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CHAPTER I

Introduction

Stratified fluid models are pivotal in understanding numerous physical phenomena such

as the dynamics of the ocean and atmosphere. Ocean dynamics can be understood approxi-

mately as consisting of a buoyant upper layer overlying a more dense and stable lower layer

which encompasses most of the water column. For these reasons, much of the ocean may be

crudely modeled as a two-layer system of warmer, lighter water resting over colder, denser

water. The story is much the same for the lower atmosphere; except that the stable layer

lies atop a bottom boundary layer. Most dramatically, in the troposphere, it is the dynamics

between these layers which leads to the formation of clouds and ultimately weather. Of

course, even at this level of simplification the complexity of the flow patterns is daunting.

It is thus customary to restrict the dynamics even further to focus on different regimes of

interest, e.g., western boundary currents, large-scale circulation, internal waves, tides, etc.

In this dissertation, we introduce three seemingly disparate topics with wide ranging

applications: the Benjamin-Ono (BO) equation in Chapter II, a two-layer tidal model in

Chapter III, and the Quasi-Geostrophic (QG) equations in Chapter IV. Each of these topics

may be viewed, however, as a special regime of inviscid, incompressible, stably stratified

fluid dynamics. The BO equation describes the evolution of the internal interface of a one-

dimensional, dispersive, two-layer fluid bounded above by a rigid lid whose infinitely deep

bottom layer is irrotational. In particular, the BO equation has been used to model internal
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waves in deep water [15], the atmospheric roll cloud wave-train known as the morning glory

[65], and nonlinear Rossby waves in shear flow [64], to name a few examples. Beyond fluid

dynamics, the BO equation has been observed to model the spectral dynamics of incoherent

shocks in nonlinear optics [27]. Our tidal model describes the effects of astronomical forcing

on the tidal elevations in a two-layer, one-dimensional, linearized, non-rotating, damped,

shallow water system with arbitrary topography and basin width. The two-layer tidal model

is intended to provide a simple model to study the effect that stratification has on the surface

tidal elevation. A similar model was used by Arbic, Karsten, and Garrett [6] to model

resonant interactions of an ocean basin coupled with a shelf. Finally, the QG equations

describe the circulation of turbulent nearly two-dimensional eddies in the atmosphere and

ocean, under the effects of the earth’s rotation, in hydrostatic balance and near geostrophic

balance. The equations essentially describe perturbations from exact geostrophic flow and are

widely used to model synoptic scale (scale of large-scale eddying motion: ∼1, 000 km in the

atmosphere and ∼100 km in the ocean [81, Table 2.1]) phenomena in both the atmosphere

and ocean. In this dissertation, we will be considering mostly a multi-level QG model.

Figure 3.3 provides cartoon sketches of the three models described above (BO, QG, and

tidal).

u

H1

H2

ψ1

ψ2

H1

H2

q1

q2

ρ1

ρ2

η1

η2

u1

u2 h2

H1

H2

L1 L2

Figure 1.1: Sketch of BO model (left), QG model (middle), and two-layer tidal model (right).
The labels H1 and H2 correspond to the resting depths of the upper and lower layers. Further
explanations of labels in the figures can be found in the individual chapters.

In the remainder of this chapter we introduce each topic in more detail to discuss our

motivation and goals.

2



1.1 The Benjamin-Ono Equation

The initial value problem of the BO equation

∂u

∂t
+ 2u

∂u

∂x
+ εH

[
∂2u

∂x2

]
= 0, −∞ < x <∞, t > 0 (1.1)

describes the weakly nonlinear evolution of one-dimensional internal gravity waves in a strati-

fied fluid [9, 17, 63], where u corresponds to the wave profile, ε > 0 is a measure of the effects

of dispersion, and the operator H denotes the Hilbert transform defined by the Cauchy

principal value integral

H[u](x, t) :=
1

π
−
∞∫

−∞

u(ξ, t)

ξ − x dξ. (1.2)

Even though the BO equation has not yet been satisfactorily understood from the point

of view of inverse scattering techniques, it serves as a significant example of a nonlocal inte-

grable evolution equation; for a treatment of the initial value problem using dispersive partial

differential equation techniques the reader is referred to [79]. As such the BO equation has

many useful properties: it arises from a Lax pair [12] (cf. (2.1) and (2.2)), it has nontrivial

Bäcklund transformations [62], it possesses infinitely many soliton solutions [14], and it be-

longs to an infinite hierarchy of Hamiltonian flows (infinitely many constants of motion in

involution) [14, 25], to name a few. Perhaps most importantly, the BO equation serves as a

conceptual bridge between one- and multi-dimensional integrable systems, where nonlocal-

ity is a common feature. This nonlocality appears both in the physical domain through the

Hilbert transform and also in the inverse scattering transform domain through a nonlocal

“jump” condition in the associated Riemann-Hilbert problem (cf. Riemann-Hilbert Prob-

lem 1). Fortunately, for the BO equation this Riemann-Hilbert problem is a scalar one,

presumably simplifying the subsequent analysis.

Remark I.1. For the values ν/ε ∈ N equation (1.3) below is a special case of a multisoliton

solution of the BO equation; see equation (5) in [14], which solves a differently scaled version
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of the BO equation (1.1) with ε = 1, or Section 2.3 in [90] for a discussion including ε.

The Cauchy problem of the BO equation (1.1) is solvable, for suitably decaying initial

conditions u0(x) as |x| → ∞, by an Inverse-Scattering Transform (IST) procedure associated

to a spectral problem (cf. (2.1)) in which u0 appears as a potential. In Section 2.2, we

construct explicitly the Jost solutions and “bound state” eigenfunctions for this spectral

problem with generic (simple poles) rational initial data u0, and are thus able to deduce the

corresponding scattering data. This work was inspired by a brief note in a paper of Kodama,

Ablowitz, and Satsuma [43, Section 7] on the Intermediate Long Wave (ILW) equation from

which BO arises as a limiting case. In [43], the spectral problem (2.1) with ε = 1 is analyzed

for a “Lorentzian” potential

u0(x) =
2ν

x2 + 1
= − iν

x+ i
+ c.c. for ν ∈ R (1.3)

and it is shown that the eigenvalues are given, for integer ν, by the roots of the Laguerre poly-

nomial of degree ν. Some complications and essential difficulties in extending this remarkable

calculation to more general initial conditions were highlighted by Xu [90, Section 2.3].

In the small-dispersion limit (ε → 0), numerical experiments indicate that, for t suffi-

ciently small (independent of ε), the solution of the BO equation with smooth ε-independent

initial data u0 is well approximated by the solution of the inviscid Burgers equation (Hopf

equation; equation (1.1) with ε = 0). At the advent of a shock in this small-dispersion regime,

the solution of (1.1) is then regularized by the formation of a Dispersive Shock Wave (DSW).

This DSW has the well-known structure of an O(1)-amplitude modulated periodic traveling

wave with O(ε) wavelength. In the DSW region the solution of the BO equation may be for-

mally approximated using Whitham modulation theory; see Section 2.1.5. Surprisingly, and

unlike the case of the seemingly simpler Korteweg-de Vries (KdV) equation, the modulation

equations for the BO equation are fully uncoupled [19], consisting of several independent

copies of the inviscid Burgers equation with corresponding matching conditions. A proce-
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dure to match the Whitham modulation approximation for the DSW onto inviscid Burgers

solutions outside the DSW was developed and applied by Matsuno [51, 52] and Jorge, Min-

zoni, and Smyth [37] to analyze the Cauchy problem for (1.1). Partial confirmation of these

results was given by Miller and Xu [55], who rigorously computed the weak limit of the solu-

tion of the Cauchy problem for (1.1) for a class of positive initial data using IST techniques

and approximations of the scattering data motivated by the IST analysis, by developing an

analogue for the BO equation of a method first invented for KdV by Lax and Levermore

[46]. Avoiding the (a priori unjustified) approximation of the scattering data requires its

careful analysis in the small-dispersion limit by direct means. In Section 2.3 we use the

exact formulas obtained in Section 2.2 to study the asymptotic behavior of the scattering

data for the BO equation (1.1) in the limit ε→ 0.

1.2 Two-Layer Tidal Model

In Chapter III, we utilize a simplified two-layer tidal model (cf. (3.1)–(3.4)) to examine

the effects that oceanic stratification and changes in oceanic stratification have on long term

surface tidal trends. This work is primarily motivated by a desire to understand global

realistic-domain numerical model results, briefly noted in [5, 75] and commented on in Sec-

tion 3.1 of this dissertation, that demonstrate changes in the large-scale tides induced by

the presence of stratification. Thus, stratification not only introduces the expected small-

scale (often referred to as “baroclinic”) tides [89], but also alters the large-scale tide. The

large-scale tide is often referred to as the “barotropic” tide, and is associated with the depth-

averaged flow. The global numerical simulations by themselves, however, do not explain why

the stratification affects the large-scale tides. Instead, we use the global numerical simula-

tions in part to motivate our simple analytical model, whose parameter space can be explored

much more fully. We use the analytical model to examine the effect of deep ocean strat-

ification and climatic perturbations to this stratification on both the large-horizontal-scale

and small-horizontal-scale components of the surface tidal elevation. In addition, we use the
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analytical model to determine key parameters affecting surface tidal elevations, and we com-

pare sensitivities in our analytical model to sensitivities seen in the global realistic-domain

numerical simulations. This work thus complements the extensive literature on barotropic-

to-baroclinic tidal conversion, which usually takes the barotropic tide as a given and aims

to determine perturbations from this base state. In contrast, here we solve directly for the

barotropic (large-scale) tide as a function of several input parameters including stratification.

The effects of seasonal changes in stratification to the tides have been documented in

models of coastal regions by, for instance, Kang, Foreman, Lie, Lee, Cherniawsky, and Yum

[39], Müller [56], and Müller, Cherniawsky, Foreman, and von Storch [58]. Numerous studies

have determined that surface tidal elevations have undergone secular (long term) changes at

many coastal locations over the last century [13, 16, 21, 35, 57, 68, 69, 86, 87, 91]. As noted

in several of these papers, in some locations, the secular changes in tides are of comparable

magnitude to the secular changes in mean sea level. The fact that changes in stratification

affect the large-scale tides suggests that climatic changes in oceanic stratification, over time

scales varying from seasonal to centennial, may contribute to observed changes in tides.

For simplicity, the analytical model used in Chapter III assumes two-layer, linearized,

non-rotating, shallow-water dynamics in one horizontal dimension. We assume astronomical

forcing and allow for arbitrary bottom topography in a finite basin. We also allow for linear

damping, which intends to mimic (parameterize) the energy loss due to breaking internal

gravity waves in the deep ocean. For convenience, all numerical results of the analytical

model utilize a topography consisting of a Gaussian bump in the center of the basin. Small-

scale tides are generated by large-scale tidal flow over the topographic feature. We obtain

solutions to the analytical model using both a Fourier series and a Neumann series expansion.

Importantly, the Neumann series contains built-in large-horizontal and small-horizontal scale

modes allowing both the tidal velocities and elevations to be naturally decomposed into these

modes. This analytical model is thus an extension of the classic model of half-wavelength

resonance in a basin with two closed boundaries [18, 66] that includes two-layer stratification,
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astronomical forcing, damping, and bottom topography. Our analytical model is meant to be

as simple as possible while still capturing impacts of stratification, damping, and topography

on large- and small-scale tides in a closed basin meant to roughly represent conditions in the

global stratified ocean.

The key sensitivity found in the analytical model arises from the fact that stratification

introduces a perturbation to the large-scale gravity wave speeds or, equivalently, wavelength

[28]. While this phase speed perturbation is small in and of itself, nevertheless, relatively

large sensitivities are seen in the analytical model as a function of this perturbation, when

appropriate conditions of bottom topography and damping are taken into account. Notably,

the introduction of stratification requires the model user to choose whether damping acts on

the bottom-most layer, the top-most layer, or both, and this choice significantly affects model

behavior. Changes in the large-scale surface tidal elevation are of the same order as changes

in the small-scale (baroclinic) response. The sensitivity to phase speed perturbations may

be used to interpret our preliminary global numerical results, and also to suggest a suite of

new numerical simulations to be performed in follow-up work.

Our study is intended to be general in scope and is not focused on particular regions

or time scales. Related regional studies include [39], which examined seasonal changes in

stratification and tides in the Yellow and East China Seas, and [16], which examined the

impact of internal tides on the secular variations in surface tidal elevations recorded in

Hawai‘ian tide gauges. Another related study is that of Müller [56], who used an idealized

model to study the effects of seasonally varying stratifications on coastal tides. Müller [56],

however, considered changes in eddy viscosities rather than gravity wave speeds and focused

on the barotropic transport rather than on large-scale tidal elevations. Lastly, the study in

[58] was global in scale, but focused on seasonal changes which are small in the open-ocean.
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1.3 Forced-Dissipated Quasi-Geostrophy

Many interesting oceanic phenomena take place in the near balance of gravity with the

vertical pressure gradient (hydrostatic balance) and the Coriolis force with the horizontal

pressure gradient (geostrophic balance). The quasi-geostrophic (QG) equations arise as a

simplification of the three-dimensional equations of oceanic motion in the case when the

hydrostatic balance is exact and the horizontal scales are roughly the size of the Rossby de-

formation radius Ld; the scale at which the effects of the earth’s rotation become dynamically

important. At mid-latitudes, in a stratified ocean, Ld ≈ 100 km. With these assumptions,

we neglect effects that are considered relatively unimportant in mid-scale planetary fluid

motion. Namely, we remove gravity waves and sound waves from our analysis and tease out

the dynamics of large-scale (synoptic scale) fluid phenomena [81].

Though strictly three-dimensional, the QG model behaves much like a two-dimensional

system in one important way. The QG system may cascade energy to large scales [4, 72]; anal-

ogously to the well known result of two-dimensional turbulence obtained from Kolmogorov

theory [81]. That is, energy input at an imposed forcing scale is moved by nonlinear inter-

actions to smaller wavenumbers. The QG system, thus, may slowly develop eddies of length

scales larger than those of the original forcing. This process is known as an inverse cascade

and at a basic level it is driven by the conserved quantities of the QG system. The effects

of boundary conditions on the system may, however, strongly influence the dynamics of the

system. Namely, strong bottom friction in a two-layer QG system arrests the inverse cas-

cade of energy by significantly damping the dynamics of the bottom layer [4]. This suggests

that the parametric dependence of the QG system on boundary data may induce dynamics

fundamentally different from those of either two- or three-dimensional turbulent flow.

In Chapter IV, we investigate the effects of bottom friction on the oceanic eddies and the

energy budget in forced-dissipated QG dynamics with multiple layers. In part, we accomplish

this study by using a modal decomposition recently proposed by Smith and Vanneste [77]

that has been well known in Classical Mechanics. The decomposition is naturally suited
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to handle the addition of more realistic boundary conditions that include the advection of

buoyancy, and hence is well suited to aid in the description of modal QG dynamics. In this

dissertation, we describe some of the mathematical richness of this method and elaborate

on the discussion given by Smith and Vanneste [77]. Lastly, we generalize some results on

energy cascades found by Arbic, Flierl, and Scott [4].

1.4 Notation

In this dissertation, we intend for the definitions of variables and functions to be consistent

only within each major topic. For instance, the definition of a variable or function in the BO

will only apply in the sections concerning BO. This arrangement should hopefully not cause

much confusion as the contextual usages of the functions will be quite different between

topics and, moreover, some repetition of letters seems inevitable.

Throughout the dissertation we will denote complex conjugation with the use of an as-

terisk, e.g., for the function ϕ(x) the complex conjugate is denoted ϕ(x)∗. The usage of

an over line, ϕ, does not denote conjugation and is merely a symbol; its usage should be

clear from context. For instance, in Chapter II we use the over line merely as a distinctive

mark, while in Chapter IV we use the over line to denote the vertical mean. We use capital

boldface roman letters, A, to denote matrices and lower case boldface roman, b, to denote

vectors. We use the symbol +(−) as a superscript to denote a function that has an analytic

continuation into the upper(lower)-half x-plane (the physical variable), while a subscript de-

notes analytic continuation into the upper(lower)-half λ-plane (the spectral variable). Thus,

ϕ+(x;λ) denotes the boundary value of a function analytic in the upper-half x-plane for a

given value of λ, while ϕ−(x;λ) denotes the boundary value of a function analytic in the

lower-half λ-plane for a given value of x. Lastly, we use Log to denote the principal value

of the complex logarithm, i.e., the branch such that Im{Log(z)} ∈ (−π, π). This is the only

form of the logarithm we will use. Thus, zp always denotes epLog(z) when p is not an integer.
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CHAPTER II

Direct Scattering for the Benjamin-Ono Equation with

Rational Initial Data

The contents of this chapter have been submitted for publication [54, 53] and are pre-

sented here with modifications and additions to improve readability.

2.1 Background

In this section we briefly introduce relevant previous work on the Benjamin-Ono (BO)

equation (1.1). The reader familiar with the IST and modulational solutions of the BO

equation may skip directly to Section 2.2.

2.1.1 The Lax Pair

The BO equation (1.1) arises as the compatibility condition of the Lax Pair

iε
∂w+

∂x
+ λ(w+ − w−) = −uw+, (2.1)

i
∂w±

∂t
− 2iλ

∂w±

∂x
+ ε

∂2w±

∂x2
− 2iC±

[
∂u

∂x

]
w± = −ρw± (2.2)

for x ∈ R and a spectral parameter λ ∈ C [12, 62]. In other words, the system (2.1)–(2.2)

above for w± is consistent if and only if the potential u(x, t) is a solution to the BO equation

10



(1.1). The superscripts ± denote the boundary values taken by the function w(x), analytic

on C\R, from the upper- and lower-half x-plane on the real line. The parameter ρ is an

arbitrary constant that in practice is chosen differently for different simultaneous solutions

in order to ensure a simple time dependence of the scattering data.

The Cauchy operators ±C± are bounded operators on L2(R) and are complementary

orthogonal projections from L2(R) onto its Hardy subspaces H±(R) of functions analytic in

the upper (+) and lower (−) half-planes, respectively. That is, they satisfy the identities

C+ ◦ C− = C− ◦ C+ = 0, C+ ◦ C+ = C+, (−C−) ◦ (−C−) = −C−. (2.3)

They may be defined by the singular integrals

C±[u](x) = lim
δ↓0

1

2πi

∞∫
−∞

u(y)

y − (x± δi) dy. (2.4)

In addition, the Cauchy operators may be similarly written using the Sokhotski formulas as

± C± =
1

2
I± 1

2i
H. (2.5)

In the Fourier domain±C± may be equivalently defined as multiplication by the characteristic

functions of complementary half-lines. Immediately from these results we have the identities

C+ − C− = I and C+ + C− = −iH, (2.6)

where the first identity is called the Plemelj formula. We will also use the fact that the

operators C± commute with differentiation with respect to x. For details on singular integrals

in general, and the Cauchy operators in particular, we refer the interested reader to the books

by Gakhov [26] and Muskhelishvili [61].

Remark II.1. Throughout this dissertation the Cauchy operators C± will only be applied
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to functions of the spatial variable x ∈ R at fixed time t; see for example (2.2) and (2.4).

The appearance of the Cauchy operators in the Lax pair arises directly from the nonlocality

of the BO equation (1.1) in the x variable.

The fact that the BO equation (1.1) is the compatibility condition for the Lax pair

(2.1)–(2.2) can be seen easily by rewriting the Lax pair in the form

λw− = Aw+ and
∂w±

∂t
= B±w±, (2.7)

for the operators

A := iε
∂

∂x
+ λ+ u and B± := 2λ

∂

∂x
+ iε

∂2

∂x2
+ 2C±

[
∂u

∂x

]
+ iρ. (2.8)

From the Plemelj formula (2.6) we may note that

B+ = B− + 2
∂u

∂x
and AB+ = B+A− 2λ

∂u

∂x
− 2iε

∂u

∂x

∂

∂x
+ εH

[
∂2u

∂x2

]
. (2.9)

Then, we may use equations (2.7) and identities (2.9) to write

0 =

(
∂

∂t
−B−

)
λw− =

(
∂

∂t
+ 2

∂u

∂x
−B+

)
Aw+ =

(
∂u

∂t
+ 2u

∂u

∂x
+ εH

[
∂2u

∂x2

])
w+, (2.10)

after some manipulation.

2.1.2 The Direct Scattering Problem

Solving the direct scattering problem of the BO equation requires, in essence, the solution

of equation (2.1) of the Lax pair for fixed time t, and the determination of how the solutions

depend on the spectral parameter λ. Indeed, it is enough to consider the spectral problem

(2.1) at time t = 0 with

u(x, 0) = u0(x); (2.11)
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see Section 2.1.3. This procedure was first proposed in a general setting by Fokas and

Ablowitz [24]. Subsequently, Kaup and Matsuno [40] complemented and simplified this

construction in the case that the initial condition is known to be a real function. We sketch

out the most salient points of this process here for reference.

To solve equation (2.1) it is convenient to first recast it with the use of the projection

operators ±C±. Namely, using the Plemelj formula (2.6) and Liouville’s theorem of complex

analysis we can write (2.1) as a set of two equations:

iε
∂w+

∂x
+ λ

(
w+ − w0

)
= −C+[u0w

+] (2.12)

and

λ
(
w− − w0

)
= −C−

[
u0w

+
]
, (2.13)

where w0 is a suitable constant [90]. According to equation (2.13), the constant w0 can be

understood as the the limit of the function w− as x → ∞ in the closed lower-half x-plane.

This simplification allows us to forgo equation (2.1) involving both w+ and w−, as it is now

enough to study the spectral theory of (2.12) which only involves the function w+.

Traditionally, the spectral analysis of (2.12) is accomplished using the so-called Jost

solutions — sometimes referred as Jost functions or “left”/“right” eigenfunctions (depending

on the boundary information) — to construct the scattering data of the problem. The Jost

solutions are certain solutions of (2.12) (analytic and bounded for Im{x} > 0) that are

well-defined for λ > 0; in the literature [1, 24, 40, 73] they are denoted by w+ = M(x;λ)

and N(x;λ) (for w0 = 1) and w+ = M(x;λ) and N(x;λ) (for w0 = 0). They may be

characterized for fixed λ > 0 via their asymptotic behavior for large real x as follows:

M → 1, Me−iλx/ε → 1 as x→ −∞,

N → 1, Ne−iλx/ε → 1 as x→ +∞.
(2.14)

The Jost solutions solve Fredholm integral equations of the second kind [24].
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Importantly, while the Jost solutions are initially defined only for λ > 0, M and N have

analytic extensions into the complex λ-plane while in general M and N do not [24]. Indeed,

for each fixed x with Im{x} ≥ 0, M and N can be shown to be the boundary values on R+

from the upper- and lower-half λ-planes respectively of a single function W meromorphic on

C \R+. The function W has as its only singularities in λ on C \R+ a discrete set of simple

poles located precisely at the eigenvalues λ = λj < 0; see [2, Theorem 2.1] and [88]. We will

henceforth use the notation W+ (resp., W−) to denote the Jost solution M (resp., N). The

auxiliary Jost solutions M and N will not appear beyond this section of the dissertation.

It is then possible to show that W+, W−, and N satisfy the scattering relation

W+(x;λ)−W−(x;λ) = β(λ)N(x;λ), λ ∈ R+, (2.15)

determining a function β : R+ −→ C (independent of x) called the reflection coefficient.

From (2.15) one may solve for the reflection coefficient in terms of W± by using the Jost

solutions’ asymptotic behavior (2.14) for large real x; see (2.84). For the inverse theory, it

is then important that N(x;λ) may be fully eliminated from (2.15) to yield a nonlocal jump

condition relating the boundary values W± of W across its branch cut R+. In this way a

scattering relation linking W+(x;λ) and W−(x;λ) directly is obtained:

W+(x;λ) = W−(x;λ) + β(λ)eiλx/ε
λ∫

0

β(k)∗

2πik
e−ikx/εW−(x; k) dk for λ ∈ R+. (2.16)

Since the functions W± represent boundary values of a meromorphic function W on C \R+,

the condition above can be interpreted as a jump condition across the branch cut R+ of W .

Remark II.2. Fokas and Ablowitz [24] originally derived a form of equation (2.16) that

required knowledge of an additional function of λ > 0, not merely the reflection coefficient.

With the help of an “adjoint” spectral problem, Kaup and Matsuno [40] subsequently showed

that for real potentials u0 this additional function is related — essentially through complex
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conjugation — to the reflection coefficient β.

For the remainder of the scattering data, a set of phase constants γj associated with

the negative poles λ = λj of W (x;λ), we introduce the “bound state” eigenfunction w+ =

Φj(x) ∈ H+(R) satisfying (2.12) with w0 = 0 for a given eigenvalue λ = λj < 0 and

normalized by the condition

xΦj(x)→ 1 as |x| → ∞ (uniformly for Im{x} ≥ 0), (2.17)

or equivalently, as can be shown asymptotically from (2.12),

1

2πi

∞∫
−∞

u0(x)Φj(x) dx = λj. (2.18)

The meromorphic function W then has a Laurent expansion about each eigenvalue λj of the

form:

W (x;λ) = −iε Φj(x)

λ− λj
+ (x+ γj) Φj(x) +O(λ− λj), (2.19)

where γj ∈ C is the phase constant associated with the eigenvalue λj. In addition, if (2.17)

holds in the sense that

Φj(x) =
1

x
+O

(
1

x2

)
as |x| → ∞ (uniformly in the closed upper-half x-plane), (2.20)

it is possible to explicitly define the phase constants γj in terms of the eigenfunctions [40] of

the problem as

γj :=
ε

2πλj

∞∫
−∞

Φj(x)∗ (xΦj(x)− 1) dx, (2.21)

or, appropriately interpreting the integral using the Cauchy principal value at x = ∞ and

using (2.20),

γj :=
ε

2πλj

∞∫
−∞

x |Φj(x)|2 dx− iε

2λj
. (2.22)
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Formula (2.22) highlights the fact that only the real part of the phase constant γj is truly

an independent piece of the scattering data; the imaginary part is fully determined by the

respective eigenvalue. In passing we note that some care is required when surveying the

literature since some sources use the notation γj to refer only to the real part of the phase

constant presented here.

Remark II.3. The fact that the eigenvalues λj are negative is discussed in [2] and is es-

sentially due to the self-adjointness of the operator L = −iε∂/∂x − C+u0C+ of the spectral

problem (2.12).

Remark II.4. We bring up one general fact which is, to our knowledge, not mentioned in

the literature. When the potential is an even function (u0(x) = u0(−x) for x ∈ R), the

real part of every phase constant γj is identically zero. This follows from the fact that for

these potentials the identity Φj(x) = Φj(−x)∗ for x ∈ R holds for every eigenfunction Φj(x)

normalized by (2.17), as can be seen easily by taking the complex conjugate of equation

(2.12) and making the substitution x = −x.

In this manner the scattering data for real potentials u0 is constructed from the Jost

solutions and eigenfunctions of (2.12). We list all the required scattering data here for

clarity.

Table 1. Scattering Data of the Benjamin-Ono Lax Pair.

• Reflection coefficient β(λ) for λ ∈ R+: defined by (2.15); see also (2.84).

• Eigenvalues {λj < 0}Nj=1: determined from the spectral problem (2.12).

• Phase constants {γj}Nj=1: defined in terms of the eigenvalues and the corresponding

normalized eigenfunctions by (2.19) or, equivalently, (2.21).

Remark II.5. The phase constant γj associated to an eigenvalue λj can be equally obtained

from (2.21)–(2.22) with the knowledge of the relevant eigenfunction or from the Laurent
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series expansion of the function W as shown in (2.19). We will use both formulations in this

dissertation.

Remark II.6. The number N , denoting the number of eigenvalues associated with u0, here

should not be confused with the Jost solution N(x;λ). We do not require the function

N(x;λ) in the subsequent discussion and hence do not use it outside of this section.

2.1.3 Time Evolution of the Scattering Data

As is standard with inverse scattering theory — assuming that the potential u in equation

(2.12) is no longer fixed but rather depends on t as u = u(x, t) evolving according to the

compatibility condition (the BO equation (1.1)) for the Lax pair — the time evolution of the

scattering data can be deduced from the time equation in the Lax pair, namely, equation

(2.2). As with other integrable systems, the time evolution of the scattering data for the BO

equation is not merely explicit but also nearly trivial. The following results are well-known

and can be found, for example, in [24]; we have only modified the formulas to include the

dispersion parameter ε > 0.

