expiring certificates were removed retroactively.

5.2.1 Certificate Marketing

Obtaining a TLS certificate can be a harrowing experience. As a system administrator

first entering the market, it can be difficult to even determine which kind of certificate you

need. Prices vary so drastically from certificate authority to certificate authority that it can be

hard to believe that you are buying the same product. As one example, Symantec, the second

largest certificate authority, sells wildcard certificates for $1999 while StartCom offers a

functionally identical product for $60 [121, 124]. Certificate authorities rope customers

in with rhetoric, snake oil and brand name in order to sell their certificates. Table 5.1 and

Table 5.2 show two examples of CAs’ different marketing approaches. Symantec, like

many other commercial CAs, has a few “value added” features and prominently promotes

gimmicks. One of these items, “trust seals,” CAs claim fosters greater assurance that the

business is trustworthy. “Trust seals” or “SSL seals” are simply images you can display on

your site. The image links to the CA website where it will state that the domain is trusted.

From a security perspective, trust seals are effectively useless [33, 38]. An attacker can copy
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the seal image, place it on their website, and link the seal to an attacker controlled phishing

site. A user who is savvy enough to know the exact website a trust seal is supposed to link

to would presumably also be savvy enough to simply check the certificate. Another CA

tactic is to offer very large monetary warranties. However, these warranties are not for the

domain owner, but instead are intended for the end-user [2]. If the end-user suffers fraud

from visiting a site signed by the certificate, they are entitled to the warranty money if they

can prove negligence by the CA. The warranty can only be collected in cases where the

cert requester is an attacker. Legitimate sites do not benefit from purchasing a high-value

warranty. Most end-users are completely oblivious to which CA signed the site they are

currently viewing and they certainly do not know about the various warranty policies and

the amounts.

Often certificate marketing is wrong or misleading. GoDaddy says they offer the

“World’s Strongest Encryption.” “Our SSLs use SHA-2 and 2048-bit encryption to stop

hackers in their tracks. That’s the strongest encryption on the market today.” [16] This level of

encryption is actually the minimum allowed by the CAB Forum Baseline Requirements [32].

The statement also implies a false sense of security. Non-cryptographic attacks are extremely

prevalent, and the industry standard 2048-bit RSA encryption will not affect such an

attack. Symantec also advertises the “strongest security” under the heading of elliptic curve

cryptography (ECC). Though ECC is beneficial for its performance and relatively small

key size, the strength of the security depends on its curve and key size, and is thought to be

comparable to RSA for certain choices of key size.

Symantec takes advantage of the marketing and charges an additional ∼ $600 for ECC’s

“security”. This indicates a lack of market competition. The marginal cost of signing an

ECC certificate is the same as signing an RSA certificate; it does not require any additional

validation on the part of the CA. An efficient market would charge the same price for these

two services. In the current certificate market, CAs sell not only the certificate, but also the

branding and imagery; many commercial CAs are in the business of security theater.
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Symantec SSL Secure Site Secure Site Pro Secure Site with EV Secure Site with EV Pro Secure Site Wildcard

Price $399 $995 $995 $1499 $1999
Trust Mark Yes Yes Yes Yes Yes
ECC: Strongest Security Yes Yes
Warranty $1,500,000 $1,500,000 $1,750,000 $1,750,000 $1,500,000
Green Address Bar Yes Yes
Critical Vulnerability Scan Yes Yes Yes

Figure 5.1: Symantec Price Comparison — Symantec charges $1500 more for wildcard
certificates, which do not require any additional checks. Symantec also charges
an additional $600 for ECC certificates. Note: Symantec also has support
features that come with every certificate. Prices current as of 10/5/2015 [124]

StartCom Free Identity Verified Organization Verified Extended Validation

S/MIME Client + Auth Yes Yes Yes Yes
SSL/TLS Server Yes Yes Yes Yes
SSL/TLS XMPP Yes Yes Yes Yes
128/256-Bit Encryption Yes Yes Yes Yes
Renewable Yes Yes Yes Yes
Vulnerability Detection Yes Yes Yes Yes
Multiple Domains (UCC) Yes Yes Yes
Multiple Emails (S/MIME) Yes Yes Yes
Wild Card Capability Yes Yes Yes
Server-Client Authentication Yes Yes Yes
Identification Details Yes Yes Yes
Organization Details Yes Yes
Object Code Signing Yes Yes Yes
Time-Stamping Yes
Microsoft Kernel-Code Yes
Green Trustbar (EV) Yes
Validation Level Class 1 Class 2 Class 2/3 Extended
Certificate Limitations Unlimited Unlimited Unlimited Unlimited
Certificate Validity 1 Year 2 Years 2/3 Years 2 Years
Price $0 $59.90 $119.80 $199.90

Figure 5.2: StartCom Price Comparison — StartCom avoids marketing speak and uses
technically correct terms. Although the description is more verbose, all of the
limitations of the certificates are clearly stated. StartCom offers free certificates
in some cases, but does charge $25 if the certificate needs to be revoked. Prices
current as of 10/5/2015 [121]
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This presents another motivation for automating the certificate issuance process. We

can more clearly demonstrate the equivalence of the end product and remove the predatory

marketing. The lock-icon in the user’s browser is the same for every certificate authority.

This perfectly competitive end-product should cause CAs to compete on price.

5.2.2 CA Validation

For CAs, there is no incentive to perform any additional checks or take on any additional

cost associated with superior security practices. The security of the system is only as good

as the security of the least effective CA, as each CA can sign for any domain. Naturally, this

causes CAs to race to the bottom in terms of security.

In order to stop the deterioration of the verification practices, tiered validation standards

have arisen.

Domain Validation (DV) The CA guarantees only that the certificate requester owns the

domain for which they are requesting. The domain is not required to be tied to any

real-world identity. From a user perspective, this is aimed to verify that the user is

connected to the domain entered into their address bar, but does not protect against

phishing attacks.

Organization/Identity Validation (OV) The CA has verified that the certificate requester

owns the domain and the requester can be tied to a real-world entity. The CA

must verify all additional information located within the subject of the certificate.

Unfortunately, from a user perspective, this class of certificate is rarely recognized.

It appears the same as a DV certificate within browsers; the certificate can only be

recognized by manually investigating the subject field of the certificate.

Extended Validation (EV) Extended validation (EV) was introduced in 2007 as a direct

response to the collapsing standards of general certificate verification. EV’s goal is
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to identify the legal entity that controls a website [12]. EV appears as an additional

green bar within browsers, giving users a stronger indicator of trust.

Although the certificate validation tiers exist, the value of them is debatable. Even

experts in the field have a difficult time distinguishing between OV and DV certificates [23].

Distinguishing between organization validation and domain validation certificates requires

manual inspection. Even the value of EV certificates have been called into question, as users

do not necessarily know which sites intend to have EV certificates and users have not been

widely educated on the differences [70].

Domain validation is the largest market and represents the baseline for deploying HTTPS

on the Internet [23]. As such, we will be primarily focusing on this form of validation.

5.2.3 Existing DV Methods

The current CAB Forum Baseline Requirements do not explicitly restrict how the CA

verifies domain names [32]. The CAB Forum’s Domain Validation Working Group is

attempting to remedy this by formalizing the various techniques. Through reviewing the

major commercial CAs practices and the proposed standards, there are three main techniques

used to perform online domain validation (DV) for system administrators today [15, 35, 56,

67, 97, 126].

Email Validation By far the most popular method, email validation involves sending a

code to a protected email address associated with the domain name. This includes the

technical and administrative contacts found in the WHOIS lookup of the domain, along

with the following prefixes: admin, administrator, postmaster, hostmaster, and

webmaster. If the certificate requester can provide the token back to the CA, the

requester is assumed to have control over the domain.

DNS Validation making a change to information in a DNS record for the Authorization

Domain The certificate requester is required to make a change to information in a DNS
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record. Exact techniques vary by CA. The CA may require something as simple as

publishing a special TXT record, or they may obligate something more complex such

as requiring a chosen subdomain to advertise a CNAME record for a CA controlled

domain.

HTTP Validation The certificate requester is required to place a text file at a specified

location on the web server with a token that is tied to the request. The CA will validate

that the file exists in the proper format, which lends evidence to the requester owning

the domain.

All three methods are vulnerable to compromise of the DNS system, or MITM attacks

of the service. There are two general problems with the validation methods in use today.

First, each one of the methods provides slightly different assurances and thereby expands

the attack surface. Second, the challenges presented are unique to each CA. This makes

it extremely difficult to understand the ramifications for system administrators of different

configurations.

Email validation is the most popular method, perhaps because it requires the least amount

of technical sophistication. Its security leaves much to be desired. Email validation requires

that domains protect and maintain ownership over several email addresses of which they

might not be aware. Exacerbating the problem, CAs have been found in clear violation of

the approved dictated policies [32, 97] and accept their own unique set of email addresses as

authoritative. Given that it is impossible to enumerate over all of the CAs and determine

their acceptable validation email prefixes, administrators must protect all email addresses

that may infer any sort of authority. There have been numerous documented cases of

people attaining certificates for domains they do not own. Zusman famously attained a

certificate for live.com, a Microsoft owned email service, by registering for the name

SSLCertificates@live.com [134]. Zusman only had to find one CA out of the thousands

that would accept that email as valid in order to attain a certificate.
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In addition to requiring the system administrator to protect the accounts on the mail

server, email validation may be vulnerable to passive network attacks due to a lack of

STARTTLS support on the SMTP server. We found only 52% of SMTP servers supported

encryption through STARTTLS [41]. Attackers who are able to view the traffic can respond

with the correct token for their session with the CA.

