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ABSTRACT

A lot of progress has been made for the control of single particle nowadays and various precise

manipulation of small scaled quantum systems have also been demonstrated. The development of

quantum technology makes the task to built large scaled practical devices possible. In a large scaled

quantum system the extent of entanglement in the quantum state is a key point for both pratical

use and theoretical research. Preparation and utilizing of a strongly entangled quantum states are

of strong interest and in great need.

In this dissertation we focused on some quantum states with strong entanglement and ro-

bustness to noise. We constructed a spinor BEC Hamiltonian which has already been realized

in experiment with several different kinds of atom and proposed a adiabatic passage method to

produce the maximum entangled Dicke state.

We also analyzed the entanglement behavior of the Dicke state under various noises and

demonstrate its application in high precision measurement experiment. We introduce a new class

of quantum many-particle entangled states, called the Dicke squeezed (or DS) states, which can

be used to improve the precision in quantum metrology beyond the standard quantum limit. We

show that the enhancement in measurement precision is characterized by a single experimentally

detectable parameter, called the Dicke squeezing ξD, which also bounds the entanglement depth

for this class of states. The measurement precision approaches the ultimate Heisenberg limit as ξD

attains the minimum in an ideal Dicke state. Compared with other entangled states, we show that

xi



the Dicke squeezed states are more robust to decoherence and give better measurement precision

under typical experimental noise.

In addition, we explore other choices of precision measurement with spin squeezed states.

Spin squeezed states have strong manybody entanglement and are good candidates to be used in

quantum metrology. A robust squeezing parameter is proposed to characterize the experimental

phase measurement precision for spin squeezed states. The behavior of this parameter under var-

ious experimental noises is compared with other parameters in literature and it is shown to have

better performance.

Finally we present a scalable implementation scheme for the recently proposed concept of

boson sampling, which holds the promise of outperforming classical computers in the near future.

Boson sampling solves a classically intractable problem by sampling from a probability distribu-

tion given by matrix permanents. We propose a scalable implementation of Boson sampling using

local transverse phonon modes of trapped ions to encode the bosons. The proposed scheme allows

deterministic preparation and high-efficiency readout of the Bosons in the Fock states and univer-

sal mode mixing. With the state-of-the-art trapped ion technology, it is feasible to realize Boson

sampling with tens of Bosons by this scheme, which would outperform the most powerful classi-

cal computers and constitute an effective disproof of the famous extended Church-Turing thesis.

A complete recipe is provided and the technical requirements are discussed.

xii



CHAPTER I

Introduction

1.1 Motivation

The Turing machine invented by Alan Turing in 1936 was a milestone for computer science, as it

helps computer scientists understand the limits of mechanical computation, which is essential the

same for all kinds of physical devices. The situation changed in 1980s when the idea of quantum

Turing machine were proposed by David Deutsch. The using of quantum algorithms greatly im-

proved the computation power of computers. The combination of computation theory and quantum

cold atomic physics lead to the prosperousness of the interdisciplinary field of quantum informa-

tion processing and quantum computation.

The experimental realization of Bose-Einstein condensates in 1995, which was predicted by Ein-

stein in 1925, offers robust and versatile systems for probing the fundamental problems and finding

applications in these interdisciplinary fields, and the study of ultracold Bose gases has been one

of the most active areas in contemporary physics. Bose gases with internal degrees of freedom

serve as a great candidate for the implementation of quantum computation and quantum informa-

tion processing, with their excellent capability to generate quantum entanglement, which is a key
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ingredient of the realization of quantum computers and many quantum information protocols.

The searching for an appropriate quantum state with strong entanglement and a good experimen-

tal system are of great interest nowadays. Quantum gates with a small number of qubits have

been analyzed and experimentally produced, quantum states with a large number of particles and

strong entanglement properties are studied and various realization candidates have been proposed,

such as atomic BECs, trapped ions and photonic systems. This dissertation focuses on problems

in the preparation and analysis of entangled quantum states, precision improvement in quantum

metrology and the implementation of a non-traditional paradigm of quantum computing–boson

sampling.

1.2 Background

Before we dive into detailed discussions of the major topics, we briefly review the physical plat-

form considered , i.e. spinor BECs. Spinor BEC systems have been utilized for a wide range of

purposes from quantum computation. Useful entangled states that can be realized using spinor

BEC are also introduced.

1.2.1 Spinor BECs

For Bose-Einstein condensate (BEC) trapped in a magnetic field which chooses only the spin

ground state, their spin degrees of freedom are frozen. However, the spinor BEC, which is a BEC

with internal spin degrees of freedom, is confined using optical trap and thereby all spin substates

are simultaneously condensed. The vector spin field can exhibit more interesting phenomena. In

this section we deduce the Hamiltonian for spinor BECs in an optical trap with both spin interaction

and external potential.

2



The noninteracting part of the Hamiltonian consists of the kinetic part, trapping potential and the

effect in magnetic field with the following form:

Ĥ0 =
f

∑
m,n=− f

ˆ
drψ̂

†
m[−

}2∇2

2M
+U(r)− p( fz)mn +q( f 2

z )mn]ψ̂n

where ψ̂m(r) denote the bosonic field operators for spin- f atoms with the spin index m=− f ,−( f−

1), ... f −1, f . M is the mass of the atom, and U(r) represent the external trapping potential. The

magnetic effect is evaluated by the linear Zeeman coefficient p = −gµBB and the quadratic Zee-

man coefficient q = (gµBB)2

∆Eh f
, where g is the Landé g factor, µB is the Bohr magneton, B is the

external magnetic field and ∆Eh f is the hyperfine energy splitting. fz is the z component of the spin

matrices which is a diagonal matrix with the form of ( fz)mn = mδmn and f 2
z matix has the form of

( f 2
z )mn = m2δmn correspondingly.

In the interacting part of the Hamiltonian only binary interaction is considered as we assume that

the system is dilute. Since the total spin F is conserved in the binary collision, the interaction

Hamiltonian has the form of

V̂ = ∑
F=0,2,...,2 f

V̂ (F )

Only terms with even F exist as the result of symmetry consideration. In the single particle

representation, interaction Hamiltonian takes the form of

V̂ (F ) =
1
2

ˆ
dr
ˆ

dr′
4π}2

M
aF δ (r− r′)

F

∑
M=−F

Â†
FM (r,r′)ÂFM (r,r′)

3



with aF as the s-wave scattering length and operator [1]

ÂFM (r,r′) =
f

∑
m1,m2=− f

〈F ,M | f ,m1; f ,m2〉ψ̂m1(r)ψ̂m2(r)

〈F ,M | f ,m1; f ,m2〉 is the Clebsch-Gordan coefficients for total spin F and z spin component

with the value of M .

In the case of spin-1 particles, with some derivations the interaction part of the Hamiltonian can

also expressed as

V̂ =
1
2

ˆ
dr[c′0 : n̂2(r) : +c′1 : F̂2(r) :]

with the particle density operator

n̂(r) =
f

∑
m=− f

ψ̂
†
m(r)ψ̂m(r)

and the spin operator

F̂(r) =
f

∑
m,n=− f

( fµ)mnψ̂
†
m(r)ψ̂n(r),

and the interaction coefficients are c′0 = 4π h̄2(a0 +2a2)/3M and c′1 = 4π h̄2(a2−a0)/3M.

1.2.2 Precision Measurement and Ramsey Interferometry

Precision measurement plays an important role for scientific and technological applications, and

one of the most important application of the systems with high measurement precision is atomic
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Figure 1.2.1: Illustration of Ramsey interferometry process. The x, y, z axis are denoted by u, v,
and w. This figure is taken from [4].

clock. The most commonly used interferometry scheme for atomic clock is Ramsey interferometry

and we will introduce the method below.

Ramsey interferometry, also known as Ramsey-Bordé interferometry, is a form of atom inter-

ferometry that uses the phenomenon of magnetic resonance to measure transition frequencies of

atoms. It was developed in 1949 by Norman Ramsey [2]. The system used is a two-level atom

with transition frequency ω0 and a local oscillator (LO) with frequency ω , and the frequency off-

set is δω = ω −ω0. The atomic transition frequency is decided by measuring the relative phase

difference δφ = δωT in a free evolution period with time length T .

We will review the Ramsey method using the Bloch representation [3]. The five-step process is

illustrated in Fig. 1.2.1 For the first step the two-level atom with two states | ↑〉 and | ↓〉 in the z

direction is prepared in the | ↓〉 state, then a microwave π/2 pulse is performed on the atom and will

result in a 900 rotation around the y axis. After the rotation the atom evolves with the interaction

with the LO for a time period of T and the accumulated phase difference is δφ = δωT around the

z axis. After the free evolution another microwave π/2 pulse is added for a 900 rotation around x

axis. The final stage is the measurement of the atom in the | ↑〉 or | ↓〉 state. To decide the phase

difference, multiple measurements will be performed on a large number of atoms simultaneously.
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The measurement precision of the phase difference δφ is determined by the stability of the atomic

state. Decoherence will happen in realistic experiment and there will be unavoidable noises. With

long coherence time the evolution time T can be maximized. There are proposals to use entangled

atoms for the purpose of long coherence time and lower noise [5–7]. For N particles in unentangled

states, the phase precision is constrained by the standard quantum limit of 1/
√

N and by using

entangled states the precision can reach the Heisenberg limit of 1/N under noiseless condition and

the effect of various noises will be discussed in later chapters.

1.2.3 Spin Squeezed States

Among all entangled states, spin squeezed states have a lot interesting and unique properties. They

can be used in quantum metrology for high precision measurement where Heisenberg limit might

be reached.

According to Heisenberg’s uncertainty relation, fluctuations of angular momentum in different

directions are limited by the inequation

∆Jx ·∆Jy ≥ |〈Jz〉|/2

If we want to suppress the uncertainty of spin in the x or y direction to be lower than the standard

limit of
√
|〈Jz〉|/2, then the spin fluctuation in another direction will be increased without violating

the Heisenberg’s uncertainty relation. It is natural to define spin squeezed states as states with

∆2Ji < |〈J j〉|/2 for i 6= j.

To characterize the squeezing behavior of a state, Wineland [7] proposed a spin squeezing param-

eter

6



ξ =

√
2J∆Jx

|〈Jz〉|

for systems of N two-level atoms with J as the total spin. ξ < 1 indicates that spin in the x direction

is squeezed and the smaller ∆Jx can be reached the stronger squeezing we have.

This squeezing parameter does not only characterize the squeezing level of a state. It can also work

as an entanglement witness as spin squeezed states are entangled quantum states.

To get the maximum squeezing we will check how small ξ can be. Sorensen and Molmer show

that for fixed total spin J = N
2 and total spin in the z direction Jz, the minimum variance Var(Jx) can

be calculated numerically. The analysis for integer spins and for half-integer spins are different so

they are discussed separately.

For integer spins, the state with minimum Var(Jx) for a given 〈Jz〉 also has 〈Jx〉= 〈Jy〉= 0. So that

minimizing Var(Jx) is equivalent to minimizing 〈J2
x 〉. Thereby an easy way to find the state with

minimum ξ for fixed 〈Jz〉 is to find the minimum of µ〈Jz〉+〈J2
x 〉with µ as the Lagrange multiplier.

For half-integer spins, this method does not work as states with minimum Var(Jx) are not states

with minimum 〈J2
x 〉. However we can still find the most squeezed state by minimizing µ〈Jz〉+

Var〈J2
x 〉.

The maximum squeezed states are strongly entangled and are hard to prepare in real experiment,

and there are a lot proposals to generate states with strong squeezing in history. The most popular

method to generate squeezing in a quantum state is to perform a unitary transformation U(t) =

exp[−iHt] generated by a Hamiltonian H of a special form on the coherent spin state (CSS) . The

CSS of spin-half atoms is a pure state with every qubit with a wave function of

|θ ,φ〉= cos
θ

2
| ↑〉+ eiφ sin

θ

2
| ↓〉

7



where | ↑〉 and | ↓〉 are the up and down eigenstate for Sz. As there is no correlation between atoms

so the CSS is not spin squeezed.

As the transformation resulted by Hamiltonian linear in spin operators are only rotations, nonlin-

ear Hamiltonians are needed to generate squeezing. The one-axis twisting (OAT) and two-axis

countertwisting (TAT) approaches using different Hamiltonian setting are introduced in [8] .

For OAT, the initial CSS is picked to be |π2 ,0〉 and the Hamiltonian is chosen as H = χJ2
z . With

the evolution time properly chosen, the final state will be squeezed with ∆J2
min ≈ 1

2(
J
3)

1/3.

There are both experimental OAT squeezing scheme realized for a large number of atoms [9] [10]

and theoretical proposals [11] for improvement, and it is proven that the noise-to-signal ratio is

reduced to an amount proportional to N−2/3 for s system of N atoms.

For TAT, the initial CSS |0,φ〉 is squeezed using Hamiltonian H = χ(J2
+− J2

−), with J+ =
Jx+iJy

2

and J− =
Jx−iJy

2i . With this squeezing the minimum variance ∆J2
min that can be reached is as low as

1
2 while strict experimental condition is required.

1.2.4 Trapped Ions

Trapped ion system can be isolated from the environment by proper trapping and brought nearly

to rest using laser cooling. In the mean while their internal states can be well manipulated by op-

tical fields. This makes them ideal candidates for quantum computation and quantum information

processing.

The initial guess to form a three dimensional trap for charged atomic ions is to make use of electric

fields. The electric potential has the form of Φ(x,y,z) = αx2 +βy2 + γz2 and the coefficients must

satisfy the requirement that α +β +γ = 0, which is the result of the zero charge Maxwell equation

∇2Φ = 0. From this constraint we have the conclusion that there exists no real three dimensional

electric trapping potential for ions as at least one of the three coeffients must be negetive. The ideal

8



of Paul trap was proposed by Wolfgang Paul in 1950s to solve this problem. Instead of just using

electrostatic traps, an electric field oscillating at radio frequency (RF) is applied. In the x−y plane

radio frequency electric fields are employed to generate an effective trap and in the z direction a

pure static trapping potential is used. This makes an overall potential of

Φ(x,y,z) = α cos(Ωt)(x2− y2)− γ

2
(x2 + y2)+ γz2

With a proper oscillation frequency Ω in the radio frequency regime and integrating out the high

frequency dynamics, this potential results in a trap potential of

Φ(x,y,z) = α
′(x2 + y2)+ γz2

where α � α ′ > 0 and γ > 0. Thereby a time independent harmonic trap is realized. The typical

value for α ′and γ are on the order of 1-10 MHZ.