First, it is a fundamental property arising from the Lax pair that the eigenvalues λj are

invariants of motion; see equation (2.10). That is,

dλj
dt

= 0 for j = 1, . . . , N. (2.23)

Second, both functions W+ and W− must satisfy equation (2.2) independently for an appro-

priate choice of the constant ρ. Thus, using the asymptotics of these functions for large real

x and appropriate manipulation yields

β(λ, t) = β(λ, 0)e−iλ
2t/ε for λ ∈ R+. (2.24)
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Third, using the fact that Φj(x) satisfies equation (2.2) we obtain

γj(t) = 2λjt+ γj(0) for j = 1, . . . , N. (2.25)

2.1.4 The Inverse Scattering Problem

The last remaining step in the inverse scattering procedure is to reconstruct the potential

u(x, t) from the time-evolved scattering data. One manner to accomplish this involves the

construction of the function W (x;λ) through a Riemann-Hilbert problem. In this setting,

we think of W as a function of the complex variable λ depending parametrically on x (and

t via the time-evolution formulas (2.23)–(2.25) for the scattering data), and we therefore

suppress the parameters and write W = W (λ).

Riemann-Hilbert Problem 1. Find a complex valued function W (λ) with the following

properties.

1. Analyticity: W (λ) is analytic for λ /∈ R+ ∪ {λ1, . . . , λN}. Each point {λj}Nj=1 is a

simple pole of W , and W (λ) takes continuous boundary values W± on R+ from C±.

2. Residue condition: The residue at each simple pole λj of W (λ) satisfies

Res
λ=λj

W (λ) = − iε

x+ γj(t)

∂

∂λ
[W (λ)(λ− λj)]

∣∣∣∣
λ=λj

. (2.26)

3. Jump condition: The boundary values W±(λ) are related for λ > 0 by the nonlocal

jump condition

W+(λ) = W−(λ) + β(λ)eiλx/ε
λ∫

0

β(k)∗

2πik
e−ikx/εW−(k) dk, where λ ∈ R+. (2.27)

4. Normalization: W (λ) is normalized at infinity;

W (λ)→ 1 as λ→∞. (2.28)
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Remark II.7. Riemann-Hilbert Problem 1 for W , though scalar, has a significant compli-

cation arising from the fact that the jump condition (2.27) is nonlocal. Nonetheless, some

insight into this problem can be gained by considering the “reflectionless” and “eigenval-

ueless” limiting cases. Namely, when the scattering data is reflectionless (β(λ) = 0 for all

λ > 0) the function W is meromorphic and a solution to Riemann-Hilbert Problem 1 is ex-

plicitly attainable through partial fraction expansions; this procedure reproduces the general

N -soliton solution formula first obtained by Matsuno using the Hirota bilinear method [48].

Similarly, when the scattering data does not include eigenvalues (W analytic on C\R+), a

solution can be sought using standard methods of singular integral equation theory [26, 61]

(and the resulting integral equations can be solved by Neumann series if β is sufficiently

small in a suitable sense).

Assuming that the Riemann-Hilbert problem can be solved uniquely forW (λ) = W (x, t;λ),

we can recover the function u = u(x, t) that solves the initial-value problem for (1.1) as fol-

lows. From the asymptotic behavior of (2.12) as λ→∞ we can deduce that

λ (W (x, t;λ)− 1) = −C+[u](x, t) + o(1) as λ→∞. (2.29)

In addition, when the solution u(x, t) is real, Fokas and Ablowitz [24] pointed out that using

the Plemelj formula (2.6) we can write

u(x, t) = C+[u](x, t) + C+[u](x, t)∗ = 2Re
{
C+[u](x, t)

}
. (2.30)

These two equations combined give us a direct path to the reconstruction of u(x, t). Namely,

combining (2.29) and (2.30), the potential u(x, t) can be found by computing

u(x, t) = lim
λ→∞

2Re {λ(1−W (x, t;λ))} . (2.31)
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2.1.5 Modulation Theory for the Benjamin-Ono Equation

Modulation theory presents a formal approach to obtain oscillatory solutions of the BO

initial-value problem in the zero-dispersion limit (ε → 0). We provide a brief discussion of

this topic here for reference, to present a few mild generalizations, and for contrast with our

rigorous results in Section 2.3. In Section 2.3, as a necessary first step to obtain rigorous

solutions of BO using IST theory, we present rigorous analysis of the asymptotics of the BO

scattering data.

The essence of Whitham’s modulation theory [85] is to asymptotically describe the evo-

lution of an oscillatory wave-train; it provides a nonlinear analogue of the WKB method.

To accomplish this, the method exploits the separation of scales between the slowly varying

envelope of oscillations and the “fast” oscillations themselves. The key observation for the

applicability of this method is that in cases where there is such a clear separation of scales,

quantities such as the wave-number, phase speed, and amplitude are locally well defined. The

method then entails obtaining suitable evolution equations for the parameters describing the

dynamics of the wave-train. In this section, we describe how Whitham’s modulation theory

applies to the BO equation using a variational principle and discuss some of the properties

of this envelope of oscillations. Much of the information in this section can be found, with

suitable modifications, in the work of Matsuno [51, 52] and Xu [90].

The BO equation (1.1) may be obtained from the variation δF/δϕ = 0, under the re-

placement u = ε∂ϕ/∂x, of the functional

F [ϕ] =

∫∫
L

(
∂ϕ

∂t
,
∂ϕ

∂x
; ε

)
dx dt (2.32)

with Lagrangian density L given by

L

(
∂ϕ

∂t
,
∂ϕ

∂x
; ε

)
=

1

2

∂ϕ

∂t

∂ϕ

∂x
+
ε

3

(
∂ϕ

∂x

)3

+
ε

2

∂ϕ

∂x
H
[
∂2ϕ

∂x2

]
. (2.33)
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To derive modulation and envelope equations we initially assume that the potential function

ϕ describes a uniform wave-train given by

ϕ(x, t; ε) =
ψ(x, t)

ε
+ Φ

(
θ(x, t)

ε

)
, (2.34)

where

ψ(x, t) = βx− γt and θ(x, t) = kx− ωt. (2.35)

Without loss of generality we assume that k ≥ 0.

Remark II.8. The functions β and γ in this section should not be confused with the

reflection coefficient and phase constants used in the rest of this dissertation.

It follows from direct computation that

∂ψ

∂t
= −γ, ∂ψ

∂x
= β,

∂θ

∂t
= −ω, ∂θ

∂x
= k (2.36)

and

u = ε
∂ϕ

∂x
= β + kΦ′

(
θ

ε

)
, (2.37)

where the prime on Φ denotes differentiation with respect to the argument. The function

β should not be confused with the reflection coefficient from the previous section. A closed

form solution of the BO equation may then be obtained by substituting equation (2.37) into

(1.1) and solving for the 2π-periodic Φ′. Using Fourier expansions and some knowledge of

the Hilbert transform we find that this solution takes the form

u = β +
k2

√
H2 + k2 −H cos(θ/ε)

, (2.38)

where

H = H(γ, β, ω, k) :=
1

2
(umax − umin) (2.39)
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and umax (umin) represents the greatest (least) value that the solution u(x, t) attains in the

period. The phase speed of the wave can also be found to satisfy the condition

c =
ω

k
=
√
H2 + k2 + 2β. (2.40)

Following Whitham’s modulation theory, we now assume that the parameters γ, β, ω, and

k (not all independent following equation (2.40)) are slowly varying and derive corresponding

evolution equations. Immediately we may derive the equations

∂β

∂t
+
∂γ

∂x
= 0 and

∂k

∂t
+
∂ω

∂x
= 0 (2.41)

for β and k from equality of mixed partials in (2.36). It was shown by Whitham [85] that

evolution equations for γ and ω can be obtained from the Lagrangian density L averaged

over the phase’s period. Without loss of generality this period can be taken to be 2π and

the expression for the averaged Lagrangian takes the form

〈L〉 :=
1

2π

2π∫
0

L dθ̃, θ̃ = θ/ε. (2.42)

For the Lagrangian (2.33), this expression can be shown [51, 52] with some work to be

〈ε2L〉 =
k3

12
− k

4

(
ω2

k2
− 2β

ω

k
+ 2γ

)
+
β3

3
− βγ

2
. (2.43)

The evolution equations then take the form

∂

∂t

∂〈L〉
∂ω
− ∂

∂x

∂〈L〉
∂k

= 0 and
∂

∂t

∂〈L〉
∂γ
− ∂

∂x

∂〈L〉
∂β

= 0 (2.44)
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which explicitly are

∂

∂t

(
β − ω

k

)
+

∂

∂x

(
k2

2
+

ω2

2k2
− γ
)

= 0 and
∂

∂t
(k + β) +

∂

∂x

(
ω + 2β2 − γ

)
= 0. (2.45)

However, the set of evolution equations (2.41) and (2.45) are not independent since the

expression

∂

∂t
(k + β) =

∂k

∂t
+
∂β

∂t
= − ∂

∂x
(ω + γ) , (2.46)

which follows using (2.41), implies that the right hand side of (2.45) reduces to

∂

∂x

(
β2 − γ

)
= 0. (2.47)

Moreover, since only x-derivatives of γ appear in the evolution equations we may take without

loss of generality that γ = β2. So, after some manipulation we may write the evolution

equations (2.41) and (2.45) simply as

∂β

∂t
+ 2β

∂β

∂x
= 0,

∂a

∂t
+ 2a

∂a

∂x
= 0,

∂b

∂t
+ 2b

∂b

∂x
= 0 (2.48)

where a = (c− k)/2 and b = (c+ k)/2 using the fact that c = ω/k. Now, from the fact that

k ≥ 0 it follows that c− k ≤ c+ k and from equation (2.40) we can deduce that k+ 2β ≤ c.

Thus, we must always have the relation

β ≤ a ≤ b (2.49)

for the modulation parameters. This is essentially the same system of equations obtained

with a different method by Dobrokhotov and Krichever [19] for a single phase asymptotic

approximation.

Remark II.9. The modulation equations (2.48) may be contrasted with those that arise

from the KdV equation in which case the modulation equations form a set of coupled tran-
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scendental equations; see [84] or [85, Section 16.15].

For certain initial conditions in the small dispersion case, the modulation parameters

β, a, b can be easily related to the solution of the BO equation with zero dispersion (ε = 0;

Hopf equation or inviscid Burgers’ equation). Consider the initial condition

u(x, 0) = u0(x) (2.50)

such that the solution to inviscid Burgers’ equation has at most three branches and let us

label the three branches uB0 ≤ uB1 ≤ uB2 in the multivalued region xl ≤ x ≤ xr; see Figure 2.1.

xxl xr

1u
B

0u
B

2u
B

u

x

1u
B

0u
B

2u
B

xl xr

u

Figure 2.1: Labelling of the solution branches of the inviscid Burgers’ equation in the mul-
tivalued region xl ≤ x ≤ xr.

In the multivalued region xl ≤ x ≤ xr, the small dispersion BO problem develops a

DSW manifesting oscillations which are (formally) well approximated by the modulation

equations of Whitham’s method. Precisely, for xl ≤ x ≤ xr, the BO initial-value problem

is approximated by (2.38), where the functions H, β, k, and θ are determined from the

modulation equations (2.48) with the imposition of appropriate initial conditions. Outside of

the DSW region the solution should asymptotically match the single valued inviscid Burgers’

solution. In particular, at xl we require for the envelope of oscillations to vanish and the

mean value of u to match continuously with the inviscid Burgers’ solution. Concisely this

means that

H = 0 and 〈u〉 = uB2 at x = xl. (2.51)

This implies from equation (2.40) that at x = xl we have a = β, using the fact that
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〈u〉 = k+ β = β − a+ b, 〈u〉 = uB2 = b at x = xl. In similar fashion, at xr we require for the

solution to approximate a solitary wave and for the mean value of u to match continuously

with the inviscid Burgers’ solution; or

k = 0 and 〈u〉 = uB0 at x = xr. (2.52)

This implies that a = b and 〈u〉 = uB0 = β at x = xr.

To determine the evolution of the functions β, a, b in terms of the initial condition u0, we

proceed as follows. The solutions of the modulation equations may be written implicitly in

the form

β = g0(x− 2βt), a = g1(x− 2at), b = g2(x− 2bt), (2.53)

for some arbitrary functions g0, g1, and g2. From the asymptotic matching conditions dis-

cussed in the previous paragraph, at xl we have

u0(xl − 2bt) = g2(xl − 2bt), g0(xl − 2βt) = g1(xl − 2βt). (2.54)

Similarly, at xr we have the matching

u0(xr − 2βt) = g0(xr − 2βt), g1(xr − 2at) = g2(xr − 2at). (2.55)

Since t is arbitrary, these conditions put together imply that the functions g0(x), g1(x), g2(x)

correspond to the sections of the initial condition u0(x) which give rise to the branches

uB0 , u
B
1 , u

B
2 . This matching guarantees the fact that

β = uB0 , a = uB1 , b = uB2 . (2.56)

We may equally write the modulation solution (2.38) in terms of the slowly varying

parameters β, a, and b or branches uB0 , uB1 , and uB2 . Using equation (2.40) and the fact that
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the average of the modulation solution is given by 〈u〉 = β + k, we may write the solution

(2.38) as

u = β + k +
k
(
k − (c− 2β) +

√
(c− 2β)2 − k2 cos(θ/ε)

)
c− 2β −

√
(c− 2β)2 − k2 cos(θ/ε)

. (2.57)

After some manipulating we may finally write

u = uB0 − uB1 + uB2 +
(uB2 − uB1 )

(
2uB0 − 2uB1 + 2

√
(uB2 − uB0 )(uB1 − uB0 ) cos(θ/ε)

)
uB1 + uB2 − 2uB0 − 2

√
(uB2 − uB0 )(uB1 − uB0 ) cos(θ/ε)

, (2.58)

where according to modulation theory the phase θ is found by solving the system of equations

∂θ

∂x
= uB2 − uB1 and

∂θ

∂t
= (uB1 )2 − (uB2 )2. (2.59)

Remark II.10. The equations (2.59) are compatible due to the equality of mixed partials

and the fact that each uBi for i = 0, 1, 2 satisfies the Hopf (inviscid Burgers’) equation.

Formula (2.58) is easily used to determine upper and lower bounds to the envelope of

oscillations in the DSW region xl ≤ x ≤ xr. Namely, by noting that cos(θ/ε) = 1 and

cos(θ/ε) = −1 give the upper and lower bounds of the expression for u(x, t) we obtain

umax,min = uB0 +
(uB2 − uB1 )2

uB1 + uB2 − 2uB0 ∓ 2
√

(uB2 − uB0 )(uB1 − uB0 )

= uB0 +

(√
uB2 − uB0 −

√
uB1 − uB0

)2 (√
uB2 − uB0 +

√
uB1 − uB0

)2

(√
uB2 − uB0 ∓

√
uB1 − uB0

)2 .

(2.60)

In particular, some simplification gives

umax = uB0 +

(√
uB2 − uB0 +

√
uB1 − uB0

)2

= uB0 − uB1 + uB2 + 2
(
uB1 − uB0

)
+ 2
√

(uB2 − uB0 )(uB1 − uB0 )

(2.61)
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and

umin = uB0 +

(√
uB2 − uB0 −

√
uB1 − uB0

)2

= uB0 − uB1 + uB2 + 2
(
uB1 − uB0

)
− 2
√

(uB2 − uB0 )(uB1 − uB0 ).

(2.62)

We can thus quantify the size of the oscillations in the DSW region:

umax − umin = 2h = 4
√

(uB2 − uB0 )(uB1 − uB0 ) ≤ 4
(
uB2 − uB0

)
. (2.63)

Lastly, at the left edge of the region of oscillations we have that uB1 (xl, t) = uB0 (xl, t).

This implies, not surprisingly, that

umax(xl, t) = umin(xl, t) = uB2 (xl, t). (2.64)

Also, noting uB2 (xr, t) = uB1 (xr, t) we have that

umax(xr, t) = 4uB2 (xr, t)− 3uB0 (xr, t) and umin(xr, t) = uB0 (xr, t). (2.65)

In particular, for the entire region of oscillations xl ≤ x ≤ xr,

umin(x, t) ≥ uB0 (x, t). (2.66)

This means that a solution u(x, t) of the BO equation in the zero dispersion limit stays

positive for all time if the initial condition is strictly positive. The equivalent statement for

negative initial conditions is false.

2.2 Direct Scattering for Rational Potentials

In this section, we present our procedure to construct the scattering data for the BO

equation with rational initial data. Specifically, we present an explicit construction procedure
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for the Jost solutions and eigenfunctions of the associated Lax pair. We also derive an Evans

function for the eigenvalues and formulas for the phase constants and reflection coefficient.

2.2.1 Rational Potentials

We consider real bounded rational potentials u0 simple poles of the form:

u0(x) =
P∑
p=1

cp
x− zp

+ c.c., (2.67)

where {cp}Pp=1 are nonzero complex numbers and the poles {zp}Pp=1 with Im{zp} > 0 have

distinct real parts increasing with p. We impose in addition the condition
∑P

p=1

(
cp + c∗p

)
= 0,

ensuring u0 ∈ L1(R) and denote I :=
∫∞
−∞ u0(x) dx.

Remark II.11. The requirement that the poles zp have distinct real parts is imposed as

a convenience. The procedure described here should be generalizable with some changes in

notation.

Remark II.12. The number P of poles of u0 in C+ is not related in any simple way with

the number N of discrete eigenvalues associated with u0. The number N of eigenvalues λj

and phase constants γj is, however, dependent on the dispersion parameter ε. In fact,

N = N(ε) ∼ 1

2πε

∫
u0>0

u0(x) dx (2.68)

as ε→ 0 for P fixed; see Corollary II.52, [49], or [90, equation (2.139)].

In addition, let f(x) be the particular anti-derivative of u0(x) given by

f(x) :=
P∑
p=1

cp

(
Log (i(x− zp)) +

πi

2

)
+ c.c., f ′(x) = u0(x), (2.69)

where Log(·) is the principal branch (|Im{Log(·)}| < π).
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Definition II.13. We denote by G the domain of analyticity of f as illustrated in Figure 2.2.

Given R > 0 sufficiently large, we define subdomains Gp of G∩ {|x| > R}, p = 1, . . . , P − 1,

consisting of points lying between the branch cuts emanating from the points zp and zp+1.

Then we define G0 as the half-plane Re{x} < Re{z1} and GP as the half-plane Re{x} >

Re{zP}. The usage of an asterisk denotes the Schwarz reflection (reflection through the real

axis) of the subdomain.

Figure 2.2: Left: a domain G with subdomains Gp and G∗p in the x-plane for a potential u0

of the form (2.67) with P = 3. The zig-zagged half-lines denote the (logarithmic) branch cuts
of f(x). Right: contours `m(x) in G originating at∞ in the subdomains Gm and terminating
at x ∈ G.

Lemma II.14. For any m = 0, 1, . . . , P , we have

lim
x→∞∈Gm

f(x) = 2πi
m∑
p=1

cp and lim
x→∞∈G∗m

f(x) = −2πi
m∑
p=1

c∗p. (2.70)

Proof. This follows immediately from formula (2.69). �

Remark II.15. Note that G0 = G∗0 and GP = G∗P . In particular, if follows that f → 0 as

x→∞ in G0 while f(x)→ 2πi (c1 + · · ·+ cP ) = −2πi (c∗1 + · · ·+ c∗P ) = I as x→∞ in GP .

The advantage of considering potentials u0 of the form (2.67), as first noted in [43], is that

upon applying the Plemelj formula to the right-hand side of (2.12), the expression C−[u0w
+]
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can be evaluated by residues because w+ is analytic and bounded for Im{x} > 0. Therefore,

iε
dw+

dx
+ λw+ + u0w

+ = λw0 +
P∑
p=1

cpw
+(zp;λ)

x− zp
. (2.71)

As the x-dependence on the right-hand side is explicit and elementary this first-order equa-

tion can be solved in closed-form, at least assuming w+(zp;λ) is known for all p.

2.2.2 The Jost Solutions and Reflection Coefficient

Let λ > 0. To obtain a formula for the Jost solutions W±(x;λ) we take w0 = 1 in

(2.71), apply the boundary condition W±(x;λ) → 1 as x → ∓∞, and integrate to obtain

the convergent improper integral representations:

W+(x;λ) = − i
ε
eih(x;λ)/ε

x∫
−∞

e−ih(z;λ)/ε

(
λ+

P∑
p=1

vp(λ)

z − zp

)
dz (2.72)

and

W−(x;λ) =
i

ε
eih(x;λ)/ε

∞∫
x

e−ih(z;λ)/ε

(
λ+

P∑
p=1

wp(λ)

z − zp

)
dz, (2.73)

where

h(x;λ) := λx+ f(x) (2.74)

and

vp(λ) := cpW+(zp;λ), wp(λ) := cpW−(zp;λ) for p = 1, . . . , P. (2.75)

Note that by Lemma II.14, h(x;λ) is dominated by λx for large |x| provided λ 6= 0. Since

λ > 0, the integral can therefore be made absolutely convergent by rotation of the contour

at infinity into the lower-half x-plane.

Remark II.16. We will only work with the Jost solution W+ in this dissertation. In fact,

our results for W+ hold with minor modifications for the Jost solution W−.

30



It is important to note, and central to our theory, that while W±(x;λ) given by (2.72)–

(2.73) satisfy the differential equation (2.71) and is analytic for all x near R, extra conditions

are required to ensure analyticity for all x with Im{x} > 0. Indeed, the factor

eih(x;λ)/ε = eiλx/ε
P∏
p=1

(i(x− zp))icp/ε
(
i∗(x− z∗p)

)ic∗p/ε eπ(c∗p−cp)/(2ε) (2.76)

appearing in (2.72) may have singularities for Im{x} > 0. Requiring analyticity of W+(x;λ)

imposes constraints on the quantities {vp(λ)}Pp=1, thus eliminating them entirely from (2.72).

Definition II.17. `m(x) denotes any member of the equivalence class of contours in G

originating at ∞ in the subdomain Gm and ending at the point x ∈ G; see Figure 2.2.

Definition II.18. U>
m denotes any member of the equivalence class of contours on the

Riemann surface of f originating at −i∞ in G0 with value f(∞) = 0 and ending at −i∞ in

G0 having encircled the singularities z1, . . . , zm each exactly once in the positive sense; see

Figure 2.3.

U<
2

U<
1U>

1

U>
2

Figure 2.3: Left: contours U>
m for the configuration illustrated in Figure 2.2. Right: contours

U<
m for the same configuration.

Remark II.19. We use the superscript > (<) to denote an object defined specifically for

use in the case λ > 0 (λ < 0).
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Proposition II.20. Let λ > 0. For each m = 1, . . . , P , define the function Hm = Hm(z;λ),

z ∈ G, by the equation

(i(z − zm))−icm/ε−1Hm(z;λ) := −e−ih(z;λ)/ε

(
λ+

P∑
p=1

vp(λ)

z − zp

)
. (2.77)

(Hm is analytic not only on G, but also in a neighborhood of the point zm.) Furthermore,

let icm = ε(µm +ωm), where µm = [Re{icm/ε}] denotes the integer (floor) part of Re{icm/ε}

and the remainder satisfies 0 ≤ Re{ωm} < 1. Then, the function W+(x;λ) given by (2.72)

is analytic in the upper-half x-plane if and only if for each m = 1, . . . , P , either

∫
`0(zm)

(i(z − zm))−icm/ε−1Hm(z;λ) dz = 0 when Re{icm/ε} < 0, (2.78)

∫
`0(zm)

(i(z − zm))−ωm
dµm+1

dzµm+1
Hm(z;λ) dz = 0 when Re{icm/ε} ≥ 0 and ωm 6= 0, (2.79)

or

Res
z=zm

Hm(z;λ)

(z − zm)µm+1
= 0 when Re{icm/ε} ≥ 0 and ωm = 0, (2.80)

where `0(zm) (see Definition II.17) originates in at −i∞ in G0.

Proposition II.20 is proved in Appendix A.1. However, we describe the highlights here.

Note that the singularity at z = zm arising from the exponential e−ih(z;λ)/ε on the right-hand

side of (2.77) is explicitly cancelled from Hm(z;λ) by the factor (i(z − zm))−icm/ε−1 on the

left-hand side. The essence of the proof is to deform the contour of integration in (2.72) to

pass through the point zm when the integrand is integrable there, i.e., Re{icm/ε} < 0. Thus,

we deal separately with integrals on `0(zm) and on the line from zm to x. If the integrand is

not integrable at zm, we first integrate by parts repeatedly to achieve integrability, or invoke

the Residue Theorem if the singularity is a pole.

It is useful to rewrite the conditions for analyticity of W+(x;λ) given in Proposition II.20

by eliminating the derivatives of Hm as follows.
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Corollary II.21. Let λ > 0. The function W+(x;λ) defined by (2.72) is analytic in the

upper-half x-plane if and only if {vp(λ)}Pp=1 satisfy

∫
C>m

e−ih(z;λ)/ε

(
P∑
p=1

vp(λ)

z − zp
+ λ

)
dz = 0, m = 1, . . . , P, (2.81)

where C>
m := U>

m unless icm/ε is a strictly negative integer, in which case C>
m := `0(zm).

(The contours C>
m extend to −i∞ in G0 making the integrals absolutely convergent.)

Remark II.22. In the general case that icm/ε is not a negative integer, the basic method

of proof is to convert integrals over contours terminating at zm for integrals over loops

surrounding zm, and this process relies on the existence of algebraic branching at zm which

is absent if icm/ε is a strictly negative integer. This explains the reason for requiring C>
m =

`0(zm) valid in this exceptional case. While Corollary II.21 provides a nearly universal form

for the analyticity conditions, the case that icm/ε is a nonnegative integer (or even better, if

icm/ε is a nonnegative integer for all m = 1, . . . , P ) is obviously exceptional in a different way,

as the integral in (2.81) may be evaluated by residues. The resulting form of the condition

(see (2.80), from which (2.81) originates in this special case) may be more useful, especially

if a closed-form expression is preferable.

Proof. Let Lm be a contour on the Riemann surface of f beginning (with value f(∞) = 0)

and ending in at −i∞ in G0, and encircling only the singularity zm once in the positive sense.

Now, in the exceptional case when C>
m = `0(zm), (2.81) is just the condition (2.78) rewritten

using (2.77). In (2.78) with ωm 6= 0 as well as in (2.79), the integrand has an integrable

algebraic branch point at z = zm so up to a nonzero factor of the form (1−α)/2 the integrals

appearing in (2.78) and (2.79) can both be rewritten equivalently with the contour `0(zm)

replaced by Lm. In the case of (2.79) we then integrate by parts µm + 1 times on Lm, which

produces no boundary terms for λ > 0 due to exponential decay of the integrand at −i∞.

Eliminating Hm by means of (2.77) then gives (2.81) with C>
m replaced by Lm in these cases.

The final condition of Proposition II.20, (2.80), can of course be written as an integral about
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a small loop centered at z = zm, and applying Cauchy’s Theorem under the condition λ > 0

allows this loop to be deformed into the contour Lm (in the case of a locally single-valued

integrand), so (2.80) also takes the form (2.81) with C>
m replaced by Lm after elimination of

Hm(z;λ). Finally, the replacement of Lm with U>
m in each case to arrive at (2.81) amounts

to multiplication of the system (2.81) by a triangular nonsingular matrix. �

Note that the conditions for analyticity of W+(x;λ) as expressed in Corollary II.21 take

the form of a square linear system of equations on the unknowns {vp(λ)}Pp=1 assembled in a

vector v(λ) := (v1(λ), . . . , vP (λ))T:

A>(λ)v(λ) = b>(λ), λ > 0, (2.82)

where A>(λ) ∈ CP×P and b>(λ) ∈ CP have components

A>mp(λ) :=

∫
C>m

e−ih(z;λ)/ε

z − zp
dz and b>m(λ) := −λ

∫
C>m

e−ih(z;λ)/ε dz. (2.83)

The linear system (2.82) can then be solved using, say, Cramer’s rule to determine

{vp(λ)}Pp=1 uniquely. This procedure is guaranteed to succeed (i.e., the determinant of A>(λ)

is nonzero for all λ > 0) because according to the general theory described briefly in Sec-

tion 2.1.2, the Jost solutions exist uniquely for all λ > 0. More to the point we have the

following remark.

Remark II.23. Though the construction of the matrix A>(λ) is carried out above strictly

for λ > 0 it is natural to ask whether it admits analytic continuation into the upper-half

complex λ-plane. There is indeed a matrix function A = A(λ) defined for λ ∈ C \R+ whose

boundary value for λ > 0 from the upper half-plane is A>(λ) (the corresponding boundary

value from the lower half-plane can be viewed as a matrix analogous to A>(λ) that arises

from conditions guaranteeing that W−(x;λ) is analytic in the upper-half z-plane). It is the

fact that the eigenvalues are all negative real numbers that guarantees that A(λ) is singular
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only when λ is a negative real number coinciding with an eigenvalue of the spectral problem.