DNS validation is popular amongst web hosting providers, but is seldom used in practice

by people running their own web servers. DNS validation aims to prove that the certificate

requester currently has control over the domain name system and that the client could direct

users to any arbitrary server. In order to be affective, it requires all of the domain’s DNS

records to be protected from unauthorized modification.

The HTTP validation method verifies that the certificate requester has privileges to add a

file to a presumably protected directory on the server at the requested domain. Although

this verification method is easily performed and can be automated, this validation method

requires that the server administrators maintain proper control over content posted to the

server. Mismanaged servers or vulnerabilities that allow attackers to create content in

arbitrary locations can circumvent this verification and allow them to attain unauthorized

certificates. Since there is not a standardized mechanism, it is impossible to know the exact

directories that must be protected.

Given that each CA’s authority is flat, i.e. every certificate authority can sign for every

domain, the proof of domain ownership should also be agreed upon and regulated. This

minimizes the attack surface of the verification process itself, while also allowing concerned

parties to know exactly what is expected during verification of domain ownership. The

CAB Forum has recently begun discussing more systematic techniques to prove domain

ownership [15]. However, these are still being actively revised, have not yet been adopted,

and they offer only guidelines.

96



5.3 ACME

In order to achieve our goals of widespread HTTPS adoption, the entire process of

acquiring and installing a certificate must be automated. As we discovered in Section 5.2,

the process of domain validation can be completely automated using existing techniques,

but no one has automated the full process.

The Automated Certificate Management Environment (ACME) [27] is a protocol we have

developed that allows for automated certificate issuance, renewal, and revocation. ACME

is a protocol over HTTPS and JSON, making heavy use of JSON Web Signatures [72]

for integrity and authentication. For purposes of the protocol, the client is the certificate

requester and the server is the certificate authority. The protocol is an IETF Internet draft

and is being used by the Let’s Encrypt CA [4]. We hope that through standardization we

can enable many CAs and client software to interoperate, increasing the relative value of

both client development and CA adoption. The latest version of the draft can be found at

https://tools.ietf.org/html/draft-ietf-acme.

5.3.1 Protocol Overview

ACME allows a client to perform all of the typical certificate management functions

using JSON messages over HTTPS. ACME is meant to mimic a traditional CA, in which

a user creates an account, authorizes identifiers (domains) with the account, and requests

certificate issuance.

ACME accounts are represented as a public/private key pair, referenced as the account

key. Identifiers are added to an account by authorizing the account key for a given domain.

Certificate issuance and revocation are authorized by a signature with the account key.

The first phase of ACME is for the client to register with the ACME server. The client

generates an asymmetric key pair (the account key) and associates this key pair with contact

information by signing it. The server acknowledges the registration by replying with a

registration object echoing the client’s input.
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Before a client can issue certificates, it must establish an authorization with the server

for an account key pair to act for the identifier(s) that it wishes to include in the certificate.

To do this, the client must demonstrate to the server both (1) that it holds the private key of

the account key pair, and (2) that it has authority over the identifier being claimed.

Proof of possession of the account key is built into the ACME protocol. All messages

from the client to the server are signed by the client, and the server verifies them using the

public key of the account key pair.

To verify that the client controls the identifier being claimed, the server issues the client

a set of challenges. Because there are many different ways to validate possession of different

types of identifiers, the server will choose from an extensible set of challenges that are

appropriate for the identifier being claimed. The client responds with a set of responses

that tell the server which challenges the client has completed. The server then validates the

challenges to check that the client has achieved the authorization.

Once the client has authorized an account key pair for an identifier, it can use the key

pair to authorize the issuance of certificates for the identifier. The client sends a PKCS#10

Certificate Signing Request (CSR) to the server (indicating the identifier(s) to be included in

the issued certificate) and a signature over the CSR by the private key of the account key

pair.

If the server agrees to issue the certificate, then it creates the certificate and provides it

in its response. The certificate is assigned a URI, which the client can use to fetch updated

versions of the certificate.

Revocation is performed by having the client send a revocation request signed by one of

two keys, either the current account key that achieved authorization over the identifiers, or

the private key contained within the certificate. The server indicates whether the request has

succeeded.

ACME is defined with enough flexibility to handle different types of identifiers, but the

primary use case addressed by ACME is where domain names are used as identifiers. The
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use of ACME for other protocols will require further specification, in order to describe how

these identifiers are encoded in the protocol and what types of validation challenges the

server might require.

Next, we will present how the protocol is structured and then describe the specific

messages.

5.3.2 Protocol Elements

ACME is structured as a RESTful protocol [53]. Each ACME function is accomplished

by the client sending a sequence of HTTPS requests to the server carrying JSON messages.

All ACME requests with a non-empty body are encapsulated in a JSON Web Signature

(JWS) object [72], signed using the account key pair. The server verifies the JWS before pro-

cessing the request. Encapsulating request bodies in JWS provides a simple authentication

of requests by way of key continuity.

Note that this implies that GET requests are not authenticated. Servers cannot respond

to GET requests for resources that might be considered sensitive.

An ACME request carries a JSON dictionary that provides the details of the client’s

request to the server. In order to avoid attacks that might arise from sending a request object

to a resource of the wrong type, each request object has a “resource” field that indicates

what type of resource the request is addressed to, as defined in Table 5.1.

Resource type “resource” value

New registration new-reg
Recover registration recover-reg
New authorization new-authz
New certificate new-cert
Revoke certificate revoke-cert
Registration reg
Authorization authz
Challenge challenge
Certificate cert

Table 5.1: ACME Resources — ACME resources and their resource values.
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For the “new-X” resources in Table 5.1, the server can only have one resource for each

function. This resource may be addressed by multiple URIs, but all must provide equivalent

functionality.

ACME uses different URIs for different management functions. Each function is listed

in a directory, along with its corresponding URI, so clients only need to be configured with

the directory URI.

The “up” link relation is used with challenge resources to indicate the authorization

resource to which a challenge belongs. It is also used with certificate resources to indicate a

resource from which the client may fetch a chain of CA certificates that could be used to

validate the certificate in the original resource.

Figure 5.3 illustrates the relations between resources on an ACME server.

Action Request Response

Request Challenges POST new-reg 201→ reg
Answer Challenges POST new-authz 201→ authz
Poll for Status GET authz 200
Request Issuance POST new-cert 201→ cert
Check for New Cert GET cert 200

Table 5.2: Expected ACME Flow — Requests and Responses are over HTTPS. “→” is a
mnemonic for a Location header pointing to a created resource.

Table 5.2 illustrates a typical sequence of requests required to establish a new account

with the server, prove control of an identifier, issue a certificate, and fetch an updated

certificate some time after issuance.

The remainder of this section provides the details of how these resources are structured

and how the ACME protocol makes use of them.

5.3.3 Directory

In order to help clients configure themselves with the right URIs for each ACME

operation, ACME servers provide a directory object. This should be the root URL with
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Directory 

new-reg new-authz new-cert revoke-cert 

reg authz 

challenge 

“next” “next” 

cert 

cert-chain 

“up” “up” 

“revoke” 

Figure 5.3: ACME Resource Relationships — This figure illustrates the relations between
resources on an ACME server. The solid lines indicate link relations, and the
dotted lines correspond to relations expressed in other ways, e.g., the Location
header in a 201 (Created) response

which clients are configured. It is a JSON dictionary, with keys that are the “resource” values

listed in Table 5.1 and with values that are the URIs used to accomplish the corresponding

function.

Clients access the directory by sending a GET request to the directory URI. Once the

client is configured, it can proceed onto registration.

5.3.4 Registration

An ACME registration resource represents a set of metadata associated with an account

key pair. Registration resources have the following structure:
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key (required, dictionary): The public key of the account key pair, encoded as a JSON

Web Key (JWK) object [71].

contact (optional, array of string): An array of URIs that the server can use to contact

the client for issues related to this authorization. For example, the server may wish to

notify the client about server-initiated revocation.

agreement (optional, string): A URI referring to a subscriber agreement or terms of ser-

vice provided by the server. Including this field indicates the client’s agreement with

the referenced terms.

authorizations (optional, string): A URI from which a list of authorizations granted to

this account can be fetched via a GET request. The result of the GET request is a

JSON object whose “authorizations” field is an array of strings, where each string is

the URI of an authorization belonging to this registration. The server includes pending

authorizations, and does not include authorizations that are invalid or expired.

certificates (optional, string): A URI from which a list of certificates issued for this ac-

count can be fetched via a GET request. The result of the GET request is a JSON

object whose “certificates” field is an array of strings, where each string is the URI of

a valid certificate.

5.3.5 Authorization

An ACME authorization object represents an account’s authorization over an identifier.

An authorization object includes the identifier, which challenges are required or were used

to attain authorization, as well as several metadata fields.

identifier (required, dictionary of string): The identifier associated with the authoriza-

tion. The identifier must have the following two fields:

type (required, string): The type of identifier. In the case of HTTPS, this is dns.

value (required, string): The identifier itself.
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status (optional, string): The status of this authorization. Possible values are: unknown,

pending, processing, valid, invalid, and revoke. If this field is missing, then

the default value is pending.

expires (optional, string): The date after which the server will consider this authorization

invalid, encoded in the format specified in RFC 3339 [76].

challenges (required, array): The challenges that the client needs to fulfill in order to

prove possession of the identifier (for pending authorizations). For final authorizations,

the challenges that were used. Each array entry is a dictionary with parameters required

to validate the challenge.

combinations (optional, array of arrays of integers): A collection of sets of challenges,

each of which would be sufficient to prove possession of the identifier. Clients

complete a set of challenges that covers at least one set in this array. Challenges are

identified by their indices in the challenges array. If no combinations element is

included in an authorization object, the client completes all challenges.