Atoms with two valence electrons are used in trapped ion systems. Two internal levels are identified

after loosing one electron, and these two levels can serve as the qubit states. The behavior of

the qubits can be controlled by using laser beams with appropriate frequency. With laser beams

focused on one single ion single qubit gate operation can be realized, and the proposal of the

controlled-NOT gate in 1995 by Ignacio Cirac and Peter Zoller [12] and its implementation in

2003 [13] made the universal quantum computing possible.

1.3 Outline of Dissertation

To orient the readers, we provide a brief outline of the contents of this dissertation.

Chapters II, III and IV focus on the spinor BEC systems. Chapter II deals with the generalization

9



of massive entanglement in a spinor Bose-Einstein condensate from an initial product state through

adiabatic sweep of magnetic field across a quantum phase transition induced by competition be-

tween the spin-dependent collision interaction and the quadratic Zeeman effect. The generated

many-body entanglement is characterized by the experimentally measurable entanglement depth

in the proximity of the Dicke state. We show that the scheme is robust to practical noise and exper-

imental imperfection and under realistic conditions it is possible to generate genuine entanglement

for hundreds of atoms.

Chapter III introduce a new class of quantum many-particle entangled states, called the Dicke

squeezed (or DS) states, which can be used to improve the precision in quantum metrology beyond

the standard quantum limit. We show that the enhancement in measurement precision is character-

ized by a single experimentally detectable parameter, called the Dicke squeezing ξD, which also

bounds the entanglement depth for this class of states. The measurement precision approaches the

ultimate Heisenberg limit as ξD attains the minimum in an ideal Dicke state. Compared with other

entangled states, we show that the Dicke squeezed states are more robust to decoherence and give

better measurement precision under typical experimental noise.

In Chapter IV we proposed a robust squeezing parameter to characterize the experimental phase

measurement precision for spin squeezed states. The behavior of this parameter under various

experimental noises is compared with other parameters in the history and it is shown to have better

performance.

Chapter V discusses the implementation of a boson sampler in the trapped ion platform. A scalable

implementation of Boson sampling using local transverse phonon modes of trapped ions to encode

the Bosons was proposed, which allows deterministic preparation and high-efficiency readout of

the Bosons in the Fock states and universal mode mixing. With the state-of-the-art trapped ion

technology, it is feasible to realize Boson sampling with tens of Bosons by this scheme, which

would outperform the most powerful classical computers and constitute an effective disproof of

10



the famous extended Church-Turing thesis.

The last chapter will conclude the dissertation and discuss future directions for the topics covered.
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CHAPTER II

Generation of Massive Entanglement in a Spinor Condensate

2.1 Background Information

Generation of massive entanglement, besides its interest for foundational research of quantum

theory, is of great importance for applications in quantum information processing and precision

measurements. Entanglement is a valuable resource that can be used to enhance the performance

of quantum computation, the security of quantum communication, and the precision of quantum

measurements. For these applications, it is desirable to get as many particles as possible into

entangled states. However, entanglement is typically fragile and many-particle entangled states

can be easily destroyed by decoherence due to inevitable coupling to the environment. As an

experimental record, so far fourteen qubits carried by trapped ions have been successfully prepared

into genuine entangled states [14]. Pushing up this number represents a challenging goal in the

experimental frontier.

The Bose Einstein condensate of ultracold atoms is in a pure quantum mechanical state with strong

collision interaction. In a spinor condensate [1,15–17], the spin-dependent collision interaction can

be used to produce spin squeezing [9, 10, 18–20], which is an indicator of many-particle entangle-
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ment [21]. Spin squeezing has been demonstrated in condensates in recent experiments through

spin-dependent collision dynamics [9, 10, 20, 22, 23]. A squeezed state is typically sensitive to

noise and generation of substantial squeezing requires accurate control of experimental systems,

which is typically challenging. In quantum information theory, the Dicke states are known to be

relatively robust to noise and they have important applications for quantum metrology [24] and im-

plementation of quantum information protocols [25]. For instance, the three-particle Dicke state,

the so-called W state, has been proven to be the most robust entangled state under particle loss [26].

Because of their applications and nice noise properties, Dicke states represent an important class

of many-body states that are pursued in physical implementation. For a few particles, Dicke states

have been generated in several experimental systems [27, 28] .

2.2 Chapter Outline

In this chapter, we propose a robust method to generate massive entanglement in the proximity

of many-particle Dicke states through control of adiabatic passage across a quantum phase tran-

sition in a spinor condensate. Using conservation of the magnetic quantum number, we show

that sweep of the magnetic field across the polar-ferromagnetic phase transition provides a simple

method to generate many-body entanglement in this mesoscopic system. The generated many-

body entanglement can be characterized through the entanglement depth, which measures how

many particles have been prepared into genuine entangled states [21,29]. The entanglement depth

can be easily measured experimentally for this system through a criterion introduced in Ref. [30].

We quantitatively analyze the entanglement production through the entanglement depth and show

that the scheme is robust under noise and experimental imperfection. The scheme works for both

the ferromagnetic (such as 87Rb ) and the anti-ferromagnetic (such as 23Na ) condensates. For the

anti-ferromagnetic case, we use adiabatic quantum phase transition in the highest eigenstate of the

13



Hamiltonian instead of its ground state.

2.3 System and Hamiltonian Description

The system under consideration is a ferromagnetic (or anti-ferromagnetic) spin-1 Bose Einstein

condensate under an external magnetic field, which has been realized with 87Rb (or 23Na) atoms

in an optical trap [1]. The spin-independent collision rate of a spinor condensate is typically

much larger than the spin-dependent one. In this case, to describe the ground state of the spinor

condensate in a spin-independent optical trap, it is good approximation to assume that different

spin components of the condensate take the same spatial wave function φ(r). This is the well-

known single mode approximation [1, 17], and under this approximation we have the atomic field

operator ψ̂m≈ âmφ(r),(m= 1,0,−1), where am is the annihilation operator for corresponding spin

mode. We assume the spinor condensate has a fixed total particle number N as in experiments and

neglect the terms in the Hamiltonian that are constant under this condition. The relevant part of the

Hamiltonian for a spinor condensate then takes the form [1, 17]

H = c1
L2

N
+

1

∑
m=−1

(qm2− pm)a†
mam (2.3.1)

where c1 denotes the spin-dependent collision energy, p (q) corresponds respectively to the linear

(quadratic) Zeeman energy shift, and Lµ ≡ ∑m,n a†
m( fµ)mnan is the spin-1 angular momentum op-

erator. The symbol fµ (µ = x,y,z) denotes µ-component of the spin-1 matrix, and ( fµ)mn is the

corresponding (m,n) matrix element. The derivation of this Hamiltonian is in the supplement A.

We have c1 < 0 (c1 > 0) for 87Rb (23Na), which corresponds to ferromagnetic (anti-ferromagnetic)

interaction, respectively. The linear Zeeman term ∑
1
m=−1 pma†

mam = pLz typical dominates in the

Hamiltonian H. However, this term commutes with all the other terms in the Hamiltonian. If we

start with an initial state that is an eigenstate of Lz, the linear Zeeman term has no effect and thus
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can be neglected. In this paper, we consider an initial state with all the atoms prepared to the level

|F = 1,m = 0〉 through optical pumping, which is an eigenstate of Lz. The system remains in this

eigenstate with magnetization Lz = 0, and the effective spin Hamiltonian becomes

H = c1
L2

N
−qa†

0a0. (2.3.2)

The ratio q/c1 is the only tunable parameter in this Hamiltonian, and depending on its value, the

Hamiltonian has different phases resulting from competition between the quadratic Zeeman effect

and the spin-dependent collision interaction.

2.4 Ground State Structure

We first consider the ferromagnetic case with c1 < 0. For the initial state, we tune up the magnetic

field to make the quadratic Zeeman coefficient q� |c1|. In this limit, the second term −qa†
0a0

dominates in the Hamiltonian H. The ground state of the Hamiltonian is given by an eigenstate

of a†
0a0 with the maximum eigenvalue N. This ground state can be prepared by putting all the

atoms to the Zeeman level |F = 1,m = 0〉 through optical pumping. Then we slowly ramp down

the magnetic field to zero. From the adiabatic theorem, the system remains in the ground state

of the Hamiltonian H and the final state is the lowest-energy state of HF = c1L2/N, which is

the Dicke state |L = N,Lz = 0〉 that maximizes L2 with the eigenvalue L(L+ 1). The Dicke state

|L = N,Lz = 0〉 is a massively entangled state of all the particles.
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2.5 Adiabatic Evolution Analysis

The above simple argument illustrates the possibility to generate massive entanglement through an

adiabatic passage. To turn this possibility into reality, however, there are several key issues we need

to analyze carefully. First, we need to know what is the requirement of the sweeping speed of the

parameter q to maintain an adiabatic passage. In particular, this adiabatic passage goes through a

quantum phase transition where the energy gap approaches zero in the thermodynamical limit. So

the evolution cannot be fully adiabatic for a large system. It is important to know how the energy

gap scales with the particle number N for this mesoscopic system. Second, due to the non-adiabatic

correction and other inevitable noise in a real experimental system, the final state is never a pure

state and quite different from its ideal form |L = N,Lz = 0〉. For a many-body system with a large

number of particles, the state fidelity is always close to zero with presence of just small noise. So

we need to analyze whether we can still generate and confirm genuine many-particle entanglement

under realistic experimental conditions.

To analyze the entanglement behavior, first we quantitatively calculate the phase transition points

during this adiabatic passage and analyze how the energy gap scales with the particle number N.

The mean-field phase diagram for the Hamiltonian (2.3.1) is well known [1]. However, in typical

mean field calculations one fixes the parameters p,q to obtain the ground state of the Hamiltonian

(2.3.1), and this ground state in general has varying magnetization 〈Lz〉. For our proposed adiabatic

passage, we should fix 〈Lz〉 = 0 and find the ground state of the Hamiltonian (2.3.2) instead of

(2.3.1) as the linear Zeeman term is irrelevant.

We perform exact numerical many-body calculation in the Hilbert space with 〈Lz〉= 0 to find the

ground state of the Hamiltonian (2.3.2) and draw the condensate fraction in the the Zeeman level

|F = 1,m = 0〉, N0/N with N0 ≡
〈

a†
0a0

〉
, in Fig. 2.5.1 as we ramp down the parameter q. Control

of the magnetic field can only sweep the parameter q from the positive side to zero. Further sweep
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Figure 2.5.1: The order parameter 〈N0/N〉 shown as a function of the quadratic Zeeman coefficient
q in units of |c1| for the total atom number N = 105. Two second-order phase transitions take place
at q/ |c1|=±4.

of q to the negative side can be obtained through ac-Stack effect induced by a microwave field

coupling the hyperfine levels |F = 1〉 and |F = 2〉, as demonstrated in experiments [31, 32].

The curve in Fig. 2.5.1 shows two second-order phase transitions at the positions q/ |c1| = ±4

, where the condensate fraction N0/N drop first from 1 to a positive number r (0 < r < 1) and

then to 0. The transition point at q/ |c1|= 4 agrees with the mean field prediction, however, there

is a significant discrepancy for the transition at q/ |c1| = −4 . Mean field calculation under a

fixed parameter p = 0 predicts a transition at q/ |c1| = 0, where the magnetization 〈Lz〉 abruptly

changes [1]. For the adiabatic passage considered here, due to the conservation of Lz the transition

at q/ |c1|= 0 is postponed to the point q/ |c1|=−4.

Besides prediction of the phase transition points, the exact many-body calculation can show evo-
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Figure 2.5.2: (a) The energy gap ∆ in units of |c1| shown as a function of q/ |c1| with the total
particle number N = 104. (b) The stars show the scaling of the energy gap ∆/ |c1| at the phase
transition point with the particle number N in the log-log plot. The solid line is a linear fit to the
data points with ∆ = 7.4N−1/3.

lution of entanglement for the ground state and scaling of the energy gap with the particle number

N at the phase transition points. The scaling of the energy gap is important as it shows the relevant

time scale to maintain the adiabatic passage. In Fig. 2.5.2(a), we show the energy gap ∆ (defined

as the energy difference between the ground state and the first excited state) in units of |c1| as a

function of q/ |c1| for N = 104 particles. The gap attains the minimum at the phase transition points

and is symmetric with respect to the transitions at q/ |c1|=±4 . In Fig. 2.5.2(b), we show how the

energy gap at the phase transition point scales with the particle number N. In the log− log plot, the

points are on a straight line, which can be well fit with the polynomial scaling ∆ = 7.4N−1/3. The

energy gap decreases slowly with increase of the particle number N, which suggests it is possible

to maintain an adiabatic passage for typical experimental systems with N ∼ 105.
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2.6 Entanglement Generation

With this understanding, we now turn to our main task in this chapter to characterize entanglement

generation with this adiabatic passage. For this purpose, we need to have a quantity to measure

entanglement in the proximity of the Dicke state and this measure should be accessible to experi-

mental detection.

Due to non-adiabatic corrections and inevitable noise in real experiments, we cannot assume that

the system is in a pure state and the entanglement measure should work for any mixed states.

Many-body entanglement can be characterized in different ways, and a convenient measure is the

so-called entanglement depth which measures how many particles in an N-particle system have

been prepared into genuine entangled states given an arbitrary mixed state of the system [21,29,30].

A quantity to measure the entanglement depth for N spin-1/2 particles has been provided in Ref.