The reflection coefficient β(λ) is now easily calculated. Combining the scattering relation

(2.15) with the boundary conditions (2.14) gives

β(λ) = lim
x→∞

e−iλx/ε (W+(x;λ)− 1) for λ > 0. (2.84)

For a rational potential u0 of the form (2.67), we may explicitly write

β(λ) = − i
ε
eiI/ε

∞∫
−∞

e−ih(z;λ)/ε

(
λ+

P∑
p=1

vp(λ)

z − zp

)
dz, (2.85)

using equation (2.72) for the Jost solutionW+(x;λ) and Lemma II.14 (recall I :=
∫∞
−∞ u0(x) dx).

Similarly, we may use integration by parts to write

β(λ) =
i

ε
eiI/ε

∞∫
−∞

e−ih(z;λ)/ε

(
u0(z)−

P∑
p=1

vp(λ)

z − zp

)
dz. (2.86)

The coefficients {vp(λ)}Pp=1 are determined by the linear system (2.82).

2.2.3 Eigenfunctions and Eigenvalues

Eigenfunctions w+ = Φ(x;λ) corresponding to eigenvalues λ < 0 are nontrivial solutions

in H+(R) of (2.12), or equivalently (2.71) for u0 of the form (2.67), with w0 = 0. Integrating

(2.71) with w0 = 0 and imposing Φ(x;λ) → 0 as x → −∞ shows that Φ(x;λ) necessarily

has the form

Φ(x;λ) = − i
ε
eih(x;λ)/ε

x∫
−∞

e−ih(z;λ)/ε

P∑
p=1

φp(λ)

z − zp
dz, (2.87)

where φp(λ) := cpΦ(zp;λ) for p = 1, . . . , P . Since λ < 0, the convergent improper integral

on the right-hand side of (2.87) becomes absolutely convergent if the contour is rotated at

infinity into the upper-half x-plane.

Of course for (2.87) to indeed describe an eigenfunction of the Lax pair, the formula
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must be evaluated at an eigenvalue λ of equation (2.12). This, evaluation however, does not

apparently guarantee analyticity of Φ(x;λ) for Im{x} > 0 in and of itself. In analogy to the

construction of the Jost solutions, we must impose conditions on the values {φp(λ)}Pp=1 so

that (2.87) describes an analytic function. Namely, while (2.87) satisfies (2.71) and is analytic

for x in a neighborhood of R, to obtain the required analyticity for all x with Im{x} > 0

requires conditions on both λ < 0 and {φp(λ)}Pp=0. As we will see these conditions will also

guarantee that Φ(·;λ) ∈ H+(R), i.e., that it vanishes as |x| → ∞ in all directions of the

upper half-plane.

Definition II.24. U<
m denotes any member of the equivalence class of contours in G origi-

nating at i∞ in G0 and ending at i∞ in Gm; see Figures 2.2 and 2.3.

Proposition II.25. Let λ < 0. The function Φ(x;λ) is analytic in the upper-half x-plane

if and only if {φp(λ)}Pp=1 satisfy

∫
C<m

e−ih(z;λ)/ε

P∑
p=1

φp(λ)

z − zp
dz = 0, m = 1, . . . , P, (2.88)

where C<
m := U<

m unless icm/ε is a strictly negative integer, in which case C<
m := `0(zm).

(The contours C<
m extend to i∞ in G0 and Gm making the integrals absolutely convergent.)

Proof. The proof is analogous to those of Proposition II.20 and Corollary II.21 with the

function Hm defined instead as

(i(z − zm))−icm/ε−1Hm(z;λ) := −e−ih(z;λ)/ε

P∑
p=1

φp(λ)

z − zp
. (2.89)

We omit the remaining details for the sake of brevity. �

Introducing the vector φ(λ) = (φ1(λ), . . . , φP (λ))T of unknowns, the conditions of Propo-

sition II.25 take the form of a square homogeneous linear system A<(λ)φ(λ) = 0 where the
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matrix A<(λ) ∈ CP×P has components

A<mp(λ) :=

∫
C<m

e−ih(z;λ)/ε

z − zp
dz, λ < 0. (2.90)

Remark II.26. If the coefficient icm/ε is a positive integer Nm, the integral (2.90) can be

calculated by residues, and thus A<mp(λ) = e−iλzm/εPp(λ), where Pp(λ) is a polynomial in

λ of order at most Nm. If this holds for all m = 1, . . . , P , then D(λ) is proportional via a

nonvanishing exponential factor to a polynomial of order at most
∏P

m=1Nm. If P = 1, this

polynomial is a scaled Laguerre polynomial; see [43].

Corollary II.27. The function Φ(x;λ) given by (2.87) is both nontrivial and analytic in

the closed upper-half x-plane if and only if D(λ) := det(A<(λ)) = 0 and φ(λ) is a nontrivial

nullvector of A<(λ), unique up to a constant multiple.

Proof. This follows from Proposition II.25. It only remains to check that dim (ker (A<(λ))) =

1 whenever det(A<(λ)) = 0. We proceed by rewriting A<(λ) using its local Smith form [29].

Namely, for λ in a neighborhood of a λj such that D(λj) = 0, an analytic matrix function

A<(λ) may be written in the form

A<(λ) = E(λ)diag ((λ− λj)κ1 , . . . , (λ− λj)κP ) F(λ), (2.91)

where E(λ) is an analytic matrix function with det (E(λj)) 6= 0, F(λ) is a matrix polynomial

with a constant non-zero determinant, and κ1 ≥ . . . ≥ κP are non-negative integers. Now,

from the general theory presented in Section 2.1.2 we know that the eigenvalues λj are simple,

which implies that function det (A<(λ)) must have a simple zero at λj. Since κ1 ≥ . . . ≥ κP

are non-negative integers, using the multiplicative properties of the determinant, we find λj

being a simple zero of det (A<(λ)) demands that κ1 = 1 while κ2 = · · · = κP = 0. Thus, the
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local Smith form (2.91) evaluated at λ = λj allows us to deduce that

rank (A<(λj)) = rank (diag (0, 1, . . . , 1)) = P − 1, (2.92)

since the matrices E(λj) and F(λj) are full rank. Lastly, by the Rank-Nullity Theorem we

conclude that dim (ker (A<(λj))) = 1 as stated. �

Corollary II.28. Suppose D(λ) = 0, and that the components {φp(λ)}Pp=1 of the nullvector

φ(λ) are normalized to satisfy
P∑
p=1

φp(λ) = λ < 0, (2.93)

then the function Φ(x;λ) satisfies the normalization condition (2.18), Φ(·;λ) ∈ H+, and

therefore Φ(x;λ) is an eigenfunction of equation (2.12).

Proof. By Corollary II.27, the function Φ(x;λ) is analytic in the closed upper-half x-plane.

From (2.87) one then invokes the Residue Theorem to see that (2.93) implies (2.18). The

fact that φ(λ) can be scaled to satisfy (2.93), i.e., that ker(A<(λ)) is not orthogonal to

(1, 1, . . . , 1)T, is proven in Proposition II.34. Lastly, to show that Φ ∈ H+, we check that

Φ → 0 as |x| → ∞ in the closed upper-half x-plane. First, applying Jordan’s Lemma to

(2.87) shows that Φ → 0 when x → ∞ anywhere in G0. To let x → ∞ elsewhere in G, we

rewrite the limiting contour integral in (2.87) as limx→∞∈Gm
∫ x
−∞ =

∫
U<m

whenever icm/ε is not

a negative integer. From Proposition II.25, this limit is identically zero for all m = 1, . . . , P ,

since each integral on U<
m vanishes when D(λ) = 0. �

Corollary II.29. Let D(λ) = 0 for some λ = λj < 0. The eigenfunction Φj(x) := Φ(x;λj)

given by (2.87) with the conditions from Corollary II.28 satisfies the asymptotic condition

(2.17).

Proof. Applying L’Hôpital’s rule to (2.87) and using h′(x;λ) = λ+ u0(x),

lim
x→∞

xΦ(x;λ) = lim
x→∞

ix2

ε+ iλx+ ixu0(x)

P∑
p=1

φp(λ)

x− zp
=

1

λ

P∑
p=1

φp(λ), (2.94)
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and the desired result then follows from (2.93). �

The stronger result Φj(x) = x−1 + O (x−2) as |x| → ∞ in the upper-half x-plane can be

proven with a little more work.

Corollary II.30. The eigenfunction Φj(x) := Φ(x;λj) with the conditions from Corol-

lary II.28 satisfies the asymptotic condition Φ(x;λ) = x−1 + O (x−2) as |x| → ∞ uniformly

in the closed upper-half x-plane.

Proof. Note that for initial conditions of the form (2.67) there exists a number L such that

|u0(x)| < |u0(L)| for |x| > L. Indeed, |λ + u0(x)| > ||λ| − |u0(L)|| and u′0(x) = O (x−3)

for |x| > L. Assuming that the conditions of Corollary II.28 hold, we may then proceed as

in the proof of Property 1 in Proposition 5.3 in [54] with minor modifications; namely, we

consider the asymptotic properties of Φ in each subdomain Gm separately. First, suppose

that x ∈ Gm and |x| > L for some m, then using Proposition II.25 we may rewrite (2.87) in

the form

Φ(x;λ) =
i

ε
eih(x;λ)/ε

∞∈Gm∫
x

e−ih(z;λ)/ε

P∑
p=1

φp(λ)

z − zp
dz. (2.95)

Second, integrating (2.95) by parts using the identity (λ+ u0(x)) e−ih(x;λ)/ε = iε∂xe
−ih(x;λ)/ε

we obtain

Φ(x;λ) =
1

λ+ u0(x)

P∑
p=1

φp(λ)

x− zp
dz − eih(x;λ)/ε

∞∈Gm∫
x

e−ih(z;λ)/εu′0(z)

(λ+ u0(z))2

P∑
p=1

φp(λ)

z − zp
dz

− eih(x;λ)/ε

∞∈Gm∫
x

e−ih(z;λ)/ε

λ+ u0(z)

P∑
p=1

φp(λ)

(z − zp)2
dz,

(2.96)

where the contour of integration can, in general, be taken to be a straight line. Integrating
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the last term of the right hand side of (2.96) once more gives

∞∈Gm∫
x

e−ih(z;λ)/ε

(λ+ u0(z))(z − zp)2
dz = iε

[
− e−ih(x;λ)/ε

(λ+ u0(x))2(x− zp)2

+

∞∈Gm∫
x

2e−ih(z;λ)/εu′0(z)

(λ+ u0(z))3(z − zp)2
dz +

∞∈Gm∫
x

2e−ih(z;λ)/ε

(λ+ u0(z))2(z − zp)3
dz

 .
(2.97)

Now, note that for the chosen contours of integration, it follows from (2.69) that Im{h(z;λ)} ≤

Im{h(x;λ)} since λ < 0 for large enough x. Therefore, combining (2.96) and (2.97) we see

that the leading term of Φ as x → ∞ in the closed upper-half x-plane arises from the first

term on the right hand side of (2.96). To see this, consider the second term on the right

hand side of (2.96). This term may be bounded as follows

∣∣∣∣∣∣eih(x;λ)/ε

∞∈Gm∫
x

e−ih(z;λ)/εu′0(z)

(λ+ u0(z))2

P∑
p=1

φp(λ)

z − zp
dz

∣∣∣∣∣ ≤
∞∈Gm∫
x

|u′0(z)|
|λ+ u0(z)|2

∣∣∣∣∣
P∑
p=1

φp(λ)

z − zp

∣∣∣∣∣ |dz|
≤ K|x|−2

||λ| − |u0(L)||2

∞∈Gm∫
L

∣∣∣∣∣1z
P∑
p=1

φp(λ)

z − zp

∣∣∣∣∣ |dz|
(2.98)

where K is a constant independent of x and ε. The remaining terms the sum may be treated

similarly. Thus, for any m such that x ∈ Gm and |x| > L, we have

∣∣∣∣Φ(x;λj)−
1

x

∣∣∣∣ ≤ K

x2
(2.99)

using the normalization (2.93), where K is independent of x and ε. �

Corollaries II.27–II.30 show that the equation D(λ) = 0 involving the determinant of the

P×P matrix A<(λ) is exactly the condition that λ = λj < 0 is an eigenvalue for the rational

potential u0 of the form (2.67), and that Φj(x) := Φ(x;λj) is the corresponding normalized

eigenfunction.
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2.2.4 Analytic Continuation, Evans Function, and Phase Constants

The matrix A<(λ) defined for λ < 0 by (2.90) has an analytic continuation to the

maximal domain C \ R+. Recalling that h(z;λ) is dominated for large |z| by the term λz,

it is clear that this continuation is afforded simply by rotating the infinite “tails” of the

integration contours C<
m so that they tend to complex∞ in the direction arg(z) = − arg(iλ).

In the process of rotating the contours from their initially upward vertical configuration

when λ < 0, the function f(z) appearing in the integrand via h(z;λ) must be analytically

continued through its vertical branch cuts as well. Therefore we observe that

D(λ) := det (A<(λ)) , λ ∈ C \ R+. (2.100)

is an Evans function for the spectral problem with rational potential u0 of the form (2.67);

it is an analytic function in the domain C \R+ (complementary to the continuous spectrum

for the problem) whose roots are precisely the eigenvalues.

Remark II.31. We note in passing that it may be potentially useful to rewrite the Evans

function D as an P -fold integral using the multi-linearity properties of the determinant,

though we don’t pursue this fact further in this dissertation. Namely, D may be rewritten

as

D(λ) =

∫
C<1

· · ·
∫
C<P

QP (ζ1, . . . , ζP ) exp

(
− i
ε

P∑
p=1

h(ζp;λ)

)
dζP · · · dζ1, (2.101)

where QP (ζ1, . . . , ζP ) = det C and C is the P × P Cauchy matrix with elements Cmp =

1/(ζm − zp). The determinant of a Cauchy matrix is well known [74] and we use it to define

the function QM for future use:

QM(ζ1, . . . , ζM) = QM(ζ1, . . . , ζM ; z1, . . . , zP ) :=

M∏
m=2

m−1∏
p=1

(ζm − ζp)(zp − zm)

M∏
m=1

P∏
p=1

(ζm − zp)
. (2.102)
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for some number M ≤ P .

If the analytic continuation of A<(λ) is carried out through the upper-half λ-plane to the

cut R+, the contour C<
m will be rotated through the left-half z-plane to coincide precisely

with C>
m; compare the two panels of Figure 2.3. Thus, the analytic continuation of the matrix

A<(λ) from λ < 0 through the upper half-plane to λ > 0 coincides with the matrix A>(λ)

defined in (2.83). In a similar way, the vector b<(λ) defined for λ < 0 with components

b<m(λ) := −λ
∫
C<m

e−ih(z;λ)/ε dz, λ < 0, (2.103)

has an analytic continuation to C \R+, taking a boundary value on R+ from the upper half-

plane that coincides with the vector b>(λ) also defined in (2.83). This shows that indeed

for each x with Im{x} ≥ 0, the Jost solution W+(x;λ) given by the formula (2.72) is the

boundary value on R+ from Im{λ} > 0 of a function W (x;λ) analytic for λ ∈ C \ R+ with

the possible exception of the eigenvalues λ < 0 satisfying D(λ) = 0; only at these points

do the quantities {vp(λ)}Pp=1 entering into (2.72) become indeterminate as the matrix of

the analytic continuation of the system (2.82) through 0 ≤ arg(λ) < 2π becomes singular.

This idea allows us to deduce the remaining scattering data corresponding to u0 of the

form (2.67), namely the phase constants {γj}Nj=1 corresponding to the negative eigenvalues

{λj}Nj=1. The first step is to determine how analytic continuation of the system (2.82) fails

near an eigenvalue λ = λj.

Proposition II.32. Let v(λ) be the unique solution of A<(λ)v(λ) = b<(λ) for each λ ∈

C \R+ for which D(λ) 6= 0. Then each component vp(λ) is analytic in C \R+ except at the

eigenvalues {λj}Nj=1 which are simple poles, with corresponding Laurent expansion

vp(λ) = −iεφp(λj)
λ− λj

+ (zp + Γj)φp(λj) +O (λ− λj) as λ→ λj (2.104)
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where Γj is a constant (independent of p) given by

Γj := − iε

2λj
− 1

2λj

P∑
p=1

zpφp(λj)−
iε

2

mTb<′(λj)

mTb<(λj)
, (2.105)

and where {φp(λj)}Pp=1 are the components of the right nullvector of A<(λj) normalized by

(2.93) and m is a nonzero left nullvector of A<(λj).

We include the proof of Proposition II.32 in Appendix A.1. The following result then

shows that the phase constant associated with each eigenvalue λj < 0 by means of the

Laurent expansion (2.19) is given by γj = Γj.

Corollary II.33. The function W (x;λ) whose boundary value from Im{λ} > 0 on R+ is the

Jost solution W+(x;λ) is meromorphic on C \ R+ with simple poles only at the eigenvalues

{λj}Nj=1, at each of which it has a Laurent expansion of the form (2.19) with Φj(x) := Φ(x;λj)

defined as in Section 2.2.3 and with γj = Γj defined as in (2.105).

Proof. The function W (x;λ) is given by (2.72) with the coefficients {vp(λ)}Pp=1 obtained by

solving A<(λ)v(λ) = b<(λ), and with the contour of integration rotated appropriately to

ensure absolute convergence of the integral. Substitution of (2.104) into (2.72) we obtain a

Laurent expansion for W (x;λ) of the form

W (x;λ) =
W−1
j (x)

λ− λj
+W 0

j (x) +O (λ− λj) as λ→ λj. (2.106)

The coefficient W−1
j (x) can be read directly to be

W−1
j (x) = − i

ε
eih(x;λj)/ε

x∫
−∞

e−ih(z;λj)/ε

P∑
p=1

(−iεφp(λj))
z − zp

dz = −iεΦ(x;λj) (2.107)

using formula (2.87) of the eigenfunction Φ. Similarly, we may read off the the coefficient
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W 0
j (x) from formula (2.72) to be

W 0
j (x) = − i

ε
eih(x;λj)/ε

x∫
−∞

e−ih(z;λj)/ε

(
λj +

P∑
p=1

(zp + Γj)φp(λj)

z − zp

)
dz

= −(z + Γj)
i

ε
eih(x;λj)/ε

x∫
−∞

e−ih(z;λj)/ε

P∑
p=1

φp(λj)

z − zp
dz = (z + Γj)Φ(x;λj)

(2.108)

using the normalization condition (2.93). This yields (2.19) in which γj = Γj. �

We finish the section by establishing some facts about the nullspace of A<(λj).

Proposition II.34. The components of the only nontrivial nullvector n(λj) of A<(λj) are

given (up to a common constant) by the formula

np(λ) = Dp(λ), (2.109)

where Dp(λ) := det
(
A<
p (λ)

)
and A<

p (λ) denotes the matrix A<(λ) with its pth column

replaced with b(λ). Moreover, the components satisfy the condition

P∑
p=1

np(λ) 6= 0. (2.110)

We include the proof of this fact in Appendix A.1

Remark II.35. The statement of Proposition II.34 is indeed correct if b<(λ) is chosen to

be any vector that is not in the column space of A<(λ). The fact that
∑P

p=1 np(λj) 6= 0,

however, is a special feature of our problem.

2.2.4.1 Summary

For ease of reference, we summarize the results on the scattering data for rational initial

conditions presented in this section. For information concerning the scattering data derived

in the general theory refer to Table 1.
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Theorem II.36. For the rational initial condition (2.67), the scattering data for the Lax

pair equation (2.12) is explicitly characterized from the integral formulas of the Jost solu-

tion (2.72) and eigenfunctions (2.87). In particular,

• Reflection coefficient β(λ) for λ > 0: defined by equation (2.85) with coefficients

{vp(λ)}Pp=1 satisfying the linear algebra problem (2.82).

• Negative eigenvalues {λj}Nj=1: determined by the zeros of the Evans function D in

(2.100), as shown in Corollary II.27.

• Phase constants {γj}Nj=1: defined by (2.105) in Proposition II.32.

2.3 Small Dispersion Asymptotics

In this section we derive direct asymptotic expansions of the scattering data in the small

dispersion limit ε → 0. In particular, we provide rigorous justification to previous results

in the literature: a formal argument for the eigenvalue density [49], a leading term approxi-

mation of the phase constants obtained from the inverse problem [55], and a conjecture on

the leading term of the reflection coefficient [90]. To simplify the analysis, we restrict our

discussion to a simpler set of initial conditions: the so-called Klaus-Shaw potentials discussed

in [42].

2.3.1 Klaus-Shaw Initial Conditions

Definition II.37. A rational Klaus-Shaw (rKS) potential u0 is a rational function of the

form (2.67) for which there exists xc ∈ R such that u0 is strictly monotone on the intervals

(−∞, xc) and (xc,+∞) (making xc the unique local maximum/minimum).

Rational Klaus-Shaw potentials are of one sign, and hence there are distinct classes of

positive and negative rKS potentials. Colloquially one can describe a rKS potential as having

a graph consisting of a single “lobe” or “bump”, a property that was found by Klaus and
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Shaw [42] to be useful in confining the spectrum of certain non-self-adjoint operators. For a

rKS potential u0 there are at most two real roots λ ∈ R of the equation u0(x) = −λ, and

hence the corresponding inverse function x(λ) has at most two real branches.

The function h defined in (2.74) has critical points given by the equation

h′(x;λ) = λ+ u0(x) = 0 or u0(x) = −λ; (2.111)

here the prime denotes a derivative in x. The nature of the critical points is clearly dependent

on the value of the parameter λ.

Definition II.38. The bulk B ⊂ R is the set B = {λ : − sup{u0} < λ < − inf{u0}}. We

say that λ ∈ B lies in the bulk, while λ ∈ R \ B lies outside the bulk, where B denotes the

closure of B.

Remark II.39. For a strictly positive (resp., negative) rKS potential u0, B = (− sup{u0}, 0)

(resp., B = (0,− inf{u0})) so the bulk is a negative (resp., positive) interval abutting the

origin. We refer to the origin as the “hard edge” of the bulk and to the nonzero endpoint of

B as the “soft edge” of the bulk.

Definition II.40 (Critical points for λ in the bulk). Let u0 be a rKS potential with corre-

sponding bulk B. The functions x± : B −→ R represent the two real branches of the inverse

of −u0 with x−(λ) < x+(λ) for λ ∈ B and are the only real critical points of the function

h; see Figure 2.4. The remaining 2P − 2 critical points of h form complex-conjugate pairs

for λ ∈ B and will be denoted by xp, x
∗
p : B −→ C \ R with Im{xp} > 0 for p = 1, . . . , P − 1

(not necessarily distinct for all λ ∈ B).

Definition II.41 (Critical points for λ outside the bulk). Let u0 be a rKS potential with

corresponding bulk B. If λ ∈ R\B, then h has 2P critical points in complex-conjugate pairs

denoted by xp, x
∗
p : R \ B −→ C \ R with Im{xp} > 0 for p = 0, . . . , P − 1 (not necessarily

distinct for all λ ∈ R \ B).
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x+(λ)x−(λ)
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y = u0(x)

y = −λ

x
x+(λ)x−(λ)

y

y = u0(x)

y = −λ

Figure 2.4: Strictly positive (left) and negative (right) rKS potentials u0 illustrating the two
real branches x±(λ) of the inverse function of −u0 defined for suitable λ < 0.

In a neighborhood of λ ∈ B or λ ∈ R \ B for which all 2P critical points of h are simple,

each critical point is a locally analytic function x = x(λ) of λ that satisfies (2.111). As λ

exits the bulk through the soft edge, the two real critical points x±(λ) coalesce and bifurcate

into the complex plane, where they become renamed as the conjugate pair x0(λ) and x0(λ)∗.

As λ exits the bulk through the hard edge, the two real critical points x±(λ) tend to ±∞

and then become finite again as a (large) conjugate pair x0(λ) and x0(λ)∗.

According to (2.67) and (2.111) h′(x;λ) is a rational function of x with simple poles at

{zp, z∗p}Pp=1 such that h′(x;λ)→ λ as x→∞, using Definition II.40 we may explicitly write

h′(x;λ) = λΨ−(x;λ)Ψ+(x;λ) for λ ∈ B, (2.112)

where, assuming the complex critical points xp = xp(λ) are distinct for λ ∈ B,

Ψ−(x;λ) := (x− x−(λ))

∏P−1
p=1 (x− xp(λ))∏P
p=1 (x− zp)

,

Ψ+(x;λ) := (x− x+(λ))

∏P−1
p=1 (x− xp(λ)∗)∏P
p=1

(
x− z∗p

) .

(2.113)

Remark II.42. Note that Ψ+ (Ψ−) is analytic in the upper-half (lower-half) x-plane. For

λ outside the bulk, we may also write (2.112) provided we extend the definitions of Ψ±

by replacing x− with x0 and x+ with x∗0 in (2.113). These extended definitions satisfy
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Ψ−(x;λ)∗ = Ψ+(x∗;λ) for all λ ∈ R \ B.

Differentiating (2.112) and using the definitions (2.113), we may express h′′(x±(λ);λ) for

λ ∈ B as

h′′(x±(λ);λ) = u′0(x±(λ)) = ±λ |Ψ
∓ (x±(λ);λ)|2

x+(λ)− x−(λ)
for λ ∈ B. (2.114)

From equation (2.114) we may immediately observe that

sign{h′′(x±(λ);λ)} = ±sign{λ} for λ ∈ B. (2.115)

This fact can also be deduced from equation (2.111) and Figure 2.4. Namely, for a pos-

itive rKS potential u0, we have u′0 (x−(λ)) > 0 and u′0 (x+(λ)) < 0 for a given λ ∈ B, so

h′′(x±(λ);λ) = ∓|u′0(x±(λ))|. Similarly, for strictly negative u0, we have that h′′ (x±(λ);λ) =

±|u′0 (x±(λ)) | for λ ∈ B.

Lemma II.43. Let λ ∈ B, and set h±(λ) := h(x±(λ);λ). Then

h+(λ) = θ+(λ) + I and h−(λ) = θ−(λ), (2.116)

where

I :=

∞∫
−∞

u0(y) dy and θ±(λ) :=

λ∫
0

x±(η) dη (2.117)

are well-defined because u0 ∈ L1(R).

Proof. Because f(x) is an antiderivative of u0(x) that vanishes as x→ −∞,

f (x−(λ)) =

x−(λ)∫
−∞

u0(y) dy = −λx−(λ)−
x−(λ)∫
−∞

yu′0(y) dy, (2.118)

by integration by parts. We rewrite the final integral on the right-hand side using the

substitution u0(y) = −η, where y = x−(η) for y ∈ (−∞, x−(λ)]. Hence equation (2.118)
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becomes

f (x−(λ)) = −λx−(λ) +

λ∫
0

x−(η) dη, (2.119)

i.e., h−(λ) = θ−(λ). Starting instead from the formula

f (x+(λ)) =

∞∫
−∞

u0(y) dy −
∞∫

x+(λ)

u0(y) dy (2.120)

but making the substitution y = x+(η) after integrating by parts in the second term then

gives the desired formula for h+(λ). This finishes the proof. �

2.3.2 Reflection Coefficient

An asymptotic expansion for the reflection coefficient β(λ), λ > 0, can be directly ob-

tained from formula (2.86) and the linear system (2.82). We first prove that the solution v(λ)

of the linear system (2.82) has a limit v0(λ) as ε→ 0. This, in turn, allows us to apply the

method of stationary phase to the integral in (2.86) to determine the leading-order behavior

of β(λ).

To study the asymptotic behavior of the solution v(λ), we consider an analogous linear

system to (2.82). Namely, we define the system written in the form NA>(λ)v(λ) = Nb>(λ)

for some square matrix N. Since each row of the original system (2.82) shares the same

contour of integration and the same integrand on each column, the system obtained through

multiplication by N is simply the original system over new contours, say Wm, in each row.

Indeed, we intend to choose the matrix N in such a way that asymptotic analysis of the

solution v(λ) is possible. In particular, we consider a modified linear system as suitable

provided (i) the contour Wm passes through only one critical point of h(x;λ) and maximizes

the value of the real part of h (Wm is locally a steepest descent curve), (ii) only one contour

Wm is associated with each critical point (one-to-one correspondence), and (iii) the matrix

N is invertible (the new and modified linear systems are equivalent).

49



We believe that in general a suitable linear system can be found. We present the following

proposition as proof of principle.

Proposition II.44. Let u0 be a negative rKS potential for which cp is a positive imaginary

number for all p = 1, . . . , P , and let λ > 0 be such that the complex critical points of h(·;λ)

are all simple and correspond to distinct nonzero values of Re{−ih(z;λ)}. Then there exists

a family of contours {Wm}Pm=1 such that the modified system NA>(λ)v(λ) = Nb>(λ) having

integrals over contours {Wm}Pm=1 in place of {C>
m}Pm=1 is suitable.

The restriction on {cp}Pp=1 in Proposition II.44 implies that u0 is a linear combination of

negative Lorentzian profiles. The proof of Proposition II.44 is given by Miller and Wetzel [54]

so we refrain from presenting the, rather technical, details here. For illustration, we present

two example potentials and deduce the respective matrices N (with associated contours

{Wm}Pp=1) that make the linear system suitable in Appendix A.2. The following proposition

shows that for suitable systems, the solution v(λ) has a well-defined limit as ε→ 0.