All of the information contained within the Authorization resource is designed to be pub-

lic information in order to allow the CA to publish it for transparency purposes. Section 5.4

describes and compares ACME challenges for dns identifiers.

5.3.6 Certificate Issuance

The holder of an authorized key pair for an identifier may use ACME to request that a

certificate be issued for that identifier. The client makes this request by sending a POST

request to the server’s new-certificate resource. The body of the POST is a JWS object

whose JSON payload contains a Certificate Signing Request (CSR) [105]. The CSR encodes

the parameters of the requested certificate; authority to issue is demonstrated by the JWS

signature with an account key, from which the server can look up related authorizations.

The new-cert request contains only the CSR.

103



csr (required, string): A CSR encoding the parameters for the certificate being requested.

The CSR is sent in the Base64-encoded version of the DER format.

The CSR encodes the client’s requests with regard to the content of the certificate to be

issued. Of course, the values provided in the CSR are only a request and are not guaranteed.

The server or CA may alter any fields in the certificate before issuance. For example, the CA

may remove identifiers that are not authorized for the account key that signed the request.

It is up to the server’s local policy to decide which names are acceptable in a certificate,

given the authorizations that the server associates with the client’s account key. For instance,

many CAs certify wildcard certificates after verifying the underlying domain name, without

the “*” DNS label. Future ACME servers may consider that client authorized for a wildcard

domain. It is important, though, that servers not extend authorization across identifier types.

Just because a client is authorized for example.com, does not mean the client has control

over the IP address that example.com points to. CAs must authorize the identities contained

within the certificate.

If the CA decides to issue the certificate, the server will create a new certificate resource

and return a URI for it in the Location header field of a 201 (Created) response.

It may also include the certificate in the body of the response, if it is available. Generally

though, the client should retrieve the certificate with a GET request to the certificate URI

and poll for the certificate. If the certificate still isn’t available, the server will provide a 202

(Accepted) response and include a Retry-After header to indicate when the server believes

the certificate will be issued. By default, the certificates are encoded in DER, though the

client can request other formats by including an Accept header in the request.

Additionally, in the certificate response, the server provides metadata about the certificate

in the HTTP headers. In particular, the server will include a Link relation header field [103]

with relation “up” to provide the certificate immediately preceding it in the certificate chain.

In order to aid implementations, the certificate resource also contains an “author” relation to

indicate which registration object the certificate was issued.
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Certificate resources always represent the most recent certificate issued for the name/key

binding expressed in the CSR. If the CA allows a certificate to be renewed, then it publishes

renewed versions of the certificate through the same certificate URI.

Clients retrieve renewed versions of the certificate using a GET query to the certificate

URI, which the server should then return in a 200 (OK) response. The server provides a

stable URI for each specific certificate in the Content-Location header field.

To avoid unnecessary renewals, the CA may choose not to issue a renewed certificate

until it receives such a request (if it allows renewal at all). In such cases, if the CA requires

some time to generate the new certificate, the CA will return a 202 (Accepted) response,

with a Retry-After header field that indicates when the new certificate will be available. The

CA may include the current (non-renewed) certificate as the body of the response.

This does present an opportunity for unauthorized parties to prompt unnecessary re-

newals, thus the URIs should be structured as capability URLs [125].

Clients do not need to know whether a certificate URI allows renewals. If the client’s

GET request to the URI doesn’t yield an updated certificate, the client can initiate a new-

certificate transaction to request one.

5.3.7 Revocation

Revocation is performed by the client sending a POST request to the ACME servers

revoke-cert URI. The body of the POST is a JWS object whose JSON payload contains the

certificate to be revoked:

certificate (required, string): The certificate to be revoked, in the Base64-encoded version

of the DER format. Note that this is not PEM, as we use a URI safe Base64-encoding

throughout ACME.

Revocation requests in ACME are slightly different from other ACME requests in that

they can be validly signed with two different keys. It may, of course, be signed with the
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current account key, one that has achieved authorization over all of the identifiers in the

certificate at some point. It may also be signed by the private key of the certificate itself, as

the client will have demonstrated complete control over the certificate.

If the signature is valid, and the server accepts the request, it responds with status code

200 (OK). If the revocation fails, the server returns an error.

5.3.8 Account Recovery

Once a client has created an account with an ACME server, it is possible that the private

key for the account will be lost. The recovery contacts included in the registration allows

the client to recover from this situation, as long as it still has access to these contacts.

By “recovery,” we mean that the information associated with an old account key is bound

to a new account key. When a recovery process succeeds, the server provides the client with

a new registration whose contents are the same as the base registration object—except for the

“key” field, which is set to the new account key. The server reassigns resources associated

with the base registration to the new registration (e.g., authorizations and certificates). The

server should delete the old registration resource after it has been used as a base for recovery.

In addition to the recovery mechanisms defined by ACME, individual client implemen-

tations may also offer implementation-specific recovery mechanisms. For example, if a

client creates account keys deterministically from a seed value, then this seed could be

used to recover the account key by re-generating it. Or an implementation could escrow an

encrypted copy of the account key with a cloud storage provider, and give the encryption

key to the user as a recovery value.

When implementing any recovery mechanism, it is important to remember that ACME’s

security is only as good as its weakest link. The security of the particular adopted medium

must be fully analyzed.
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5.3.8.1 Contact-Based Recovery

In the contact-based recovery process, the client requests that the server send a message

to one of the contact URIs registered for the account. That message indicates some action

that the server requires the client’s user to perform, e.g., clicking a link in an email. If

the user successfully completes the server’s required actions, then the server will bind the

account to the new account key.

(Note that this process is almost entirely out of band with respect to ACME. ACME

only allows the client to initiate the process, and the server to indicate the result.)

To initiate contact-based recovery, the client sends a POST request to the server’s recover-

registration URI, with a body specifying which registration is to be recovered. The body of

the request is signed by the client’s new account key pair.

method (required, string): The string “contact”

base (required, string): The URI for the registration to be recovered.

If the server agrees to attempt contact-based recovery, then it creates a new registration

resource containing a stub registration object. The stub registration has the client’s new

account key and contacts, but no associated authorizations or certificates. The server returns

the stub contact in a 201 (Created) response, along with a Location header field indicating

the URI for the new registration resource (which will be the registration URI if the recovery

succeeds).

After recovery has been initiated, the server follows its chosen recovery process, out-of-

band to ACME. While the recovery process is ongoing, the client may poll the registration

resource’s URI for status, by sending a POST request with a trivial body (“resource”:“reg”).

If the recovery process is still pending, the server sends a 202 (Accepted) status code, and a

Retry-After header field. If the recovery process has failed, the server sends an error code

(e.g., 404), and deletes the stub registration resource.
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If the recovery process has succeeded, then the server will send a 200 (OK) response,

containing the full registration object, with any necessary information copied from the old

registration. The client may now use this in the same way as if he had attained it from a

new-registration transaction.

5.3.9 Security and Considerations

ACME is a security protocol designed to verify public keys belonging to the identified

domains. Therefore, insuring the integrity of the process is of utmost importance. Specif-

ically, ACME must verify that only entities with control over identifiers (domains) can

achieve authorization for the identifier. Once an identifier is authorized under an account

key, it must not be possible to improperly transfer the authorization to another account key.

In this section, we will discuss the threat model and possible attacks. We will describe

how ACME achieves its outlined security goals under the proposed threat model.

5.3.9.1 Threat Model

The ACME protocol is performed over three channels.

1. The original ACME channel, the HTTPS channel used to send ACME messages.

2. A domain validation channel, the channel in which challenges are performed to verify

the domain.

3. The contact channel, the channel used to contact the ACME registrar used in account

recovery.

An overview of the channels can be seen in Figure 5.4.

In practice, the risks to these channels are not entirely separate, but they are different

in most cases. Each of the three channels, for example, uses a different communications

pattern: the ACME channel will comprise inbound HTTPS connections to the ACME server,
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Figure 5.4: ACME Channels

the validation channel outbound HTTP or DNS requests, and the contact channel will use

channels such as email and PSTN.

ACME has been designed to be resilient to passive and active attackers on any individual

channel. The protocol has also been designed to be resistant to application-layer MITM

attacks. This has the benefit of allowing ACME CAs the ability to use TLS termination

CDN services, such as CDNs, without having to worry about the intentions or security of the

middleboxes. In addition to the protocol having built-in resistance, ACME does recommend

clients support HTTP public key pinning [118], and that servers emit pinning headers.

Next, we will describe ACME’s anti-replay mitigation. The full analysis of authorizations

and their security can be found in Section 5.4.

5.3.9.2 Replay Protection

As malicious middleboxes are in the ACME’s threat model, replay protection must be

provided. ACME requests have a mandatory anti-replay mechanism. This mechanism is
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based on the server maintaining a list of nonces that it has issued to clients, and requires any

signed request from the client carries such a nonce.

An ACME server must include a Replay-Nonce header field in each successful response

it provides to a client, with contents as specified below. In particular, the ACME server

provides a Replay-Nonce header field in response to a HEAD request for any valid resource.

(This allows clients to easily obtain a fresh nonce.) It MAY also provide nonces in error

responses.