[30] based on measurements of the collective spin operators. It is straightforward to generalize

this quantity to the case of N spin-1 particles. For N spin-1 particles, the collective spin operator

is defined by L = ∑
N
i=1 li, where li denotes the individual spin-1 operator. In terms of the bosonic

mode operators, the collective spin operator has the standard decomposition

Lµ = ∑
m,n

a†
m( fµ)mnan (µ = x,y,z; m,n = 0,±1)

To characterize entanglement in the proximity of the Dicke state |L = N,Lz = 0〉, we measure the

quantity

ξ =

〈
L2

x
〉
+
〈
L2

y
〉

N(1+4
〈
(∆L2

z )
〉
)

(2.6.1)

If ξ > m, from the arguments that lead to theorem 1 of Ref. [30] we conclude that the system

has at least genuine m-particle entanglement (i.e., the entanglement depth is bounded by m from

below). For the ideal Dicke state |L = N,Lz = 0〉, one can easily verify that ξ = N +1 > N, so all
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the N particles are in a genuine entangled state. The final state of real experiments is in general

a complicated mixed state which is impossible to be read out for many-particle systems. The

power of the measure in Eq. (2.6.1) is that it gives an experimentally convenient way to bound

the entanglement depth in this case through simple detection of the collective spin operators even

though the system state remains unknown.

Now we show how the entanglement measure defined in Eq. (2.6.1) evolves when we adiabatically

sweep the parameter q in the Hamiltonian (4.2.2). We ramp down the parameter q linearly from

q = 6 |c1| to 0 with a constant speed, starting from the initial product state with all the particles in

the level |F = 1,m = 0〉.

The entanglement depth ξ in units of N (see supplemental material for calculation details) of the

final state is shown in Fig. 2.6.1 (a) and 2.6.1 (b) as a function of the sweeping speed v (in units

of |c1|2 by taking h̄ = 1) for N = 103 and N = 104, respectively. We can see that the entanglement

depth increases abruptly from a few to the order of N when the speed v decreases below |c1|2. In

the same figure, we also show the excitation probability of the final state (the probability to be not

in the ground state).

For a small number of particles, the excitation probability typically correlates with the entangle-

ment depth, and they jump roughly around the same value of the sweeping speed. However, for a

large number of particles (e.g., N ≥ 104), we can have the entanglement depth of the order of N

while the excitation probability is near the unity as shown in Fig. 2.6.1 (b). This indicates that the

entanglement in the proximity of the Dicke state is quite robust. Even when the sweep is not fully

adiabatic and most of the atoms are excited to the low-lying excited states (meaning that the state

fidelity decrease to almost zero), we can still have the entanglement depth close to N (meaning all

the particles are still genuinely entangled).

As the energy gap ∆ at the phase transition point decreases with the atom number N, one expects

that the required sweeping time T to get substantial entanglement increases with N. However, this
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Figure 2.6.1: The normalized entanglement depth ξ/N (solid lines) and the excitation probability
Pe (star points) for the final state shown as functions of the sweeping speed v (in units of |c1|2) for
the number of particles N = 103 (a) and N = 104 (b). The parameter q in the Hamiltonian (4) is
ramped down linearly from q = 6 |c1| to 0 at a constant speed v, starting from the initial product
state with all the particles in the level |m = 0〉.
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Figure 2.6.2: Scaling of the required sweeping time T (in units of 1/ |c1|) with the particle number
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curve), and 0.7N (top curve), respectively.
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increase is very slow. First, ∆ decreases slowly with N by the scaling ∆ ∝ N−1/3 as shown in Fig.

2.5.2 (b). Second, for a large N even when ∆T < 1 and a significant fraction of the atoms get

excited during the sweep, we can still observe substantial entanglement as the entanglement depth

of the low-lying excited states is still high as shown in Fig. 2.6.1 (b).

To see the the quantitative relation between the required sweeping time T and the particle number

N, we fix the entanglement depth of the final state to be a significant number (e.g., with ξ =

0.3N, 0.5N, or 0.7N) and draw in Fig. 2.6.2 the scaling of T (in units of 1/ |c1|) as a function of

N. When N ≥ 103, the curve of |c1|T is almost flat, increasing by a modest 20% when the atom

number grows by an order of magnitude.

2.7 Choices of Experimental Platform

All the calculations above are done for the ferromagnetic case with c1 < 0 by assuming an adiabatic

sweep of the Hamiltonian (2.3.2) in its ground state. For the anti-ferromagnetic case with c1 > 0

(such as 23Na), we can perform an adiabatic sweep along the ground state of the Hamiltonian −H

(or the highest eigenstate of the Hamiltonian H in Eq. (2.3.2)). Then, all the calculations above

equally apply to the anti-ferromagnetic case. The only difference is that initially the parameter q

needs to be set to the negative side with q = −6 |c1| when the atoms are prepared into the level

|m = 0〉.

As mentioned before, q can be switched to both the positive and the negative sides, through

ac-Stack shift from a π-polarized microwave field that couples the hyperfine levels |F = 1〉 and

|F = 2〉 [31,32]. An advantage of using 23Na instead of 87Rb is that it is has a larger spin-dependent

collision rate |c1| and thus allows a faster sweep of the parameter q. If we take the peak condensate

density about 1014cm−3, c1/h̄ is estimated to be about −2π×7Hz for 87Rb atoms and 2π×50Hz

for 23Na atoms.
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2.8 Noise Robustness

Finally, we briefly discuss how the noise influence entanglement generation in this scheme. First, in

the proximity of the Dicke state the entanglement depth measured through Eq. (2.6.1) is very robust

to the dephasing noise (dephasing between the Zeeman levels caused by, e.g., a small fluctuating

magnetic field).

As shown in Ref. [30], even with a dephasing error rate about 50% for each individual atom, the

entanglement depth ξ remains about N/2, which is still large. The entanglement depth is more

sensitive to the bit-flip error that increases
〈
∆L2

z
〉

in Eq. (2.6.1), which can be caused by imperfect

preparation of the initial state, atom loss during the adiabatic sweep, linear Zeeman term in the

Hamiltonian or imperfection in the final measurement of the collective spin operators.

The detection error can be corrected through simple data processing using the method proposed in

Ref. [33] as long as its error rate has been calibrated.

The initial state |F = 1,m = 0〉 can be prepared efficiently through optical pumping and remaining

atoms in the |F = 1,m =±1〉 levels can be blown away through microwave coupling to the |F = 2〉

levels that are unstable under atomic collisions.

The atomic loss should be small as the sweeping time T is assumed to be much shorter compared

with the life time of the condensate. Only loss of atoms in the components |F = 1,m =±1〉 can

increase the fluctuation
〈
∆L2

z
〉
. Assume the loss rate is p during the sweep, the resultant

〈
∆L2

z
〉

is

estimated by
〈
∆L2

z
〉
∼ N p(1− p)/6. For a large number of atoms with N p� 1, the entanglement

depth in Eq. (2.6.1) is then estimated by ξ ∼ 3/(2p) . If we take p about 1%, it is possible to

prepare a remarkable number of hundreds of atoms into genuine entangled states.
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2.9 Chapter Summary

We propose a method to generate massive entanglement in a spinor Bose-Einstein condensate from

an initial product state through adiabatic sweep of magnetic field across a quantum phase transi-

tion induced by competition between the spin-dependent collision interaction and the quadratic

Zeeman effect. The generated many-body entanglement is characterized by the experimentally

measurable entanglement depth in the proximity of the Dicke state. We show that the scheme is

robust to practical noise and experimental imperfection and under realistic conditions it is possible

to generate genuine entanglement for hundreds of atoms.

This chaper contains content that was published elsewhere [34] and is available at

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.180401.
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CHAPTER III

Quantum Metrology with Dicke Squeezed States

3.1 Background Information

Precision measurement plays an important role for scientific and technological applications. In

many circumstances, precision measurement can be reduced to detection of a small phase shift by

use of optical or atomic interferometry [35–38]. The precision of the phase measurement improves

with increase of the number of particles (photons or atoms) in the interferometer. For N particles

in non-entangled (classical) states, the phase sensitivity ∆θ is constrained by the standard quantum

limit ∆θ ∼ 1/
√

N from the shot noise [35, 37, 38].

Schemes have been proposed to improve the measurement precision beyond the standard quantum

limit by use of quantum entangled states [35–42]. Two classes of states are particularly important

for this scenario: one is the GHZ state [39], or called the NOON state in the second quantization

representation [41,42]; and the other is the spin squeezed state [35,37,38], which may include the

squeezed state of light as a special limit. A number of intriguing experiments have been reported to

prepare these states and use them for quantum metrology [9, 10, 43–47]. These states are typically

sensitive to decoherence and experimental noise [48, 49]. As a result, the number of particles that
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one can prepare into the GHZ state, or the maximal spin squeezing that one can achieve, are both

severely limited in experiments by noise.

In this chapter, we introduce a new class of many-particle entangled states for quantum metrology,

which we name as the Dicke squeezed (DS) states. The DS states have the following interesting

features:

(i) They represent a wide class of entangled states with possibly many different forms but can

be characterized by a single parameter called the Dicke squeezing ξD with ξD < 1. The Dicke

squeezing parameter ξD can be conveniently measured in experiments from detection of the col-

lective spin operator of N particles. It provides the figure of merit for application of the DS states

in quantum metrology in the following sense: for states with ξD, the phase sensitivity ∆θ and the

phase measurement precision dθ both improve from the standard quantum limit 1/
√

N to the new

scaling
√

ξD/N. The phase shift can be read out through the Bayesian inference for the DS states.

Under a fixed particle number N, the parameter ξD attains the minimum 1/(N +2) under the ideal

Dicke state, and the phase sensitivity correspondingly approaches the Heisenberg limit ∆θ ∼ 1/N,

in agreement with the previous result on the Dicke state [24, 50].

(ii) The entanglement of the DS states can be also characterized by the squeezing parameter ξD. For

a many-body system with a large particle number N, we would like to know how many particles

among them have been prepared into genuinely entangled states. This number of particles with

genuine entanglement is called the entanglement depth for this system [21,30]. A criterion proved

in Ref. [30] by one of us indicates that ξ
−1
D −2 gives a lower bound of the entanglement depth for

any DS states with the squeezing parameter ξD.

(iii) Compared with the GHZ state or the spin squeezed states, we show that the DS states charac-

terized by ξD are much more robust to decoherence and experimental noise such as particle loss.

Substantial Dicke squeezing ξD remains under a significant amount of noise under which spin

squeezing would not be able to survive at all.
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3.2 The Spin Squeezing Parameter

For a system of N particles, each of two internal states a,b (with effective spin-1/2), we can

define a Pauli matrix −→σi for each particle i and the collective spin operator
−→
J as the summation

−→
J = ∑i

−→
σi/2. Note that the components of

−→
J can be measured globally without the requirement

of separate addressing of individual particles.

If the particles are indistinguishable like photons or ultracold bosonic atoms, we can use the num-

ber of particles na,nb in each mode a,b to denote the states. In this notation (second quantization

representation), the GHZ state of N spins |aa · · ·a〉+ |bb · · ·b〉 (unnormalized) is represented by

|N0〉ab + |0N〉ab , the so called NOON state [41, 42].

The collective spin operators can be expressed in term of the mode operators a, b using the Schwinger

representation Jz = (a†a−b†b)/2, Jx = (a†b+b†a)/2, Jy = (a†b−b†a)/2i [36].

A small phase shift θ can be measured through the Mach-Zehnder type of interferometer illustrated

in Fig. 3.4.1 by inputting a state of two modes a,b and measuring the number difference of the

output modes (the output Jz operator). The two beam splitters in the interferometer exchange the Jz

and Jy operators and the phase shifter is represented by a unitary operator eiθJz which transforms Jy

to cosθJy−sinθJx. Assume the input state has mean
〈
~J
〉
= 〈Jx〉 and minimum variance

〈
(∆Jy)

2
〉

along the y-direction. By measuring
〈
J′y
〉
= cosθ

〈
Jy
〉
− sinθ 〈Jx〉 ≈ −θ 〈Jx〉, the phase sensitivity

∆θ is characterized by
√〈

(∆Jy)
2
〉
/〈Jx〉. This motivates definition of the spin squeezing parameter

[37, 38]

ξS =
N
〈
(∆Jy)

2
〉

〈Jx〉2
(3.2.1)

as the figure of merit for precision measurement. The phase sensitivity is estimated by
√

ξS/N

for this measurement scheme. There are also other spin squeezing parameters proposed in the

history [51].
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3.3 The Dicke Squeezing Parameter

Not all states useful for quantum metrology can be characterized by the spin squeezing ξS. An ex-

ample is the Dicke state |N/2,N/2〉ab, which has been shown to give the Heisenberg limited phase

sensitivity in [24]. However, for this state
〈
~J
〉
= 0 in all the directions, and the spin squeezing

ξS is not a good measure to characterize states of this kind with
〈
~J
〉
= 0. To characterize a broad

class of states that are useful for quantum metrology, we introduce the following Dicke squeezing

parameter, defined as

ξD =
N(
〈
(∆Jz)

2〉+ 1
4)

〈J2
x + J2

y 〉
. (3.3.1)

One can easily check that ξD = 1 for the benchmark spin-coherent states. We call any states with

ξD < 1 as the Dicke squeezed states and a major result of this paper is to show that such states

are useful for quantum metrology where the phase sensitivity is improved from
√

1/N for the

benchmark spin coherent state to about
√

ξD/N for the DS states.

The parameter ξD attains the minimum 1/(N +2) under the ideal Dicke state |N/2,N/2〉ab, and the

phase sensitivity
√

ξD/N correspondingly approaches the Heisenberg limit ∼ 1/N, in agreement

with the result in [24, 50].

The Dicke squeezing parameter ξD also characterizes the entanglement depth Ed for many-particle

systems. For an N-qubit system, the entanglement depth Ed measures how many qubits have

been prepared into genuinely entangled states [21, 30]. A theorem proven in Ref. [30] shows that
⌈
ξ
−1
D
⌉
−2, where

⌈
ξ
−1
D
⌉

denotes the minimum integer no less than ξ
−1
D , gives a lower bound of the

entanglement depth Ed . For the ideal Dicke state, |N/2,N/2〉ab, ξ
−1
D = N+2 and its entanglement

depth is N [30].

Note that the entanglement depth characterizes the particle (qubit) entanglement when we express

the state |N/2,N/2〉ab in the first quantization representation [21,30], where one can easily see all

the N qubits are genuinely entangled, so its entanglement depth is N. This should not be confused
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with the mode entanglement between the bosonic operators a and b, which is zero for the Dicke

state |N/2,N/2〉ab.