Proposition II.45. Let λ > 0 be given. Suppose that the system (2.82) is equivalent

via a matrix N to a suitable system NA>(λ)v(λ) = Nb>(λ) having integration contours

{Wm}Pm=1 in its P rows. Then

lim
ε→0

v(λ) = v0(λ), (2.121)

where for each p = 1, . . . , P we have

v0
p(λ) = λ lim

z→zp
(z − zp)Ψ−(z;λ) = λRes

z=zp
Ψ−(z;λ). (2.122)

Proof. We consider the case that all critical points associated with contours {Wm}Pm=1 are

simple, which is generically true. Let xm denote the unique critical point of −ih(z;λ) on the

contour Wm traversed at the local steepest descent angle θm. Now, define the diagonal matrix

D whose elements are Dmm := |h′′(xm;λ)|1/2eih(xm;λ)/εe−iθm/
√

2πε (reciprocal of the leading

order contribution). Let Â>(λ) := DNA>(λ) and b̂> := DNb>(λ) so that Â>(λ)v(λ) =

50



b̂>(λ). Therefore, applying the method of steepest descent shows that Â>(λ) → Â>0(λ)

and b̂>(λ)→ b̂>0(λ) as ε→ 0, where

Â>0
mp(λ) :=

1

xm − zp
and b̂>0

m (λ) := −λ. (2.123)

Note that the limiting matrix A>0(λ) is an invertible Cauchy matrix (all xm are distinct).

To show that v0(λ) given by (2.122) is the unique solution of Â>0(λ)v0(λ) = b̂>0(λ), we use

the Residue Theorem; multiplying (2.122) on the left by Â>0(λ) and dividing by −1/λ gives

− 1

λ

P∑
p=1

v0
p(λ)

xm − zp
=

P∑
p=1

Res
z=zp

Ψ−(z;λ)

zp − xm
=

1

2πi

∮
C

Ψ−(z;λ)

z − xm
dz = 1, (2.124)

where C is a counter-clockwise contour encircling the points {zp}Pp=1 (the poles of the in-

tegrand) and the last equality follows by taking a residue at z = ∞ where the integrand

behaves like 1/z; see [74] for an alternative approach. �

Theorem II.46. Let u0 be a rKS potential, and suppose that λ > 0 is such that there exists

a suitable modification of the linear system (2.82). If λ lies outside the bulk (true for all

λ > 0 if u0 is a positive rKS potential) then β(λ) is exponentially small as ε → 0. If λ lies

in the bulk, then

β(λ) = −
√

2πλ (x+(λ)− x−(λ))

ε
e−

i
ε
θ+(λ)−iψ+(λ) + o(ε−1/2) (2.125)

as ε→ 0, where θ+ is defined in (2.117) and ψ+ is defined by

e∓iψ±(λ)−iπ/4 :=
Ψ∓ (x±(λ);λ)

|Ψ∓ (x±(λ);λ)| (2.126)

with Ψ± given in (2.113). The error term in (2.125) can be written as O(ε1/2) if the critical

points of h(z;λ) are all simple.

Proof. Since the limiting value of the solution v(λ) is known, it remains to analyze the
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integrand of (2.86) as ε→ 0.

For λ ∈ R+ \ B (outside the bulk), there are exist no real critical points of h(z;λ), and

hence the contour of integration in (2.85) may be deformed away from the real axis in the

direction of decrease of Re{−ih(z;λ)} onto the nearest critical point or singular point, giving

exponential decay of β(λ) as ε→ 0.

For λ ∈ B (in the bulk) there are exactly two simple stationary phase points at x±(λ).

By the method of stationary phase, if g(z) = u0(z) or g(z) = (z − zp)−1,

1√
2πε

∞∫
−∞

e−ih(z;λ)/εg(z) dz =
eiπ/4e−ih−(λ)/εg(x−(λ))√

|h′′(x−(λ);λ)|

+
e−iπ/4e−ih+(λ)/εg(x+(λ))√

|h′′(x+(λ);λ)|
+O(ε)

(2.127)

where h±(λ) := h(x±(λ);λ), and we used the fact that as u0 is a negative rKS potential (to

have positive λ ∈ B and sign(u′0(x±(λ))) = ±1). Therefore,

− ie−iI/ε
√

ε

2π
β(λ) =

eiπ/4e−ih−(λ)/εG−ε (λ)√
|h′′(x−(λ);λ)|

+
e−iπ/4e−ih+(λ)/εG+

ε (λ)√
|h′′(x+(λ);λ)|

+O(ε), (2.128)

where, using u0(x±(λ)) = −λ,

G±ε (λ) := −λ−
P∑
p=1

vp(λ)

x±(λ)− zp
. (2.129)

The ε-dependence in G±ε (λ) enters through the coefficients {vp(λ)}Pp=1; we may replace G±ε (λ)

with G±0 (λ) (in which vp(λ) is replaced with v0
p(λ) given by (2.122)) in (2.128) provided the

error term is replaced with o(1). Now using v0
p(λ) given by (2.122), we apply the Residue

Theorem to obtain

G±0 (λ) + λ = −λ
P∑
p=1

Res
z=zp

Ψ−(z;λ)

x±(λ)− z = − λ

2πi

∮
C

Ψ−(z;λ)

x±(λ)− z dz (2.130)
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where C encircles the poles z1, . . . , zP positively but excludes the points x±(λ). Now Ψ−(z;λ)

includes a factor of z − x−(λ), so to compute G−0 (λ) + λ the singularity of the integrand at

z = x−(λ) outside of C is removable, so as the integrand behaves like −1/z as z → ∞ we

obtain G−0 (λ)+λ = λ or simply G−0 (λ) = 0. To compute G+
0 (λ)+λ we have the same behavior

of the integrand for large z but now there is a simple pole outside C at z = x+(λ), so taking

it into account gives G+
0 (λ) + λ = λ − λΨ−(x+(λ);λ) or simply G+

0 (λ) = −λΨ−(x+(λ);λ).

Therefore, using (2.126), (2.128) may be written as

β(λ) = −
√

2π

ε

λ|Ψ−(x+(λ);λ)|√
|h′′(x+(λ);λ)|

eiI/εe−ih+(λ)/εe−iψ+(λ) + o(ε−1/2). (2.131)

The phase is simplified using Lemma II.43, while the amplitude is simplified using (2.114).

�

Corollary II.47 (Matsuno’s modulus formula [50]). Let u0 be a negative rKS potential. If

λ ∈ B, then

lim
ε→0

ε|β(λ)|2 = 2πλ (x+(λ)− x−(λ)) . (2.132)

2.3.3 Evans Function

We study the asymptotic properties of the Evans function (2.100) for rKS potentials u0

in the limit ε→ 0 for λ < 0. For our asymptotic calculations, it is sufficient to consider only

positive rKS potentials since only in this case is the intersection between the bulk B and

λ < 0 not trivial. The essence of our strategy is to calculate the determinant in (2.100) for

ε > 0 small by first applying the method of steepest descent to the individual entries (2.83)

of the matrix A(λ), and then compute the leading term of the (finite) determinant D(λ).

As in Section 2.3.2, it is useful to apply this method not to D(λ) = det(A(λ)) but rather

to D̃(λ) = det(Ã(λ)) where Ã(λ) = NA(λ) for some invertible N. As before, the matrix

N is chosen so that the entries of Ã(λ) are given by (2.83) but with the contours {Cm}Pm=1

replaced with {Wm}Pm=1 to make the system Ã(λ) suitable. In addition, the suitable system
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Ã(λ) will not lead to cancellations beyond all orders in the computation of the determinant

(Evans function) since different rows of the matrix Ã(λ) will not have identical asymptotic

expansions.

Again, as proof of principle that in a general case a suitable matrix Ã(λ) = NA(λ) can

be found, we offer the following special case.

Proposition II.48. Let u0 be a positive rKS potential for which cp is a negative imaginary

number for all p = 1, . . . , P , and let λ < 0 be such that the complex critical points of h(·;λ)

are all simple and correspond to distinct nonzero values of Re{−ih(z;λ)}. Then there exists a

family of contours {Wm}Pm=1 such that the modified matrix Ã(λ) := NA(λ) having integrals

over contours {Wm}Pm=1 in place of {C<
m}Pm=1 is suitable and at most one of the contours,

say WQ, may pass over either one complex critical point or at most two real critical points

x±(λ) for which Re{−ih(x±(λ);λ)} = 0.

This proposition is proven by Miller and Wetzel [54], so we refrain from its exposition here.

As previously stated, we refer the reader to Appendix A.2 for an illustrative example potential

leading to nontrivial matrix N and associated contours {Wm}Pp=1. Note that the condition

on the coefficients {cp}Pp=1 in Proposition II.48 implies that u0 is a linear combination of

positive Lorentzian profiles. We now show the leading order of D̃(λ) as ε→ 0 for a suitable

matrix Ã(λ).

Proposition II.49. Let u0 be a positive rKS potential and let λ < 0 be fixed. Suppose that

for some invertible N, the matrix Ã(λ) := NA(λ) is suitable. If λ is outside the bulk, then

D̃(λ) = Uε(λ)(1 +O(ε)), (2.133)

where Uε(λ) 6= 0 is the function defined by (2.138), while for λ in the bulk,

D̃(λ) = Vε(λ) (sin(πTε(λ)) +O(ε)) (2.134)
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where Vε(λ) 6= 0 is the function defined by (2.143), and

Tε(λ) :=
1

2πε

λ∫
−max{u0}

(x+(η)− x−(η)) dη +
1

2π
(ψ+(λ)− ψ−(λ)) (2.135)

with ψ±(λ) being defined by (2.126). The error terms in (2.133) and (2.134) are uniform on

compact subintervals of the indicated sets.

Proof. Let Q be the index of the row of Ã(λ) whose integration contour may pass through

one or two real critical points. Since Wm contains exactly one dominant critical point xm =

xm(λ) ∈ C+ for m 6= Q, from the method of steepest descent we obtain

Ãmp(λ) =

√
2πε

|h′′(xm;λ)|e
iθme−ihm(λ)/ε

(
1

xm − zp
+O(ε)

)
(2.136)

as ε → 0, where hm(λ) := h(xm(λ);λ), and θm is the steepest descent direction with which

Wm traverses the critical point xm. This same formula also holds for m = Q, provided

λ ∈ R− \ B (outside the bulk). Aside from the Cauchy factors (xm − zp)
−1 there is no

dependence on the column index p in these leading terms. Therefore, by row-multilinearity

of the determinant, if λ ∈ R− \ B,

D̃(λ) = (2πε)P/2

(
P∏

m=1

eiθme−ihm(λ)/ε√
|h′′(xm;λ)|

)
det (C +O(ε)) , (2.137)

where C is the P ×P Cauchy matrix Cmp := (xm− zp)−1. This matrix is invertible because

the complex critical points {xm}Pm=1 are distinct, as are the poles {zp}Pp=1. Hence if the

nonvanishing function Uε(λ) is defined by

Uε(λ) := (2πε)P/2

(
P∏

m=1

eiθme−ihm(λ)/ε√
|h′′(xm;λ)|

)
det (C) , (2.138)

the proof of (2.133) is complete.
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On the other hand, if λ ∈ B (in the bulk), the contour WQ traverses two simple real

critical points x± = x±(λ) by the Klaus-Shaw condition, both of which contribute at the

leading order to ÃQp(λ):

ÃQp(λ) =

√
2πε

|h′′(x+(λ);λ)|e
iπ/4e−ih+(λ)/ε

(
1

x+(λ)− zp
+O(ε)

)

+

√
2πε

|h′′(x−(λ);λ)|e
−iπ/4e−ih−(λ)/ε

(
1

x−(λ)− zp
+O(ε)

)
,

(2.139)

where h±(λ) are defined in Lemma II.43. Then at the cost of a factor (−1)P−Q we may split

the last row before computing determinants to obtain

D̃(λ) =(2πε)P/2(−1)P−Q
(
P−1∏
m=1

eiθme−ihm(λ)/ε√
|h′′(xm;λ)|

)

·
(
eiπ/4e−ih+(λ)/ε det (C+)√

|h′′(x+(λ);λ)|
+
e−iπ/4e−ih−(λ)/ε det (C−)√

|h′′(x−(λ);λ)|
+O(ε)

) (2.140)

where the matrix C± is the Cauchy matrix C with the last row replaced by ((x±(λ) −

z1)−1, . . . , (x±(λ)− zP )−1), and we used the fact that |e−ih±(λ)/ε| = 1. Next we observe that

det
(
C+
)

= QP−1(x1, . . . , xP−1)
Ψ−(x+(λ);λ)

x+(λ)− x−(λ)

det
(
C−
)

= −QP−1(x1, . . . , xP−1)
Ψ+(x−(λ);λ)∗

x+(λ)− x−(λ)
,

(2.141)

where Ψ± are defined by (2.113) and where QP−1 6= 0 is given by (2.102). Using (2.114) and

Lemma II.43, noting that because u0 is a positive rKS potential

h+(λ)− h−(λ) =

∞∫
−∞

u0(x) dx−
0∫

λ

(x+(η)− x−(η)) dη

=

λ∫
−max{u0}

(x+(η)− x−(η)) dη,

(2.142)
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and defining

Vε(λ) :=
−2i(−1)P−Q(2πε)P/2P (λ)√
−λ(x+(λ)− x−(λ))

·
(
P−1∏
m=1

eiθme−ihm(λ)/ε√
|h′′(xm;λ)|

)
e−i(h+(λ)+h−(λ))/(2ε)e−i(ψ+−ψ−)/2

(2.143)

then establishes (2.134) and completes the proof. �

Proposition II.49 allows us to establish a number of important asymptotic properties of

the discrete eigenvalues for positive rKS potentials.

Theorem II.50 (Uniform approximation of eigenvalues). Let u0 be a positive rKS potential

and suppose that for each λ ∈ K ⊂ B, K compact, a suitable modification Ã(λ) of A(λ)

can be found. Then there is a constant CK such that for each eigenvalue λ in K there exists

λ0 < 0 satisfying Tε(λ0) ∈ Z, such that |λ− λ0| ≤ CKε
2 holds for all sufficiently small ε > 0.

Likewise, for each λ0 ∈ K satisfying Tε(λ0) ∈ Z there is an eigenvalue λ such that the same

estimate holds true.

Proof. The eigenvalues are characterized exactly by D̃(λ) = 0, or using Proposition II.49 in

the case λ ∈ B, sin(πTε(λ)) = O(ε), the error term being uniform for λ ∈ K ⊂ B. Solving

this equation for Tε(λ) and multiplying by ε gives, for some n ∈ Z,

1

2π

λ∫
−min{u0}

(x+(η)− x−(η)) dη +
1

2π
ε(ψ+(λ)− ψ−(λ)) = εn+O(ε2) (2.144)

uniformly on K. Since the left-hand side is differentiable with respect to λ with a derivative

that is strictly positive on K, the result follows from the Implicit Function Theorem. �

Corollary II.51 (Local approximation of eigenvalues). Fix a closed interval K ⊂ B and

a positive integer J . Under the hypotheses of Theorem II.50, for each Λ ∈ K the 2J + 1
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eigenvalues λ closest to Λ are given by

λ = Λ + 2πε

(
j + [Tε(Λ)]− Tε(Λ)

x+(Λ)− x−(Λ)

)
+O(ε2), j = −J,−(J − 1), . . . , J − 1, J, (2.145)

in the limit ε → 0, where the error term depends on J and K, and where [·] denotes the

nearest integer function. Note that |[Tε(Λ)]− Tε(Λ)| ≤ 1/2.

Proof. We set λ = Λ+∆ and write the exact eigenvalue condition as εTε(Λ+∆) = εn+O(ε2)

for some integer n. Writing the integer n in the form n = [Tε(Λ)]+j for an integer j ∈ [−J, J ]

and applying Taylor expansion,

εT ′ε(Λ)∆ +O(∆2) = ε (j + [Tε(Λ)]− Tε(Λ)) +O(ε2), (2.146)

because derivatives of εTε are bounded uniformly for λ ∈ K. Now we seek solutions ∆ = λ−Λ

that are O(ε), so the error terms may be combined and we may solve for ∆:

λ− Λ =
ε(j + [Tε(Λ)]− Tε(Λ)) +O(ε2)

εT ′ε(Λ)
(2.147)

Since εT ′ε(Λ) = (x+(Λ)−x−(Λ))/(2π) +O(ε) uniformly for Λ ∈ K the proof is complete. �

This result shows that the eigenvalues are locally equally spaced with O(ε) spacing that

depends on the point Λ of local expansion. Ignoring the details of the equal spacing and the

offset of the grid given by the term [Tε(Λ)]− Tε(Λ), we may reproduce a result obtained by

Matsuno [49] by formal asymptotic analysis of trace formulas (conservation laws).

Corollary II.52 (Matsuno’s density formula [49]). The asymptotic density of eigenvalues

at a point λ in the bulk is ρM(λ)/ε, where Matsuno’s density is

ρM(λ) :=
1

2π
(x+(λ)− x−(λ)). (2.148)

58



In other words, the number N [a, b] of eigenvalues in a subinterval [a, b] of the bulk B satisfies

N [a, b] =
1

ε

b∫
a

ρM(λ) dλ+O(1), ε→ 0. (2.149)

For all positive rKS potentials u0, Matsuno’s density ρM vanishes at the soft edge and

blows up at the hard edge λ = 0.

2.3.4 Phase Constants

Fix a number Λ ∈ B and for each ε > 0 sufficiently small let λε be the eigenvalue closest

to Λ. It follows from Corollary II.51 that there exists some constant C > 0 depending only

on Λ such that |Λ− λε| ≤ Cε holds for all ε > 0 sufficiently small. Denote by γε and Φε(x)

the phase constant and normalized eigenfunction, respectively, associated to the eigenvalue

λε. Then (2.21) takes the form

γε =
ε

2πλε

∞∫
−∞

Φε(x)∗ (xΦε(x)− 1) dx

= lim
R→+∞

 R∫
−R

xIε(x) dx− ε

2πλε

R∫
−R

Φε(x)∗ dx


= lim

R→+∞

R∫
−R

xIε(x) dx− iε

2λε
, Iε(x) :=

ε

2πλε
|Φε(x)|2.

(2.150)

In the last step we deformed the contour [−R,R] to a semicircle in the lower half-plane where

Φε(z
∗)∗ is analytic and satisfies Φε(z

∗)∗ = z−1 +O(z−2) as z →∞; see Corollary II.30.

Proposition II.53. Let Λ ∈ B be such that the complex critical points of h(·; Λ) are simple,

and set L = L(Λ) := 1 + max{|x+(Λ)|, |x−(Λ)|}. The function Iε(x) defined for x ∈ R in

(2.150) has the following properties.
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1. There is a constant K0 = K0(Λ) such that

∣∣∣∣Iε(x)− ε

2πλεx2

∣∣∣∣ ≤ K0ε

|x|3 , |x| ≥ L (2.151)

holds for all ε > 0 sufficiently small.

2. There exists a constant K1 = K1(Λ) such that

|Iε(x)| ≤ K1, |x| ≤ L (2.152)

holds for all ε > 0 sufficiently small.

3. For each real x 6= x±(Λ),

lim
ε→0

Iε(x) = I0(x) := −χ(x−(Λ),x+(Λ))(x)

x+(Λ)− x−(Λ)
, (2.153)

where χ(a,b)(x) denotes the characteristic function of (a, b).

Proposition II.53 is proved in [54]. The proof hinges on the fact that the method of

stationary phase is essentially unchanged when we allow λ to depend mildly on ε as in the

form above. We then use this fact to obtain estimates and boundedness results on the

eigenfunction Φε in the regions |x| > L and |x| < L separately. Its main purpose is to prove

the following theorem.

Theorem II.54. For each Λ ∈ B,

lim
ε→0

γε = −1

2
(x+(Λ) + x−(Λ)) , (2.154)

where γε is the phase constant for the eigenvalue λε nearest Λ.

Proof. Since λε → Λ < 0 as ε → 0, from (2.150) we see that Im{γε} → 0 as ε → 0, so it

remains to analyze the real part. Next, recalling L = L(Λ) as defined in Proposition II.53
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and using property 1 from the same yields, for each R > L,

∣∣∣∣∣∣∣
∫
IRL

xIε(x) dx

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣
∫
IRL

ε dx

2πλεx

∣∣∣∣∣∣∣+

∫
IRL

|x|
∣∣∣∣Iε(x)− ε

2πλεx2

∣∣∣∣ dx
=

∫
IRL

|x|
∣∣∣∣Iε(x)− ε

2πλεx2

∣∣∣∣ dx ≤ ∫
IRL

K0ε

x2
dx ≤ 2K0ε

L
,

(2.155)

an upper bound that is independent of R > L and that tends to zero with ε, where IRL :=

[−R,−L] ∪ [L,R]. Hence

lim
ε→0

γε = lim
ε→0

L∫
−L

xIε(x) dx, (2.156)

so applying the Lebesgue Dominated Convergence Theorem to calculate the latter limit,

making use of properties 2 (integrable ε-independent domination) and 3 (pointwise limit),

gives

lim
ε→0

γε =

L∫
−L

xI0(x) dx = −
x+(Λ)∫
x−(Λ)

x dx

x+(Λ)− x−(Λ)
. (2.157)

Evaluating the integral then proves (2.154). �

Remark II.55. Theorem II.54 shows that the limit of γε is a purely real number. For some

applications, however, the imaginary part Im{γε} = −iε/(2λε) cannot be neglected outright

and gives rise to important terms of the zero-dispersion analysis, e.g., see [55].

A version of the asymptotic formula (2.154) characterizing the real part of γε for small ε

was hypothesized in [55]. Theorem II.54 provides a careful restatement and rigorous proof

of this result.
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2.4 Numerical Verification

We illustrate the accuracy of our asymptotic formulas for the scattering data by compar-

ing them to exact calculations in the case of the rKS potential:

u0(x) = −νi
(

2

x− i +
1

x− (i+ 1)

)
+ c.c. (2.158)

for ν = ±1. The graph of u0 is plotted in Figure 2.4 for ν = 1 (left panel; strictly posi-

tive) and ν = −1 (right panel; strictly negative), which confirms the Klaus-Shaw condition.

The bulk B consists of the interval (−max{u0}, 0) when ν = 1 with max{u0} ≈ 5.07308

and (0,−min{u0}) when ν = −1 with min{u0} ≈ −5.07308; see Section 2.3.1 and Defini-

tion II.38. We selected this rKS potential so that it is not even about any point, a property

that makes the phase constants γj nontrivial to calculate and interesting to compare with

small-dispersion asymptotics; see Remark II.4.

We compute the exact eigenvalues λj for the potential (2.158) with ν = 1 using the Evans

function (2.100). To simplify computations only values of ε > 0 for which ic1/ε ∈ Z and

ic2/ε ∈ Z are considered. Since ic1 and ic2 are integers, this requires ε = 1/m for some

m ∈ N. In this case, the integrals (2.82) defining the elements of the matrix A(λ) can be

calculated explicitly by the Residue Theorem and the exact eigenvalues are thus obtained as

the roots of a polynomial; see Remark II.26.

In Figure 2.5 we show the exact eigenvalues (black dots) and compare them (i) with

their uniform approximations obtained from Theorem II.50 by solving Tε(λ) = n for positive

integers n (overlaid squares) and (ii) with their local equally-spaced approximations described

by (2.145) in Corollary II.51 (overlaid circles), under the scaling (λ − Λ)/ε. As expected,

the uniform approximation’s squares track the black dots very well, while the circles do so

best near the point λ = Λ. In Figure 2.6 we present histograms of the exact eigenvalues to

highlight their distribution on R−. The histograms clearly match better, in the limit ε→ 0,

the density ρM(λ) of Matsuno (Corollary II.52), here normalized to have integral equal to
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Figure 2.5: Exact eigenvalues for the rKS potential (2.158) with ν = 1 as a function of ε
(Black dots) with the uniform approximations (squares) and the local approximations based
at various values of Λ ∈ B (circles) overlaid. Note that the horizontal axis is the rescaled
local coordinate (λ − Λ)/ε with Λ = −4 (top left), Λ = −3 (top right), Λ = −2 (bottom
left), and Λ = −1 (bottom right).

In Figure 2.7 we illustrate Theorem II.54 by plotting the real parts of the three exact

phase constants γε corresponding to eigenvalues λε closest to Λ = −1,−4,−5 in the bulk B.

The limiting values predicted by Theorem II.54 are indicated with dashed lines. The exact

values of Re{γε} were computed using the alternate formula for γε presented in [53].

The reflection coefficient is calculated exactly from (2.85) with the coefficients vp(λ) com-

puted by solving the linear system (2.82) for ν = ±1. To aid in numerical computation we

deform the path of integration in (2.85) into the complex plane to exploit the exponential

decay of the integrand. We compare the exact reflection coefficient β with its asymptotic

approximation (Theorem II.46) in Figures 2.8 and 2.9. In Figure 2.8 we plot the normal-

ized magnitude
√
ε|β| as a function of the spectral parameter λ. The left panel (ν = −1)

shows that as ε → 0,
√
ε|β| indeed approaches the expected limit — whose support is the

bulk — given by Matsuno’s modulus formula (Corollary II.47). The right panel (ν = 1)

shows that
√
ε|β| → 0 for positive rKS potentials as predicted by Theorem II.46. In Fig-

ure 2.9 we plot the derivative of the phase of β (computed indirectly using εIm{β′(λ)/β(λ)})
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Figure 2.6: Histograms of exact eigenvalues for the rKS potential (2.158) with ν = 1 illus-
trating the distribution of eigenvalues. The limiting curve (solid black) is Matsuno’s density
ρM(λ) normalized to unit mass.
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Figure 2.7: Three values of Re{γε} (solid lines) as a function of ε for the rKS potential (2.158)
with ν = 1. The limiting values (dashed lines) are from (2.154) evaluated for Λ = −1,−4,−5.
The values Re{γε} are computed at each ε with the exact eigenvalue λε chosen to be the
closest to Λ.
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and compare with the corresponding limiting curve predicted by Theorem II.46, namely

−θ′+(λ) = −x+(λ).

→ 0

6

0 1 2 3 4 5 6 7
λ

2

4

8

0

√ |β|

0 1 2 3 4 5 6 7
λ

1

2

0

→ 0

√ |β|

Figure 2.8: Left:
√
ε|β| as a function of λ for the rKS potential (2.158) with ν = −1 for

ε = 2, 1, 1/2, 1/4, 1/8, 1/16 (solid black curves). The apparent limiting curve (dashed-blue)
is obtained from Corollary II.47. For ε and λ both small the graphs become difficult to
compute and are not plotted. Right: Same as the left panel but for ν = 1 and ε = 4, 2, 7/4,
13/8, 3/2, showing convergence to zero.
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Figure 2.9: Plots of the rescaled derivative of the phase for the function β as a function
λ. The limiting curve −x+(λ) (dashed-blue) is obtained from taking the derivative of the
leading order phase −θ+(λ) in (2.125).
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CHAPTER III

Effects of Stratification on the Surface Tides in a

Two-Layer Tidal Model

The contents of this chapter are currently in revision [83] and are presented here nearly

verbatim with some modifications to improve readability and maintain a consistent format.

3.1 Illustrative Global Numerical Simulations

To illustrate the effects of stratification on large-scale tides, in somewhat greater detail

than in [5] and [75], we briefly discuss numerical one- and two-layer tide simulations per-

formed in a realistic near-global domain. The realistic-domain simulations are executed with

the Hallberg Isopycnal Model (HIM) [31] on a 1/8◦ grid covering the latitudes from 86◦S to

82◦N. The realistic-domain model satisfies the Boussinesq approximation [81, for example],

a point we will return to later. We apply the astronomical forcing of the principal lunar

semidiurnal tide M2 only. The self-attraction and loading term is computed iteratively using

the full spherical harmonic treatment [33]. As in [5] and many other studies, we employ a

parameterized topographic internal wave drag. As in [5], the wave drag acts only on the

bottom flow in our two-layer simulations. Because the exact details of the three-dimensional

geography of tidal dissipation are still a matter of active research, the assumed format of

the damping employed here could be debated. Our assumption is that wave drag represents
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damping due to breaking of high-vertical-mode internal waves (unresolved in a two-layer

model) generated by bottom flow over topography. Here, we use a multiplicative topo-

graphic wave drag factor of 5, where the wave drag acts only in waters deeper than 1000

m. This topographic drag factor is chosen to minimize the discrepancy in deep-ocean tidal

elevations between the tide model and the GOT99 satellite-altimeter constrained tide model

[67]. This value of the drag factor yields a 6.69 cm Root Mean Square (RMS) elevation error,

comparable to the errors seen in other tuned forward tide models, in the one-layer run. We

refer the interested reader to [5] for further details on the model setup and parameters.