Every JWS sent by an ACME client must include, in its protected header, the “nonce”

header parameter, with contents as defined below. As part of JWS verification, the ACME

server must verify that the value of the“nonce” header is a value that the server previously

provided in a Replay-Nonce header field. Once a nonce value has appeared in an ACME

request, the server must consider it invalid, just as a value it had never issued.

When a server rejects a request because its nonce value was unacceptable (or not present),

it will provide an HTTP status code of 400 (Bad Request), and indicate the ACME error

code “urn:acme:badNonce”.

The precise method used to generate and track nonces is up to the server. For example,

the server could generate a random 128-bit value for each response, keep a list of issued

nonces, and strike nonces from this list as they are used.

The “Replay-Nonce” header field includes a server-generated value that the server can

use to detect unauthorized replay in future client requests. The server should generate the

value provided in Replay-Nonce in such a way that they are unique to each message, with

high probability.

The value of the Replay-Nonce field must be an octet string, encoded according to the

base64url encoding [72]. Clients must ignore invalid Replay-Nonce values.

The “nonce” header parameter provides a unique value that enables the verifier of a JWS

to recognize when replay has occurred. The “nonce” header parameter must be carried in

the protected header of the JWS.
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The value of the “nonce” header follows the same encoding as the “Replay-Nonce”

header. If the header value does not follow the correct encoding, the server must reject the

JWS as malformed.

5.3.9.3 ACME and Authorizations

Anyone can register an account key with the ACME server, but they should be unable

to prove ownership of the domain over the validation channel with the account key. Thus,

all authorizations must guarantee that the identifier owner is in control over the validation,

and that the validation is attached to the account key for which the challenge was issued.

Challenges and how they address the threat model are discussed in Section 5.4.

Essentially, each challenge is tied directly to the account key for which the challenge

was issued. All three of the challenges utilize “authorized key objects” which contain both

the token (specific to the challenge) and the account public key. Thus, the validation channel

is tied both to the account and the particular session within the ACME channel.

The final step that must be guaranteed is the integrity of the account keys themselves.

It should not be possible to transfer authorizations from one account to another outside of

the account recovery mechanisms. Every change of state within ACME is signed by the

owner’s account key, except for the account recovery key and contact mechanisms.

5.4 Identifier Validation Challenges

The cornerstone of the protocol is the set of challenges which prove the account holder

also owns the identifier in question. Traditionally, CAs have relied on a variety of means to

test whether an entity applying for a certificate with a given identifier actually controls that

identifier. ACME attempts to standardize mechanisms that do not require human interaction

or require minimal interaction. For each type of mechanism or challenge, in order for an

entity to successfully complete the challenge, the entity must both:
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• Hold the private key of the account key pair used to respond to the challenge

• Control the identifier in question

In order to ensure these properties, ACME includes an extensible challenge/response

framework for identifier validation. The general structure of Challenge payloads is as

follows:

type (required, string): The type of Challenge encoded in the object.

uri (required, string): The URI to which a response can be posted.

status (optional, string): The status of this authorization. The possible values are: “un-

known,” “pending,” “processing,” “valid,” “invalid,” and “revoked.”

validated (optional, string): The time at which this challenge was completed by the server,

encoded in the format specified in RFC 3339. [76]

error (optional, dictionary of strings): The error that occurred while the server was vali-

dating the challenge, if any. This field is structured as a problem document [104].

Different challenges allow the server to obtain proof of different aspects of control over

an identifier. In some challenges, like Simple HTTP and DVSNI, the client directly proves

its ability to do certain things related to the identifier. In the Proof of Possession challenge,

the client proves historical control of the identifier, by reference to a prior authorization

transaction or certificate.

The choice of which challenges to offer to a client under which circumstances is a matter

of server policy. A CA may choose different sets of challenges depending on whether it has

interacted with a domain before, and how. For example:

• New domain with no known certificates: Domain Validation (DVSNI or Simple

HTTP)
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• Domain for which known certificates exist from other CAs — DV + Proof of Posses-

sion of previous CA-signed key

• Domain with a certificate from this CA, lost account key — DV + PoP of ACME-

certified Subject key

• Domain with a certificate from this CA, all keys and recovery mechanisms lost — out

of band proof of authority for the domain

The identifier validation challenges described in this section all relate to validation of

domain names. If ACME is extended in the future to support other types of identifiers, new

challenge types will need to be defined. Challenges will need to specify which identifiers

they apply to.

Next, we will describe the domain ownership challenges. The goal of these challenges is

to confirm the client has authoritative control over the domain in question. The SimpleHTTP

and DNS challenges are similar to commonly used techniques today, while the DVSNI

challenge is a novel technique and provides slightly stronger assurances.

The domain ownership challenges all have the same goal, to verify control of the

identifier and prove the client also controls the private key of the account key pair. In order

to simplify and ease implementation and analysis of the protocol, all of the challenges

make use of an “authorized key” object. Such an object is a JSON object that encodes an

authorization for a specific account key to fulfill a specific challenge. An authorized key

object consists of two fields.

token (required, string): A random value that uniquely identifies a challenge. This value

must have at least 128 bits of entropy, in order to prevent an attacker from guessing it.

It cannot contain any characters outside the URL-safe Base64 alphabet.

key (required, JWK): The account key being authorized.
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5.4.1 SimpleHTTP

SimpleHTTP provides the typical, upload a file to your web server, validation challenge

utilized by current CAs. As a domain may resolve to multiple IPv4 and IPv6 addresses,

the server will connect to at least one of the hosts found in A and AAAA records, at its

discretion. The HTTP server may be made available over either HTTPS or unencrypted

HTTP; the client tells the server in its response which to check.

type (required, string): The string “simpleHttp”

authorizedKey (required, string): A serialized authorized key object, base64-encoded.

The “key” field in this object must match the client’s account key.

A client responds to this challenge by parsing the authorized key object, verifying that

its “key” field contains the client’s account key, and provisioning it as a resource on the

HTTP server for the domain in question. The path at which the resource is provisioned

is comprised of the fixed prefix .well-known/acme-challenge, followed by the “token”

value in the challenge.

The client’s response to this challenge indicates its agreement.

type (required, string): The string “simpleHttp”

token (required, string): The “token” value from the authorized key object in the chal-

lenge.

Given a Challenge/Response pair, the server verifies the client’s control of the domain

by verifying that the resource was provisioned as expected.

1. Verify that the “token” value in the response matches the “token” field in the authorized

key object in the challenge.

2. Form a URI by populating the URI template [60]

http://{domain}/.well-known/acme-challenge/{token} where:
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• the domain field is set to the domain name being verified; and

• the token field is set to the token in the authorized key object.

3. Verify that the resulting URI is well-formed.

4. Dereference the URI using an HTTP GET request.

5. Verify that the Content-Type header of the response is either absent, or has the value

“application/json”.

6. Verify that the body of the response is a well-formed authorized key object.

7. Verify that the “key” and “token” fields in the authorized key object match the values

from the authorized key object in the challenge.

Comparisons of the “token” field must be performed in terms of Unicode code points,

taking into account the encodings of the stored nonce and the body of the request.

If all of the above verifications succeed, then the validation is successful. If the request

fails, or the body does not pass these checks, then it has failed.

5.4.2 DVSNI

The Domain Validation with Server Name Indication (DVSNI) validation method proves

control over a domain name by requiring the client to configure a TLS server referenced by

an A/AAAA record under the domain name. The server must respond to specific connection

attempts utilizing the Server Name Indication extension [45]. The server verifies the client’s

challenge by accessing the reconfigured server and verifying a particular challenge certificate

is presented.

The DVSNI challenge has the following form.

type (required, string): The string “dvsni”
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authorizedKey (required, string): A serialized authorized key object, base64-encoded.

The “key” field in this object matches the client’s account key.

n (required, number): Number of DVSNI iterations

In response to the challenge, the client must decode and parse the authorized key object

and verify that it contains exactly one entry, whose “token” and “key” attributes match

the token for this challenge and the client’s account key. The client then computes the

SHA-256 digest Z0 of the JSON-encoded authorized key object (without base64-encoding),

and encodes Z0 in UTF-8 lower-case hexadecimal form. The client then generates iterated

hash values Z1...Zn−1 as follows:

Zi = lowercase hexadecimal(SHA256(Zi−1))

The client generates a self-signed certificate for each iteration of Zi with a single

subjectAlternativeName extension dNSName that is Zi[0 : 32].Zi[32 : 64].acme.invalid, where

Zi[0 : 32] and Zi[32 : 64] represent the first 32 and last 32 characters of the hex-encoded

value, respectively (following the notation used in Python). The client then configures the

TLS server at the domain such that when a handshake is initiated with the Server Name

Indication extension set to Zi[0 : 32].Zi[32 : 64].acme.invalid, the corresponding generated

certificate is presented.

When the client is ready, it simply acknowledges the challenge by sending the challenge

type and token back to the challenge URI.

type (required, string): The string “dvsni”

token (required, string): The “token” value from the authorized key object in the chal-

lenge.

Given a Challenge/Response pair, the ACME server verifies the client’s control of the

domain by verifying that the TLS server was configured appropriately.
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1. Verify that the “token” value in the response matches the “token” field in the authorized

key object in the challenge.

2. Choose a subset of the N DVSNI iterations to check, according to local policy.

3. For each iteration, compute the Zi value from the authorized key object in the same

manner as the client.

4. Open a TLS connection to the domain name being validated on the requested port,

presenting the value Zi[0 : 32].Zi[32 : 64].acme.invalid in the SNI field (where the

comparison is case-insensitive).

5. Verify that the certificate contains a subjectAltName extension with the dNSName

of Z[0 : 32].Z[32 : 64].acme.invalid, and that no other dNSName entries of the form

“*.acme.invalid” are present in the subjectAltName extension.