So the defined Dicke squeezing parameter ξD provides a figure-of-merit both for entanglement

characterization and its application in quantum metrology, and this parameter can be conveniently

measured in experiments through detection of the collective spin operator
−→
J .

3.4 The Internal Phase Precision

To show that ξD is the figure-of-merit for quantum metrology, we use two complementary methods

to verify that the phase measurement precision is improved to
√

ξD/N for a variety of states of

different forms.

First, in the Mach-Zehnder (MS) interferometer shown in Fig. 3.4.1 (a), the phase sensitivity is

estimated by the intrinsic uncertainty ∆θ of the relative phase operator defined between the two

arms (modes a±). We calculate this phase uncertainty and find that it scales as
√

ξD/N for various

input states with widely different ξD and N.

Second, we directly estimate the phase shift θ by the Bayesian inference through detection of the

spin operator Jz, and find that the measurement precision, quantified by the variance dθ of the

posterior phase distribution, is well estimated by β
√

ξD/N , where β ≈ 1.7 is a dimensionless

prefactor.

We perform numerical simulation of experiments with randomly chosen phase shift θ and find that

the difference between the actual θ and the the measured value of θ obtained through the Bayesian

inference is well bounded by the variance dθ , so dθ is indeed a good measure of the measurement

precision.

The Dicke state |N/2,N/2〉ab represents an ideal limit, and it is hard to obtain a perfect Dicke state
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Figure 3.4.1: (a) The Mach-Zehnder (MZ) interferometer setup to measure the relative phase shift
θ with input modes a,b in Dicke squeezed states. The detectors D1 and D2 measure the Jz operator
by recording the particle number difference in the two output modes. (b) In the Bloch sphere
for the collective spin operator ~J, a measurement of the phase shift by the MZ interferometer is
represented by rotation of a thin disk (its size in x,y,z directions corresponds to the variance of ~J
under the Dicke squeezed state) by an angle θ .
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in experiments in particular when the particle number N is large. Here, we consider two classes of

more practical states as examples to show that ξD is the figure-of-merit for application in quantum

metrology when the ideal Dicke state is distorted by unavoidable experimental imperfection.

For the first class, we consider pure states of the form |Ψ(σ)〉ab =∑
N
n=0 an (σ) |n,N−n〉, where the

total number of particles is fixed to be N but the number difference between the modes a,b follows

a Gaussian distribution an (σ) = exp
{
−(n−N

2 )
2

σ2 + iπ

4 (n−
N
2 )
}

with different widths characterized

by the parameter σ . The phase of an (σ) is chosen for convenience so that the variance of the state

is symmetric along the x,y axes.

For the second class, we consider mixed states ρab (η) which come from noise distortion of the

Dicke state |N/2,N/2〉ab after a particle loss channel with varying loss rate η . To calculate ρab (η),

we note that a loss channel with loss rate η can be conveniently modeled by the transformation a =

√
1−ηain +

√
ηaν and b =

√
1−ηbin +

√
ηbν , where ain,bin denote the annihilation operators

of the input modes which are in the ideal Dicke state |N/2,N/2〉 = ((N/2)!)−1 (a†
inb†

in)
N/2|0,0〉

and aν ,bν represent the corresponding vacuum modes. By substituting a†
in,b

†
in with a†,b† through

the channel transformation and tracing over the vacuum modes a†
ν ,b†

ν , we get the matrix form

of ρab(η) in the Fock basis of the modes a,b. The two classes of states |Ψ(σ)〉ab and ρab (η)

approach the ideal Dicke state when the parameters σ ,η tend to zero.

In the Mach-Zehnder interferometer shown in Fig. 3.4.1 (a), the modes a± of the two arms are

connected with the input modes a,b by the relation a± = (±a+b)/
√

2. The phase eigenstates

|θl〉± of the modes a± are superpositions of the corresponding Fock states |n〉± with

|θl〉± = (s+1)−1/2
s

∑
n=0

einθl |n〉±

where θl = 2πl/(s+1) (l = 0,1, ...,s) and s+1 denotes the Hilbert space dimension which even-

tually takes the infinity limit [52].
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For modes a± in a composite state denoted by its density matrix ρ±, the probability distribution

P(θr) of the relative phase θr between the two interferometer arms can be expresses as

P(θr) =
s

∑
l=0
±〈θlθl−δ l|ρ±|θlθl−δ l〉±, (3.4.1)

where δ l = θr(s+1)/(2π).

The phase distribution P(θr) becomes independent of the Hilbert space dimension s+ 1 when s

goes to infinity, and the half width ∆θ of P(θr) gives an indicator of the intrinsic interferometer

sensitivity to measure the relative phase shift for the given input state [24, 50]. We use ∆θ to

quantify the phase sensitivity for our input states.

In Fig. 3.4.2, we show the calculated phase sensitivity ∆θ for the two classes of input states

|Ψ(σ)〉ab and ρab (η), by varying the parameters σ ,η and the particle number N. With fixed

parameters σ ,η , when we vary the particle number N (typically from 20 to 200 in our cal-

culation), the phase sensitivity ∆θ follows a linear dependence with the parameter
√

ξD/N by

∆θ = α
√

ξD/N (note that the Dicke squeezing parameter ξD changes widely as we vary N and

σ ,η). The slope α depends very weakly on the parameters σ ,η as shown in Fig. 2(c) and 2(d)

and roughly we have α ≈ 2. This shows that for different types of input states the phase sensitivity

∆θ is always determined by the parameter
√

ξD/N up to an almost constant prefactor α .

3.5 The Bayesian Inference Method

A good phase sensitivity ∆θ is an indicator of possibility of high-precision measurement of the

relative phase shift θ , however, the sensitivity by itself does not give the information of θ . In par-

ticular, for the DS states we typically have
〈
~J
〉
= 0 and therefore cannot read out the information

of θ by measuring rotation of the mean value of ~J.
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Figure 3.4.2: The phase sensitivity ∆θ versus the normalized Dicke squeezing
√

ξD/N for two
classes of input states: (a) States |Ψ(σ)〉ab with Gaussian superposition coefficients. (b) Dissipa-
tive states ρab (η) after a loss channel. The resulting points are on a straight line when we vary the
particle number N from 20 to 200 (ξD changes correspondingly) and the slope of the line changes
slightly as we vary the parameter σ (from 0 to 6) or η (from 0 to 0.4). (c) and (d) show the variation
of the slope α as a function of the parameter σ or η .

33



0 0.002 0.004
0

0.005

0.01

√

ξD/(Nm)

dθ

(c)

 

 

0.001 0.002 0.003 0.004 0.005 0.006
0

0.005

0.01

0.015

θ

P(θ)

(a)

 

 

m=2
m=10
m=50
m=200

0 0.002 0.004
0

0.002

0.004

0.006

0.008

0.01
(b)

√

ξD/(Nm)

dθ

 

 
η=0,N=100
η=0.01,N=100
η=0.01,N=50

σ=0,N=100

σ=1,N=100
σ=4,N=200

Figure 3.4.3: (a) The posterior phase distributions Pm(θ |{ jz}m) obtained from the Bayesian in-
ference after the mth measurement with m = 2,10,50 and 200 from our numerically simulated
experiments. In the simulation, the actual phase shift θr = 0.003 and the input state is |Ψ(σ)〉ab
with N = 1000, ξD = 0.0019 and σ = 1. (b) and (c): The measurement precision dθ (the dots
along a line fit by dθ ≈ 1.7

√
ξD/(Nm)) and the estimation error θpr (the scattered points below

the line) as functions of the scaled parameter
√

ξD/(Nm) for the Gaussian input states |Ψ(σ)〉ab
(b) and the dissipative input states ρab (η) (c) with m varying from 20 to 200. The other parameters
(σ ,N for |Ψ(σ)〉ab and η ,N for ρab (η)) are specified by the inserts of the figure.
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A powerful way to read out the information of θ is through the Bayesian inference [24, 50]. Here,

we show that with the Bayesian inference, we can faithfully extract the information of θ with a

measurement precision dθ = β
√

ξD/N for the DS states, where the prefactor β ≈ 1.7.

We note that each instance of measurement by the MZ interferometer setup shown in Fig. 3.4.1

records one particular eigenvalue jz of the Jz operator, which occurs with a probability distribution

P( jz|θ) (called the likelihood) that depends on the relative phase shift θ . With a given input state

ρab for the modes a,b, the likelihood P( jz|θ) is given by .

P( jz|θ) = 〈 j, jz|eiθJyρabe−iθJy | j, jz〉, (3.5.1)

where | j, jz〉 denotes the momentum eigenstate with j = N/2.

The Bayesian inference is a way to use the Bayes’ rule to infer the posterior distribution Pm(θ |{ jz}m)

of the phase shift θ after m instances of measurements of the Jz operator with the measurement

outcomes { jz}m = jz1, jz2, · · · , jzm, respectively.

After the mth measurement with outcome jzm, the phase distribution Pm(θ |{ jz}m) is updated by

the Bayes’ rule

Pm(θ |{ jz}m) =
P( jzm|θ)Pm−1(θ |{ jz}m−1)

P( jzm|{ jz}m−1)
, (3.5.2)

where P( jzm|{ jz}m−1) =
´

dθP( jzm|θ)Pm−1(θ |{ jz}m−1) is the probability to get the outcome jzm

conditional on the sequence { jz}m−1 for the previous m−1 measurement outcomes.

Before the first measurement, the prior distribution P0(θ) is assumed to be a uniform distribu-

tion between 0 and 2π . When the instances of measurements m� 1, the posterior distribution

Pm(θ |{ jz}m) is typically sharply peaked around the actual phase shift, and we use the half width

dθ of Pm(θ |{ jz}m) to quantify the measurement precision.

To show that the measurement precision dθ is indeed determined by
√

ξD/N for the DS states,
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we numerically simulate the MZ experiment with a randomly chosen actual phase shift θr in the

interferometer.

We take input states of the forms of |Ψ(σ)〉ab or ρab (η) as we specified before, with the cor-

responding likelihood P( jz|θ) given by Eq. (3.5.1). With this likelihood, we get a sequence

of measurement outcomes jz1, jz2, · · · , jzm, which are sampled in our numerically simulated ex-

periments using the corresponding probability distributions P( jzk|{ jz}k−1) with k = 1, 2, · · · , m ,

respectively.

For this sequence of outcomes, we obtain the corresponding sequence of posterior phase distri-

butions Pm(θ |{ jz}m), with an example shown in Fig. 3.4.3 (a). One can see that the distribution

Pm(θ |{ jz}m) indeed gets increasingly sharper with m and its peak approaches the actual phase

shift θr. We use the the central peak position θp of the distribution Pm(θ |{ jz}m) as an estimator of

the measured phase shift, and the difference θpr =
∣∣θp−θr

∣∣ therefore quantifies the measurement

error. This error θpr is typically bounded by dθ , indicating there is no systematic bias by this

inference method.

In Fig. 3.4.3 (b) and 3.4.3(c), we show the measurement precision dθ and the estimation error θpr

as functions of the scaled parameter
√

ξD/(Nm), as we vary the types of input states (the parame-

ters σ ,η in states |Ψ(σ)〉ab and ρab (η)), the particle number N, and the number of measurement

instances m. All the points for the measurement precision dθ can be well fit with a linear function

dθ ≈ β
√

ξD/(Nm) with β ≈ 1.7.

The estimation error θpr from the simulated experiments (the scattered points) is typically below

the corresponding dθ . This supports our central claim: the defined Dicke squeezing parameter

ξD characterizes the improvement of measurement precision for the DS states compared with the

standard quantum limit.
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Figure 3.5.1: (a) Comparison of the spin squeezing ξS and the Dicke squeezing ξD under influence
of the particle loss with a loss rate η . We take the particle number N = 100 and the amounts of
squeezing for ξS and ξD comparable initially at η = 0. (b) Comparison of the Dicke squeezing ξD
for a Poisson distributed mixed state and for a Dicke state with the same mean particle number λ .
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3.6 The Noise Robustness

Compared with other entangled states used in quantum metrology, a remarkable advantage of the

DS states characterized by the squeezing parameter ξD is its noise robustness. For instance, if the

noise in experiments is dominated by the dephasing error that does not change the mode population,

the numerator does not change in the definition equation (3.3.1) for the Dicke squeezing ξD and

only the denominator drops slowly.

With a dephasing rate p (p is the probability for each qubit to become completely decoherent), the

squeezing parameter reduces to ξD = 1/
[
N (1− p)+2− p2] if we start with a Dicke state for N

particles [30]. We still have substantial squeezing when N � 1 even if the dephasing error rate

p& 50%.

More generic noise such as particle loss has bigger influence on the Dicke squeezing, however,

the DS states are still more robust compared with other forms of entangled states such as the

spin squeezed states. In Fig. 3.5.1 (a), we show the influence of the particle loss to the Dicke

squeezing ξD and the spin squeezing ξS, starting with comparable values of ξS and ξD at the

loss rate η = 0 under the same particle number N. The spin squeezed state was determined by

minimizing (∆Jz)
2 with Jx = 0.1J [21]. One can see that that the spin squeezing ξS is quickly

blown up by very small particle loss, but substantial Dicke squeezing ξD remains even under a

significant loss rate. In the asymptotic limit with N � 1, ξD ≈ η/(1−η) under a loss rate η .

Therefore, compared with the standard quantum limit, the measurement precision improves by a

constant factor of
√

ξD ≈
√

η/(1−η) for the DS state under loss. This has saturated the bound

derived in Ref. [53], which proves that under noise the measurement procession can be improved

at most by a constant factor for any quantum entangled states (the factor is exactly
√

η/(1−η)

under a loss rate η as proven in [53]).

The saturation of the improvement bound shows that the DS states characterized by the parameter
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ξD belong to the optimal class of states for improving the measurement precision under noise (note

that the conventional spin squeezed states measured by the squeezing parameter ξS are not optimal

for improving measurement precision under noise as ξS is quickly blown up to be larger than 1

(see Fig. 3.5.1 (a)), yielding no improvement compared with the standard quantum limit). In Fig.

3.5.1 (b), we consider an initial mixed state prepared in experiment with variable particle number.

The particle number is Poisson distributed with the probability for n particle as P(n) = λ ne−λ

n! , so

the mean particle number of the system is 〈N〉 = λ . ξD for this initial state is compared with that

for the Dicke states of the same mean particle number λ . From the plot we can see the difference

is small and ξD is insensitive to the input state number fluctuation.