We evaluate the strength of the small-scale tides in the 1/8◦ HIM results utilized in

this chapter via the same methods used to evaluate the 1/12◦ HYbrid Coordinate Ocean

Model (HYCOM) results in [8]. The small-scale tides are separated out using a spatial

high-pass filter applied to M2 amplitudes and phases in a North Pacific region of strong

internal tides. In the HIM “interface perturbation” run to be described shortly, the RMS

M2 internal tide perturbations to sea surface elevations, averaged over a large box around

Hawai‘i 35 degrees in latitude by 50 degrees in longitude, are 0.64 cm for amplitude and 3.56

degrees for phase. The 1/8◦ “g′ perturbation” and “control” runs to be described shortly

yield very similar internal tide strengths. These numbers compare well to the 0.87 cm and

4.35 degree perturbations estimated in the same box from the along-track satellite altimeter

observations of [70, 71]. Therefore the 1/8◦ two-layer HIM simulations produce internal tides

that are of comparable magnitudes to those in observations.

The impacts of stratification, and of climatic perturbations to stratification, on the mod-

eled surface tidal elevations are displayed in Figures 3.1 and 3.2. Figure 3.1(a) displays the

difference in surface elevation amplitudes between the two-layer control simulation, having

an interface at 700 m and a reduced gravity of g′ = 1.64 × 10−2 m s−2, and the one-layer

simulation. Differences of up to 5 cm (about 5% of a typical 1 m signal) between the two-

and one-layer amplitudes are clearly seen. Notably, the amplitude differences are clearly in

the large-scale tides, as well as in the small-scale tides that are introduced into the two-
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layer case. Figure 3.1(b) demonstrates that phase changes of up to 5◦ take place when

stratification is introduced into the model. Figure 3.2(a) displays a global map of the RMS

(in time) M2 surface elevation differences between the two-layer and one-layer simulations.

The RMS computations account for differences in both amplitude and phase, in the manner

usually assumed in tidal computations [5, amongst many]. Again, differences are seen in

both large- and small-scales, and are up to 4 cm in some regions. A climatic perturbation

to the stratification in the two-layer numerical model, either in the form of an interface

lying at 800 m instead of 700 m, or in an increase in the value of g′ to 1.78 × 10−2 m s−2,

leads to further alterations of order 1 cm (about 1% of a typical 1 m tidal signal) in the

surface tides; see Figures 3.2(b) and (c). Our choices for the perturbed values of interface

depth and reduced gravity (g′) are meant to roughly mimic centennial-scale climate change

and are explained in Section 3.4.2. Figures 3.1 and 3.2 demonstrate that the change in the

tides due to stratification and climatically-perturbed stratification is a robust effect. The

area-weighted RMS elevation difference over 66◦S to 66◦N (the range of latitudes covered

by the TOPEX/POSEIDON and JASON class altimeters) is 2.70 cm for the two-layer vs.

one-layer comparison (Figure 3.2(a)), 0.63 cm for the two-layer interface perturbation vs.

two-layer control comparison (Figure 3.2(b)), and 0.66 cm for the two-layer g′ perturbation

vs. two-layer control comparison (Figure 3.2(c)). The patterns of change in Figures 3.2(b)

and (c), and the corresponding area-weighted RMS values, are remarkably similar. Later in

this chapter we will use our analytical model to put forth a suggestive explanation for these

similarities.

3.2 Governing Equations

In the analytical model, we let u1(x, t), u2(x, t), η1(x, t), η2(x, t) be, respectively, the

upper and lower layer velocities and the perturbation surface and internal tidal elevations

(displacements), where x denotes the horizontal spatial coordinate, t denotes time, and

subscripts 1 and 2 denote the upper and lower layers, respectively. We let the resting layer
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(a) Amplitude difference (cm), Two-layer minus one-layer

(b) Phase difference (degrees), Two-layer minus one-layer

Figure 3.1: (a) Amplitude and (b) phase differences, in the surface elevations of the two-
layer 1/8◦ M2 control simulation of the global realistic-domain numerical model minus the
one-layer 1/8◦ M2 control simulation.
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(a) Two-layer control minus one-layer (cm)

(b) Two-layer interface perturbation minus control (cm)

(c) Two-layer g′ perturbation minus control (cm)

Figure 3.2: RMS in time of surface elevation differences (cm) in 1/8◦ M2 global realistic-
domain numerical simulations: (a) two-layer control simulation minus one-layer control sim-
ulation, (b) two-layer “interface perturbation” simulation (layer interface at 800 m) minus
two-layer control simulation (layer interface at 700 m), (c) two-layer “g′ perturbation” simu-
lation (perturbed g′ value of 1.78× 10−2 m s−2) minus two-layer control simulation (g′ value
of 1.64× 10−2 m s−2).
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depths be H1 and h2(x). See Figure 3.3 for a sketch of the model notation.

Remark III.1. Note that while H1 is a constant, the resting depth h2(x) is variable due to

variable bottom topography. We define H2 = max{h2(x)}, the largest resting depth in the

bottom layer.

The assumption of linearized, non-rotating, shallow-water dynamics in one horizontal

dimension with astronomical forcing and linear damping yields the upper- and lower-layer

mass conservation equations

∂

∂t
(η1 − η2) +H1

∂u1

∂x
= 0, (3.1)

∂η2

∂t
+

∂

∂x
[h2(x)u2] = 0, (3.2)

respectively, and the upper- and lower-layer momentum equations

∂u1

∂t
= −g∂η1

∂x
+ g

∂FA
∂x
− r1u1, (3.3)

∂u2

∂t
= (g′ − g)

∂η1

∂x
− g′∂η2

∂x
+ g

∂FA
∂x
− r2u2, (3.4)

respectively. Here g denotes gravitational acceleration, g′ = g(ρ2 − ρ1)/ρ2 is the reduced

gravity with ρ1 and ρ2 being the upper and lower layer densities (ρ1 ≤ ρ2), r1 and r2 are

damping rates on the upper and lower layer flows, respectively, and the astronomical tidal

forcing is given by FA(x, t) = η0 cos (Kx+ Ωt), where η0, K, and Ω are the forcing amplitude,

wavenumber, and frequency. We impose the no-normal flow boundary conditions

u1(−L, t) = u1(0, t) = u2(−L, t) = u2(0, t) = 0, (3.5)

where x = −L, 0 are the locations of the basin boundaries.

Omission of the Coriolis force yields a simple, more analytically tractable, one-dimensional

model. As shown in Section B.1, the addition of the Coriolis force does not change an essen-
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Figure 3.3: Sketch of analytical two-layer model with Gaussian bump topography.

tial argument of the chapter, that the introduction of stratification produces a shift in the

phase speed of the large-scale tides. It may, however, lead to significant quantitative changes

in the solution. We see the simplicity of the one-dimensional governing equations (3.1)–(3.4)

as an asset to more easily highlight the key parameters at work.

We nondimensionalize the governing equations using the scaling:

x = Lx∗, t = t∗/Ω, ηj = η0η
∗
j , uj = η0

ΩL

Hj

u∗j , h2 = H2[1− σβ∗(x∗)], (3.6)

where j = 1, 2, and the asterisks denote nondimensional variables. The parameter L is the

basin length. The quantity σβ∗(x∗) is a nondimensionalization of the bottom topography

such that 0 < β∗ < 1 and the vertical topographical scaling is given by σ. Hence, H2 is the

maximum value attained by h2 in the basin.

After dropping asterisks, the governing equations (3.1)–(3.4) can be written nondimen-

sionally as

∂

∂t
(η1 − η2) +

∂u1

∂x
= 0, (3.7)

∂η2

∂t
+

∂

∂x
[(1− σβ)u2] = 0, (3.8)

1

ε2γ

(
∂u1

∂t
+ δ1u1

)
+
∂η1

∂x
=

∂

∂x
cos(φx+ t), (3.9)
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1

ε2(1− γ)

(
∂u2

∂t
+ δ2u2

)
+ (1− α)

∂η1

∂x
+ α

∂η2

∂x
=

∂

∂x
cos(φx+ t), (3.10)

where the governing nondimensional parameters are

ε =

√
g(H1 +H2)

ΩL
, γ =

H1

H1 +H2

, α =
g′

g
, δ1 =

r1

Ω
, δ2 =

r2

Ω
, φ = KL. (3.11)

Thus, δ1, δ2 are the damping parameters and α, γ are the two stratification parameters. By

definition 0 ≤ α < 1, where α = 0 represents unstratified flow. Similarly, by definition,

0 ≤ γ ≤ 1. The parameter φ is the nondimensional forcing wavenumber, while ε is a tidal

resonance parameter. The boundary conditions simply become

u1(−1, t) = u1(0, t) = u2(−1, t) = u(0, t) = 0. (3.12)

Note that setting α = 0 and δ1 = δ2 yields the governing equations in the one-layer

shallow-water model used in [6]. This follows from the fact that if we set α = 0 (so that

the layer densities are equal) and δ1 = δ2 (equal damping rates in the two layers), then

the momentum equations for both u1 and u2 coincide with the momentum equation in the

one-layer case after redimensionalization.

In the open ocean, where tidal flows are relatively weak, the quadratic bottom boundary

layer drag is also weak [60]. We therefore assume that the r2 term in the open ocean is

dominated by topographic internal wave drag [5, 20, 36, among others]. In our treatment

we allow drag on the upper-layer flow to be a convenience that proves useful in examining

limiting cases. We believe that the bottom drag-only case (δ1 = 0) is more relevant for the

ocean. We note also that the presence of the coefficient α of ∂η1/∂x in equation (3.10) arises

from the fact that we do not make the Boussinesq approximation when deriving these equa-

tions. The effects of stratification on the large-scale and small-scale surface tidal elevations

are qualitatively similar in both Boussinesq and non-Boussinesq approximations. For the

sake of brevity, the differences between Boussinesq and non-Boussinesq model solutions will
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not be studied further in this chapter.

Remark III.2. The particular choice of δ1, δ2 significantly affects the sensitivity of the

system to the stratification parameter α as is shown in Section 3.4.

3.3 Solution Methods

To solve the two-layer system (3.7)–(3.10) it is enough to obtain a homogeneous and a

particular solution of the model. However, since we are not primarily interested in transient

behavior, we only seek a particular solution, which would be expected to dominate the large-

time asymptotic behavior when damping is present. A particular solution can be obtained

through the method of undetermined coefficients, which leads us to seek a harmonically

oscillating solution of the form:

u1 = Re{U1(x)eit}, u2 = Re{U2(x)eit}, η1 = Re{N1(x)eit}, η2 = Re{N2(x)eit}. (3.13)

Substituting (3.13) into the mass equations (3.7)–(3.8) and solving for N1, N2 gives the

system

N1(x) = i
dU1

dx
+ i

dV2

dx
, (3.14)

N2(x) = i
dV2

dx
, (3.15)

where V2 = (1− σβ)U2. This system can be written concisely in vector form as

N(x) = i (I + e12)
dU

dx
(x), (3.16)

where N(x) = [N1 N2]T, I = [ 1 0
0 1 ] is the identity matrix, e12 = [ 0 1

0 0 ], and U(x) = [U1 V2]T;

the superscript T denotes the transpose. Similarly, with the use of equations (3.14) and
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(3.15), substituting (3.13) into the momentum equations (3.9) and (3.10) gives

s1U1 +
d2U1

dx2
+
d2V2

dx2
= φeiφx, (3.17)

s2U2 + (1− α)
d2U1

dx2
+
d2V2

dx2
= φeiφx, (3.18)

where s1 = (1− iδ1)/(ε2γ) and s2 = (1− iδ2)/(ε2(1− γ)). Multiplication of (3.17) by s2 and

(3.18) by s1 allows us to write these equations in vector form as

AU(x) + Ae22

(
σβ(x)

1− σβ(x)

)
U(x) + B

d2U

dx2
(x) = F(x), (3.19)

where

A = s1s2I, e22 =

0 0

0 1

 , B =

 s2 s2

s1(1− α) s1

 , and F(x) = φ

s2

s1

 eiφx. (3.20)

In the next few subsections we present two distinct methods, each having different

strengths, to solve equations (3.17) and (3.18) or, equivalently, equation (3.19). First, we

show the derivation of a Fourier series solution method (infinite series of sines). The Fourier

series method is simple to implement and is numerically robust. Second, we introduce a

Neumann series solution method (infinite series of operators). The Neumann series method,

valid only for small-amplitude topography, suggests an analytically valuable decomposition

into large-scale and small-scale modes. We use the Fourier series method for computing

results from the analytical model.

In Section B.2 we introduce a scattering solution method, calculated for an infinite basin.

We include the scattering method in this study because it bears similarities to the internal

tide generation problem which has received much attention from the community [47, 78,

41, among others]. The Neumann series method highlighted shortly has similar algebraic

structure to the scattering method. The scattering method is, however, not emphasized in
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this discussion because, first, the infinite basin is less realistic than the finite basin, and

second, the scattering method requires prior knowledge of the “incident” large-scale tidal

velocity on the topography; whereas here we are mainly interested in obtaining, without

prior assumptions, both the large- and small-scale tidal solutions.

3.3.1 Fourier Series Solution

We can construct a solution for (3.17) and (3.18) with general topography using Fourier

series. To satisfy the boundary conditions the velocities must be expansions of sines only,

i.e.,

U1(x) =
∞∑
n=1

cn sin (nπx) , U2(x) =
∞∑
n=1

dn sin (nπx) , V2(x) =
∞∑
n=1

en sin (nπx) , (3.21)

and

en = 2

0∫
−1

(1− σβ(x))U2(x) sin(nπx) dx = dn −
∞∑
m=1

dmσmn (3.22)

with

σmn = 2σ

0∫
−1

β(x) sin(mπx) sin(nπx) dx = σ (βm−n − βm+n) , (3.23)

where βn =
∫ 0

−1
β(x) cos(nπx) dx. We may also write the forcing term in a Fourier series

expansion:

eiφx =
∞∑
n=1

fn sinnπx, (3.24)

where

fn = 2

0∫
−1

eiφx sin(nπx) dx =
2nπ[1− (−1)ne−iφ]

φ2 − (nπ)2
. (3.25)

Remark III.3. The convergence of the Fourier series (3.24) is not uniform. It suffers from

the Gibbs phenomenon at the boundaries because the term eiφx is not zero at the boundaries

x = −1, 0. This, however, does not affect our analysis since convergence in the L2(−1, 0)

sense (RMS) is guaranteed.
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Therefore, equations (3.17) and (3.18) can be written in terms of the coefficients cn and

dn as (
(nπ)2 − s1

)
cn + (nπ)2dn = (nπ)2

∞∑
m=1

dmσmn − φfn, (3.26)

(nπ)2(1− α)cn +
(
(nπ)2 − s2

)
dn = (nπ)2

∞∑
m=1

dmσmn − φfn. (3.27)

Solving this system for the coefficients cn and dn gives

cn =
s2

Dn

(
φfn − (nπ)2

∞∑
m=1

dmσmn

)
, (3.28)

dn =
s1 − α(nπ)2

Dn

(
φfn − (nπ)2

∞∑
m=1

dmσmn

)
, (3.29)

where

Dn = s1s2 − (s1 + s2) (nπ)2 + α(nπ)4. (3.30)

Note that we have written the bottom topography as an extra “forcing” term. Indeed,

equation (3.29) for dn may be viewed as an infinite system of linear equations. To highlight

this fact, (3.29) can be written as Md = f, where d = [d1 d2 · · · ]T, the components of M

are

Mnm =


Dn + (s1 − α(nπ)2) (nπ)2σnn for n = m

(s1 − α(nπ)2) (nπ)2σnm for n 6= m,

(3.31)

and the components of f are

fn =
(
s1 − α(nπ)2

)
φfn. (3.32)

For a finite number of modes the system can be solved for d by simply inverting the matrix

M. Then, we solve for cn in (3.28) and using equations (3.14), (3.15) we can calculate the

elevations

N1(x) =
∞∑
n=1

an cosnπx, N2(x) =
∞∑
n=1

bn cosnπx, (3.33)
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with

an = inπ

(
cn + dn −

∞∑
m=1

dmσmn

)
, bn = inπ

(
dn −

∞∑
m=1

dmσmn

)
. (3.34)

3.3.2 Neumann Series Solution

For sufficiently small topography, we can obtain a solution of the model equations using

a Green’s function derived from the no topography case. This method is thus limited by the

vertical scale σ of the topography, but leads to a natural decomposition of the system into

large and small horizontal scales, as is discussed further in Section 3.3.3. For the remainder

of this subsection we assume α 6= 0, ensuring that B is non-singular. Technical details aside,

the one-layer solution is recovered by taking the limit α→ 0.

We may nearly uncouple the system (3.19) by diagonalizing the matrix B; BV = VΛ,

where Λ is a diagonal matrix of the eigenvalues of B, in decreasing magnitude, and V is a

matrix with the respective eigenvectors. This allows us to change basis, left-multiplying the

system by V−1, and rewriting (3.19) as

AW(x) + Λ
d2W

dx2
(x) = V−1F(x)− σAV−1e22

(
β(x)

1− σβ(x)

)
VW(x), (3.35)

where the left-hand side terms of (3.35) are fully uncoupled. This is easily seen from the

fact that A commutes with any other matrix. The new variable W(x) =
[
UL(x) US(x)

]T
=

V−1U(x) represents a separation of the system into large- (L) and small-scale (S) motions.

Namely, we associate the first element UL(x) with the motions arising from the larger of

the two eigenvalues (larger scales) of B and the second element US(x) with the motions

arising from the smaller of the eigenvalues (smaller scales). As explained in Section 3.3.3,

the elements UL and US roughly equate to the barotropic and baroclinic modes of the system,

respectively. However, we avoid the words “barotropic” and “baroclinic” in our description

of the elements of W, because our separation may not be consistent with all the definitions

of these terms in the literature.
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Remark III.4. It is not strictly necessary to uncouple the system (3.19) (as is shown in

(3.35)) to solve it using the Neumann series approach, but we do so for convenience.

We rewrite (3.35) as

EW(x) +
d2W

dx2
(x) = Λ−1V−1F(x)− σEV−1e22

(
β(x)

1− σβ(x)

)
VW(x), (3.36)

where E = Λ−1A =
[

(kL)2 0

0 (kS)2

]
. Note that kL and kS arise from the eigenvalues of B and

satisfy the polynomial equation

k4 −
(
s1 + s2

α

)
k2 +

s1s2

α
= 0. (3.37)

To avoid ambiguity about which roots of (3.37) we refer to, we pick those roots such that

Im(kL), Im(kS) > 0 with |kL| < |kS|. That is, the equation (3.37) has the four well-defined

roots {±kL,±kS}. In the case α � 1, typical for the ocean, it follows that |kL| � |kS|.

In other words, kL and kS define two well separated scales (complex wavenumbers) for the

problem.

The new system (3.36) can be readily solved using the Green’s function of the problem

EW(x) +
d2W

dx2
(x) = R(x), (3.38)

where R(x) stands for the right-hand side of (3.36). The solution of (3.38) is given by

W(x) =

0∫
−1

G(x, y)R(y) dy with G(x, y) =

gL(x, y) 0

0 gS(x, y)

 , (3.39)

where G(x, y), −1 < x, y < 0, satisfies the system

EG(x, y) +
∂2G

∂y2
(x, y) = δ(y − x)I with G(x,−1) = G(x, 0) = 0. (3.40)
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Note that gL(x, y) is the Green’s function arising from the large-scale mode, top equation

of system (3.38), and gS(x, y) is the Green’s function arising from the small-scale mode,

bottom equation of system (3.38). Moreover, all information about the boundary conditions

is contained in the Green’s functions. The Green’s function for our finite basin is

g(x, y) =


sin k(x+ 1) sin ky

k sin k
x < y,

sin k(y + 1) sin kx

k sin k
y < x;

(3.41)

see for example [30]. In this case, k is a placeholder for kL or kS depending on whether

g(x, y) is meant to denote gL(x, y) or gS(x, y), respectively.

Remark III.5. We merely need to change the given Green’s function to treat the infinite

basin case; see Section B.2, where the Green’s function is of the form eik|x|/(2ik). Thus, the

separation of the model solutions into large- and small-scales is preserved independently of

the basin geometry.

Formula (3.39) allows us to write

W(x) =

0∫
−1

D(x, y)F(y) dy − σs1s2

0∫
−1

D(x, y)e22

(
β(y)

1− σβ(y)

)
VW(y) dy, (3.42)

where D(x, y) = G(x, y)Λ−1V−1 and F(x) is defined in (3.20). Letting

F0(x) =

0∫
−1

D(x, y)F(y) dy (3.43)

and defining an operator K by

(KW)(x) = −s1s2

0∫
−1

D(x, y)e22

(
β(y)

1− σβ(y)

)
VW(y) dy (3.44)
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we can concisely write the equation (3.42) as

W(x) = F0(x) + σKW(x). (3.45)

Equation (3.45) may be solved by the formal Neumann series

W(x) = F0(x) + σKF0(x) + σ2K2F0(x) + · · · (3.46)

giving the full solution of U(x) = VW(x) in a finite basin when the topography scale σ is

small enough that the series (3.46) converges.

Remark III.6. The solution (3.46) is a perturbation series expansion for small σ about

σ = 0 (no topography).

3.3.3 Separation into Large- and Small-Scales

A separation for the model solutions into large- and small-scales is achieved through

multiplication of the system (3.19) by the inverse of V; W(x) = V−1U(x). To make

multiplication by V completely determined, we normalize the eigenvectors as presented in

[22] and [59]. Essentially, for a given eigenvector v = [v1, v2]T we impose the condition

v2
1/γ + v2

2/(1 − γ) = 1; a depth weighted normalization consistent with the nondimension-

alization (3.6) of the velocities. Under these assumptions we may write the matrix V of

eigenvectors as

V =

 Y L Y S

Y L
(

s1
(kL)2

− 1
)

Y S
(

s1
(kS)2

− 1
)
 (3.47)

and

V−1 =
1

s1

(
1

(kL)2
− 1

(kS)2

)−1

− 1
Y L

(
s1

(kS)2
− 1
)

1
Y L

1
Y S

(
s1

(kL)2
− 1
)
− 1
Y S

 , (3.48)
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where

Y L,S =

(
1

γ
+

1

1− γ

(
s1

(kL,S)2
− 1

)2
)−1/2

(3.49)

to satisfy the normalization conditions. Thus, the matrix V is invertible when α is small

since the scales of the problem are well separated, which implies (kL)2 6= (kS)2.

Remark III.7. We use the notation Y L,S to mean that Y L can be obtained by only using the

first superscript in every term of the equation and Y S by only using the second superscript.

The separation of modes defined by V−1 is analogous to the common separation into

barotropic and baroclinic modes. This fact is particularly clear when α, δ1, δ2 � 1, in which

case we have UL(x)

US(x)

 = V−1U(x) ≈

 U1(x) + V2(x)√
1−γ
γ
U1(x)−

√
γ

1−γV2(x)

 . (3.50)

Equation (3.50) is equivalent to a barotropic and baroclinic splitting when variables are

redimensionalized using (3.6); depth average flow for the barotropic component (first entry)

and difference in layer velocities for the baroclinic component (second entry).

Using the concrete eigenvector matrix V, equation (3.42) for UL and US can be written

as

Y L,SUL,S =
1

s1

(
1

(kL,S)2
− 1

(kS,L)2

)−1
φ 0∫
−1

gL,Seiφy dy

+ σ(kL,S)2

(
1− s1

(kL)2

) 0∫
−1

gL,SY LUL

(
β

1− σβ

)
dy

+ σ(kL,S)2

(
1− s1

(kS)2

) 0∫
−1

gL,SY SUS

(
β

1− σβ

)
dy

 ,
(3.51)

where we have written gL as opposed to gL(x, y), β as opposed to β(y), etc., to avoid clutter.

For the layer elevations, a separation can be achieved simply by rewriting (3.16) as N(x) =

i (I + e12) VW′(x). In this manner we can define the large- and small-scale components of
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the surface and interfacial elevations as those arising from UL and US, respectively. It follows

that

NL,S
1 = i

(
s1

(kL,S)2

)
Y L,S dU

L,S

dx
, (3.52)

NL,S
2 = i

(
s1

(kL,S)2
− 1

)
Y L,S dU

L,S

dx
. (3.53)

Equation (3.51) clearly shows that in the presence of topography there is mixing between

the large- and small-scale modes UL,S. The coupling between UL,S only occurs when the

topography is non-zero. Importantly, (3.51) corroborates that our splitting into large- and

small-scale modes is reasonable since the large-scale Green’s function gL appears in the

equation for UL while the small-scale Green’s function gS appears in the equation for US.

Remark III.8. The horizontal scale of UL,S is given by the wavenumber kL,S because the

scale of the Green’s function gL,S is determined by kL,S in the x variable; see (3.41).

3.4 Effects of Stratification on the Surface Elevation

In this section we examine the effects of stratification, combined with bottom topography

and an assumed layer structure of damping, on surface tidal elevations. We utilize a suit-

ably truncated version of the Fourier series expansion (3.33), as well as the decomposition

into large- and small-scales (3.48) justified by the Neumann series (3.46), to study several

physically motivated trials.

3.4.1 Analytical Description

Some understanding of the key parameters underlying the effect of stratification on the

tidal elevations can be obtained analytically. In particular, in the low damping regime

(δ1, δ2 � 1), the polynomial (3.37) — whose zeros determine kL,S — can be written in the
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approximate form

k4 −
(
s1 + s2

α

)
k2 +

s1s2

α
≈ k4 − k2

ε2αγ(1− γ)
+

1

ε4αγ(1− γ)
(3.54)

as α → 0. This is consistent with cases of oceanographic interest, where α, δ1, δ2 � 1; see

Section 3.4.2 for a discussion of realistic parameters. Writing the equation in this manner

clearly shows that in the low damping regime we essentially have one stratification param-

eter dictating the horizontal scales of the problem: αγ(1 − γ) = g′H1H2/(g(H1 + H2)2).

This stratification parameter equals the ratio of the square of the leading order small-scale

phase speed
√
g′H1H2/(H1 +H2) to the square of the leading order large-scale phase speed√

g(H1 +H2). For this reason, in the low damping regime, perturbations in α or γ can

lead to the same kL,S scales. In particular, in the oceanographically relevant case γ < 1/2

(a thin upper layer over a thicker lower layer), a positive perturbation in α (increased den-

sity contrast) may yield equivalent scales as a positive perturbation in γ (increased upper

layer thickness). It is worth noting that in this low damping regime, under the substitution

c = ΩL/k, equation (3.54) is equivalent to the formula for the phase speed of linear waves

in a two-layer fluid:

c4 − g(H1 +H2)c2 + gg′H1H2 = 0, (3.55)

as given by Gill [28]. Therefore, the scales kL,S of the problem are determined by the large-

scale and small-scale phase speeds of the system; as given in (3.55).

Remark III.9. Note that in the low damping regime (3.55), the large-scale phase speed cL

is given by (cL)2 = g(H1 + H2)− (cS)2, where cS is the small-scale phase speed. Under the

Boussinesq approximation, an additional O(g′) term enters this relation.

The analytical model’s dependence on the length scales can be seen directly in (3.51) and

(3.52), where the only parameters determining the model solutions are kL, kS, and s1 (or s2

with some substitutions). The system has its strongest dependence on the scales kL, kS as

we show below in a limiting case.
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For ease of reference, we define the RMS value of a function ϕ as

(ϕ)RMS =

√√√√√ 0∫
−1

|ϕ(x)|2 dx, (3.56)

i.e., the L2(−1, 0) norm. Now, the RMS of the large-scale surface tidal elevation, NL
1 , may

be approximated by the RMS of the first term (largest scale) in the Fourier series expansion

of N1:

(NL
1 )RMS =

√√√√√ 0∫
−1

|NL
1 (x)|2 dx ≈

√
1

2
|a1|2 =

|a1|√
2
. (3.57)

This approximation is accurate if the scales of the problem are well separated; as is expected

when α � 1. The coefficient a1 can be further simplified in the absence of topography

(σ = 0). Without topography the coefficient a1 can be written exactly as

a1 =
φf1

iπ

(
1− (kL)2(kS)2

((kL)2 − π2) ((kS)2 − π2)

)
, (3.58)

where we have used the expression

Dn = α
(
(kL)2 − (nπ)2

) (
(kS)2 − (nπ)2

)
(3.59)

on (3.28), (3.29), (3.34), and fn given in equation (3.25). Equation (3.58) demonstrates

that, in the case with no topography, the large-scale surface tidal elevation is dependent

only on the scales kL, kS and the forcing parameter φ. That is, the effects of damping and

stratification are only accounted for through the scales kL and kS; equivalently, the phase

speeds in the basin.