The ACME server should verify a random subset of the N iterations to ensure that

an attacker who can provision certificates for a default virtual host, but not for arbitrary

simultaneous virtual hosts, cannot pass the challenge. For instance, testing a subset of 5 of

N = 25 domains ensures that such an attacker has only a one in 25!/(25− 5)! chance of

success if they post certificates Z j in random succession and happened to have the ability to

change the certificate between each request. (This probability is enforced by the requirement

that each certificate have only one Zi value.)

If all of the above verifications succeed, then the validation is successful. Otherwise, the

validation fails.

5.4.3 DNS

When the identifier being validated is a domain name, the client can prove control of

that domain by provisioning resource records under it. The DNS challenge requires the

client to provision a TXT record containing a designated value under a specific validation

domain name.
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type (required, string): The string “dns”

authorizedKey (required, string): A serialized authorized key object, base64-encoded.

The “key” field in this object must match the client’s account key.

Similar to the DVSNI challenge, the DNS challenge also requires the client parse the

authorized key object and verify that its “key” field contains the client’s account key. The

client then computes the SHA-256 digest of the JSON-encoded authorized key object

(without base64-encoding).

The record provisioned to the DNS is the base64 encoding of this digest. The client

constructs the validation domain name by prepending the label acme-challenge to the

domain name being validated, then provisions a TXT record with the digest value under that

name. For example, if the domain name being validated is example.com, then the client

would provision the following DNS record: acme-challenge.example.com. 300 IN

TXT ‘‘gfj9Xq...Rg85nM’’

Similar to the DVSNI challenge, the DNS challenge response simply acknowledges that

the client is ready.

type (required, string): The string “dns”

token (required, string): The “token” value from the authorized key object in the chal-

lenge.

To validate a DNS challenge, the server performs the following steps:

1. Verify that the “token” value in the response matches the “token” field in the authorized

key object in the challenge.

2. Compute the SHA-256 digest of the authorized key object

3. Query for TXT records under the validation domain name

4. Verify that the contents of one of the TXT records matches the digest value
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If all of the above verifications succeed, then the validation is successful. If no DNS

record is found, or the DNS record and response payload do not pass these checks, then the

validation fails.

5.4.4 Proof of Possession

The Proof of Possession challenge verifies that a client possesses a private key corre-

sponding to a server-specified public key, as demonstrated by its ability to sign with that

key. This challenge is meant to be used when the server knows of a public key that is

already associated with the identifier being claimed, and wishes for new authorizations to be

authorized by the holder of the corresponding private key. For DNS identifiers, for example,

this can help guard against domain hijacking.

This method is useful if a server policy calls for issuing a certificate only to an entity

that already possesses the subject private key of a particular prior related certificate (perhaps

issued by a different CA). It may also help enable other kinds of server policies that are

related to authenticating a client’s identity using digital signatures.

This challenge proceeds in much the same way as the proof of possession of the au-

thorized key pair in the main ACME flow (challenge + authorizationRequest). The server

provides a nonce and the client signs over the nonce. The main difference is that rather than

signing with the private key of the key pair being authorized, the client signs with a private

key specified by the server. The server can specify which key pair(s) are acceptable directly

(by indicating a public key), or by asking for the key corresponding to a certificate.

The server provides the following fields as part of the challenge:

type (required, string): The string “proofOfPossession”

certs (optional, array of string): An array of certificates, in Base64-encoded DER format,

that contain acceptable public keys.

In response to this challenge, the client uses the private key corresponding to one of the
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acceptable public keys to sign a JWS object, including data related to the challenge. The

validation object covered by the signature has the following fields:

type (required, string): The string “proofOfPossession”

identifiers (required, identifier): A list of identifiers for which the holder of the prior key

authorizes the new key

accountKey (required, JWK): The client’s account public key

This JWS is not required by the protocol to have a “nonce” header parameter (as with the

JWS objects that carry ACME request objects). This allows proof-of-possession response

objects to be computed off-line. For example, as part of a domain transfer, the new domain

owner might require the old domain owner to sign a proof-of-possession validation object,

so that the new domain owner can present that in an ACME transaction later.

The validation JWS contains a “jwk” header parameter indicating the public key under

which the server should verify the JWS.

The client’s response includes the server-provided nonce, together with a signature over

that nonce by one of the private keys requested by the server.

type (required, string): The string “proofOfPossession”

authorization (required, JWS): The validation JWS

To validate a proof-of-possession challenge, the server performs the following steps:

1. Verify that the public key in the “jwk” header of the “authorization” JWS corresponds

to one of the certificates in the “certs” field of the challenge

2. Verify the “authorization” JWS using the key indicated in its “jwk” header

3. Decode the payload of the JWS as UTF-8 encoded JSON

4. Verify that there are exactly three fields in the decoded object, and that:
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• The “type” field is set to “proofOfPossession”

• The “identifier” field contains the identifier for which authorization is being

validated

• The “accountKey” field matches the account key for which the challenge was

issued

If all of the above verifications succeed, then the validation is successful. Otherwise, the

validation fails.

5.4.5 Comparing Challenges

In this section, we will review the advantages and disadvantages of the challenges and

how they compare to existing CA practices. Each mechanism’s primary goal is to provide

an accurate testament that the client and the domain owner are the same identity. Thus, we

must analyze how well the challenges achieve this goal, while also considering the ease of

adoption of the challenges, and which infrastructure is required to perform the challenge.

Considering the security of the challenges, there are two general classes of attacks that

must be scrutinized. The first class of attacks are network attacks. Network attacks can be

categorized into “passive” and “active” attacks. Passive attacks have the ability to listen on

the connection, but do not have the ability to modify the traffic content. Active network

attacks, on the other hand, have the ability to both listen and modify traffic. All widely

deployed and proposed domain validation techniques are potentially vulnerable to network

attacks, as each is being completely performed over the Internet. In ACME, these attacks

are mitigated at the CA policy and protocol level.

One mitigation against network attacks is the recommendation to use multi-path probing

techniques for all domain validation challenges (SimpleHTTP, DVSNI, and DNS). Multi-

path probing for server authentication involves connecting to the server from many different

geographic locations. This technique for detecting authentic servers relies on the fact that
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most man-in-the-middle (MITM) attacks or active attacks are local, confined to a specific

path to the server. By connecting from many different locations and confirming that the

same results are received from each, you substantially raise the bar for the attacker as they

must now intercept the connection from “all-sides”.

In addition, ACME CAs should also check the DNSSEC status of DNS records used in

ACME validation (for zones that are DNSSEC enabled) and apply mitigations against DNS

off-path attackers. For instance, CAs can add entropy to their DNS requests [128] or use

TCP.

The second class of attacks are on the specific deployment medium of the challenges. It

is important to determine which privileges and resources are being relied upon to be strictly

controlled by the domain owner. The SimpleHTTP and DVSNI challenges are both meant

to demonstrate control over the web server for which the domain points. Ideally, the server

would speak a different protocol on the target port, essentially making it execute an arbitrary

action that the server would not perform unless the administrator had full administrative

access over the port/server.

One potential problem of validating on specific ports, 80 and 443 specifically, is the

potential asymmetry in configuration of the web server. It is common for multiple domain

names to be directed to the same IP address, but to offer different services at the various

ports. Perhaps the most common problem is in shared hosting environments where there

are several HTTP hosts, but only one HTTPS host. Both Apache and Nginx will serve a

default host if the incoming connection doesn’t match any of their expected domains. If

the system administrator has not setup a default host themselves, it will default to one of

the clients. The challenges should be architected such that these shared web servers do not

allow a client to get a certificate for another domain for which they share a server.

SimpleHTTP attempts to use an administrative directory, which should require admin-

istrative rights if the server is optimally configured. The CABForum is currently in the

process of further standardizing the HTTP challenge, which should further bolster adoption

122



of protecting the .well-known directory by default. The fear is that the server may have a

vulnerability that allows the attacker to write arbitrary files to the web server, bypassing

the requirement of administrator rights. This is a common problem for web applications.

SimpleHTTP assumes that all domains being validated will respond to requests on port

80. Thus, the SimpleHTTP challenge is vulnerable to the default host problem only if the

domain is not serving any traffic on port 80. This is more uncommon than domains not

serving content on port 443.

DVSNI guarantees administrative privilege over the webserver. The client is forced to

modify the existing configuration and serve certificates for invalid domain names. This

requires that the user have permission over the server and is able to serve completely

arbitrary content. DVSNI requires the client to setup many certificates to be verified in

order to avoid the default host problem. If the number of iterations and required checks is

chosen appropriately, it should be infeasible for an attacker with only partial control of the

webserver to attain a certificate.

The DNS challenge relies on the fact that non-administrative users do not typically

need access to DNS records. By having restricted access, and being managed often by a

completely different entity, the strength of the challenge depends on the security practices

of the DNS provider.

There is one final ACME stopgap that helps thwart both network attacks and attacks on

the challenge medium. A CA server policy can be adopted, requiring an additional proof-of-

possession challenge for particular identifiers. ACME servers can potentially protect known

certificate holders from issuing a certificate for an attacker who has temporary control to

perform a DV challenge on the target domain. If the domain already has a certificate, either

from the ACME CA, found in a certificate transparency log, or found in our public scans.io

dataset, the CA can require a proof-of-possession for the key in the earlier certificate. This

gives ACME a trust-on-first-use property.