3.7 Chapter Summary

In summary, we have proposed a new class of many-particle entangled states characterized by

the introduced Dicke squeezing parameter ξD to improve the measurement precision in quantum

metrology. We show that the phase information can be read out through the Bayesian inference and

the measurement precision is improved by a factor of
√

ξD compared with the standard quantum

limit.

A distinctive advantage of the DS states is its noise robustness and we show that the Dicke squeez-

ing ξD is much more robust compared with other forms of entangled states used in quantum metrol-

ogy. Substantial Dicke squeezing can be generated in experiments, for instance, through the atomic

collision interaction in spinor condensates [34, 54]. With the characterization and measurement

method proposed in this paper, the Dicke squeezing may lead to a fruitful approach for precision

quantum metrology using entangled quantum states.

This chaper contains content that was published elsewhere [55] and is available at

http://iopscience.iop.org/1367-2630/16/10/103037.
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CHAPTER IV

Quantum Metrology Using Spin Squeezed State

4.1 Background Information

The precise measurement of phase is an important issue for both theoretical and experimental

studies [35–38]. As well as a fundamental question itself, searching of quantum states with high

phase precision is also required for an atomic clock. Systems with strong quantum entanglement

are believed to have higher phase precision and therefore offer a good candidate for atomic clocks.

Among all the entangled states, spin squeezed states have promising performance [8]. Effective

methods for the preparation of spin squeezed states and their application in quantum metrology are

proposed in various experiment platforms [9, 10, 43–46, 56].

For a system of N spin half particles, the collective spin operator
−→
J can be expressed by the Pauli

matrix −→σi of each single qubit as
−→
J = ∑i

−→
σi/2. The spin squeezed states are defined as states with

minimized noise ∆Jz for a given value of 〈Jx〉. Those states have small fluctuation for their internal

phases, so they can be used in quantum metrology. It is shown that the the phase resolution of N

spin-1/2 atoms contains the factor ξs =
N〈(∆Jz)

2〉
〈Jx〉2

[21], and ξs can also be used to characterize the

entanglement property as ξs < 1 indicates that there is manybody entanglement in the system [18].
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However ξs is very sensitive to experimental noise. For states with small 〈Jx〉, fluctuation in the

particle number will cause uncertainty in the spin δ 〈Jx〉 comparable to 〈Jx〉 and this can result in

non-negligible change of ξs. Also for the maximally entangled Dicke state |J = N
2 ,Jz = 0〉, ξs fails

to characterize the entanglement as both 〈(∆Jz)
2〉 and 〈Jx〉 go to zero.

In this chapter we introduced a new parameter ξn considering the properties of spin squeezed states

and proved that ξn can work as a proper characterization of the phase precision for spin squeezed

states and is more robust to experimental noise.

4.2 Definition of the Squeezing Parameter ξn

To analyze the phase sensitivity of spin squeezed states, we illustrate the state rotation of an angle

θ in the y direction in Fig.4.2.1. The measurement sensitivity of the rotation angle θ is decided

by the spin distribution of the state in the Bloch sphere in the x direction and its fluctuation in

the z direction, and the sensitivity is maximized if the spin distribution has a wide spread in the

x direction and a small fluctuation in the z direction. So using a parameter containing 〈J2
x 〉 and

〈(∆Jz)
2〉 to describe the phase sensitivity is a reasonable choice.

The phase sensitivity is also related to the entanglement property of the state. While ξs < 1 in-

dicates entanglement in the system, we would like to construct a squeezing parameter which can

quantify the the amount of entanglement. We consider an entangled N qubit system described by

the density matrix ρ = ∑µ pµρµ , with pµ ≥ 0 and ∑µ pµ = 1. If there is no genuine (m0 + 1)-

qubit entanglement ρµ can be decomposed in the form of ρµ = ρ1µ ⊗ ρ2µ ⊗ ·· · ⊗ ρkµ , where

ρiµ (i= 1,2, · · · ,k) represents a component state of miµqubits with ∑
k
i=1 miµ =N and 1≤miµ ≤m0.

From Eq. (6) of Duan’s paper in 2011 [30], the following inequation holds
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Figure 4.2.1: In the Bloch sphere for the collective spin operator
−→
J , the phase precision is repre-

sented by the rotation of a thin disk (its size in x,y,z directions corresponds to the variance of
−→
J )

of an angle θ in the y direction.
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〈J2
x 〉 ≤∑

µ,i
pµ [〈(∆Jxi)

2〉µ +4〈(∆Jz)
2〉µ〈(∆Jyi)

2〉µ ].

As 〈(∆Jαi)
2〉µ ≤〈J2

αi〉µ ≤m2
iµ/4 for α = x,y,z , (∑i〈Jxi〉)2

µ ≤ k ∑i〈Jxi〉2µ and 〈(∆Jz)
2〉≥∑µ pµ〈(∆Jz)

2〉µ ,

we have

〈J2
x 〉+

〈Jx〉2

N
≤ ∑

µ

pµ [∑
i
〈(∆Jxi)

2〉µ +
∑i〈Jxi〉2µ

N
+4〈(∆Jz)

2〉µ〈(∆Jyi)
2〉µ ]

≤ ∑
µ

pµ [∑
i
〈J2

xi〉µ +(
k
N
−1)∑

i
〈Jxi〉2µ +4〈(∆Jz)

2〉µ〈(∆Jyi)
2〉µ ]

≤ ∑
µ

pµ [∑
i

m2
iµ

4
(1+4〈(∆Jz)

2〉µ)]

≤ [1+4〈(∆Jz)
2〉] max
{miµ}

(∑
i

m2
iµ

4
). (4.2.1)

This maximum value is obtained when we choose k = [ N
m0
] where [ N

m0
] is the largest integer no less

than N
m0

, m1µ = N−m0(k−1), and all the other miµ = m0, and correspondingly the above equation

is reduced to

〈J2
x 〉+

〈Jx〉2

N
≤ [1+4〈(∆Jz)

2〉]m0N/4. (4.2.2)

This inequation indicates that if we define a squeezing parameter

ξn =
N(〈(∆Jz)

2〉+ 1
4)

〈J2
x 〉+

〈Jx〉2
N

,

for a state without genuine (m0+1)-particle entanglement the inverse of ξn is bounded by m0 with

1
ξn
≤ m0.
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Figure 4.2.2: Comparison of ξs and ξn for spin squeezed states with 〈Jx〉/J from zero to unity. The
difference between ξs and ξn is small and turns to zero at the two ends of zero 〈Jx〉 and maximum
〈Jx〉. The value of ξs at Jx = 0 is not shown as at this point ξs is unstable. The particle number of
the system is N = 100.

This squeezing parameter ξn contains 〈(∆Jz)
2〉 and 〈J2

x 〉, as we predicted above from the Bloch

sphere analysis. An extra 〈Jx〉2
N term in the denominator insures that ξn goes to unity for the spin

coherent state with spin of all atoms pointing to the x direction. As shown in Fig. 4.2.2, the

difference between ξs and ξn is small for spin squeezed states with 〈Jx〉 from 0 to the maximum

value of J = N/2.

44



4.3 Method for Precision Measurement

The Mach-Zehnder interferometer offers a method to reach the Heisenberg limit of sensitivity for

the measurement of the phase difference θ between two light beams in an optical system [24],

when the input state has strong quantum entanglement, such as the Dicke state |J = N
2 ,Jz = 0〉.

Taesoo Kim [50] generalized this idea to all quantum coherent system such as trapped ions [39] or

atomic interferometry with Bose condensates [57]. The correspondence between this phase shift

of an optical light beam and the rotation of a spin system is also stated.

Spin squeezed states can be used in this high sensitivity phase measurement method with their

small internal phase fluctuation. However a powerful detection method of the rotation angle is still

needed. A simple measurement of 〈Jz〉 or 〈J2
z 〉 could not give out high precision information of the

rotation angle θ as the fluctuation of Jz and J2
z themselves are comparable to their mean values.

Holland and Burnett proposed an effective method to read out the phase information of the Dicke

state by using Bayesian inference [24]. We know that after a rotation of angle θ in the y direction,

the values of Jz detected obey the probability distribution P(Jz|θ) that depends on θ . If the state

before rotation is ψss, P(Jz|θ) then has the distribution of

P(Jz|θ) = |〈J,Jz|eiθJy |ψss〉|2 (4.3.1)

where |J,Jz〉 is the eigenstate of Jz with J = N/2. The estimated θ after m instances of measure-

ments of Jz can be derived by using the Bayer’s rule as

Pm(θ |{Jz}m) =
P(Jzm|θ)Pm−1(θ |{Jz}m−1)

P(Jzm|{Jz}m−1)
(4.3.2)
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with the outcomes of the m measurements as

{Jz}m = Jz1,Jz2, · · · ,Jzm

and the denominator

P(Jzm|{Jz}m−1) =

ˆ
dθP(Jzm|θ)Pm−1(θ |{Jz}m−1)

as the probability for the outcome Jzm when the previous m−1 measurement outcomes are known.

P(Jzm|{Jz}m−1) works as a normalization factor here.

For m = 1, there is no prior knowledge about θ so we take P0(θ |{Jz}0) as an uniform distribution

between 0 and 2π . After several measurement the distribution Pm(θ |{Jz}m) contracts to a sharp

peak around a central value θp, and the half width dθ of this distribution is used as the phase

measurement precision.

To test the behavior of dθ , we simulate the measurement process numerically with the spin squeezed

state of various 〈Jx〉 as the input states, and make a randomly chosen rotation angle around the y

axis. The measurement result of the spin Jz then has the distribution probability P(Jz|θ) as shown

in Eq. (4.3.2). After we get m measurement outcomes Jz1,Jz2, . . . ,Jzm, the probability distribution

of the rotation angle θ is calculated recursively using Eq. (4.3.2).

The shape of Pm(θ |{Jz}m) goes to a sharp peak around the central position θp and the half width

dθ is small when measurement number m is large enough. θp is then taken as an estimator for the

measured rotation angle and it should approach the actual rotation angle θr after infinite number

of measurement. An example of the corresponding distributions Pm(θ |{Jz}m) for a sequence of

measurement outcomes Jz1,Jz2, . . . ,Jzm are calculated and are shown in Fig. 4.3.1 (a) for certain

measurement sequences of m = 1,2,5,10,50 and 100, with the input state as a spin squeezed state
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of 103 particles and 〈Jx〉= 0.1J.

Fig. 4.3.1 (b) shows the half width dθ and the measurement error θpr = |θp−θr| as functions of the

scaled parameter
√

ξn/(Nm) with the green straight line representing dθ and the random purple

dots for θpr. As we predicted the measurement precision dθ has a linear relation with
√

ξn/(Nm)

and thus is determined by
√

ξn/N for spin squeezed states. The measurement error θpr is typically

bounded by dθ as shown in the figure.

To confirm the relation of dθ and
√

ξn/N, in Fig.4.3.2 we show the behavior of dθ with decreasing
√

ξn/(Nm) for several spin squeezed states of different values of 〈Jx〉 as the input states and the

rounds of measurement m varied from 20 to 100. Similar to the result in [55], for all input states dθ

and
√

ξn/(Nm) has a linear relation as dθ ≈ β
√

ξn/(Nm) with the fitted coefficient β ≈ 1.2. This

linear fitting confirms that the defined squeezing parameter ξn is a characterization of the phase

measurement precision for the spin squeezed states.

4.4 Noise Discussion

The noise in experiments will have influence on ξn, and thereby on the phase precision. In the

following we discuss the robustness of ξn under various noises.

The first kind of noise under consideration is the dephasing noise, which is a major source of error

in many experiments. ξn is robust to dephasing as phase decoherence does not change the mode

population, so there is no increase in 〈(∆Jz)
2〉. For spin squeezed states with 〈Jx〉/J > 0.8 , the

squeezing is small as ξn gets large and comparable to 1, thus states with large 〈Jx〉 is not useful in

metrology. So here we consider the change of ξn with spin squeezed states of small 〈Jx〉/J. With

N = 103, 〈(∆Jz)
2〉< 1 for these states.

To estimate the value of ξn, we assume a dephasing error rate p for each individual qubit. As
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Figure 4.3.1: (a): The calculated phase distribution Pm(θ |{Jz}m) from Bayesian interference after
the mth measurement with m = 1,2,5,10,50 and 100 from simulated experiment data. The sim-
ulation is implemented with an initial spin squeezed state of 〈Jx〉 = 0.1J, ξn = 2.03× 10−3 and
N = 103, and the actual phase shift is chosen as θr = 0.002. (b): The simulated process with the
number of measurement instances m from 20 to 100 with a spin squeezed state of 〈Jx〉 = 0.1J,
ξn = 2.03× 10−3 and N = 103. Green line is the measurement precision dθ and the scattered
purple points are the estimation error θpr.
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Figure 4.3.2: The measurement precision dθ as a function of the scaled parameter
√

ξn/(Nm) for
spin squeezed state with various 〈Jx〉/J . The round of measurement m varies from 20 to 100 and
the system’s particle number is N = 100.
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before we expand the spin squeezed state ψss in the basis of Jz’s eigenstates. If the dephasing

rate p = 1, which means complete dephasing, for each term of Jz’s eigenstate we have 〈J2
x 〉 =

∑
N
i=1〈(σix/2)2 = N/4. This leads to ξn ∼ 1 indicating no squeezing in the state. When p < 1 ,

the state follows a probability of a binomial distribution Pi =




N

i


 pi(1− p)N−i for i qubits to

be decohered. This results in 〈J2
x 〉i = i

4 for the subsystem of i qubits. For the remaining N − i

coherence qubits as 〈(∆Jz)
2〉N−i < 1 and 〈J2

x 〉N−i > 〈J2
y 〉N−i , we expect a minimum 〈J2

x 〉N−i of
J·(J+1)

2 = (N−i)·(N−i+2)
8 . And 〈Jx〉 should be in the order of N. Considering all these changing ξn is

estimated with a maximum value of

ξn ∼
cN

∑
N
i=0 Pi(

i
4 +

(N−i)·(N−i+2)
8 )+ 〈Jx〉2

N

∼ 8c
N(1− p)2

Here c is a constant of O(1) and only terms of order N are left in the denominator. From this

estimation even with the dephasing rate pN � 1, the state is still squeezed and has a relatively

high phase measurement precision.