Remark III.10. Expression (3.59) is obtained by using the conditions kL+kS = (s1 +s2)/α

and kLkS = s1s2/α, derived from (3.37), on (3.30). Recall that the scales kL, kS are in general

complex numbers when δ1, δ2 6= 0.
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The dependence of the solution on the parameter αγ(1 − γ) is particularly salient if we

examine equations (3.28) and (3.29) of the Fourier coefficients cn and dn. We expect the

Fourier coefficients of cn and dn to be large when the denominator Dn is small. In the low

damping regime (δ1, δ2 � 1), Dn in (3.59) is zero when kS = nπ for an integer n > 1.

Similarly, using equation (3.30), the condition Dn = 0 follows the curves

αγ(1− γ) =
1

(εnπ)2

(
1− 1

(εnπ)2

)
(3.60)

for any integer n. Thus, the curves given by equation (3.60) are a rough predictor of the

resonance peaks seen in upcoming Figures 3.5–3.8, but not for all values of n. This follows

from the fact that not all coefficients in the Fourier expansion of N1 and NL
1 contribute

equally to their RMS values.

More rigorously, we note the existence of a resonance that is induced by the topography

on the system. The matrix M of the linear system Md = f given by (3.31) and (3.25) may

become nearly singular given realistic oceanic parameters. By Cramer’s rule, the solution

d can become large when det M becomes small, and vice versa. This effect leads to the

oscillations observed in Figures 3.5–3.8 as the matrix M changes from nearly singular to not

singular as parameters are varied. Note that this oscillation is not present in the absence of

topography; in that case, the denominator of (3.58) does not change between nearly singular

and not singular as parameters are varied (it only has poles at π2).

3.4.2 Description of Trials and Figures

For all computations utilizing the analytical model, as in [6], we take g = 9.81 m s−2,

K = 2
6,371×103

m−1 (2π over the zonal wavelength of the semidiurnal tidal potential at the

equator), Ω = 1.405189× 10−4 s−1 (the M2 frequency), L = 4, 086× 103 m (a typical ocean

basin scale), and H1 +H2 = 4000 m (an average ocean basin depth). This implies ε = 0.345

and φ = 1.2827; see (3.11). In analogy to the global realistic-domain numerical simulations of

87



Section 3.1, we denote as the control case the trial with a reduced gravity of g′ = 1.64×10−2

m s−2, layer resting depths H1 = 700 m, H2 = 3300 m, and canonical values of open ocean

damping δ1 = 0, δ2 = 0.0412, where the δ2 value is taken from [6]. Thus, for the control case,

the stratification parameters are α = 0.0017 and γ = 0.175. Unless specified otherwise, all

parameters in the numerical trials are as in the control case.

We choose a nominal topography with a Gaussian form

β(x) =
H0

H2

e−(x+0.5)2/q2 (3.61)

so that it is centered in the basin. The parameter q is chosen to be q = π
2q1

= 8.49 × 10−3

using values of the control case, where q1 = ΩL
√

(H1 +H2)/(g′H1H2) is the topographic

wavenumber that excites the first baroclinic mode in the absence of damping. In addition,

we set H0 = 2, 350 m and allow σ to vary in the numerical trials. As an aside, even though

in the different trials the values of g′, H1, and H2 change, we keep the value of q — obtained

using g′, H1, and H2 from the control case above — constant throughout. For simplicity,

in order to focus on the changes in other parameters, we do not allow the shape of the

topography to vary in our results section.

Remark III.11. The chosen horizontal length scale q of the topography ensures that the

characteristic length of the topography is significantly smaller than the basin scale. The

value of H0 was chosen so that the ratio of the spatially and temporally averaged square

of the upper-layer to lower-layer velocity in the control case (ratio ≈ 2.5) is approximately

equal to the value obtained for the 1/8◦ global realistic-domain two-layer control simulation

of Section 3.1.

We highlight four significant parameter cases coinciding to the trials shown in Fig-

ure 3.2 of the global realistic-domain numerical simulations: one-layer solution (α, δ1, δ2) =

(0, 0.0412, 0.0412), two-layer control solution with (α, γ, δ1, δ2) = (0.0017, 0.175, 0, 0.0412),

two-layer g′ perturbation solution with (α, γ, δ1, δ2) = (0.0018, 0.175, 0, 0.0412), and two-
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layer interface perturbation solution with (α, γ, δ1, δ2) = (0.0017, 0.2, 0, 0.0412). Figure 3.4,

which displays results from the analytical model for these four cases, is directly comparable

with Figure 3.2, which displays the global realistic-domain numerical simulation trials for

the same four cases. Note that in Figure 3.4, in contrast to Figures 3.5–3.9, the RMS in time

is displayed at each grid point of the domain in order to make Figure 3.4 directly comparable

to Figure 3.2.

The perturbation values of α and γ are obtained as follows. We obtain the g′ perturbation

value of α = 0.0018 by assigning g′ = 1.78×10−2 m s−2 and the interface perturbation value

of γ = 0.2 by assigning H1 = 800 m. These values of α and γ are intended to represent

climatic perturbations to the values of g′ and H1. The interface perturbation is motivated

by Figure 10 of [7], which shows ∼100 m displacements of isopycnals over decadal timescales

in hydrographic observations of the North Atlantic. The g′ perturbation is estimated from

the 0.5◦C century−1 nominal maximum warming trend found in intermediate depth waters

in the same paper. We compute the change in g′ (with potential densities referenced to 1780

db) that would take place if a water parcel at 100 db having salinity 37 psu and temperature

of 20◦C warmed by 0.5◦C. The deep reference parcel has depth of 3000 db, salinity 34.5

psu and temperature of 4◦C. We note that because the global realistic-domain numerical

simulations were performed well before we had developed an analytical model, the choices of

perturbed g′ and interface depth values in the global realistic-domain numerical simulations

were motivated by the Arbic and Owens [7] results and were not guided by the analytical

model — a point we will return to shortly.

The relative simplicity of the analytical model allows for a more complete exploration of

parameter space than is possible with the global realistic-domain numerical simulations. We

survey parameter space by computing the RMS value, calculated over space and time (only

in time for Figure 3.4), of relevant quantities. The RMS values of the large- and small-scale

velocity and surface tidal elevation are presented in Figure 3.5 as a function of α for different

damping structures δ1, δ2 (damping in the bottom layer only, damping in the top layer only,
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(a) One-layer solution
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(b) Two-layer control minus one-layer
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(c) Two-layer interface perturbation minus two-layer control
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(d) Two-layer g′ perturbation minus two-layer control
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0.4

Figure 3.4: As in Figure 3.2 but for analytical model: RMS in time of surface elevation dif-
ferences (red curve) and large-scale surface elevations (blue curve) magnitudes for analytical
model. The range in the vertical scales of (b), (c), and (d) is identical. Topography consists
of the centered Gaussian (3.61). For reference the one-layer solution is shown in (a).

and equal damping in the two layers). The variations of the RMS of the large-scale surface

tidal elevation NL
1 with α and γ for different values of the topography scale σ are shown

in Figure 3.6, while Figure 3.7 displays variations of the RMS of the large- and small-scale
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elevations NL
1 and NS

1 as a function of α and δ1 with δ2 fixed at the control value of 0.0412.

Similarly, Figure 3.8 displays variations of the RMS of NL
1 and NS

1 as a function of α and

δ2 with the control value δ1 = 0. Note that the curves of Figure 3.5(c) represent a transect

of Figure 3.7(a) about the δ1 = 0 (black curve) and δ1 = δ2 = 0.0412 (red curve) lines.

Similarly, Figure 3.5(d) is a transect of Figure 3.7(b) about the δ1 = 0 (black curve) and

δ1 = δ2 = 0.0412 (red curve) lines.

Remark III.12. Recall that all results concerning the analytical model have been nondi-

mensionalized as given by (3.6). Moreover, for a function of the form (3.13), say u1(x, t),

taking the RMS in just time gives

(u1(x, ·))RMS =

√√√√√ 1

2π

2π∫
0

|Re {U1(x)eit}|2 dt =
|U1(x)|√

2
(3.62)

while taking the RMS in time and space gives (u1)RMS = (U1)RMS/
√

2. For the analytical

results, we omit the extra
√

2 factor to focus on the x dependence of the analytic solution

because the time dependence is of the nearly trivial form eit.

Lastly, we briefly bring up a point which will not be pursued further. For the purposes

of this chapter, all computational results of the analytical model were carried out using

the Fourier series expansion method of Section 3.3.1. For the topography used, the Fourier

series method was more numerically reliable than a computational implementation of the

Neumann series method of Section 3.3.2. The numerical accuracy of the model solutions was

confirmed by checking that they satisfy a discretized version of the original set of differential

equations.

3.4.3 Discussion

Consistent with the 1–5% changes obtained using global realistic-domain numerical model

results shown in Figures 3.1 and 3.2 and the observed secular changes of 1% [57], the analyti-
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Figure 3.5: RMS in space of large- and small-scale components of velocities and surface
elevations, versus stratification parameter α for two layers damped (δ1 = δ2 = 0.0412), in
red, only the top layer damped (δ1 = 0.0412, δ2 = 0), in blue, and only the bottom layer
damped (δ1 = 0, δ2 = 0.0412), in black. Topography consists of the centered Gaussian (3.61).

cal model shows that both the addition of stratification and of perturbations to stratification

yield changes in both the large- and small-scale surface elevation amplitudes of up to 10%;

see Figure 3.4 for a case by case comparison in the vein of Figure 3.2 and Figure 3.5 for

a continuous exploration in the parameter α. We see that the large-scale RMS quantities

may be perturbed as much as 10%; see black curves in Figures 3.5 (a) and (c). That is, the

large-scale RMS values may change by as much as 10% from peak to trough in the parameter
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γ

α

(a) σ = 1 γ

α

(b) σ = 1/2

γ

α

(c) σ = 1/4 γ

α

(d) σ = 0

Figure 3.6: RMS in space of the large-scale surface tidal elevation NL
1 as a function of α

and γ when σ = 1, 1/2, 1/4, 0. The black curves are the curves given by (3.60) for ε = 0.345
and n = 39, 49, 59, i.e., αγ(1− γ) = 2.4× 10−4, 3.5× 10−4, 5.6× 10−4. Topography consists
of the centered Gaussian (3.61).

range explored in this dissertation. Even when α = 0, the addition of a second layer changes

the large-scale surface tidal elevation amplitude by 2% compared to the one-layer case, due

to the structure of damping as discussed in the introduction; see the differences between

red, blue, and black curves at α = 0 in Figure 3.5 (c). A climatic perturbation in α to the

two-layer solution may induce a further change in the amplitude of both large- and small-

scales by about 3%; see the oscillations in Figure 3.5 (c) and (d). Climatic perturbations
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α

δ1 (a) (NL
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α

δ1 (b) (NS
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Figure 3.7: RMS in space of the large- and small-scale surface tidal elevation NL
1 and NS

1 ,
respectively, as a function of α and δ1 when σ = 1. All other model parameters are as in
the control case described in Section 3.4.2 and topography consists of the centered Gaussian
(3.61).

α

δ2 (a) (NL
1 )RMS

α

δ2 (b) (NS
1 )RMS

Figure 3.8: RMS in space of the large- and small-scale surface tidal elevation NL
1 and NS

1 ,
respectively, as a function of α and δ2 when σ = 1. All other model parameters are as in
the control case described in Section 3.4.2 and topography consists of the centered Gaussian
(3.61).

in γ induce qualitatively similar responses in the system; see Figure 3.6 and note that the

sensitivity of the system is strongest to changes on the αγ(1 − γ) parameter as indicated
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Figure 3.9: RMS in space of the large-scale surface elevation amplitude NL
1 as a function of

1/(επ) and φ. All other parameters are as in the control solution and topography consists
of the centered Gaussian (3.61). Black dot indicates the location in parameter space for the
two-layer control solution.

by the black lines. Perturbations in αγ(1 − γ) may lead to an increase or a decrease in

the large-scale mode’s amplitude comparable in magnitude to the amplitude perturbation of

the small-scale mode; compare the size of the oscillations in Figure 3.5 (c), (d) or those in

Figure 3.7. The sensitivity of the system to bottom damping is significant when damping is

absent in the top layer (δ1 = 0); see Figure 3.8.

The results presented here show strong sensitivity, in the form of oscillations of significant

amplitude, of both the large- and small-scale tidal elevations to the stratification. It is worth

noting that the observed oscillations are not about a constant mean; instead, the mean values

in these plots vary with the stratification in an observable manner; see Figure 3.5. This

implies that these are not simply oscillations about the limiting one-layer case. It is also

observed that the sensitivity of the system to stratification is more significant when only the

bottom layer is damped than when both the top and bottom layers are identically damped,

or when only the top layer is damped; compare black, blue, red curves in Figure 3.5 or the

sensitivity in Figures 3.7 and 3.8 to δ1, δ2. The greater sensitivity (oscillations) in the black
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versus red or blue curves in Figure 3.5 implies that the tidal sensitivity to stratification is itself

dependent on assumptions about how the tidal signal is damped in the layers. The amplitude

of the topography also plays an important role in the sensitivity of tidal elevations to the

stratification; see Figure 3.6 and note the response as σ varies. Note that σ = 1 (the most

realistic case, as discussed in Section 3.4.2) yields greater sensitivity than the σ = 1/2, 1/4

cases and significantly greater sensitivity than the σ = 0 (flat bottom) case.

The sensitivity of the system to the quantity 1/(επ), which acts as a nondimensional mea-

sure of the forcing frequency of the system, and to φ, the nondimensional forcing wavenumber,

is displayed in Figure 3.9. For our chosen parameters, the control solution (black dot) lies

near a resonance peak of the system. That is, the plot shows that effects of stratification

on the large-scale surface tidal elevation might be accentuated due to our chosen location in

parameter space.

Finally, with our analytical model in place, we return to the global realistic-domain

numerical model results shown in Figures 3.1 and 3.2. In our analytical model, when topog-

raphy is present and damping is in the bottom layer only, as in the global realistic-domain

numerical model, the quantity αγ(1 − γ) is a strong predictor of model behavior. We note

that for the control simulation of the global realistic-domain numerical model, α = 0.0017,

γ = 0.175, and αγ(1 − γ) = 2.41 × 10−4. For the interface and g′ perturbation simulations

of the global realistic-domain numerical model αγ(1 − γ) = 2.67 × 10−4 and 2.62 × 10−4,

respectively. The similarity of Figures 3.2(b) and 3.2(c) may be explained by the similarity

of their αγ(1 − γ) values, a similarity that is somewhat coincidental because the stratifi-

cation values in the global realistic-domain numerical simulations were chosen well before

a guiding analytical model was developed. Motivated by our analytical model results, we

plan to write a follow-up paper in which a global realistic-domain numerical model, run in

the non-Boussinesq limit is used to perform a suite of simulations with different αγ(1 − γ)

values.
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CHAPTER IV

Energy Cascade in Forced-Dissipated

Quasi-Geostrophy

4.1 Background

In this section we introduce some of the general theory concerning the Quasi-Geostrophic

(QG) equations.

4.1.1 Governing Equations of Quasi-Geostrophy

The continuously stratified QG equation is given by the conservation of the quasi-

geostrophic potential vorticity q = q(x, y, z, t):

Dq

Dt
= 0, t ≥ 0 (4.1)

in a domain of interest, where

q = ∇2
2ψ +A0ψ + f with A0 :=

∂

∂z

f 2
0

N2(z)

∂

∂z
. (4.2)

Here we use the standard convention for the variables (x, y, z, t): x represents the east-west

direction, y the north-south direction, z the vertical direction, and t is time. The function

ψ = ψ(x, y, z, t) is the so-called geostrophic streamfunction, the Brunt-Väisälä frequency
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N(z) is the buoyancy frequency quantifying the vertical stability of a fluid parcel in a known

reference state, and f is the so-called Coriolis parameter which quantifies the effects of the

earth’s rotation in the z direction; see (4.5). The operator D/Dt is the horizontal material

derivative given by

D

Dt
=

∂

∂t
+ u ·∇2, (4.3)

where ∇2 = ( ∂
∂x
, ∂
∂y

) is the horizontal gradient operator and u = ∇⊥2 ψ =
(
−∂ψ

∂y
, ∂ψ
∂x

)
is the

horizontal fluid velocity at a given location.

The evolution equation (4.1) may be written in a concise manner using the fact that the

horizontal fluid velocity u can be written in terms of a streamfunction ψ. Namely, we may

simply write the material derivative operator as

D

Dt
=

∂

∂t
+ J(ψ, ·), (4.4)

where J(f, g) = ∂f
∂x

∂g
∂y
− ∂g

∂x
∂f
∂y

is the Jacobian operator; see Appendix C.1 for a discussion on

properties of the Jacobian. Thus, the QG equation (4.1) with the definitions (4.2) are given

only in terms of the streamfunction ψ.

We may fully expect that the Coriolis “parameter” f will be a function of the latitude y

since the vertical component of rotation increases (decreases) as we move northward (south-

ward) from the equator in the northern hemisphere. For scales of the size of the Rossby

deformation radius Ld (synoptic scale), it is common to approximate f linearly by using the

β-plane approximation. Namely,

f(y) = f0 + βy, (4.5)

where β is the linear correction to the constant value f0 at the latitude of interest. In this

manner, we assume that the QG dynamics take place on a tilted plane (beta-plane) rather

than the more complicated geometry of a sphere or more realistic ellipsoid.

For the purposes of this dissertation, boundary conditions for the QG equation (4.1) will

consist of requiring double periodicity in the horizontal variables (x, y) and rigid surfaces at
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z = −H and z = 0 in a vertical domain of depth H. The vertical boundary conditions are

equivalent to requiring

Db

Dt
= 0 at z = −H, 0, (4.6)

where the buoyancy b = b(x, y, z, t) is given in terms of the streamfunction by

b = f0
∂ψ

∂z
. (4.7)

The vertical boundary conditions (4.6) are indeed rigid lid approximations as they require

the vertical velocity of the flow to be zero at the top and the bottom boundary, though this

might not be immediate from (4.6); see, for instance, page 222 in Chapter 5 of [81].

Since relation (4.2) is linear in ψ, it is convenient to decompose the streamfunction into

contributions arising from the boundaries and the interior [45, 80]. That is, we let

ψ = ψI + ψT + ψB, (4.8)

where the superscript I stands for the “interior” solution, T for “top” boundary solution,

and B for “bottom” boundary solution. We require the differing components of ψ to satisfy

(
∇2

2 +A0

)
ψI+f = q,

(
∇2

2 +A0

)
ψT = 0,

(
∇2

2 +A0

)
ψB = 0, for −H < z < 0, (4.9)

∂ψI

∂z
= 0, f0

∂ψT

∂z
= b,

∂ψB

∂z
= 0, at z = 0, (4.10)

∂ψI

∂z
= 0,

∂ψT

∂z
= 0, f0

∂ψB

∂z
= b, at z = −H. (4.11)

In this form, each component of ψ describes relevant limiting cases in geophysics. One

of those limiting cases, surface Quasi-Geostrophy (SQG), consists of only using the evo-

lution equation (4.6) for z = 0 coupled with equations (4.9)–(4.11) with the pared down

streamfunction ψ = ψT (ψI = ψB = 0) along with the condition ψ → 0 as z → −∞

(infinite bottom depth). By neglecting the effects of the interior dynamics, SQG describes

99



flow driven by buoyancy advection at the surface boundary and provides a simplification

to nearly two-dimensional dynamics [32, 45]. A complementary regime is that of “interior”

QG. In this case, we use the evolution equation (4.1) coupled with equations (4.9)–(4.11)

and the streamfunction ψ = ψI with ψT = ψB = 0. Note that in this case, equation (4.6) for

the evolution of the buoyancy is redundant since b = 0 at the boundaries. Many previous

studies have indeed considered the interior QG regime [3, 4, 38, 76, to name a few], however,

allowing the buoyancy b to be nontrivial at the boundaries (i.e., governed by (4.6)) provides

a more realistic spectrum for the kinetic and potential energy consistent with observations

in both the ocean and atmosphere [44, 80].

4.1.2 Forced-Dissipated Quasi-Geostrophy

For the purposes of this dissertation, we assume a forcing arising from a known stationary

mean flow Ψ, Q,B satisfying the QG equations and consider the evolution of perturbation

variables ψ′, q′, b′. Namely, we write the streamfunction, potential vorticity, and buoyancy as

ψ = Ψ(x, y, z) +ψ′(x, y, z, t), q = Q(x, y, z) + q′(x, y, z, t), and b = B(x, y, z, t) + b′(x, y, z, t),

respectively. Since the mean flow is known, all subsequent discussion will center around the

perturbation variables. This can be seen to follow in the same vein as the work of Arbic

and Flierl [3] and Arbic, Flierl, and Scott [4]. Substituting ψ, q, b in this form into the QG

equations given in the introduction and dropping primes gives the system

∂q

∂t
+ J(ψ, q) + J(ψ,Q) + J(Ψ, q) = 0 for −H < z < 0, (4.12)

∂b

∂t
+ J(ψ, b) + J(ψ,B) + J(Ψ, b) = 0 for z = 0, (4.13)

∂b

∂t
+ J(ψ, b) + J(ψ,B) + J(Ψ, b) = 0 for z = −H, (4.14)
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where we have separated terms using the bilinearity of the Jacobian. For consistency we

demand that the mean flow quantities satisfy

Q = f +∇2
2Ψ +A0Ψ and B = f0

∂Ψ

∂z
(4.15)

so that the perturbation variables satisfy

q = ∇2
2ψ +A0ψ and b = f0

∂ψ

∂z
. (4.16)

As dissipative mechanisms, we may place thermal damping νT on the surface boundary

and potential vorticity damping νI in the interior. These are easily included in the form

∂q

∂t
+ J(ψ, q) + J(ψ,Q) + J(Ψ, q) = −νIq for −H < z < 0, (4.17)

∂b

∂t
+ J(ψ, b) + J(ψ,B) + J(Ψ, b) = −νT b for z = 0. (4.18)

In addition, we may include the effects of bottom friction on the QG system simply by

modifying the bottom boundary condition [80, 81]:

∂b

∂t
+ J(ψ, b) + J(ψ,B) + J(Ψ, b) = −rEkN

2∇2
2ψ for z = −H, (4.19)

where rEk is proportional to the thickness of the Ekman layer and thus quantifies friction.

In this manner, we consider the system (4.15)–(4.19) as being forced by an imposed mean

streamfunction Ψ with a known stratification profile N and dissipated by Ekman friction at

the bottom surface, thermal damping at the upper surface, and potential vorticity damping

in the interior.

A significant (and customary) simplification of the system (4.15)–(4.19) arises if we limit

the mean flow to only the zonal (x) direction. That is, suppose (U(z), 0) = (−∂Ψ
∂y
, ∂Ψ
∂x

).

Without loss of generality, the zonal assumption implies the form Ψ = Ψ(y, z) on the mean
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geostrophic streamfunction which in turn implies by (4.15) that Q = Q(y, z) and B =

B(y, z). In addition, it follows immediately that J(Ψ, Q) = J(Ψ, B) = 0 from the definition

of the Jacobian. Moreover, the relations (4.15) indeed imply that

∂Q

∂y
= β −A0U and

∂B

∂y
= −f0

∂U

∂z
, (4.20)

where β = ∂f
∂y

, which may be used to simplify the form of (4.17)–(4.19) significantly. For

example, (4.17) becomes

∂q

∂t
+ J(ψ, q) + (β −A0U)

∂ψ

∂x
+ U

∂q

∂x
= −νIq (4.21)

under the zonal assumption.

4.1.3 Nondimensionalization

A nondimensionalization of the forced-dissipated QG system (4.17)–(4.19) may be ob-

tained by changing variables as: x = Ldx
′, y = Ldy

′, z = Hz′, t = Tt′, q = T−1q′,

ψ = L2
dT
−1ψ′, b = LdT

−2b′, where primes denote nondimensional quantities. Additionally,

we nondimensionalize the buoyancy frequency using N = NN ′, where N is the vertical mean

of the buoyancy frequency [77]. This allows our nondimensional time scale to be T = 1/N

for convenience. Equation (4.17) then becomes

∂q′

∂t′
+ J ′(ψ′, q′) + J ′(ψ′, Q′) + J ′(Ψ′, q′) = −ν

I

N
q′ (4.22)

on the domain 0 ≤ x′, y′ ≤ 2πn for some n ∈ N and −1 < z′ < 0. Similarly, the boundary

conditions (4.18)–(4.19) become

∂b′

∂t′
+ J ′(ψ′, b′) + J ′(Ψ′, b′) + J ′(ψ′, B′) = −ν

T

N
b′ at z′ = 0, (4.23)

∂b′

∂t′
+ J ′(ψ′, b′) + J ′(Ψ′, b′) + J ′(ψ′, B′) = −rEk

Ld
(N ′)2(∇′2)2ψ′ at z′ = −1. (4.24)
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Lastly, equation (4.16) becomes

q′ = (∇′2)2ψ′ +
L2
df

2
0

H2N
2A′0ψ′ and b′ =

f0

N

∂ψ′

∂z′
, (4.25)

where A′0 = ∂
∂z′

1
(N ′)2

∂
∂z′

. For consistency we allow the approximate deformation scale in a

continuously stratified system to be given by Ld = NH/f0. Therefore, a nondimensionalized

QG system (4.15)–(4.19) merely requires us to consider the original system on the domain

0 ≤ x′, y′ ≤ 2πn for some n ∈ N and −1 < z′ < 0 with the substitutions (vI)′ = vI/N ,

(vT )′ = vT/N , (rEk)′ = rEk/Ld, and (f0)′ = f0/N , where primes denote nondimensional

parameters. Here onward we will consider only the nondimensionalized system.

4.1.4 Potential Vorticity Inversion for Quasi-Geostrophy

To solve the QG system (4.15)–(4.19), it is useful to invert relation (4.16) for q in terms

of ψ. This is due primarily to the fact that it is q and not ψ that is being evolved by equation

(4.17). Many methods exist to accomplish the inversion of the left hand side of (4.16). In

the case of a vertically discretized (multi-level system; see Section 4.1.5) we may write (4.16)

as a matrix system. Then, inversion of the operator is done by simple linear algebra. In the

fully continuous case this inversion may be accomplished through Sturm-Liouville theory as

we proceed to show; see, for instance, [30] for a general discussion of Sturm-Liouville theory,

or [44] and [80] for the theory applied in special cases to the QG equations at hand.

From the fact that we are using a periodic domain in the horizontal variables (x, y), we

may freely transform (4.16) into its spectral domain using Fourier series. Here we consider

the Fourier series defined as

ϕ(x) =
∑
k

ϕ∧(k)eix·k with ϕ∧(k) =
1

(2πn)2

2πn∫
0

2πn∫
0

ϕ(x)e−ik·x d2x, (4.26)

where the superscript ∧ represents the Fourier coefficient associated with the wavenumber
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k = (kx, ky), k = m/n wtih m ∈ Z× Z, and x = (x, y). Equation (4.16) then becomes

q∧(z; k, t) =
(
A0 − |k|2

)
ψ∧(z; k, t) and b∧(z; k, t) = f0

∂ψ∧

∂z
(z; k, t). (4.27)

The inversion of operator A0 − |k|2 may accomplished using the Green’s function of the

problem or equivalently a modal representation. Here we will show this process using the

modal representation arising from the decomposition (4.8).