On the usability front, each one of the challenges has a slightly different audience.
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SimpleHTTP makes it extremely easy to get a certificate for your domain if you have shared

hosting and only have access to the file system; SimpleHTTP can be solved manually.

DVSNI works easily with users that have automated clients, while DNS will be more often

be utilized by web hosting companies that want certificates for all of the domains that they

manage.

5.5 Additional ACME Benefits

ACME enables many different enhancements to the current PKI. In particular, it has the

opportunity to solve the problems with revocation through short-lived certificates. Future

work found in Chapter VI also details how ACME can solve the trust-agility problem and

the anti-competitive marketplace.

5.5.1 Short-Lived Certificates

There are several reasons why certificates may need to be revoked. The certificates

may be misissued, the private keys could become compromised, a massive vulnerability

(e.g. Heartbleed) may have left keys vulnerable, or the certificate creation may have been a

mistake. Unfortunately, revocation has long been considered broken.

There are several reasons why both CRLs and OCSP fail to meet their intended goals.

For one, systems relying on online checks tend to “soft-fail,” or treat the certificate as trusted

when the revocation server cannot be reached. This becomes a problem when using HTTPS

because a man-in-the-middle (MITM) attacker is usually also able to block the connection

to the revocation server or reply with a “tryLater” response. [87] If client applications did

“hard-fail” when unable to contact revocation servers, it would present a single point of

failure for all reliant HTTPS connections and any downtime would be catastrophic. Even

if the servers did have acceptable availability, current networking implementations, like

captive portals, create false positives.
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Figure 5.5: Boulder Organization — This figure gives a general outline of how the Boulder
components and modules are connected.

Even if the attacker is unable to MITM the connection to the OCSP server, there are still

attacks involving OCSP stapling they can perform to bypass the active check. [79]

One way to get around the need for revocation is to have short-lived certificates. The

certificates become invalid after a short period of time naturally. The downside of short-lived

certificates is that they have previously been considered too burdensome to maintain. ACME

changes this dynamic with tight integration and automatic reissuance. Let’s Encrypt will

begin issuing certificates with a 90-day expiry, but we hope to decrease the lifetimes further

once clients are better established.

5.6 Implementations

In this section, we will discuss the Let’s Encrypt implementations of ACME. Let’s

Encrypt supports both a CA implementation and an extensible client. The implementations

are open-source and available on GitHub [68].
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5.6.1 Boulder CA

Boulder is an ACME server written in Go that will be used by Let’s Encrypt to issue

certificates. Go was the language chosen, as security and performance are of the greatest

importance for the server. Go happens to excel at both. Boulder is broken up into logical

components: a web front end, registration authority, validation authority, storage authority,

and certificate authority. The component organization is shown in Figure 5.5. Each compo-

nent can be run as its own process on its own machine using AMQP as a message bus. The

physical separation helps isolate components that could potentially be compromised.

Let’s Encrypt will be running an instance of Boulder. It’s performance is limited by

our hardware security modules (HSMs). The HSMs are used to sign the certificates and

OCSP responses; thus, we have a maximum limit to the number of certificates we can

support at any given time. Our HSMs can handle 350 signatures/second. We plan on issuing

certificates for 90 days at a time and must refresh our OCSP responses every 3 days, yielding

31 total signatures for every certificate issued. This would yield 87.7 million outstanding

certificates, but we expect people to renew their certificates approximately every two months

if all the processes are automated. This means that we have a 50% overlap of certificate

lifetime, giving us a total capacity of 58.5 million certificates we can service at any given

time. Looking at our certificate scanning data, we found 24,442,824 hosts serving HTTPS

(the vast majority without trusted certificates) [43]. However, we already have several

million expected certificates from web hosting companies months before launch. These

companies would like to get certificates for all of their domains that they manage. We expect

to drastically increase adoption of HTTPS. Time will tell how long we can stand before we

must purchase more hardware. More information about the public’s response is available in

Section 5.7.2.
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5.6.1.1 Security Considerations

Creating an automated CA requires care to avoid misissuance like those made famous

over the past few years. [29, 112] There are two primary areas of concern. The first is the

actual compromise of the system. In order to help mitigate the risk of compromise and

misissuance, Boulder implements a defense-in-depth approach. As a first step, separating

and isolating the various components follows the principle of least privilege. Physically

separating the components with different security properties and attack surfaces provides an

additional layer of defense. For instance, the web front end and validation authority both

require direct access to the Internet, and thus have the largest attack surface.

The validation authority has to directly connect to attacker-controlled servers on the

Internet, leaving it particularly vulnerable. There are a few techniques that Boulder can

employ in order to reduce the chance of compromise. First, the validation authority should

not have to save any state. The validation authority can load a safe processing state after

each validation. This prevents an attacker from potentially opening a backdoor into the

machine in order to gain further access. Another important step is to decrease the attack

surface as much as possible. This means to implement the bare minimum in order to meet

the functionality necessary for the task. One attractive feature about DVSNI is that the

challenge can be retrieved on the initial ServerHello message which contains the certificate.

There is no need to finish the complicated TLS handshake or to continue on with any other

protocols. The more challenges that are supported, though, does increase the attack surface,

so care should be taken when deciding which subset of ACME challenges to implement.

The second area of concern is that the server, components, and protocol are implemented

with enough assurance that we properly perform DV and achieve the overarching goals of

being more secure and transparent than other CAs. Boulder will support multiple validation

authorities to perform multi-path probing techniques for domain validation. Multi-path

probing helps prevent man-in-the-middle attacks. The attacker would have to MITM multiple

probes from distinct geographic locations. Local MITM attacks would have insufficient
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power to convince the CA of domain ownership, not a guarantee provided by all CAs. To aid

transparency, Boulder supports Certificate Transparency and will also allow CAs to easily

publish the proof used to issue all certificates. Maintaining transparency should increase the

public’s trust in the CA and also allows third-parties to watch and verify correct behavior.

Misissued certificates can be detected before they are used in the wild.

5.6.2 Clients

There are many different models for ACME clients. Basic clients can be created

that simply retrieve a certificate, but leaving the installation of the certificate to the user.

Clients can also be worked into existing servers. This form of integration would insure

that certificates are auto-renewed, but leaves the configuration troubles to the user. Finally,

closely integrated outside processes can be used which edit the configurations of applicable

servers. For the official Let’s Encrypt client, we chose the latter approach for numerous

reasons.

In the default case, no configuration is required for the web server at all. All other

techniques would require manual setup to get the module or certificates installed. With the

outside process approach, a single command can be run. The software can automatically find

and enable the necessary modules and work with the existing configuration files. Working

within the configuration files also means that we do not increase the attack surface of the

server, which is presumably always running. All changes made to the server are transparent;

experienced system administrators can analyze the changes and further modify the TLS

configuration based on their own needs. The certificates remain accessible and additional

tools can be used to manage them. Two of the most basic managerial features are renewal

and revocation.

Handling the configuration also allows us to provide guided defaults and easily deploy

beneficial TLS and server configuration features. We would like HTTPS to be the default

for websites, not just to make it available for users who happen across the secure site or

128



users of such products as HTTPS Everywhere [50]. Redirection from HTTP to HTTPS can

be accomplished easily as an outside process through the configuration, and we can also

push technologies like HSTS and OCSP Stapling, which have not been widely deployed.

HSTS guarantees that the user will only accept HTTPS for the domain. This prevents many

types of MITM attacks. OCSP Stapling has the server return an OCSP response in the initial

handshake. This avoids making the client query the CA about the domain. This benefits both

the privacy of the end-user and saves the certificate authority valuable bandwidth. Currently,

only 4.5% of sites support HSTS and 21.6% support OCSP stapling. [14]

There are also extremely new technologies that can achieve widescale adoption through

integration. The W3C working group recently released the “upgrade-insecure-requests”

Content Security Policy directive, which blocks mixed content and automatically upgrades

all HTTPS requests. It is an easy win for system administrators who want to have secure

sites, but it has yet to receive much attention. The Let’s Encrypt client can act as a platform

for the best security practices, quickly deploying the latest technologies.

Finally, the client’s management of configuration files allows for maximal code reuse.

Each web server has only to implement an interface to be supported. We have “Authenticator”

and “Installer” interfaces. Authenticators are modules that can perform the challenges

defined in ACME and Installers are traditionally any server/module that can use a certificate.

This separation removes the need for servers that utilize certificates from being able to

prove ownership of the domain. Email servers like Exim and Postfix can simply support

installation, relying on a separate plugin to handle the authentication. The Let’s Encrypt

client comes preloaded with a “Standalone” authenticator, which can be used for this very

purpose. Thus far, we have developed manual, standalone, Apache, and Nginx authenticators,

and we have Apache and Nginx installers. Outside contributors have already developed a

DNS based authenticator and an Installer plugin for Icecast, a multimedia streaming server.

Perhaps the primary concern when modifying configuration files is fragility and correct-

ness. The Let’s Encrypt client has several built-in mechanisms to help assuage concerns
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and provide transparency. First, the client guarantees that backups of the configuration are

recorded and saved before any modifications take place. All new configuration files are also

catalogued before they are put into place. If at any point the process fails, the configuration

can be restored to the original state. In the unlikely event that the program crashes, the

client recognizes the inconsistent configuration state at next boot and will revert to the last

safe configuration checkpoint. All configuration changes the client makes are displayed in

human-readable form and can be rolled back.

The client has also intelligently designed certificate installation into web servers. After

the initial installation, the client no longer requires access to the server’s configuration files.

The certificate files contained in the configurations are symbolic links to the most recent,

up-to-date certificate. Likewise, all TLS options that may need to be adapted in the future

are contained in a separate file that is linked into the configuration.