Other noises such as the particle loss noise and the bit-flip error has stronger influence on ξn as

there is significant increase of 〈(∆Jz)
2〉. To check the stability of ξs in the presence of particle loss

noise, we calculated ξs for mixed states ρ(η) which comes from noise distortion of the squeezed

state with a fixed 〈Jx〉 after a particle loss channel of loss rate η .

This loss channel can be modeled by the transformation a=
√

1−ηas+
√

ηaν and b=
√

1−ηbs+

√
ηbν , where as, bs denote the annihilation operators of the two levels in the spin half atoms and

aν , bν represent the corresponding vacuum modes. The spin squeezed state can be expressed by

a†
s and b†

s as
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ψss =
N

∑
n=0

cna†n
s b†(N−n)

s |0,0〉,

here cn is the coefficient determined by the value of 〈Jx〉. The density matrix ρ(η) is derived by

substituting a†
s and b†

s with a† and b† through the transformation and tracing out the vacuum modes

a†
ν and b†

ν . ρ(η) is reduced to the spin squeezed state of fixed 〈Jx〉 when η goes to zero and the

particle loss effect is more significant when η gets larger. Here we start from a spin squeezed state

with 〈Jx〉= 0.1J and add the particle loss channel with the loss rate η .

The blue lines in Fig.4.4.1 show the behavior of ξs with the loss rate η from 0 to 0.1, with a particle

number of N = 103 and N = 102 respectively. We can see that even with a strong squeezing, particle

loss of η ∼ 0.1 will cause a ξs close to 1, which indicates no entanglement in the system.

We believe that the dramatic increasing of ξs is caused by the fragility of this parameter and there

is still strong manybody entanglement in the squeezed state. The corresponding ξn is shown as the

red lines in Fig.4.4.1. As we can see the increase of ξn is not so obvious as η gets larger, so ξn is

much more robust than ξs under particle loss noise.

To show the robustness of ξn under particle loss noise, the precision measurement process is sim-

ulated for an initial spin squeezed state of 〈Jx〉= 0.1J with a particle loss channel for various rate

η . As the input state is represented by the density matrix ρ(η) , the corresponding probability

distribution P(Jz|θ) thus has a similar form of

P(Jz|θ) = 〈J,Jz|eiθJyρ(η)e−iθJy |J,Jz〉 (4.4.1)

instead of Eq. (4.3.1) of a state vector. With particle loss the dimension for the Hilbert space

increases from N + 1 to N(N+1)
2 . So we make an approximation of the input state by limiting
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Figure 4.4.1: Comparison of ξs and ξn under the influence of the particle loss noise with a loss
rate η from 0 to 0.1. The particle number of the system is N = 102 and 103 and the spin in the x
direction of the initial spin squeezed state is 〈Jx〉/J = 0.1.
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round of measurement m varies from 20 to 100 and the system’s particle number is N = 100.
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the loss number of particle to a maximum of 5 for η = 0.001 and 0.01 and to a maximum of 8

for η = 0.03. The expected linear relation of dθ and
√

ξn/(Nm) is shown in Fig. 4.4.2 with

η = 0.001,0.01 and 0.03, and the fitted coefficients for all three lines are around 1.2.

When particle loss does not exist, ξn is of the order of 1
N and the phase sensitivity approaches the

Heisenberg limit of dθ ∼ 1
N . As η increases ξn goes to a constant value whose dependence on the

system size is very weak as seen in Fig. 4.4.1, and the phase sensitivity dθ ∼ 1√
N

with a constant

factor improvement to the classical limit. This is in correspondence with the discussion in [53].

For the bit-flip noise, We define the bit-flip error rate for each qubit as pb. If pb is as weak as

N pb � 1 the increase in 〈(∆Jz)
2〉 is negligible, so is the change of ξn. With an error rate of

N pb(1− pb) > 1, the variance of Jz is estimated by 〈(∆Jz)
2〉 ∼ N pb(1− pb) for a spin squeezed

state with 〈Jx〉/J < 0.8. This will cause a maximum increase of ξn to about 8pb(1− pb). So

with one percent of bit-flip error rate for each qubit it is still possible to demonstrate a squeezing

parameter ξn of a few percents.

4.5 Chapter Summary

In summary, we have introduced a new spin squeezing parameter ξn to better characterize the

measurement precision of spin squeezed states, which is more robust compared to ξs. We have

used the Bayesian method to measure the phase precision for a spin squeezed state and shown

that the phase precision is characterized by ξn. This method makes important applications of spin

squeezed states for quantum metrology. The effect of various noises on ξn is also discussed.
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CHAPTER V

Boson Sampling with Trapped Ions

5.1 Background Information

What is the ultimate computational power of physical devices? That is a deep question of great

importance for both physics and computer science. The famous extended Church-Turing the-

sis (ECTT) postulates that a (classical) probabilistic Turing machine can efficiently simulate the

computational power of any physical devices ("efficiently" here means with a polynomial over-

head) [58].

The recent development in quantum computation brings doubt to the ECTT with discovery of

superfast quantum algorithms. The most well known example is Shor’s algorithm to factorize a

large number in polynomial time with a quantum computer [59]. Classically, whether factoring is

hard is not settled (a "hard" problem means its solution requires exponential time). No efficient

classical algorithm has been found yet to solve factoring, but it wouldn’t be very surprising if one

finds one as this will not induce dramatic change to the computational complexity theory.

Recently, Ref. [58] introduces another problem, called Boson sampling, which is hard for classical

computers but can be solved efficiently with a quantum machine. Boson sampling is defined as a
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problem to predict the probabilities of the measurement outcomes in the Fock basis for M Bosonic

modes, which start in definite Fock states and undergo a series of mode mixing defined in general

by a unitary matrix.

By definition, this problem can be efficiently solved with a quantum machine, but classically its

solution requires sampling of a probability distribution given by matrix permanents with an expo-

nentially large number of possible outcomes. Computation of the matrix permanent is known to be

#P-hard (much harder than the more well-known class of the NP-hard problems) [60]. Ref. [58]

rigorously proved that Boson sampling is classically intractable unless the so-called polynomial

hierarchy in the computational complexity theory collapses, which is believed to be extremely

unlikely. In this sense, compared with the factoring problem, although Boson sampling has no

immediate practical applications, it is a problem much harder for classical computers to solve.

A demonstration of Boson sampling with a quantum machine thus constitutes an effective dis-

proof of the famous ECTT. Because of this far-reaching theoretical implication, experimental

demonstration of the Boson sampling has raised strong interest recently. Several publications

this year have reported proof-of-principle demonstrations of the Boson sampling with up to three

photons [61–64]. The key challenge for the next-step experiments is to scale up the number of

Bosons.

The demonstration using photons based on the spontaneous parametric down conversion source has

difficulty in terms of scalability [61–64]. The success probability decreases very rapidly with the

number of photons due to the probabilistic nature of the single-photon source and the significant

photon loss caused by the detector and the coupling inefficiencies. This, in practice, limits the

number of Bosons below 10, which is still within the simulation range of classical computers.

In this chapter, we describe a scalable scheme to realize Boson sampling using the transverse

phonon modes of trapped ions. Compared with the implementation using photons, this scheme has

the following desirable features:
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First, the Fock states of the phonons can be prepared in a deterministic fashion and there is no

limitation to the number of Bosons that one can realize with this system. We encode the Bosons

using the local transverse phonon modes [47], and the state initialization can be done through

simple Doppler cooling and one step of the sideband cooling that applies to any number of ions.

Second, we find a technique to do projective detection of the phonon numbers for all the ions

through sequential spin quantum jump measurements. This gives an implementation of number-

resolving phonon detectors with near perfect efficiency, much higher than the efficiency of typical

single-photon detectors. Finally, we prove that universal coherent mixing of different phonon

modes can be achieved through a combination of the inherent Coulomb interaction and simple

laser-induced phase shifts of the ions.

Through this scheme, it is feasible to realize Boson sampling for tens of phonons with the state-

of-the-art trapped ion technology. This scale has gone beyond the simulation capability of any

classical computers and corresponds to the most interesting experimental region for test of the

ECTT [65, 66].

5.2 Basic Idea

The problem of Boson sampling is defined as follows: we have M input Bosonic modes ai (i =

1, 2, ..., M), which undergo coherent mode mixing described in general by a unitary matrix Λ,

with the output modes given by bi = ∑
M
j Λi ja j. The input modes are prepared in a Fock (number)

state |T〉 = |t1, t2, ..., tM〉, where ti is an integer denoting the occupation number of the mode ai.

We measure the output modes bi in the Fock basis and the probability to get the outcome |S〉 =
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|s1, s2, ..., sM〉 is given by [58, 67]

P(S|T) =

∣∣∣Per
(

Λ(S,T)
)∣∣∣

2

∏
M
j=1 s j! ∏

M
i ti!

(5.2.1)

where Per(·) denotes the matrix permanent and Λ(S,T) is a sub-matrix of Λ formed by taking s j

copies of the j-th column and ti copies of the i-th row of the matrix Λ. Since the total number of

Bosons is conserved N = ∑
M
i a†

i ai = ∑
M
j b†

jb j, the sub-matrix Λ(S,T) has dimension N×N.

Due to the hardness to calculate the matrix permanent, it becomes impossible to sample the prob-

ability distribution P(S|T) with any classical computer when the number of Bosons N increases

beyond 20 ∼ 30. An experimental demonstration of a quantum machine that can successfully

perform this job therefore provides strong evidence against the ECTT.

5.3 Trapped Ion Realization

To realize Boson sampling with trapped ions, we consider a chain of ions in a linear Paul trap

with the transverse trapping frequency ωx significantly large than the axial one ωz. The Bosons are

represented by the local transverse phonon modes ai associated with each ion i (i = 1, 2, ..., M),

all with the oscillation frequency ωx.

The Coulomb interaction between the ions introduces a small perturbation to the oscillation fre-

quency of the local phonon modes, with the interaction Hamiltonian described by [68, 69]

Hc = ∑
1≤i< j≤M

h̄ti, j
(

a†
i a j +aia

†
j

)
, (5.3.1)

where the hopping rates ti, j = t0/
∣∣zi0− z j0

∣∣3 and t0 = e2/(8πε0mωx). Here, zi0 denotes the axial

equilibrium position of the ith ion with mass m and charge e. The Hamiltonian (5.3.1) is valid under
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the condition ti, j� ωx, which is always satisfied for the parameters considered in this chapter.

To make the scheme more scalable and eliminate the challenging requirement of resolving phonon

sidebands for a large ion chain, we use the local transverse phonon modes to represent the target

Bosons instead of the conventional normal modes.

To initialize the local phonon modes ai to the desired Fock states, first we cool them to the ground

state by laser cooling. The routine Doppler cooling achieves a temperature TD∼ h̄Γ/(2kB) (Γ is the

natural bandwidth of the excited state and kB is the Boltzmann constant), with the corresponding

thermal phonon number n̄x = kBTD/h̄ωz ∼ Γ/(2ωx), which is about 1 ∼ 2 under typical values

of ωx ≈ 2π × (5 ∼ 10) MHz and Γ ≈ 2π × 20 MHz. The sideband cooling can further push the

transverse modes to the ground state with n̄x ≈ 0 [70–73]. For the axial modes, we only require

their thermal motion to be much less than the ion spacing, which is satisfied already under routine

Doppler cooling.

As all the local transverse modes have the same frequency (with ti, j� ωx), we only need to apply

one step of the sideband cooling independent of the number of ions, with the laser detuning set

at −ωx. The off-resonant process in the sideband cooling limits n̄x ∼ γ/ωx, where γ is the rate

of the sideband cooling which needs to be comparable with the phonon hopping rate ti,i+1. For a

harmonic trap, we take l0 =
[
e2/
(
4πε0mω2

z
)]1/3 as the length unit so that the ion spacings in this

unit take universal dimensionless values (of the order of 1) independent of the ion species and the

trap frequency [74].

The hopping rate ti,i+1 ∼ t0/l3
0 = ω2

z /(2ωx) and the thermal phonon number after the sideband

cooling n̄x∼ ti,i+1/ωx∼ω2
z /
(
2ω2

x
)
< 10−2 with a typical ωz≈ 2π×(0.3∼ 1) MHz. After cooling

of all the transverse modes to the ground state, we can then set them to any desired Fock states

through a sequence of laser pulses blue detuned at ωx [75]. Note that the ion spacing is about or

larger than 10 µm under our choice of the parameters, and under such a spacing it is reasonable to

assume individual addressing of different ions with focused laser beams. The focused beam can
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prepare different local modes ai to different Fock states |ni〉. For implementation of the Boson

sampling, without loss of generality we actually can choose ni = 1, which requires only one pulse

for preparation. To make the phonon hopping negligible during the preparation step, the sideband

Rabi frequency Ω needs to be large compared with the hopping rate ti,i+1 ∼ ω2
z /(2ωx) ∼ 2π ×

(10∼ 100) kHz, which is easy to satisfy under typical laser power.

After the state initialization, we need to coherently mix different phonon modes. The inherent

Coulomb interaction described by the Hamiltonian (5.3.1) serves this purpose, however, it is con-

stantly on without a tuning knob and we need to introduce additional control parameters to realize

different unitary transformations between the M modes. To achieve this goal, we introduce a sim-

ple operation which induces a controllable phase shift for any local phonon mode at any desired

time. A laser pulse with duration tp and detuning δ to the sideband induces an additional Hamil-

tonian Hi = h̄
(
Ω2

i /δ
)

a†
i ai (Ωi is the sideband Rabi frequency applied to the target ion i), which

gives a phase shift Uφi = eiφia
†
i ai to the mode ai with φi = Ω2

i tp/δ . We choose Ω2
i /δ � ti,i+1 so that

the pulse can be considered to be instantaneous over the time scale of phonon tunneling.