We begin by separating the perturbation streamfunction into its constituents, as we did

in the introduction for the streamfunction. Namely,

ψ∧(z; k, t) = ψI∧(z; k, t) + ψT∧(z; k, t) + ψB∧(z; k, t), (4.28)

where I, T , B stand for interior, top, and bottom, respectively. From equations (4.9)–(4.11),

we note that ψT∧ and ψB∧ may be normalized as ϕT∧ and ϕB∧ given by

ψT∧(z; k, t) =
b∧(0; k, t)

f0

ϕT∧(z; k) and ψB∧(z; k, t) =
b∧(−H; k, t)

f0

ϕB∧(z; k). (4.29)

We can accordingly rewrite equations (4.9)–(4.11) for T and B as

(
A0 − |k|2

)
ϕT∧ = 0 and

∂ϕT∧

∂z
= 1 at z = 0,

∂ϕT∧

∂z
= 0 at z = −1, (4.30)(

A0 − |k|2
)
ϕB∧ = 0 and

∂ϕB∧

∂z
= 0 at z = 0,

∂ϕB∧

∂z
= 1 at z = −1. (4.31)

Similarly, the internal mode I satisfies

(
A0 − |k|2

)
ψI∧ = q∧ and

∂ψI∧

∂z
= 0 at z = −1, 0 (4.32)

and may be inverted using standard Sturm-Liouville theory.
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Consider the eigenvalue problem

(
A0 − |k|2

)
ϕ∧ = λϕ∧ with

∂ϕ∧

∂z
= 0 at z = −1, 0, (4.33)

where λ ∈ C and ϕ∧ ∈ L2([−1, 0]). By Sturm-Liouville theory, the system has a complete

set of orthogonal eigenfunctions ϕI∧n (z) in L2([−1, 0]). So, we may write the expansions

ψI∧ =
∑
n

anϕ
I∧
n and q∧ =

∑
n

bnϕ
I∧
n , (4.34)

where the eigenfunctions satisfy the orthogonality conditions

(
ϕI∧n , ϕ

I∧
m

)
=

0∫
−1

ϕI∧n (z)ϕI∧m (z) dz = 0 for n 6= m. (4.35)

To find the coefficients an, we may formally substitute the expressions (4.34) into the equation

(4.32) for the internal mode to obtain

∑
n

bnϕ
I∧
n =

(
A0 − |k|2

)(∑
n

anϕ
I∧
n

)
=
∑
n

anλnϕ
I∧
n so that an =

bn
λn

(4.36)

for λn 6= 0 by orthogonality. Note that the case λn = 0 is dealt with since we assume that

the operator is invertible. Then, by (4.34), the coefficient bn is then simply given by the

inner products bn = (q∧, ϕI∧n )/(ϕI∧n , ϕ
I∧
n ) which implies

ψI∧ =
∑
n

1

λn

(q∧, ϕI∧n )

(ϕI∧n , ϕ
I∧
n )

ϕI∧n (4.37)

for λn 6= 0. Finally, we may write the inversion of the potential vorticity as

ψ(x, y, z, t) =
∑
k

ψ∧(z; k, t)eik·x (4.38)
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with x = (x, y), where

ψ∧(z; k, t) =
∑
n

1

λn

(q∧(·; k, t), ϕI∧n )

(ϕI∧n , ϕ
I∧
n )

ϕI∧n (z)

+
b∧(0; k, t)

f0

ϕT∧(z; k) +
b∧(−H; k, t)

f0

ϕB∧(z; k).

(4.39)

4.1.5 Multi-Level Quasi-Geostrophy

A discretized multi-level QG system can be obtained simply by discretizing the operator

A0 defined in (4.2) [23, 77, 81]. We denote the discretized version of the continuous operator

A0 as A0. At each level i = 1, . . . ,m, we write the equation for level potential vorticity as

qi = ∇2
2ψi +

1

δi

(
bi−1s

2
i−1 − bis2

i

)
, (4.40)

where δi = Hi/H represents the ith level thickness and bi represents the buoyancy while

s−1
i = Ni/N represents the buoyancy frequency on the interface between level i and i + 1.

In addition, we discretize the buoyancy in terms of the streamfunction by taking a simple

one-sided difference of (4.7) to obtain

bi =
ψi − ψi+1

(δi + δi+1)/2
(4.41)

at each interface i 6= 0,m. To include boundary effects on the multi-level system we merely

need to account for the top and bottom surface buoyancies b0 and bm, respectively. Again,

we impose new interpretations on the quantities evaluated at the top most and bottom most

interfaces. A simple argument gives

b0 =
ψ0 − ψ1

δ1/2
and bm =

ψm − ψm+1

δm/2
, (4.42)

where ψ0 and ψm+1 represent the streamfunction ψ evaluated at the top and bottom bound-

aries, respectively. We may thus, accept the equation (4.41) for i = 0, . . . ,m + 1 with
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δ0 = δm+1 := 0.

Therefore, the multi-level QG system maps the quantities ψ0, ψm+1, ψ1, . . ., ψm onto b0,

bm, q1, . . ., qm. Namely, replacing (4.41) into (4.40) we obtain

qi = ∇2
2ψi +

1

δi

(
ψi−1 − ψi
Li−1

− ψi − ψi+1

Li

)
(4.43)

or

qi = ∇2
2ψi +

1

δi

ψi+1

Li
− 1

δi

(
1

Li
+

1

Li−1

)
ψi +

1

δi

ψi−1

Li−1

(4.44)

for all i = 1, . . . ,m if we define

Li :=
δi + δi+1

2s2
i

. (4.45)

This may be concisely written in matrix form as

q =
(
∇2

2II + A0

)
ψ (4.46)

with vectors

q = [b0 q1 · · · qm bm]T and ψ = [ψ0 ψ1 · · · ψm ψm+1]T, (4.47)

where II = diag(0, 1, . . . , 1, 0) and the matrix coefficients {(A0)i,j}m+1
i,j=0 of the m+ 2×m+ 2

tridiagonal matrix A0 are given by

δi(A0)i,i−1 = δi−1(A0)i−1,i =
1

Li−1

, δi(A0)i,i =
1

Li
+

1

Li−1

, (4.48)

for i = 1, . . . ,m,

δ1(A0)1,0 = − δ1

2L0

(A0)0,1 =
δ1

2L0

(A0)0,0 =
1

L0

, (4.49)

and

δm(A0)m,m+1 =
δm

2Lm
(A0)m+1,m = − δm

2Lm
(A0)m+1,m+1 =

1

Lm
. (4.50)
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Remark IV.1. Here we use the notation II = diag(0, 1, . . . , 1, 0) to denote the identity ma-

trix only for the values on the diagonal that coincide with the “interior” solution. Similarly,

we define, for future reference, IT = diag(1, 0, . . . , 0) and IB = diag(0, . . . , 0, 1) representing

the top and bottom boundaries, respectively. Note that II+IT+IB = I with I = diag(1, . . . , 1)

being the identity matrix.

In particular, we have nearly shown the following.

Lemma IV.2. Let B = diag
(

δ1
2L0

,−δ1, . . . ,−δm,− δm
2Lm

)
. The matrix BA0 for vertically

discretized QG is real symmetric and singular.

Proof. The fact that BA0 is symmetric is immediate and follows directly from (4.48)–(4.50).

Moreover, BA0 is singular since

det BA0 = det



L−1
0 −L−1

0 0 · · · 0 0

−L−1
0 L−1

1 + L−1
0 −L−1

1 · · · 0 0

0 −L−1
1

. . . . . .
...

...

...
...

. . . L−1
m−1 + L−1

m−2 −L−1
m−1 0

0 0 . . . −L−1
m−1 L−1

m + L−1
m−1 −L−1

m

0 0 . . . 0 −L−1
m L−1

m



= det



L−1
0 −L−1

0 0 · · · 0 0

0 L−1
1 −L−1

1 · · · 0 0

0 0
. . . . . .

...
...

...
...

. . . L−1
m−1 −L−1

m−1 0

0 0 . . . 0 L−1
m −L−1

m

0 0 . . . 0 0 0


= 0.

(4.51)

The last determinant in (4.51) is obtained by adding the first row to the second row, then

the second row to the third row, and so on. �

As one can see, equation (4.43) is thus applicable for all levels of the system, though some
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care is needed to interpret the topmost and bottommost levels, i.e., i = 1,m. In particular, if

we impose zero boundary buoyancy (interior QG), one must require a cancellation condition

on ψ0, ψm+1 so that the potential vorticity of the top level is given solely by

q1 = ∇2
2ψ1 +

1

δ1

(
ψ2 − ψ1

L1

)
(4.52)

and the bottom level is given by

qn = ∇2
2ψn +

1

δn

(
ψn−1 − ψn
Ln−1

)
. (4.53)

Note that this is equivalent to requiring for the buoyancy frequency si at the boundaries

i = 0, n+ 1 to be identically zero. Now, interior QG is given by the relation

q =
(
∇2

2 + A0

)
ψ (4.54)

with vectors

q = [q1 · · · qm]T and ψ = [ψ1 · · · ψm]T, (4.55)

where

BA0 =



L−1
1 −L−1

1 0 · · · 0 0

−L−1
1 L−1

2 + L−1
1 −L−1

2 · · · 0 0

0 −L−1
2

. . . . . .
...

...

...
...

. . . . . . −L−1
m−2 0

0 0 . . . −L−1
m−2 L−1

m−1 + L−1
m−2 −L−1

m−1

0 0 . . . 0 −L−1
m−1 L−1

m−1


(4.56)

with B = diag (−δ1, . . . ,−δm).

Corollary IV.3. Let B = diag (−δ1, . . . ,−δm). The matrix BA0 for vertically discretized
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interior QG is real symmetric and singular.

Remark IV.4. The difference between interior QG and QG is discussed in Section 4.1.1.

For our purposes, one crucial difference between interior QG and QG is highlighted by the

absence of the matrix II in (4.54) (cf. (4.46)). For interior QG, II = I as there are no

boundary components.

4.2 Modal Decomposition

We proceed to construct a natural modal decomposition for the forced-dissipated QG

system (4.15)–(4.19) using the matrix structure presented in Section 4.1.5. The decomposi-

tion presented here is analogous to that in the work of Smith and Vanneste [77] with some

details fleshed out. Our primary aim is to use this decomposition to diagonalize not only

the system (4.46), making inversion trivial, but also the significant conserved quantities of

energy and enstrophy simultaneously.

Remark IV.5. Though conceptually useful, the decomposition of the QG system into inte-

rior, top, and bottom solutions shown in Section 4.1.1 does not diagonalize the energy and

enstrophy when we include the boundary conditions (4.18)–(4.19).

Equation (4.46) may be written in terms of Fourier coefficients as

q∧ = Aκψ
∧, (4.57)

where Aκ = A0−κ2II and κ = |k| is the magnitude of the wavenumber given by the Fourier

series defined in (4.26). Now, the matrix Aκ of the transformed system (4.57) has very

amenable properties as we proceed to show.

Proposition IV.6. Let B = diag
(

δ1
2L0

,−δ1, . . . ,−δm,− δm
2Lm

)
. The matrix BAκ is positive

definite for κ 6= 0 and the matrix BA0 is positive semidefinite.
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We include the proof of Proposition IV.6 in Appendix C.2.

Note that Proposition IV.6 implies that equation (4.57) is invertible since Aκ cannot have

a zero eigenvalue when κ 6= 0. We may show the equivalent statement and more specific

details in the simpler interior QG case.

Corollary IV.7. Let B = diag (−δ1, . . . ,−δm) and suppose that (4.57) represents the inte-

rior QG system, i.e., Aκ = A0 − κ2I, q = [q1 · · · qm]T, and ψ = [ψ1 · · · ψm]T. Then, the

matrix Aκ is negative definite for κ 6= 0 and A0 is negative semidefinite.

Definition IV.8. For a matrix N with real eigenvalues, we define the matrix I(N) as the

inertia matrix corresponding to N, where the operation I(N) lists the sign of the eigenvalues

of the matrix N on the main diagonal from positive to negative.

Example IV.9. Consider the matrices

E =

2 7

0 1

 , F =


0 −1 −3

0 1 0

0 0 −4

 , and G =

 1 −1

−1 1

 , (4.58)

then

I(E) =

1 0

0 1

 , I(F) =


1 0 0

0 0 0

0 0 −1

 , and I(G) =

1 0

0 0

 . (4.59)

We prove the following proposition in a very general case as it will be useful for our

discussion.

Proposition IV.10. Suppose M is a positive definite real symmetric matrix and N is

real symmetric matrix, then there exists an invertible real matrix V that simultaneously

diagonalizes M and N in the form

VTMV = Λ (4.60)
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and

VTNV = I(N), (4.61)

where Λ is diagonal with nonnegative entries and I(N) denotes the inertia matrix of N.

We show the proof of Proposition IV.10 in Appendix C.2. Proposition IV.10 is, however,

a variation of the well known (and used) result in Classical Mechanics upon which two

symmetric forms need to be simultaneously diagonalized (change of basis) to ensure certain

conserved quantities are diagonalized. By picking carefully our chosen matrices M and N

we intend to use this very idea on the energy and enstrophy; as was done in similar fashion

in [77].

Corollary IV.11. For the matrices Aκ and B defined above, there exists a real matrix Vκ

that allows for a diagonalization of the form

I(B)AκVκ = VκΛκ with VT
κ I(B)BVκ = I (4.62)

when κ 6= 0, where Λκ is diagonal with nonnegative real entries and I(B) denotes the inertia

matrix of B.

Proof. Let M = BAκ and N = I(B)B. By Proposition IV.6 the matrix M is positive

definite. So, using Proposition IV.10 we obtain the diagonalizations

VT
κBAκVκ = Λκ and VT

κ I(B)BVκ = I. (4.63)

Lastly, we note

Λκ = VT
κBAκVκ = VT

κ I(B)BVκV
−1
κ I(B)AκVκ = V−1

κ I(B)AκVκ, (4.64)

which finishes the proof. �

In this manner, Corollary IV.11 allows us to define the bases Vκ and Wκ = I(B)Vκ for
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fixed κ 6= 0. We define the transformations

q∧ = Wκq
∧
W and ψ∧ = Vκψ

∧
V. (4.65)

Indeed, we immediately note that the QG system (4.57) is diagonalized by the change of

basis:

q∧W = VT
κBq∧ = VT

κBAκVκψ
∧
V = Λκψ

∧
V. (4.66)

Note that Corollary IV.11, and therefore (4.66), is essentially the same whether we consider

interior QG or QG. The true difference lies in the interpretation of the vectors q and ψ and

the properties of the eigenvalues Λκ.

Remark IV.12. In the case of interior QG, the bases Vκ and Wκ satisfy the relation

Vκ = −Wκ.

4.2.1 Conserved Quantities in Quasi-Geostrophy

The QG system conserves an infinite number of quantities [10, 81, for example]. For the

purposes of our discussion, we limit ourselves to the two most physical, and perhaps primary,

quantities: the energy density

Eκ =
1

2
ψ∧∗Bq∧ (4.67)

and “generalized” enstrophy [77] density

Pκ =
1

2
q∧∗I(B)Bq∧. (4.68)

Remark IV.13. We refer to Pκ as generalized enstrophy density due to the fact that its

definition includes terms arising from the conservation of potential energy at the boundary

of the flow [11] and not merely enstrophy in the interior of the domain.

From the change of basis (4.65) obtained in Corollary IV.11 and relation (4.66), is it

easy to show that both the energy and enstrophy density given by (4.67) and (4.68) are
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simultaneously diagonalized. Namely, for the energy density we have

Eκ =
1

2
ψ∧∗Bq∧ =

1

2
ψ∧∗V VT

κ I(B)BVκq
∧
W =

1

2
ψ∧∗V Λκψ

∧
V (4.69)

and for the generalized enstrophy density we obtain

Pκ =
1

2
q∧∗I(B)Bq∧ =

1

2
q∧∗WWT

κ I(B)BWκq
∧
W =

1

2
ψ∧∗V Λ2

κψ
∧
V. (4.70)

The fact that (4.67) and (4.68) indeed define conserved quantities is readily seen from

the vertically discretized forced-dissipated QG system (4.15)–(4.19). Writing (4.15)–(4.19)

in multi-level form using vector notation we obtain

∂q

∂t
+ J(ψ, q) + J(ψ,Q) + J(Ψ, q) = −R∇2

2ψ, (4.71)

where we use the definition of the Jacobian of two vectors as given in Appendix C.1 and

limit ourselves to the cases where only Ekman friction provides dissipation through a diagonal

positive semidefinite matrix R. To obtain an energy density equation from (4.71) we compute

its Fourier transform and then multiply by ψ∧∗B to obtain

ψ∧∗B
∂q∧

∂t
+ψ∧∗BJ∧(Ψ, q) = κ2ψ∧∗BRψ∧, (4.72)

where we have dropped the Jacobian terms J∧(ψ, q)+J∧(ψ,Q) since they are identically zero

when we add over all wavenumbers; this follows from Parseval’s identity and Corollary C.3.

Here J∧ denotes the Fourier transform of the Jacobian, i.e., J∧(f, g) = (J(f, g))∧. Finally,

using the complex conjugate of (4.72) and the fact that BAκ is symmetric allows us to write

an evolution equation for the energy density Eκ as

∂Eκ
∂t

+ Re {ψ∧∗BJ∧(Ψ, q)} = κ2ψ∧∗BRψ∧. (4.73)
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It is then clear from equation (4.73) that in the absence of forcing (Ψ = Q = 0) and

dissipation (R = diag(0, . . . , 0)) that total energy E =
∑

kEκ is a conserved quantity.

Similarly, to show that the generalized enstrophy is conserved, we compute the Fourier

transform of (4.71) and then multiply by q∧∗I(B)B to obtain

q∧∗I(B)B
∂q∧

∂t
+ q∧∗I(B)BJ∧(ψ,Q) = κ2q∧∗I(B)BRψ∧, (4.74)

where we have dropped the Jacobian terms J∧(ψ, q) + J∧(Ψ, q) since they are identically

zero when summed over the spectral domain. As before for the energy, using the complex

conjugate of (4.74), we obtain the evolution equation

∂Pκ
∂t

+ Re {q∧∗I(B)BJ∧(ψ,Q)} = κ2Re {q∧∗I(B)BRψ∧} . (4.75)

As before, in the absence of forcing (Ψ = Q = 0) and dissipation (R = diag(0, . . . , 0)),

equation (4.75) shows that total generalized enstrophy P =
∑

k Pκ is a conserved quantity.

4.2.2 Conditions for Cascade Inequality

We may use formulas (4.73) and (4.75) on the quantities Eκ and Pκ to quantify the

direction of energy transfer in the QG system for large time. To accomplish this feat, we

restrict the nature of the forcing to simplify the analytical work ahead. First, we assume

that the forcing is that of zonal mean flow, i.e., mean flow acting only in the x-direction;

see Section 4.1.2. Second, we assume a localized forcing acting uniquely at wavenumber

κf = |kf | that modifies equation (4.15) into the form

∂Q

∂y
= κ2

fI(B)
∂Ψ

∂y
. (4.76)

Remark IV.14. The assumption of localized forcing (4.76) is primarily for analytical con-

venience and is not expected to hold in realistic settings. In practice, such an assumption
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may be considered as a crude bound on a forcing consisting of several well-defined forcing

scales.

These assumptions on the forcing allow us to write (4.73), after using Corollary C.3, as

∂Eκ
∂t

+ Re {q∧∗BJ∧(ψ,Ψ)} = κ2ψ∧∗BRψ∧. (4.77)

Similarly, we may write (4.75) as

∂Pκ
∂t

+ κ2
fRe {q∧∗BJ∧(ψ,Ψ)} = κ2Re {q∧∗I(B)BRψ∧} . (4.78)

We may combine (4.77) and (4.78), assuming statistically steady state (giving the large time

solution), to obtain

κ2
f

∑
k

κ2ψ∧∗BRψ∧ =
∑
k

κ2Re {q∧∗I(B)BRψ∧} . (4.79)

including the (previously neglected) notation of summation over the spectral domain.

We may now highlight several special cases of the dynamics in the case of interior QG.

First, we quantify the scale at which the kinetic energy acts in the system.

Definition IV.15. The centroid of the kinetic energy kE is defined by

kE
∑
k

Kκ =
∑
k

kKκ, (4.80)

where Kκ = κ2ψ∧∗Bψ.

Lemma IV.16. Let kE be the centroid of the kinetic energy. Then, for the magnitude

κE = |kE|, we have

κ2
E

∑
k

Kκ ≤
∑
k

κ2Kκ. (4.81)
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Proof. Let kE = (kxE, k
y
E). Using Cauchy-Schwarz we have

(
kxE
∑
k

Kκ

)2

=

(∑
k

kxKκ

)2

≤
(∑

k

(kx)2Kκ

)(∑
k

Kκ

)
. (4.82)

So,

(kxE)2
∑
k

Kκ ≤
∑
k

(kx)2Kκ. (4.83)

A similar result applies to kyE, implying

κ2
E

∑
k

Kκ ≤
∑
k

κ2Kκ (4.84)

as stated. �

Proposition IV.17 was obtained in a different manner in [4].

Proposition IV.17. In the interior QG case, suppose that the Ekman friction is vertically

uniform, i.e., R = rEkI. Then, the forcing scale κf satisfies the inequality

κ2
f ≥ κ2

E +

∑
k κ

2ψ∧∗V Λ0ψ
∧
V∑

k κ
2ψ∧∗V ψ

∧
V

, (4.85)

where Kκ = κ2ψ∧∗V ψ
∧
V and Λ0 is given by the eigenvalue system (4.62) when κ = 0.

Proof. For vertically uniform Ekman friction, equation (4.79) becomes

κ2
f

∑
k

κ2ψ∧∗V ψ
∧
V =

∑
k

κ2ψ∧∗V Λκψ
∧
V (4.86)

after using the decomposition (4.65)–(4.66). Note that in the interior QG case we may indeed

write Λκ = κ2I+Λ0, where Λ0 is given by eigenvalue system (4.62) when κ = 0. This implies

κ2
f

∑
k

κ2ψ∧∗V ψ
∧
V =

∑
k

κ4ψ∧∗V ψ
∧
V +

∑
k

κ2ψ∧∗V Λ0ψ
∧
V. (4.87)
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Lastly, noting that Kκ = κ2ψ∧∗V ψ
∧
V and using Lemma IV.16 we obtain

κ2
f ≥ κ2

E +

∑
k κ

2ψ∧∗V Λ0ψ
∧
V∑

k κ
2ψ∧∗V ψ

∧
V

(4.88)

as stated. �

We finish the chapter by stating a result in the case that the dissipation is only acting

on the bottommost level of the system. First we derive an auxiliary result.

Lemma IV.18. Let C be an n× n matrix such that

C =

 0 a

aT b

 , (4.89)

where a is a vector and b is a scalar. Then, C has n − 2 eigenvalues which are 0 while the

remaining two are given by the formula λ± = 1
2

(
b±
√
b2 + 4aTa

)
and are associated with

eigenvectors v± = [aT λ±]T.

Proof. The fact that there are n − 2 eigenvalues equal to 0 is given by the fact that there

are n − 2 linear combinations of the entries of aT which are equal to zero. For the other

eigenvalues, consider the eigenvector v = [cT d]T, where c is a vector and d a scalar. Then,

Cv = λv implies

 0 a

aT b


c

d

 = λ

c

d

 (4.90)

which means that

da = λc and aTc + bd = λd. (4.91)

These conditions can be combined (multiply the second by λ) to obtain

aTa + bλ = λ2. (4.92)
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which has solutions λ± = 1
2

(
b±
√
b2 + 4aTa

)
. The fact that the eigenvector is given as

stated, follows from the equation that λ+ + λ− = b and λ+λ− = −aTa. Note that these

eigenvectors are orthogonal since

vT
+v− =

[
aT λ+

] a

λ−

 = aTa + λ+λ− = 0. (4.93)

This finishes the proof. �

Proposition IV.19. In the interior QG case, suppose that the Ekman friction acts only on

the bottom most level, i.e., R = rEkIB. Then, the forcing scale κf satisfies the inequality

κ2
f ≥ κ2

n +
L−1
m−1

2δm
(1−

√
2)

∑
kKκ∑

kKκ,m

, (4.94)

where Kκ,m = κ2|ψ∧m|2 denotes the kinetic energy of the bottommost level and κn is the

centroid of Kκ,m.

Proof. For Ekman friction acting only on the bottom level, (4.79) becomes

κ2
fδm

∑
k

κ2ψ∧∗m ψ
∧
m = δm

∑
k

κ4ψ∧∗m ψ
∧
m +

∑
k

κ2Re
{
ψ∧∗AT

0 BIBψ∧
}
. (4.95)

We may then re-write the rightmost term of (4.95) in the form ψ∧∗Hψ∧ with

H =
1

2

(
IBBA0 + BA0IB

)
=



0 · · · 0 0

...
. . .

...
...

0 · · · 0 −L−1
m−1/2

0 · · · −L−1
m−1/2 L−1

m−1


. (4.96)

From Proposition IV.18 we find that H has eigenvalues (other than zero)

λ± =
L−1
m−1

2

(
1±
√

2
)

(4.97)
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with λ+ ≥ 0 ≥ λ−. Therefore, we may note by the Rayleigh-Ritz Theorem [34] that

ψ∧∗Hψ∧ ≥ λ−ψ
∧∗ψ∧. (4.98)

Finally, using Lemma IV.16 we obtain,

κ2
f

∑
k

κ2ψ∧∗m ψ
∧
m ≥ κ2

n

∑
k

κ2ψ∧∗m ψ
∧
m +

λ−
δm

∑
k

κ2ψ∧∗ψ∧ (4.99)

as stated. �
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CHAPTER V

Summary

In this dissertation, we study three models of stratified fluid dynamics: the BO equation

in Chapter II, a two-layer tidal model in Chapter III, and the QG equations in Chapter IV.

Our intent is to extend and elaborate on certain properties of each model and showcase their

mathematical richness.

In Chapter II, we compute the scattering data of the Benjamin-Ono (BO) equation for

arbitrary rational initial conditions with simple poles, under mild restrictions. We obtain

explicit formulas for the Jost solutions and eigenfunctions of the associated spectral problem,

yielding an Evans function for the eigenvalues and formulas for the phase constants and

reflection coefficient. For this class of initial conditions, the recovery of the scattering data

can be done by using the analyticity properties of the Jost functions. We proceed to use

the exact formulas for the scattering data to analyze their behavior in the small-dispersion

limit. In particular, we deduce precise asymptotic formulas for the reflection coefficient,

the location of the eigenvalues and their density, and the asymptotic dependence of the

phase constant on the eigenvalue. Our results give direct confirmation of conjectures in

the literature that have been partly justified by means of inverse scattering, and they also

provide new details to the spectral problem of the BO equation. This work can be seen as a

significant extension of Kodama, Ablowitz, and Satsuma’s [43] who only considered specific

Lorentzian initial conditions to recover the location of the eigenvalues.
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A natural generalization of the work in Chapter II entails extending the results to include

rational potentials with multiple poles (cf. (2.67)). This extension may be viewed as a step-

ping stone to a general theory of rational potentials. In premise a general theory for rational

potentials may then be used, through some density argument, to construct approximations

of arbitrary potentials in some suitable class. It is again conceivable that errors arising from

the approximations may be controlled so as to allow a characterization of the BO initial

value problem through IST. In addition, the work in Chapter II would conceivably allow for

the explicit reconstruction of the solution of the BO equation — using IST methodology —

in the zero dispersion limit (ε → 0). Such reconstructions are well known for reflectionless

potentials (β = 0) for both the KdV [46] and BO [55] equations. Our theory of rational

initial conditions would perhaps allow for the reconstruction of solutions even when the re-

flection coefficient is non-negligible. In particular, having direct access to formulas for the

scattering data allows for concrete analysis of the inverse problem, presumably simplifying

the analysis.

In Chapter III, we present an analytical tide model that demonstrates the influence of

stratification on both large- and small-scale surface tidal elevations in a qualitatively similar

manner as in the global realistic-domain numerical simulations shown in [5], [75], and Sec-

tion 3.1 of this dissertation. Our analytical results demonstrate the potential for the presence

of stratification to alter the large-scale (barotropic) tide, and for climatic perturbations of

oceanic stratifications to contribute to temporal changes in tides, for instance seasonal and

secular changes seen in regional model studies and in tide gauge records. Our derived analyt-

ical formulas for the large- and small-scale contributions to surface tidal elevations contain

explicit dependence on the stratification parameter αγ(1−γ) = g′H1H2/(g(H1 +H2)2). The

dependence on stratification is accentuated if there is significant bottom topography and

if the damping acts only on the bottom layer. We quantify these effects with plots of the

RMS values of the surface elevation over a Gaussian topography using representative oceanic

parameters. We find that changes in stratification may change large-scale tidal elevations
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by as much as 10%, making these perturbations of a size comparable to the small-scale tidal

elevations.

With this analytical model in place, it is then possible to re-interpret the global realistic-

domain numerical results shown in Figures 3.1, 3.2 and guide additional more realistic sim-

ulations. Namely, since the quantity αγ(1 − γ) is a strong predictor — subject to bottom

topography and damping — of model behavior in our simple analytical model, it is plausible

that such a result is observable — at least in some manner — in more realistic oceanographic

settings. Motivated by our analytical model results, we plan to write a follow-up paper in

which a global realistic-domain numerical model, run in the non-Boussinesq limit, is used to

perform a suite of simulations with different αγ(1− γ) values.

In Chapter IV, we investigate the influence of bottom friction on Quasi-Geostrophic (QG)

turbulence in a multi-level forced-dissipated model that includes surface boundary effects,

i.e., SQG effects. Motivated by earlier studies on the influence of bottom friction in two-

layer QG turbulence, we focus on the influence of bottom friction on the horizontal scales

and vertical structure of eddy kinetic energy. We briefly examine whether the inverse cascade

to large, barotropic, energetic eddies in the weak drag limit of two-layer QG turbulence also

takes place in multi-level turbulence. We discuss the usual interior and surface QG modal

decomposition [45, 80], and a more natural surface-aware decomposition [77] with slight

extensions, in our analytical work. In particular, we analyze relevant conserved quantities,

e.g., energy and enstrophy, to showcase the influence of bottom friction on energy cascades.

In their current form, the results presented in Chapter IV are somewhat cumbersome to

interpret directly. It is conceivable that generalizations and simplifications of the arguments

presented in Chapter IV relating to the inverse cascade for the QG model could be fruitful.