Obviously, no matter how much thought and design has gone into a client, it is unlikely

to suit everyone’s needs. In order to aid in the development, we have separated out all of the

protocol code into a separate “ACME” module, making other clients easier to write. GitHub

projects have already been developed utilizing the “ACME” module. For instance, websites

now often use shared web hosting, where clients do not have full control over the servers

running their websites. Hosting providers themselves will have to run an ACME client

that works with their existing infrastructure. Several web hosting providers have already

expressed an interest in getting certificates for all of the domains that they manage.

5.7 Becoming a CA

There are few different paths to becoming a CA. Buying an existing CA is the fastest

path, as the CA is already in root CA programs or trust stores, and the infrastructure and

processes have already been implemented. The downsides of buying a CA is that it is a thin

market. CAs that cannot buyout an existing CA can apply for inclusion into the trust stores

themselves. The drawback of this approach is that it requires several months of preparation
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and the CA will not be accepted by older clients who do not update their trust store. As

a commercial or general-purpose CA, this is not acceptable. Finally, you can become an

intermediate CA for an existing CA. The intermediate CA is trusted by all clients that trust

the root immediately, but you are limited to the signing policies and practices of the root

certificate authority. There is also an associated risk that if the root CA gets revoked for any

reason, the intermediate CA is revoked too.

Given these tradeoffs, Let’s Encrypt has applied to the root programs as a new CA.

Additionally though, Let’s Encrypt has secured a cross-signature by a currently trusted root

CA, IdenTrust. A cross-signature implies their root certificate will sign the Let’s Encrypt

intermediate CA public key. This allows the Let’s Encrypt Intermediate CA to chain to

IdenTrust, while the Let’s Encrypt Root CA propagates. Let’s Encrypt will be able to operate

independently of existing CAs, while still having day one compatibility with all clients.

There are three main root CA programs, Mozilla, Microsoft, and Apple. Linux and

Firefox users use Mozilla’s root store, while users of Google’s Chrome browser trust the

underlying OS’s root store. Although each store is separate, they all generally have the same

requirements. CAs generally apply to be included in all three. As we saw in Chapter II,

99.4% of server certificates are signed by CAs trusted by all three CA stores.

In order to be included in the trust stores, or be an approved intermediate CA, you must

first pass an onerous standardized audit. The two widely-accepted audits are the WebTrust

Principles and Criteria for Certification Authorities and ETSI TS 102. The WebTrust audit,

which Let’s Encrypt performed, contains around 50 pages of checklist criteria ranging from

personnel security to CA Key Compromise. The audit also verifies the governing documents

of the CA, the Certificate Policy (CP) and Certificate Practice Statement (CPS).

The CP is designed to delineate the various components of the PKI, their roles and

responsibilities. The CPS’s aim is to describe the practices of the certificate authority. It

describes all processes and standards the CA must follow. Combined, Let’s Encrypt’s CP and

CPS are nearly 200 pages. Both the CP and CPS must follow all of the guidelines set forth
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in the 94-page RFC 3647 [34]. Describing, documenting, and verifying these documents

and practices requires tremendous effort from a collaborative team of technologists and

lawyers. It is expensive for the CA, both from a personnel and financial standpoint.

Perhaps the most interesting requirements are those of the CA key generation, which

must be performed in a ceremony. They are witnessed by an independent party and video-

taped; everything must be scripted and logged. Everyone is prescribed a clearly-defined

role beforehand. The hardware preparation, operating system installation, CA installa-

tion/configuration, key backup, signing and shutdown must be prepared and documented

beforehand. The ceremony must meet physical security requirements, all materials must

be stored according to plan and tested appropriately. Finally, the CA keys must be created

and stored in approved ISO 15782-1/FIPS 140-2 hardware security modules. Any deviation

from the procedures or errors in the script result in the rescheduling and restarting of the

ceremony.

The WebTrust audit must be completed every year. In addition, CAs without a currently

valid audit are required to perform a point-in-time readiness assessment. Essentially, the CA

must be monitored for a month before they can begin issuing publicly-trusted certificates.

Ironically, part of the audit is to search the certificates our team at the University of Michigan

provides, at scans.io, in order to check for inconsistencies. After the point-in-time

readiness assessment has been completed, a normal full WebTrust audit must be completed

within 90 days of the first publicly-trusted certificate.

CAs must also now comply with the CA/Browser Forum Baseline Requirements for the

Issuance and Management of Publicly-Trusted Certificates [32] which is produced by the

CABForum. The CABForum is a conglomeration of CAs and browsers that discuss policies

and best practices with which both parties agree to abide by. As expected, the WebTrust

audit is heavily influenced by the CABForum Baseline Requirements.

Although there is an extreme amount of documentation and audits required by CAs, it

does not mean that certificate authorities do not violate their own policies. Fortunately, as
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transparency technologies like our collection of certificates at scans.io [43] and certificate

transparency [83] have become standard, the gap between policy and practice has been

decreasing [37].

5.7.1 Industry Response

Let’s Encrypt and the ACME protocol is a very disruptive technology. Current individual

certificate authorities make tens of millions of dollars each year selling domain-validated

certificates. Certainly, the appearance of a free CA that is easier to use can drastically

affect existing CAs’ bottom lines. In addition, nation-states that have a vested interest in

censorship cannot be sanguine with HTTPS becoming cheaper and ubiquitous.

Surprisingly, the response has been largely positive. DigiCert, a company which sells

OV certificates starting at $139, has denounced free certificates (DV) as not providing

enough security [91] or the same security as their premium OV certificates. Most articles

and view points have been positive regarding the initiative. In fact, a few additional CAs and

hosting providers have decided to offer free DV certificates in the wake of the Let’s Encrypt

announcement. WoSign, a Chinese certificate authority, began issuing free certificates valid

for 2 years, and EuroDNS began offering free certificates to their customers in February

and March of 2015 respectively. [7] [3] Additionally, CAs have started to compete from

the usability perspective, introducing new certificate installation tools of their own after the

announcement of Let’s Encrypt. [90] Let’s Encrypt is demanding change in the industry,

and it is fulfilling to see the ideals and core mission of Let’s Encrypt being adopted.

5.7.2 Consumer Response

The consumer response has been overwhelmingly positive, as one might expect from

the announcement of a free product. The Let’s Encrypt demo page has space for comments

and feedback. Having been viewed nearly 50,000 times at writing, it received 384 positive

and 5 negative remarks. There are 39 top-level comments, 26 of which were positive, 1 was
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negative, and the rest were neutral. The neutral comments either asked about the capabilities

of the system or were simply used to share the demo with their friends and colleagues.

The concerns are of the following general form.

• How can Let’s Encrypt possibly be secure if everything is automated?

• Let’s Encrypt puts the Internet at risk, being located in the United States and subject

to the laws of the United States government.

• Free certificates are bad for the Internet because it enables malware to encrypt their

traffic.

The first two are a result of customers not understanding how certificate authorities cur-

rently operate and the trust model of the system in general. To reiterate, we are performing

the same or strictly stronger domain validation checks that other CAs are currently perform-

ing. We also have the additional security afforded by the checks described throughout the

ACME and Boulder sections.

The second concern does not consider that the United States government already has

access to their own CAs and under the court of law, over 30% of the world’s CAs. [43] In

fact, Let’s Encrypt is unlikely to be targeted by governments for a variety of reasons.

First, Let’s Encrypt has been designed to be as transparent as possible. Let’s Encrypt

supports certificate transparency and is designed to allow us to publish records of every

authorization. The ISRG, the non-profit running Let’s Encrypt, has already published its first

legal transparency report, months before the service has even begun to issue certificates. [69]

The ISRG has already announced the expected schedule of transparency reports which

acts as a warrant canary. If the report is ever withheld or late, its subscribers know the

government intervened. Additionally, by reporting so early, the ISRG was able to choose

the format of the report and actually report “0” under each legal order. Twitter and other

companies have been forced by the government to report ranges of numbers which include
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“0”. Publishing the legal transparency report before the chance for it to be subverted is an

important first step to maintaining trust and gaining user confidence.

In this regard, the ISRG also benefits from being sponsored by the Electronic Frontier

Foundation (EFF). The EFF has a team of lawyers with a long history focused on protecting

user’s digital rights.

The final concern, that we are enabling malware to more easily encrypt their traffic

with browser-trusted certificates, is factual. Malware often does encrypt their traffic, but

commonly uses self-signed certificates or their own PKI. Anti-virus companies rely on these

trademarks to identify the malware. Now that browser-trusted certificates can be attained

automatically, free of charge, the malware can potentially be able to blend in more easily

with benign traffic. Let’s Encrypt will launch with support for Google’s safe-browsing

API, which should reduce malicious phishing attempts and make it more difficult to get

certificates for malware.

Any malware or phishing detection system cannot be perfect, though. At any point in

time, a benign website may be altered to include “malicious” or “phishing” content, whether

under the domain owner’s own volition or involuntarily due to compromise. Although this

can be construed as a negative side-effect, determined malware authors already do attain

very cheap server certificates for their software [48]. CAs cannot be in the business to police

content on the Internet.

Arguments against free automated certificates because of the potential to increase

malicious and fraudulent activity are analogous to the arguments in the ongoing Crypto

Wars. We believe the benefit of enabling encryption and secure sessions for all greatly

outweigh any perceived drawbacks.