The operation Uφi and the Coulomb interaction Hc together are universal in the sense that a com-

bination of them can make any unitary transformation on the M phonon modes represented by the

M×M matrix Λ. Now we prove this statement. It is known that any unitary transformation Λ on M

Bosonic modes can be decomposed as a sequence of neighboring beam-splitter-type of operations

and individual phase shifts [76]. The beam splitter operation for the modes ( j, j+1) is represented

by the Hamiltonian H( j)
bs = h̄t j, j+1

(
a ja

†
j+1 +a j+1a†

j

)
.

To realize H( j)
bs , we just need to cut off all the other interaction terms in the Coulomb Hamiltonian

given by Eq. (5.3.1) except for a specific pair ( j, j+1). This can be achieved through the idea of

dynamical decoupling using the fast phase shifts Uφi with φi = π [77]. Note that a Hamiltonian

term Hi j = h̄ti, j
(

aia
†
j +a ja

†
i

)
can be effectively turned off for an evolution time t if we apply an

instantaneous π-phase shift Uφi=π at time t/2 to the mode ai to flip the sign of Hi j to −Hi j for the
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second half period of the evolution.

The interaction Hamiltonian Hc has long-range tunneling, but it decays fast with distance d through

1/d3 scaling. If we take the first order approximation to keep only the nearest neighbor tunneling,

the Hamiltonian has the form HNN = ∑
M−1
i=1 h̄ti,i+1

(
a†

i ai+1 +aia
†
i+1

)
. The Hamiltonian HNN can

be used to realize the required coupling H( j)
bs for an arbitrary j if we apply π phase shifts at time

t/2 to every other modes in the ion chain except for the pair ( j, j+1) as illustrated in Fig. 5.3.1(a).

This kind of decoupling can be extended and we can simulate the Hamiltonian HNN (and thus H( j)
bs )

with the original long range Hamiltonian Hc to an arbitrary order of approximation.

Suppose we cut the interaction range in Hc to the kth order (i.e., we neglect the terms in Hc that scale

as 1/d3
i j with |i− j|> k), we can shrink the interaction range from k to k−1 by applying one step of

dynamical decoupling with the pattern of π-phase shifts illustrated in Fig. 5.3.1(b). This step can

be continued until one reaches HNN through concatenation of the dynamical decoupling [77]. This

proves that the Coulomb interaction Hamiltonian Hc, together with the phase shifts Uφi on single

ions, can realize any beam splitter operations and thus be universal for construction of arbitrary

unitary operations on the M phononic modes.

We should note that the above proof of universality based on the idea of dynamical decoupling is

intuitively straight-forward but may be cumbersome to realize in practice. For a real experiment

we suggest using optimization methods to design the control sequence for any given unitary. Alter-

natively, one can randomly generate a sequence of phase shifters and insert them to the evolution

to sample unitaries from the group SU(N) randomly (see Appendix C for a demonstration). Due

to the universality of the device we are guaranteed to reach almost any corner of the space SU(N).

In both approaches, the truncation of Coulomb interaction range is not necessary.

The final step of the Boson sampling is detection of all the phononic modes in the Fock basis. The

conventional method of measuring the phonon number distribution of a single mode by recording

the spin oscillation from red or blue sideband pulses is not applicable here as it cannot measure cor-
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Figure 5.3.1: Control of the tunneling Hamiltonian through the dynamical decoupling. The neg-
ative signs in (a,b) denote the set of ions to be applied a π phase shift at half of the evolution
time while the positive signs denote the ions left intact. (a) The π-phase pattern to turn off other
tunneling terms in HNN except for a neighboring pair j, j+1; (b) The π-phase pattern to shrink the
tunneling range of the Hamiltonian from k to k−1.

relation of different phonon modes in the Fock basis [75]. What we need is a projective measure-

ment of each mode in the Fock basis which gives information of arbitrary high order correlations

between different modes.

For trapped ions, a projective measurement of its spin (internal) state can be done with a very

high efficiency through the quantum jump technique using a cycling transition. However, the spin

detection gives only binary measurement outcomes ("dark" or "bright"). We need to figure out

a way to perform projective measurements of the Fock states (with multiple possible outcomes)

for each phonon mode through the binary spin detection. This is achieved through a consecutive

detection scheme with the following steps:

(1) First, to illustrate the idea, we consider a single ion with its phonon mode in an arbitrary state

∑n cn |n〉 and its spin prepared in the dark state |D〉 (see Fig. 5.3.2(a)).

(2) Through the well known adiabatic transition technique [78], we make a complete population

transfer from |n+1〉 |D〉 to |n〉 |B〉 for all the Fock components |n〉 by chirping the frequency of a

laser pulse across the red detuning at −ωx (see Fig. 5.3.2(b) for the population distribution after
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this step).

(3) We make a carrier transition |n〉 |D〉� |n〉 |B〉 with a π−pulse to flip the dark and the bright

states (see Fig. 5.3.2(c)).

(4) After this step, we immediately measure the spin state of the ion through the quantum jump

detection. With probability |c0|2, the outcome is "bright". In this case the measurement is finished

and we know the phonon is in the |n = 0〉 state. Otherwise, the spin is in the dark state and the

phonon is in the |n≥ 1〉 components (see Fig. 5.3.2(d) for the population distribution in this case).

When the spin is in the dark state, the ion does not scatter any photons during the quantum jump

measurement. So its phonon state will not be influenced by this measurement. This feature is

important for this consecutive measurement scheme.

(5) Now with the phonons in the |n≥ 1〉 components, we just repeat the steps (2)-(3)-(4) until

finally we get the outcome "bright" for the spin detection. We conclude that the phonon is in the

Fock state |n = l〉 if the outcome "bright" occurs (with probability |cl|2) after l repetitions of the

above steps.

(6) The above consecutive measurement scheme can be extended straightforwardly to measure M

local phonon modes in the Fock basis independently with M ions. The only requirement is that

the phonon tunneling between different modes is negligible during the measurement process. The

slowest step of the measurement is the quantum jump detection of the ion spin state. Recently,

there has been experimental report of high efficiency (> 99%) spin state detection within 10 µs

detection time [79]. The typical phonon hopping rate between the neighboring ions in our scheme

is in the range of ti,i+1 ∼ 2π× (10∼ 100) kHz, and this hopping rate can be significantly reduced

during the detection through either an expansion of the ion chain along the z direction right before

the direction by lowering the axial trap frequency or application of a few dynamical decoupling

pulses to turn off the neighboring tunneling during the detection. As the hopping scales as 1/d3,

a moderate increase of the effective distance d will significantly reduce the tunneling and push it
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Figure 5.3.2: A consecutive measurement scheme to perform projective detection of the phonon
mode in the Fock basis. (a) The initial state configuration right before the measurement. (b-d) The
state configuration after the blue sideband transition, the carrier transition, and the quantum jump
detection. These three steps are repeated until one finally registers the "bright" state (see the text
for details).

below the kHz level. We should note that for the Boson sampling algorithm, the output phonon

number per mode is typically small (the conventional photon detectors actually can only distinguish

0 and 1 photons), and the number of repetitions in our consecutive measurement scheme is either

zero or very few in most cases.

5.4 Chapter Summary

In summary, we have proposed a scalable scheme to realize the Boson sampling algorithm by use

of the local transverse phonon modes of trapped ions. The scheme allows deterministic preparation

and high-efficiency readout of the phonon Fock states and universal manipulation of the phonon

modes through a combination of inherent Coulomb interaction and individual phase shifts.

Several dozens of ions have been successfully trapped experimentally to form a linear chain, and

in principle there is no limitation to the number of ions that can be manipulated in a linear Paul

trap by use of anharmonic axial potentials [80]. This scheme thus opens the perspective to realize

Boson sampling for dozens of phonons with the state-of-the-art trapped ion technology, which

would beat the capability of any classical computers and give the first serious experimental test of

the extended Church-Turing thesis.
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This chaper contains content that was published elsewhere [81] and is available at

http://link.aps.org/doi/10.1103/PhysRevLett.112.050504.
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CHAPTER VII

Conclusions

6.1 Summary

In this dissertation, we have investigated several topics centering around quantum entanglement

and quantum information processing with atomic and ionic systems.

In Chapter II we propose a method to generate massive entanglement in a spinor Bose-Einstein

condensate from an initial product state through adiabatic sweep of magnetic field across a quan-

tum phase transition induced by competition between the spin-dependent collision interaction and

the quadratic Zeeman effect. The generated many-body entanglement is characterized by the ex-

perimentally measurable entanglement depth in the proximity of the Dicke state. We show that the

scheme is robust to practical noise and experimental imperfection and under realistic conditions it

is possible to generate genuine entanglement for hundreds of atoms.

In Chapter III we introduce a new class of quantum many-particle entangled states, called the Dicke

squeezed (or DS) states, which can be used to improve the precision in quantum metrology beyond

the standard quantum limit. We show that the enhancement in measurement precision is character-

ized by a single experimentally detectable parameter, called the Dicke squeezing ξD, which also
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bounds the entanglement depth for this class of states. The measurement precision approaches the

ultimate Heisenberg limit as ξD attains the minimum in an ideal Dicke state. Compared with other

entangled states, we show that the Dicke squeezed states are more robust to decoherence and give

better measurement precision under typical experimental noise.

Another states that have strong entanglement and high internal phase precision are the spin squeezed

states. They have been proven to be an better platform for precision measurement as these states

are easier to prepare in the real experimental condition. A robust squeezing parameter is proposed

to characterize the experimental phase measurement precision for spin squeezed states. The be-

havior of this parameter under various experimental noises is compared with other parameters in

the history and it is shown to have better performance.

For the trapped ion platform, we have proposed a scalable scheme to realize the Boson sampling

algorithm by use of the local transverse phonon modes of trapped ions. The scheme allows deter-

ministic preparation and high-efficiency readout of the phonon Fock states and universal manipu-

lation of the phonon modes through a combination of inherent Coulomb interaction and individual

phase shifts. Several dozens of ions have been successfully trapped experimentally to form a linear

chain, and in principle there is no limitation to the number of ions that can be manipulated in a

linear Paul trap by use of anharmonic axial potentials [80]. This scheme thus opens the perspective

to realize Boson sampling for dozens of phonons with the stateof-the-art trapped ion technology,

which would beat the capability of any classical computers and give the first serious experimental

test of the extended Church-Turing thesis.

6.2 Outlook

Based on the previous works both presented in this dissertation and in the literature, we now

identify several possible directions for future research work in this field.
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Dicke state generation methods. The importance of Dicke state in both quantum computation

and quantum information processing is tremendous while it is a complicated quantum entangled

state that is hard to realise in realistic experiment condition. The coherence time for the system has

key impact on the state preparation. Also Dicke states with large number of atoms attract people’s

interest.

Manybody Entanglement characterization. The entanglement properties for two qubit systems

are well described by the von Neumann entropy. However for large number of particles or higher

dimentional spin system, there is no universal entanglment measurement parameters. The judge-

ment of the existence of entanglement is not sufficient and entanglement depth parameters with

good performance are still needed.

Boson sampling on other platforms. Currently there are two main possible platforms for boson

sampling, photons and phonons in ion systems. Other possibilities are also under research. Easy

controlling of the particles and scaling feasibility are both factors to be considered.
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APPENDIX A
Spin-1 BEC Hamiltonian Description

The Hamiltonian for the spin-1 condensate can be divided into two parts H = H0 +Hi. The non-

interacting Hamiltonian H0 and the interaction Hamiltonian Hi take respectively the following

forms [1, 15]

Ĥ0 = ∑
m,n=0,±1

ˆ
drψ̂

†
m[−

h̄2
∇2

2M

+ U(r)− p( fz)mn +q( f 2
z )mn]ψ̂n, (6.1.1)

Ĥi =
1
2

ˆ
dr[c′0 : n̂2(r) : +c′1 : F̂2(r) :]. (6.1.2)

where ψ̂m(r) denote the bosonic field operators with the spin index m = 1,0,−1, corresponding

to annihilation of an atom of mass M in the Zeeman state m on the hyperfine level F = 1. The

atoms are trapped by the spin-independent optical potential U(r). The linear Zeeman coefficient

p = −gµBB, where g is the Landé g factor, µB is the Bohr magneton, and B is the external mag-

netic field. The quadratic Zeeman coefficient q = (gµBB)2

∆Eh f
, where ∆Eh f is the hyperfine energy

splitting. The symbol fµ (µ = x,y,z) denotes µ-component of the spin-1 matrix, and ( fµ)mn is the

corresponding (m,n) matrix element.

The particle density operator n̂(r) and the spin operator F̂(r) are defined respectively by n̂(r) =

∑
1
m=−1 ψ̂

†
m(r)ψ̂m(r) and F̂µ(r) = ∑

1
m,n=−1( fµ)mnψ̂

†
m(r)ψ̂n(r). The interaction coefficients c′0 =

4π h̄2(a0 + 2a2)/3M, c′1 = 4π h̄2(a2− a0)/3M, where as is the s-wave scattering lengths for two
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colliding atoms with total spin s. We have c′1 < 0 (c′1 > 0) for 87Rb (23Na), which corresponds to

ferromagnetic (anti-ferromagnetic) interaction, respectively.

For typical spinor condensates in experiments such as 87Rb and 23Na, we have c′0� c′1 , so the spin-

independent interaction dominates over the spin-dependent interaction. In this case, to describe

the ground state in a spin-independent optical trap U(r), it is good approximation to assume that

different spin components ψ̂m(r) of the condensate take the same spatial wave function φ(r).

This is the well-known single mode approximation [1, 17], and under this approximation we have

ψ̂m ≈ âmφ(r),(m = 1,0,−1), where am is the annihilation operator for corresponding spin mode

and φ(r) is normalized as
´

dr|φ(r)|2 = 1.

We consider a spinor condensate with a fixed total particle number N as in experiments and neglect

the terms in the Hamiltonian that are constant under this condition. The spin-dependent part of the

Hamiltonian is then simplified to

H = c1
L2

N
+

1

∑
m=−1

(qm2− pm)a†
mam (6.1.3)

as we used in the paper, with c1 = c′1N
´

dr|φ(r)|4/2.
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APPENDIX B
Calculation of Final State Entanglement Depth

Expanded using the creation and annihilation operators for a spin-i atom ai(i=±1,0), Hamiltonian

of Eq. 2.3.2 in the main text has the form (with constants neglected)

H = c1
N (a†

1a†
1a1a1 + a†

−1a†
−1a−1a−1− 2a†

1a†
−1a1a−1 + 2a†

1a†
0a0a1 + 2a†

−1a†
0a0a−1 + 2a†

0a†
0a1a−1 +

2a†
1a†
−1a0a0)−qa†

0a0,

For computational convenience, we choose the Fock state |n1,n0,n−1〉as the basic state, which is

the eigenstate of the number operator ni = a†
i ai for the three spin components. As Lz is conserved

in the evolution and considering the particle number conservation, there is only one free parameter

with the constraint n1 +n−1 = 0 and n1 +n−1 +n0 = N. Thereby the initial state is |n0 = N〉.