However, the utility of our results is perhaps mostly reserved to aid numerical computations

of this complex system. Using our cascade inequality we intend to interpret energy cascades

in numerical simulations and guide the further exploration of the QG system numerically.
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APPENDIX A

Benjamin-Ono

A.1 Proofs

In this section provide certain proofs that we consider too cumbersome to have in the

body of the dissertation. We restate the propositions to be proven for ease of reference.

Proposition II.20. Let λ > 0. For each m = 1, . . . , P , define the function Hm = Hm(z;λ),

z ∈ G, by the equation

(i(z − zm))−icm/ε−1Hm(z;λ) := −e−ih(z;λ)/ε

(
λ+

P∑
p=1

vp(λ)

z − zp

)
. (A.1)

(Hm is analytic not only on G, but also in a neighborhood of the point zm.) Furthermore,

let icm = ε(µm +ωm), where µm = [Re{icm/ε}] denotes the integer (floor) part of Re{icm/ε}

and the remainder satisfies 0 ≤ Re{ωm} < 1. Then, the function W+(x;λ) given by (2.72)

is analytic in the upper-half x-plane if and only if for each m = 1, . . . , P , either

∫
`0(zm)

(i(z − zm))−icm/ε−1Hm(z;λ) dz = 0 when Re{icm/ε} < 0, (A.2)
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∫
`0(zm)

(i(z − zm))−ωm
dµm+1

dzµm+1
Hm(z;λ) dz = 0 when Re{icm/ε} ≥ 0 and ωm 6= 0, (A.3)

or

Res
z=zm

Hm(z;λ)

(z − zm)µm+1
= 0 when Re{icm/ε} ≥ 0 and ωm = 0, (A.4)

where `0(zm) (see Definition II.17) originates in at −i∞ in G0.

Proof of Proposition II.20: Fix λ > 0. The conditions of the proposition are equivalent to

W+(x) = W+(x;λ) being analytic at each possible singularity z1, . . . , zP in the upper-half

x-plane. For any m = 1, . . . , P , we use (A.1) defining Hm(x) = Hm(x;λ) in (2.72) to express

W+(x) in the form

W+(x) = gm(x)(i(x− zm))icm/ε
∫

`0(x)

(i(z − zm))−icm/ε−1Hm(z) dz, (A.5)

where we have also introduced a function gm(x) analytic and nonvanishing at x = zm defined

precisely by the identity εgm(x)(i(x−zm))icm/ε = ieih(x)/ε. We will now use Cauchy’s Theorem

to deform the path `0(x) of integration so as to pass directly through the branch point zm

on the way to a nearby point x ∈ G. While Hm(z) is analytic at z = zm, the other factor in

the integrand of (A.5) may not be integrable at z = zm.

First suppose that Re{icm/ε} < 0. The factor (i(z− zm))−icm/ε−1 is integrable at z = zm

so we can apply Cauchy’s Theorem to obtain

W+(x) = gm(x)(i(x− zm))icm/ε
∫

`0(zm)

(i(z − zm))−icm/ε−1Hm(z) dz

+ gm(x)(i(x− zm))icm/ε
x∫

zm

(i(z − zm))−icm/ε−1Hm(z) dz. (A.6)

The second term on the right-hand side is analytic for x near zm. Indeed, substituting for
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Hm(z) its power series in i(z − zm),

Hm(z) =
∞∑
k=0

ηmk(i(z − zm))k, (A.7)

for small enough |z − zm|, term-by-term integration yields

gm(x)(i(x− zm))icm/ε
x∫

zm

(i(z − zm))−icm/ε−1Hm(z) dz

= −igm(x)
∞∑
k=0

ηmk
k − icm/ε

(i(x− zm))k. (A.8)

Now, (A.8) is analytic at x = zm as it is a product of an analytic function and a convergent

power series. So, requiring that W+(x) be analytic at x = zm is equivalent to demanding

that the first term on the right-hand side of (A.6) be analytic at x = zm. But this term

is the product of (i) gm(x) nonvanishing at x = zm, (ii) (i(x − zm))icm/ε which blows up as

x → zm since Re{icm/ε} < 0, and (iii) the x-independent integral on `0(zm). Hence, the

analyticity of W+(x) at x = zm is equivalent to the vanishing of this integral (cf. (A.2)).

Next let Re{icm/ε} ≥ 0 with ωm 6= 0. Since (i(z− zm))−icm/ε−1 is branched and noninte-

grable at z = zm, we integrate by parts µm + 1 times (note µm ≥ 0) to restore integrability

before deforming the contour `0(x). With Km := iµm+1Γ(ωm)/Γ(ωm + µm + 1) 6= 0 we have

(i(z − zm))−icm/ε−1 = Km
dµm+1

dzµm+1
(i(z − zm))−ωm . (A.9)

Integrating (A.5) by parts using (A.9), note that (i(z − zm))−ωm is integrable at z = zm

127



(0 ≤ Re{ωm} < 1), so Cauchy’s Theorem gives

W+(x) = (−1)µm+1Kmgm(x)(i(x− zm))icm/ε
∫

`0(zm)

H
(µm+1)
m (z)

(i(z − zm))ωm
dz

+ (−1)µm+1Kmgm(x)(i(x− zm))icm/ε
x∫

zm

H
(µm+1)
m (z)

(i(z − zm))ωm
dz

+Kmgm(x)(i(x− zm))icm/ε
µm∑
k=0

(−1)kH(k)
m (x)

dµm−k

dxµm−k
1

(i(x− zm))ωm
. (A.10)

Now, recalling icm/ε = µm +ωm, note that the terms on the third line of (A.10) are analytic

at x = zm. Likewise, with the help of the uniformly convergent power series (A.7) and term-

by-term differentiation and integration (assuming only that |x − zm| is sufficiently small),

the second line of (A.10) is analytic at x = zm. The first line of the right-hand side of

(A.10) is the product of (i) Kmgm(x) analytic and nonzero at x = zm, (ii) a branched factor

(i(x − zm))icm/ε, and (iii) the definite integral on `0(zm). This term of W+(x) is therefore

analytic if and only if the integral on `0(zm) vanishes (cf. (A.3)).

If Re{icm/ε} ≥ 0 but instead ωm = 0, then (A.5) becomes

W+(x) = −igm(x)(x− zm)µm
∫

`0(x)

Hm(z)

(z − zm)µm+1
dz, µm = 0, 1, 2, 3, . . . . (A.11)

Since gm and Hm are analytic at zm, W+(x) will be analytic at zm exactly when the integral

factor is single-valued as a function of x (cf. (A.4)). �

Proposition II.32. Let v(λ) be the unique solution of A<(λ)v(λ) = b<(λ) for each

λ ∈ C \R+ for which D(λ) 6= 0. Then each component vp(λ) is analytic in C \R+ except at

the eigenvalues {λj}Nj=1 which are simple poles, with corresponding Laurent expansion

vp(λ) = −iεφp(λj)
λ− λj

+ (zp + Γj)φp(λj) +O (λ− λj) as λ→ λj (A.12)
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where Γj is a constant (independent of p) given by

Γj := − iε

2λj
− 1

2λj

P∑
p=1

zpφp(λj)−
iε

2

mTb<′(λj)

mTb<(λj)
, (A.13)

and where {φp(λj)}Pp=1 are the components of the right nullvector of A<(λj) normalized by

(2.93) and m is a nonzero left nullvector of A<(λj).

Proof of Proposition II.32: Since A(λ) = A<(λ) given by (2.83) and b(λ) = b<(λ) given

by (2.103) are analytic for λ ∈ C \ R+, the solution v(λ) of the system A(λ)v(λ) = b(λ)

will be analytic in the same domain with the possible exception of the eigenvalues at which

D(λ) = 0. As discussed for the general theory of Section 2.1.2, these isolated singular points

are simple poles of v(λ), which therefore has a Laurent expansion about λ = λj of the general

form

v(λ) =
v

[−1]
j

λ− λj
+ v

[0]
j + (λ− λj)v[1]

j +O
(
(λ− λj)2

)
as λ→ λj. (A.14)

Substitution into A(λ)v(λ) = b(λ) implies:

A(λj)v
[−1]
j = 0, (A.15)

A(λj)v
[0]
j = b(λj)−A′(λj)v

[−1]
j , (A.16)

A(λj)v
[1]
j = b′(λj)−

1

2
A′′(λj)v

[−1]
j −A′(λj)v

[0]
j . (A.17)

Since A(λj) is singular and has maximal rank P − 1, the first two equations (A.15) and

(A.16) have the general solutions

v
[−1]
j = α

[−1]
j φ(λj) and v

[0]
j = p + α

[0]
j φ(λj), (A.18)

where p is a particular solution of (A.16) and φ(λj) is the nullvector of A(λj) normalized

according to (2.93). Here α
[−1]
j and α

[0]
j are constants determined by the fact that the right-

hand sides of the equations (A.16) and (A.17) lie in the range of the singular matrix A(λj).
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Therefore, multiplying these latter two equations on the left by mT where m is any nonzero

left nullvector of A(λj) (unique up to scaling) and using (A.18) gives

α
[−1]
j =

mTb(λj)

mTA′(λj)φ(λj)
(A.19)

and

α
[0]
j =

mT
(
b′(λj)− 1

2
α

[−1]
j A′′(λj)φ(λj)−A′(λj)p

)
mTA′(λj)φ(λj)

. (A.20)

To simplify these formulas, we differentiate (2.90) to obtain the identity

A′(λ) =
i

ελ
B(λ)− i

ε
A(λ)Z, (A.21)

where B(λ) := [b(λ) · · ·b(λ)] and Z := diag(z1, . . . , zN). Since mTA(λj) = 0T, (A.19)

becomes

α
[−1]
j = −iε λjm

Tb(λj)

mTB(λj)φ(λj)
= −iεm

Tb(λj)

mTb(λj)
= −iε, (A.22)

due to (2.93). (That mTb(λj) 6= 0 is proven in Proposition II.34.) Now, substituting (A.18),

(A.21), and (A.22) into (A.16) and using (2.93) again yields

A(λj)p = A(λj)Zφ(λj), (A.23)

and hence the particular solution p may be taken as p = Zφ(λj). Finally, substituting

(A.21) and its derivative into (A.20) shows that α
[0]
j = Γj as defined by (A.13). �

Proposition II.34. The components of the only nontrivial nullvector n(λj) of A<(λj) are

given (up to a common constant) by the formula

np(λ) = Dp(λ), (A.24)

where Dp(λ) := det
(
A<
p (λ)

)
and A<

p (λ) denotes the matrix A<(λ) with its pth column
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replaced with b(λ). Moreover, the components satisfy the condition

P∑
p=1

np(λ) 6= 0. (A.25)

Proof of Proposition II.34. Consider the linear system

A<(λ)n(λ) = b<(λ)D (λ) , (A.26)

where n(λ) is a vector in CP . By Corollary II.27, for an eigenvalue λj, we have thatD (λj) = 0

and so n(λj) is a nullvector of A<(λj). From Cramer’s rule, for λ 6= λj, we have that each

component of n(λ) satisfies

np(λ) = Dp (λ) for p = 1, . . . , P. (A.27)

From the analyticity of A<
p (λ) we may deduce that

np(λj) = Dp (λj) for p = 1, . . . , P. (A.28)

The fact that np(λj) 6= 0 for each p follows from the fact that b<(λj) is not in the column

space of A<(λj). Otherwise, the zero of the Evans function D (λ) at λ = λj is not simple,

as we proceed to show. By contradiction, suppose that there exists a vector x such that

A<(λj)x = b<(λj). (A.29)

From formula (A.21) we may deduce that the derivative of the function det (A<(λ)) is given

by

dD

dλ
(λ) =

P∑
p=1

(
i

ελ
Dp (λ)− izp

ε
D (λ)

)
. (A.30)
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At the point λ = λj, using (A.29) to rewrite Dp(λ), we may obtain

dD

dλ
(λ)

∣∣∣∣
λ=λj

= D (λj)
P∑
p=1

(
ixp
ελj
− izp

ε

)
= 0 (A.31)

from the fact that D (λj) = 0. This, however, is a contradiction with the fact that the zeros

of D (λ) are simple. So, np(λj) 6= 0 for at least some p. Lastly,
∑P

p=1 np(λj) 6= 0 follows from

(A.30) and the fact that the zeros of D (λ) are simple. �

A.2 Elementary Examples of the Matrix N

Consider the positive rKS potential u0 (cf. (2.67)) with P = 3 and data

(z1, z2, z3) = 1
2

(2i, 2 + 4i,−2 + i) , (c1, c2, c3) = −1
2
i (2, 1, 4) , (A.32)

and let λ = −1. While it is not obvious from the data (A.32), from a graph of u0 one can see

that it satisfies the Klaus-Shaw condition. The scheme for selection of appropriate contours

{Wm}3
m=1 in this case is illustrated in Figure A.1. Obviously Wj is homotopic on the domain

of analyticity of f to Cj = U<
j (see Figure 2.3), so here N = I and hence Ã(λ) = A(λ) and

D̃(λ) = D(λ). Note that as desired, only WP=3 traverses more than one critical point at the

same level of Re{−ih(z;−1)}.

To see that such a trivial outcome for N is not generally the case, consider the potential

(z1, z2, z3) = 1
2

(−4 + 6i, 2i, 2 + i) , (c1, c2, c3) = −1
3
i (3, 1, 3) , (A.33)

again yielding a positive rKS potential with P = 3. It follows from Figure A.2 that a possible

matrix N is

N =


0 −1 1

0 0 1

1 0 0

 . (A.34)
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Figure A.1: Top left panel: for the P = 3 positive rKS potential u0 with data given
by (A.32), branch cuts of f emanating from the branch points {z1, z2, z3} are shown with
zigzagged lines, the solid curves are the levels of Re{−ih(x;−1)}, and the dashed curves
are the levels of Im{−ih(x;−1)} (steepest descent/ascent). The intersection points mark
the critical points of h(x;−1) which are numbered according to the values Re{−ih(xj;−1)}
except for those (x±) on the real axis. The domain Re{−ih(z;−1)} < 0 is shaded. Remaining
panels: the contours Wm ≡ U<

m = Cm for which the integrals Ãmp(−1) are exponentially
dominated by a contribution from neighborhoods of the critical point(s) over which the
contour passes. The level curve Re{−ih(z;−1)} = const. containing the traversed critical
point(s) is plotted, and the domain Re{−ih(z;−1)} < const. is shaded in each case.
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Figure A.2: Same as Figure A.1 but for the positive rKS potential with (A.33).
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APPENDIX B

Tidal Model

B.1 Effects of Coriolis Force

To examine the effects of the Coriolis force on the system (3.1)–(3.4) we refer to the

following two dimensional system:

∂

∂t
(η1 − η2) +H1

(
∂u1

∂x
+
∂v1

∂y

)
= 0, (B.1)

∂η2

∂t
+H2

(
∂u2

∂x
+
∂v2

∂y

)
= 0, (B.2)

∂u1

∂t
− fv1 + g

∂η1

∂x
= 0, (B.3)

∂u2

∂t
− fv2 + (g − g′)∂η1

∂x
+ g′

∂η2

∂x
= 0, (B.4)

∂v1

∂t
+ fu1 + g

∂η1

∂y
= 0, (B.5)

∂v2

∂t
+ fu1 + (g − g′)∂η1

∂y
+ g′

∂η2

∂y
= 0, (B.6)

where x and y, respectively, denote east-west and north-south coordinates, u and v, respec-

tively, denote zonal and meridional components of the velocity, f is the Coriolis parameter,
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and for simplification we have neglected topography, astronomical forcing, and damping.

We may derive the dispersion relation of the system (B.1)–(B.5) by assuming harmonic

solutions of the form ei(kx+ly)−iωt. This yields the matrix equation



−iω −f ikg 0 0 0

f −iω ilg 0 0 0

ikH1 ilH1 −iω 0 0 iω

0 0 ik(g − g′) −iω −f ikg′

0 0 il(g − g′) f −iω ilg′

0 0 0 ikH2 ilH2 −iω





u1

v1

η1

u2

v2

η2


=



0

0

0

0

0

0


. (B.7)

The system (B.7) has a nontrivial solution only if the matrix has a zero determinant. If

ω 6= 0, computing the determinant yields the dispersion relation

(
ω2 − f 2

k2 + l2

)2

− g(H1 +H2)

(
ω2 − f 2

k2 + l2

)
+ gg′H1H2 = 0. (B.8)

Remark B.1. A similar result to (B.8) can be seen, with some work, in the paper of Veronis

and Stommel [82]: their equations 3.4 and 3.5.

Note that equation (B.8) is immediately comparable to equation (3.55) with the square

of the phase speed translated by f 2/(k2 + l2). In other words, the square of the phase speed

for the two-dimensional system with the Coriolis effect present is, except for this translation,

affected by stratification in a similar manner as the system without Coriolis effects. This

suggests to us that the addition of the Coriolis force would not fundamentally change the

effects studied in this dissertation. The fact that our analytical model without Coriolis

effects behaves similarly as the global realistic-domain numerical model, which of course

does include the Coriolis effects, lends further credence to this assumption of the relevance

of our simplified analytical model.
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B.2 Scattering Solution Method

A perturbation expansion with respect to the topographical parameter σ in equations

(3.7)–(3.10) shows that the equations obtained at order σ for an infinite basin give the clas-

sical topographical scattering solution in terms of an incident velocity. That is, the order σ

terms of the solution correspond to the scattering solution of the large-scale tide on the bot-

tom roughness. The problem of internal wave generation from a bump that is impinged upon

by a large-scale tidal velocity has received some attention in the oceanographic community;

see for example [47], [78], [41]. We briefly derive the scattering solution in this subsection to

highlight its similarities with our full solution.

Consider expanding all variables in the problem in terms of the topographical parameter

σ, i.e., ϕ(x) ∼ ϕ0(x) + σϕ1(x) + · · · for σ → 0, where ϕ(x) is the variable of interest.

Gathering the order σ terms in equations (3.7)–(3.10), after using the separation (3.13),

gives

i (N1 −N2) +
dU1

dx
= 0, (B.9)

iN2 +
dU2

dx
= F, (B.10)

iU1 + γ
dN1

dx
+ δ1U1 = 0, (B.11)

iU2 + (1− γ)

(
(1− α)

dN1

dx
+ α

dN2

dx

)
+ δ2U2 = 0, (B.12)

where F = ∂
∂x

(U2,0b) with U2,0 representing the incident tidal velocity on the topography or

equivalently the O(1) term in the expansion of U2. For the scattering problem, we assume

that this background state U2,0 is known and focus on solving for the higher order terms. Note

that all variables in this equation correspond to the order σ terms, but we have dropped any

indicative subscripts to avoid cumbersome notation. That is, in this appendix the notation

N1 really stands for N1,1 (the order σ term in the expansion of N1).

Since the system obtained is linear and has constant coefficients, we may readily solve the

system above in the infinite basin case using the Fourier transform, e.g., û(k) =
∫∞
−∞ u(x)e−ikx dx.
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Manipulating the equations yields

(
s1 − k2

)
N̂1 = s1N̂2, (B.13)

(
s2 − αk2

)
N̂2 − (1− α)k2N̂1 = −is2F̂ , (B.14)

where s1 and s2 are as introduced previously. These equations may be combined to obtain

(
k4 −

(
s1 + s2

α

)
k2 +

s1s2

α

)
N̂1 = −is1s2

α
F̂ . (B.15)

It is worth noting that the left-hand side of this equation is (3.37), making the separation of

scales derived here identical to that in Section 3.3.3. This allows us to write equation (B.15)

as

N̂1 = −i(kL)2(kS)2

(
1

(k − kL)(k + kL)(k − kS)(k + kS)

)
F̂ = R̂1F̂ , (B.16)

where kL and kS are the roots of the polynomial (3.37) as defined previously; the left hand

side polynomial in (B.15). Therefore, we obtain a closed form solution for N1(x) — the

order σ term in the surface elevation — by applying the inverse Fourier transform to (B.16).

The problem of inverting N̂1(x) in equation (B.16) to obtain N1(x) is equivalent to taking a

convolution of the functions R1(x) and F (x). For this reason we seek a closed form solution

of R1(x) because F (x) is the known forcing function.

The integral R1(x) = 1
2π

∫∞
−∞ R̂1(k)eikx dk is readily done by summing residues separately

for x ≥ 0 and for x < 0 because kL and kS lie in the upper complex plane. In the case

of x ≥ 0 we close the contour of integration around the upper half plane leading to a

positively oriented curve and in the case x < 0 we close the contour of integration around

the lower half plane leading to a negatively oriented curve. After some manipulation we find

R1(x) = RL
1 (x) +RS

1 (x), where

RL,S
1 (x) =

eik
L,S |x|

2kL,S

(
1

(kS,L)2
− 1

(kL,S)2

)−1

(B.17)
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with the equation read only with the first or the second superscript in mind. This separation

of R1 leads to a very natural way of writing the upper layer solution in terms of its large-

and small-scale components. Explicitly, we write

NL,S
1 (x) =

∞∫
−∞

RL,S
1 (x− y)F (y) dy (B.18)

for the order σ large- and small-scale components of the surface elevation, respectively.
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APPENDIX C

Quasi-Geostrophy

C.1 Properties of the Jacobian

The Jacobian operator J of two differentiable functions f = f(x, y) and g = g(x, y) is

given by

J(f, g) :=
∂f

∂x

∂g

∂y
− ∂g

∂x

∂f

∂y
(C.1)

is bilinear, i.e., linear in each entry. It is also known as the Jacobian determinant as it arises

from the determinant of the Jacobian matrix:

J(f, g) = det


∂f

∂x

∂f

∂y
∂g

∂x

∂g

∂y

 . (C.2)

Proposition C.1. Suppose that the functions ϕi = ϕi(x, y) for i = 1, 2, 3 are doubly periodic

and possess continuous second partial derivatives in the rectangular domain D, then

∫
D

ϕ1J(ϕ2, ϕ3) dA =

∫
D

ϕ3J(ϕ1, ϕ2) dA. (C.3)
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Proof. The assertion follows directly from the definition of the Jacobian operator (C.1) and

integration by parts. Namely,

∫
D

ϕ1J(ϕ2, ϕ3) dA =

∫
D

ϕ1

(
∂ϕ2

∂x

∂ϕ3

∂y
− ∂ϕ2

∂y

∂ϕ3

∂x

)
dA

=

∫
D

ϕ3

(
∂

∂x

(
ϕ1
∂ϕ2

∂y

)
− ∂

∂y

(
ϕ1
∂ϕ2

∂x

))
dA =

∫
D

ϕ3J(ϕ1, ϕ2) dA,

(C.4)

as stated by means of Clairaut’s Theorem for equality of mixed partial derivatives. �

In particular, from Proposition C.1 and the definition of Jacobian operator (C.1) the

corollary below easily follows.

Corollary C.2. Suppose ϕi for i = 1, 2, 3 are doubly periodic and possess continuous second

partial derivatives in the rectangular domain D and let f be differentiable, then

∫
D

f(ϕ1)J(ϕ2, ϕ3) dA =

∫
D

ϕ3f
′(ϕ1)J(ϕ1, ϕ2) dA. (C.5)

Note that as special cases of Corollary C.2 we have

∫
D

f(ψ)J(ψ, ϕ) dA = 0 and

∫
D

J(ψ, ϕ) dA = 0. (C.6)

We may additionally define the Jacobian operator of two vector valued functions ϕ =

[ϕ1 · · ·ϕn]T and ψ = [ψ1 · · ·ψn]T as follows:

J(ϕ,ψ) = diag

(
∂ϕ

∂x

)
∂ψ

∂y
− diag

(
∂ψ

∂x

)
∂ϕ

∂y
=


J(ϕ1, ψ1)

...

J(ϕn, ψn)

 . (C.7)

Corollary C.3. Suppose the vector valued functions ϕi for i = 1, 2, 3 are doubly periodic

and possess continuous second partial derivatives in the rectangular domain D and let f be
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differentiable, then ∫
D

ϕT
1 J(ϕ2,ϕ3) dA =

∫
D

ϕT
3 J(ϕ1,ϕ2) dA. (C.8)

C.2 Proofs

In this section provide certain proofs that have been neglected from the body of the

dissertation. We restate the propositions to be proven for ease of reference.

Proposition IV.6. Let B = diag
(

δ1
2L0

,−δ1, . . . ,−δm,− δm
2Lm

)
. The matrix BAκ is positive

definite for κ 6= 0 and the matrix BA0 is positive semidefinite.

Proof of Proposition IV.6. Note that for a hermitian matrix A, A is positive definite if and

only if det Ai > 0 for i = 0, . . .m+1, where Ai denotes the principal minor; see [34, Theorem

7.2.5]. Now define the i+ 2× i+ 2 matrix

Ci+1
κ :=



δ0κ
2 + L−1

0 + L−1
−1 −L−1

0 · · · 0

−L−1
0

. . . . . .
...

...
. . . δiκ

2 + L−1
i + L−1

i−1 −L−1
i

0 . . . −L−1
i δi+1κ

2 + L−1
i+1 + L−1

i


(C.9)

Expanding the determinant of Ci+1
κ from the bottom right corner we have the formula

det Ci
κ =

(
δiκ

2 + L−1
i + L−1

i−1

)
det Ci−1

κ − L−2
i−1 det Ci−2

κ . (C.10)

which is valid for i = 0, . . . ,m+ 1 as long as we define det C−2
κ := 0 and det C−1

κ := 1. Now,

it follows easily that

det C0
κ = δ0κ

2 + L−1
0 + L−1

−1 > δ0κ
2 + L−1

0 > 0 (C.11)
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and

det C1
κ = det

δ0κ
2 + L−1

0 + L−1
−1 −L−1

0

−L−1
0 δ1κ

2 + L−1
1 + L−1

0


=
(
δ0κ

2 + L−1
0 + L−1

−1

) (
δ1κ

2 + L−1
1 + L−1

0

)
− L−2

0

> det C0
κ

(
δ1κ

2 + L−1
1

)
> 0.

(C.12)

To proceed by induction, suppose that for i we have

det Ci
κ > det Ci−1

κ

(
δiκ

2 + L−1
i

)
> 0 and det Ci−1

κ > det Ci−2
κ

(
δi−1κ

2 + L−1
i−1

)
> 0.

(C.13)

Then, by (C.10) at i+ 1 we have

det Ci+1
κ =

(
δi+1κ

2 + L−1
i+1 + L−1

i

)
det Ci

κ − L−2
i det Ci−1

κ

=
(
δi+1κ

2 + L−1
i+1

)
det Ci

κ + L−1
i det Ci

κ − L−2
i det Ci−1

κ

>
(
δi+1κ

2 + L−1
i+1

)
det Ci

κ +
(
L−1
i

(
δiκ

2 + L−1
i

)
− L−2

i

)
det Ci−1

κ

>
(
δi+1κ

2 + L−1
i+1

)
det Ci

κ > 0.

(C.14)

By induction, det Ci+1
κ (principal minors of Cm+1

κ ) is positive for i = 0, . . . ,m+ 1. If we let

δ0 = δm+1 = L−1
−1 = L−1

m+1 = 0 we note that Cm+1
κ = BAκ, which finishes the proof for κ 6= 0.

Lastly, by continuity with respect to κ as κ→ 0 and Lemma IV.2 it follows that BA0 must

be positive semidefinite (at least one eigenvalue is equal to zero). �

Proposition IV.10. Suppose M is a positive definite real symmetric matrix and N is

real symmetric matrix, then there exists an invertible real matrix V that simultaneously

diagonalizes M and N in the form

VTMV = Λ (C.15)
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and

VTNV = I(N), (C.16)

where Λ is diagonal with nonnegative entries and I(N) denotes the inertia matrix of N.

Proof of Proposition IV.10. This proof essentially follows the proof of Theorem 7.6.4 of Horn

and Johnson [34]. Since M is positive definite with real entries, there exists an invertible

matrix C with real entries such that M = C−TC−1 (Cholesky decomposition). Now, the

matrix CTNC, which is symmetric, can be diagonalized in the form CTNC = UDUT,

where D is diagonal and U is real orthogonal. In particular, by Theorem 4.5.8 in Horn and

Johnson we know that N and D must have same inertia (number of positive and negative

eigenvalues). Therefore, there exists a decomposition for D of the form D = SI(N)S where

S is the matrix given by S = diag(
√
|s1|, . . . ,

√
|sm|), where for each entry we let si = di if

di 6= 0 and si = 1 otherwise (here di denote the entries of D). So, define the matrix with

real entries V = CUS−1, then

VTNV = S−1UTCTNCUS−1 = S−1UTUDUTUS−1 = I(N) (C.17)

and

VTMV = S−1UTCTC−TC−1CUS−1 = S−1S−1. (C.18)

The proof is finished by letting Λ := S−2. Note that the sign of the entries in Λ is nonnegative

by definition. �
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