5.8 Conclusion

HTTPS deployment has lagged severely behind the adoption of HTTP. Two of the main

factors hindering the deployment of HTTPS have been the cost of certificates and the time
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necessary to deploy HTTPS correctly. Current certificate authorities have taken advantage

of their market situation and consumer naivety, hindering the security and privacy of the

Internet. Our analysis of current CA practices revealed that the marginal cost of issuing

DV certificates is approximately zero. The whole DV process can be automated while

also increasing the security of the CAs and ecosystem at large. We developed ACME, a

protocol that handles all the functionality of a traditional certificate authority, allowing the

automatic adoption of TLS into end-products. ACME fills a void that has been missing from

production systems and, subsequently, an ACME IETF working group has been formed.

Given our ACME protocol, we have founded Let’s Encrypt, a completely free and automated

certificate authority that has the potential to drastically alter the deployment of TLS. We have

developed implementations of both a CA and extensible client which have been released

open source. The technology has already affected current CAs, improving the ecosystem.

Let’s Encrypt itself has received positive reception; more than 18,000 individuals have

already signed up for the beta program.
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CHAPTER VI

Conclusion and Future Work

This thesis has demonstrated how measurement-based security and automation can

reduce the vulnerabilities originating from both certificate authority practice and HTTPS

server deployments. In Chapter II we performed the first systematic and longitudinal study

of the HTTPS ecosystem and in Chapter III we analyzed how the ecosystem responds to

upheaval. Our analysis revealed a number of worrying trends, but we focused on two of

the larger issues. First, we discovered the PKI has an extremely large attack surface. An

attacker must only compromise a single CA to defeat the guarantees provided by HTTPS

and we found 683 different organizations with certificate signing power. The second issue

we focused on was the exorbitant cost of HTTPS. We discovered many symptoms of the

high cost of HTTPS, including, low adoption rates, a large percentage of misconfigured

servers, and the observed failure of system administrators to maintain the security of their

HTTPS deployments.

In Chapter IV we presented CAge, a mechanism which can be applied to certificate

authorities to reduce the attack surface of HTTPS. CAge infers CAs’ signing behavior and

develops signing rules based on the inferences. Even in its most basic configuration, the

attack surface of CAs can be reduced by 90%. In Chapter V we presented Let’s Encrypt, the

first completely automated certificate authority. Let’s Encrypt aims to drastically increase

adoption of HTTPS by offering both free certificates and making it significantly easier to
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deploy HTTPS through the use of automated clients. We developed a new protocol, ACME,

which automates all CA operations and we developed new validation methods to increase

the security of PKI in general. Finally, we described the process of building a CA and the

insights gleaned from its development.

Although this thesis has provided a path to a significantly stronger PKI on the Inter-

net, there are some problems we identified through our analysis which warrant further

investigation and can likely be solved through further additions to the ACME protocol.

6.1 Future ACME Extensions

Let’s Encrypt should stand as an exemplar and raise the bar for CA security. ACME’s

simplicity and extensibility can allow it to solve other problems posed with PKI.

6.1.1 PKI Trust Agility

Marlinspike introduced the concept of trust agility [88] which implies that you can

choose who you trust and you are free to change who you trust at any time. The current

certificate authority system’s trust is, unfortunately, extremely rigid. Individual users have

no control over which CAs they trust, and many CAs’ trust can never be revoked. Large

CAs have deployed certificates on hundreds of thousands of servers that would all become

invalid if the CA’s trust is revoked from browsers. This would throw spurious errors to users

and would break many applications. Indeed, many CAs have been granted leniency, even

when they repeatedly demonstrate less than adequate security practices.

In 2011, Comodo was hacked and subsequently misissued certificates for several high-

profile sites [112]. This was not their first security failure [135]. Browsers could only

respond by blacklisting the particular certificates Comodo claimed they misissued. A much

preferred approach would have been to eliminate all certificates from the CA that was

compromised. There may have been other certificates created by the attacker that evaded

Comodo’s detection. In 2015, CNNIC was found issuing an intermediary certificate authority
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to an outside company to MITM their customers [81]. The violation caused great debate

among the browsers. Ultimately, both Google and Mozilla decided to remove the CNNIC

root CA from their browsers, but add in additional code that white-lists certificates from

CNNIC signed before the date of removal. This additional code per compromise does not

scale well and introduces unnecessary complications into browsers.

6.1.1.1 Directory Servers

ACME directory servers have the potential to alleviate some of the trust agility problems

of the current ecosystem. An ACME directory server is a server that maintains a list of

active ACME CAs and their associated directory URLs. Clients can be configured with a

stable URL that will always direct them to the latest and maintained ACME CAs, which

assists with the problem of CA discovery.

Optimally, directory servers would also include metadata about the different CAs and

their current offerings. The metadata would be restricted to facts and avoid security theater,

which is rampant in the market today. Clients could then choose among the offerings,

fostering a free, open, and competitive market for certificates.

Directory servers also have the potential to alleviate some of the trust agility problems.

If a CA ever warrants removal from the list of trusted CAs, they could be removed from the

directory server. Clients renewing their certificates would choose other CAs, thus depleting

the server base. When the directory server is combined with the technique of short-lived

certificates, the whole Internet could be transitioned to new, secure CAs and the failed CA

could be removed from browsers entirely. This would hold CAs accountable and provides a

degree of trust agility for the Internet.

6.1.2 Extending ACME Challenges and Identifiers

ACME represents a general framework to distribute and verify public keys. The challenge

framework allows for future communication mediums to be easily supported. Appropriate
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challenges need to be developed to support the medium, but the challenges can be directly

plugged into the protocol, much like new cipher suites are added to TLS.

There has already been interest in extending ACME to support ephemeral identity

certificates for email. The initial idea is to use OAUTH 2.0 to verify email addresses.

Requesters would be redirected to an OAUTH server for a token, which would be returned

to the CA. The CA would verify the token and thus verify the email address.

Another area that has taken interest in ACME is future Internet architectures. Name

Data Networking (NDN) is a future-internet architecture where every piece of data is

cryptographically signed [133]. However, in order to verify signatures accurately and take

appropriate measures, the classic PKI problems of key management and distribution must be

overcome. Given the potential adoption and scale of key management for NDN, simplicity

and low-cost is of primary importance.

ACME can easily be applied for names within NDN. The main challenge with applying

ACME to NDN is developing a small set of challenges that convey the appropriate authority

over identifiers within NDN. Luckily, NDN is ripe with opportunities. Challenges have

already been proposed involving NDN scoped-interests and bearer tokens. Additional

work will need to be completed in order to develop and consider NDN’s unique security

parameters.

6.2 Further Analysis

Let’s Encrypt launches to the general public in mid-November and its affect on the certifi-

cate ecosystem will be realized. As a first order, we will want to determine whether we have

succeeded in our goals of increasing the adoption of HTTPS, decreasing server configuration

errors, and decreasing the response time of fixing security-critical vulnerabilities.

We can continue the evaluations we performed in chapters II and III. In essence, the same

metrics that we utilized to deduce the issues with HTTPS deployment can also determine

how effective the launch of Let’s Encrypt was in solving them.
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This technique does not grant the granularity required for a full evaluation, though. There

are many facets to Let’s Encrypt, and analyzing each part is important in order to understand

the system as a whole. In particular, we should analyze individual implementations and

evaluate how well they each achieve their goals.

The client’s main goals are usability and the increased adoption of best security practices.

Both of these can be roughly measured through more extensive scans. Preparing for this

analysis, we have equipped the official client with a user-agent string which should allow

us to track the effectiveness of our client compared to the rest of the habits of the Internet

as well as Let’s Encrypt clients developed by third-parties. Usability can be tracked by the

relative adoption of the client and by analyzing the audit logs of Boulder, which provide

data about how the client is executed in practice. The client’s success at championing best

security practices can be measured by the impact of the client on the rates of adoption of the

supported security and privacy enhancements. The client aims to make all of the following

significantly easier: enabling HSTS, enabling OCSP Stapling, redirecting from HTTP to

HTTPS, and adding Content Security Policy directives.

One downside of relying on network monitoring and scanning is that it only grants

correlations. Another possible method for evaluating the efficacy of the Let’s Encrypt client

would be to conduct usability studies. Usability studies would give us greater detail into how

system administrators use the tool and would let us know, directly, which features succeeded

and which features need to be improved upon.

Boulder, the Let’s Encrypt CA implementation, has a different set of goals and will

require a different analysis. Boulder primarily aims to be secure and performant. In order to

get data regarding these goals, we must analyze the logs and performance of the CA.

Security rests on the number of successful attacks against the CA. In particular, we are

interested in attacks that cause misissuance. We should collect data regarding both the types

and frequency of attacks against Let’s Encrypt. It is likely that certain validation methods

are weaker in practice than others. By collecting this data, we can determine the relative
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costs of supporting each challenge type. This data is desperately needed by the CA/Browser

Forum Validation Group as they work to standardize domain validation techniques [15].

Attacks on Boulder can also help form the development of future challenges and CA

requirements. We can determine which attack types are most effective and research ways

to help mitigate the attacks. For instance, in the current ACME specification, all of the

domain validation techniques are subject to attacks on BGP. Analyzing Let’s Encrypt will

help us learn the frequency of exploits and the value of additional stop-gap challenges, like

the defined proof-of-possession challenge in ACME.

Boulder’s performance goal is important as we would like to support as much of the

Internet as possible. Although our preliminary tests have shown that our bottleneck is our

HSMs, the launch of Let’s Encrypt will enable us to see how Boulder scales under real-world

load and deployment. Analyzing Boulder for performance issues and bottlenecks will likely

yield ways to further improvements and enable us to offer HTTPS to an ever-increasing set

of users.
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