In our calculation, the quadratic Zeeman coefficient q is ramped with constant speed as q(t) =

(6− vt) |c1|(v is the ramping speed of q). The system evolution is governed by the time dependent

Schrödinger equation ih̄ ∂

∂ t ψ = Hψ . Final state is calculated after unitary evolution and we get the

entanglement depth ξ of the final state from Eq. (2.6.1) of main text.
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APPENDIX C
Demonstration of Boson Sampling

In this appendix we will perform a classical simulation of the Boson sampling experiment to

demonstrate how the proposed scheme works. The hopping Hamiltonian for the local phonons

is

Hhop =
M

∑
i< j

ti, j
(

a†
i a j +aia

†
j

)

=
M

∑
i, j

a†
i Hi ja j.

Combining with the ability to phase shift each oscillator, i.e.

ai→ ai exp(−iθi),

we can generate a series of Hamiltonians

Hhop(~θ) =
M

∑
i, j

a†
i Hi ja j exp

(
i(θi−θ j)

)
.

By tuning the ~θ vector we have the freedom to engineer the effective Hamiltonian. In addition we

are also free to choose the evolution time t for a particular choice of ~θ . So our building block of
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the evolution is

U(~θ , t) = exp
(
−iHhop(~θ)t

)

= exp

(
−i

M

∑
i, j

a†
i Hi j exp

(
i(θi−θ j)

)
a j

)

Noting that the Hamlitonians Hhop(~θ) are quadratic in a and a†, a canonical transformation can be

performed to find the normal modes bi satisfying bi = ui ja j so that

U(~θ , t) = exp

(
−i∑

j
D j jb

†
jb j

)

where D is a diagonal matrix resulting from the canonical transformation. This evolution operator

is nothing more than a set of phase shifters for the phonon modes b j, each of which having a phase

shift D j j. Therefore the overall effect of U(~θ , t) can be described as a three-step process: (1) do a

basis transformation from ai to b j; (2) phase shift each mode b j; (3) transform back to the original

basis. Thus the output of U(~θ , t) can be related to the input as

~a′ = u†diag(e−iD11, e−iD22, · · ·)u~a

= Λ(~θ , t)~a.

The universality of the model was established in the main text of Chapter II, so one can concatenate

the building blocks Λ(θ , t) to form an arbitrary N-dimensional unitary in principle. Notice that the

computation of Λ(θ , t) given parameters~θ and t only requires diagonalizing an N×N matrix so it

can be done very efficiently.

Now let us work out a numerical example and study the effect of control noise in the ~θ vectors.

We assume N = 10 ions, calculated the equilibrium positions in a trap with aspect ratio ωx/ωz =

10, and found the hopping coefficients ti j = t0/
∣∣∣z0

i − z0
j

∣∣∣
3
. We consider a three stage evolution
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U3 = ∏
3
i=1U(~θi, t) with randomly chosen ~θi and fixed t = 1/t0. Following the approach above,

the corresponding Λ3 = ∏
3
i=1 Λ(~θi, t) can be easily found. Then we introduce Gaussian random

additive errors to all the ~θi with zero mean and standard deviation σ . For different values of σ we

calculate the distance between Λ
′
3 with noise and the ideal Λ3. To remove the irrelevant local phase

factors for each mode, we define a distance measure as follows

dist(Λ,Λ
′
)≡ 1− 1

N

N

∑
j=1

∣∣∣∣∣
N

∑
i=1

Λ
∗
i jΛ

′
i j

∣∣∣∣∣ .

This distance measure essentially is determined by the average absolute value of the inner products

of corresponding column vectors from the two unitaries. Only when each column of Λ and Λ
′

is

the same up to a phase factor, the distance is zero. We plot the distance from the ideal unitary as a

function of σ in Fig. B.1. We can see from the figure that Λ3 is quite robust against random noise

in the parameters ~θi.

75



0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.005

0.01

0.015

0.02

0.025

0.03

σ (radians)

d
is
t(
Λ

′ 3
,Λ

3
)

Figure B.1: Distance between the transformation with error Λ
′
3 and the ideal transformation Λ3,

as a function of the standard deviation of the noise σ . Each data point is obtained with 1000
randomized simulation of the noise for a fixed set of arbitrary ~θi. The error bar is show one
standard deviation of the quantity. See text for detailed parameters used for the system.

76



BIBLIOGRAPHY

77



BIBLIOGRAPHY

[1] Dan M. Stamper-Kurn and Masahito Ueda. Spinor bose gases: Symmetries, magnetism, and

quantum dynamics. Rev. Mod. Phys., 85:1191–1244, Jul 2013.

[2] Norman F. Ramsey. A molecular beam resonance method with separated oscillating fields.

Phys. Rev., 78:695–699, Jun 1950.

[3] F. Bloch. Nuclear induction. Phys. Rev., 70:460–474, Oct 1946.

[4] N Shiga and M Takeuchi. Locking the local oscillator phase to the atomic phase via weak

measurement. New Journal of Physics, 14(2):023034, 2012.

[5] W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G.

Raizen, and D. J. Wineland. Quantum projection noise: Population fluctuations in two-level

systems. Phys. Rev. A, 47:3554–3570, May 1993.

[6] J. J . Bollinger, Wayne M. Itano, D. J. Wineland, and D. J. Heinzen. Optimal frequency

measurements with maximally correlated states. Phys. Rev. A, 54:R4649–R4652, Dec 1996.

[7] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen. Squeezed atomic states and

projection noise in spectroscopy. Phys. Rev. A, 50:67–88, Jul 1994.

[8] Masahiro Kitagawa and Masahito Ueda. Squeezed spin states. Phys. Rev. A, 47:5138–5143,

Jun 1993.

78



[9] C. Gross, T. Zibold, E. Nicklas, J. Estève, and M. K. Oberthaler. Nonlinear atom interferom-

eter surpasses classical precision limit. Nature, 464(7292):1165–1169, April 2010.

[10] Max F. Riedel, Pascal BÃ¶hi, Yun Li, Theodor W. Hänsch, Alice Sinatra, and Philipp

Treutlein. Atom-chip-based generation of entanglement for quantum metrology. Nature,

464(7292):1170–1173, April 2010.

[11] C. Shen and L.-M. Duan. Efficient spin squeezing with optimized pulse sequences. Phys.

Rev. A, 87:051801, May 2013.

[12] J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Physical Review

Letters, 74(20):4091–4094, May 1995.

[13] Ferdinand Schmidt-Kaler, Hartmut Häffner, Mark Riebe, Stephan Gulde, Gavin P. T. Lan-

caster, Thomas Deuschle, Christoph Becher, Christian F. Roos, Jürgen Eschner, and Rainer

Blatt. Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature, 422(6930):408–

411, March 2003.

[14] Thomas Monz, Philipp Schindler, Julio T. Barreiro, Michael Chwalla, Daniel Nigg,

William A. Coish, Maximilian Harlander, Wolfgang Hänsel, Markus Hennrich, and Rainer

Blatt. 14-Qubit Entanglement: Creation and Coherence. Physical Review Letters,

106(13):130506, March 2011.

[15] Tin-Lun Ho. Spinor Bose Condensates in Optical Traps. Physical Review Letters, 81(4):742–

745, July 1998.

[16] Tetsuo Ohmi and Kazushige Machida. Bose-Einstein Condensation with Internal Degrees of

Freedom in Alkali Atom Gases. Journal of the Physical Society of Japan, 67(6):1822–1825,

June 1998.

79



[17] C. K. Law, H. Pu, and N. P. Bigelow. Quantum Spins Mixing in Spinor Bose-Einstein Con-

densates. Physical Review Letters, 81(24):5257–5261, December 1998.

[18] A. Sorensen, L.-M. Duan, J. I. Cirac, and P. Zoller. Many-particle entanglement with Bose-

Einstein condensates. Nature, 409(6816):63–66, January 2001.

[19] L.-M. Duan, J. I. Cirac, and P. Zoller. Quantum entanglement in spinor Bose-Einstein con-

densates. Physical Review A, 65(3):033619, February 2002.

[20] C. D. Hamley, C. S. Gerving, T. M. Hoang, E. M. Bookjans, and M. S. Chapman. Spin-

nematic squeezed vacuum in a quantum gas. Nature Physics, 8(4):305–308, April 2012.

[21] Anders S. Sorensen and Klaus Molmer. Entanglement and Extreme Spin Squeezing. Physical

Review Letters, 86(20):4431–4434, May 2001.

[22] Ming-Shien Chang, Qishu Qin, Wenxian Zhang, Li You, and Michael S. Chapman. Coherent

spinor dynamics in a spin-1 BoseÂ condensate. Nature Physics, 1(2):111–116, November

2005.

[23] Y. Liu, S. Jung, S. E. Maxwell, L. D. Turner, E. Tiesinga, and P. D. Lett. Quantum Phase

Transitions and Continuous Observation of Spinor Dynamics in an Antiferromagnetic Con-

densate. Physical Review Letters, 102(12):125301, March 2009.

[24] M. J. Holland and K. Burnett. Interferometric detection of optical phase shifts at the Heisen-

berg limit. Physical Review Letters, 71(9):1355–1358, August 1993.

[25] John K. Stockton, J. M. Geremia, Andrew C. Doherty, and Hideo Mabuchi. Characterizing

the entanglement of symmetric many-particle spin-$\frac{1}{2}$ systems. Physical Review

A, 67(2):022112, February 2003.

[26] W. Dür, G. Vidal, and J. I. Cirac. Three qubits can be entangled in two inequivalent ways.

Physical Review A, 62(6):062314, November 2000.

80



[27] K. S. Choi, A. Goban, S. B. Papp, S. J. van Enk, and H. J. Kimble. Entanglement of spin

waves among four quantum memories. Nature, 468(7322):412–416, November 2010.

[28] Witlef Wieczorek, Roland Krischek, Nikolai Kiesel, Patrick Michelberger, Géza Tóth, and

Harald Weinfurter. Experimental Entanglement of a Six-Photon Symmetric Dicke State.

Physical Review Letters, 103(2):020504, July 2009.

[29] A. Acín, D. Brub, M. Lewenstein, and A. Sanpera. Classification of Mixed Three-Qubit

States. Physical Review Letters, 87(4):040401, July 2001.

[30] L.-M. Duan. Entanglement Detection in the Vicinity of Arbitrary Dicke States. Physical

Review Letters, 107(18):180502, October 2011.

[31] Fabrice Gerbier, Artur Widera, Simon Fölling, Olaf Mandel, and Immanuel Bloch. Resonant

control of spin dynamics in ultracold quantum gases by microwave dressing. Physical Review

A, 73(4):041602, April 2006.

[32] E. M. Bookjans, A. Vinit, and C. Raman. Quantum Phase Transition in an Antiferromag-

netic Spinor Bose-Einstein Condensate. Physical Review Letters, 107(19):195306, November

2011.

[33] C. Shen and L.-M. Duan. Correcting detection errors in quantum state engineering through

data processing. New Journal of Physics, 14(5):053053, May 2012.

[34] Z. Zhang and L.-M. Duan. Generation of Massive Entanglement through an Adiabatic Quan-

tum Phase Transition in a Spinor Condensate. Physical Review Letters, 111(18):180401,

October 2013.

[35] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum-Enhanced Measurements:

Beating the Standard Quantum Limit. Science, 306(5700):1330–1336, November 2004.

81



[36] Bernard Yurke, Samuel L. McCall, and John R. Klauder. SU(2) and SU(1,1) interferometers.

Physical Review A, 33(6):4033–4054, June 1986.

[37] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen. Spin squeez-

ing and reduced quantum noise in spectroscopy. Physical Review A, 46(11):R6797–R6800,

December 1992.

[38] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen. Squeezed atomic states and

projection noise in spectroscopy. Physical Review A, 50(1):67–88, July 1994.

[39] J. J . Bollinger, Wayne M. Itano, D. J. Wineland, and D. J. Heinzen. Optimal frequency

measurements with maximally correlated states. Physical Review A, 54(6):R4649–R4652,

December 1996.

[40] E. M. Kessler, P. Kómár, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin.

Heisenberg-limited atom clocks based on entangled qubits. Phys. Rev. Lett., 112:190403,

May 2014.

[41] Pieter Kok, Hwang Lee, and Jonathan P. Dowling. Creation of large-photon-number path

entanglement conditioned on photodetection. Physical Review A, 65(5):052104, April 2002.

[42] Agedi N. Boto, Pieter Kok, Daniel S. Abrams, Samuel L. Braunstein, Colin P. Williams, and

Jonathan P. Dowling. Quantum interferometric optical lithography: Exploiting entanglement

to beat the diffraction limit. Phys. Rev. Lett., 85:2733–2736, Sep 2000.

[43] D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost,

C. Langer, and D. J. Wineland. Toward Heisenberg-Limited Spectroscopy with Multiparticle

Entangled States. Science, 304(5676):1476–1478, June 2004.

82



[44] J. Appel, P. J. Windpassinger, D. Oblak, U. B. Hoff, N. Kjargaard, and E. S. Polzik. Meso-

scopic atomic entanglement for precision measurements beyond the standard quantum limit.

Proceedings of the National Academy of Sciences, 106(27):10960–10965, July 2009.

[45] Anne Louchet-Chauvet, Jürgen Appel, Jelmer J. Renema, Daniel Oblak, Niels Kjaergaard,

and Eugene S. Polzik. Entanglement-assisted atomic clock beyond the projection noise limit.

New Journal of Physics, 12(6):065032, June 2010.

[46] Ian D. Leroux, Monika H. Schleier-Smith, and Vladan Vuletić. Implementation of Cavity
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