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ABSTRACT

A Framework for Evaluation and Identification of Time Series Models for
Multi-Step Ahead Prediction of Physiological Signals

by

Hisham M. W. S. ElMoaqet

Chair: Dawn Tilbury

Significant interest exists in the potential to use continuous physiological monitoring

to prevent respiratory complications and death, especially in the postoperative period.

Smart alarm-threshold based systems are currently used with hospitalized patients.

Alarms are generated from these devices when an adverse event has occurred with the

value(s) of the monitored physiological variable(s) being outside the range of normal

one(s). These systems have been suggested as cost effective, non-invasive monitoring

techniques and have been shown to reduce the need for intensive care admissions.

Despite clinical observations and research studies to support benefit from smart

alarm monitoring systems, several concerns remain. For example, a small difference in

a threshold may significantly increase the alarm rate. A significant increase in alarm

related adverse outcomes has been reported by health care oversight organizations.

Also, it has been recently shown in many clinical cases that the signaled alarms are

indeed late detections for clinical instability leading to a delayed recognition and less

successful clinical intervention.

This dissertation advances the state of art by moving from just monitoring towards
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prediction of physiological variables. Moving in this direction introduces research

challenges in many aspects. Although existing literature describes many metrics for

characterizing the prediction performance of time series models, these metrics may not

be relevant for physiological signals. In these signals, clinicians are often concerned

about specific regions of clinical interest typically defined by deviations from the

normal behavior or by the occurrence of critical patterns of abnormality. Existing

prediction performance metrics that typically describe the error between predicted

and actual signals do not provide insight into the performance in predicting regions

of clinical interest in these signals. This dissertation develops and implements different

types of metrics that can characterize the performance in predicting clinically relevant

regions in physiological signals. The developed metrics address research questions that

arise when the performance of a time series prediction model of a physiological signal

is to be evaluated.

In the era of massive data, biomedical devices are able to collect a large number of

synchronized physiological signals recording a significant time history of a patient’s

physiological state. Directionality between physiological signals and which ones can be

used to improve the ability to predict the other ones is an important research question.

This dissertation uses a dynamic systems perspective to address this question. Metrics

are also defined to characterize the improvement achieved by incorporating additional

data into the prediction model of a physiological signal of interest.

Although a rich literature exists on time series prediction models, these models

traditionally consider the (absolute or square) error between the predicted and actual

time series as an objective for optimization. This dissertation proposes two modeling

frameworks for predicting clinical regions of interest in physiological signals. The

physiological definition of the clinically relevant regions is incorporated in the model

development and used to optimize models with respect to predictions of these regions.

xiv



CHAPTER I

Introduction

The objective of this dissertation is to develop a research framework for both

evaluating and optimizing predictive models of physiological time series, and to apply

these methods to patient data.

1.1 Motivation

Recent developments in biomedical monitoring systems and computing technolo-

gies have enabled collecting and recording long time histories of medical signals. As

a result, there has been a significant increase in the importance of continuous phys-

iological monitoring in preventing respiratory complications and death, especially in

the postoperative period.

Smart alarm-threshold based monitoring is the state of the art technology used

with hospitalized patients. These systems provide alarms when an adverse event has

occurred with the value(s) of the monitored physiological variable(s) outside the range

of normal one(s). Using smart alarm-threshold based monitoring systems in general

care floor units has reduced the need for intensive care unit admissions (Taenzer et al.,

2010). They have been also suggested as cost effective, non-invasive techniques for

monitoring high risk patient populations (McFadden et al., 1996).

Despite clinical observations and research studies to support benefit from smart
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alarm monitoring systems, several concerns exist. For example, a small difference in a

threshold may increase the alarm rate by a factor of 10 (Watkinson and Tarassenko,

2012), resulting in excess false positive alarms (if alarm limits are set too high) and

harm (if set too low) (Bliss and Dunn, 2000). The Joint Commission (2013) and

other health care oversight organizations have recently reported a significant increase

in alarm related adverse outcomes. Consequently, smart monitoring systems are more

likely to cause significant alarm loads, resulting in fatigue and inadequate responses.

A recent study by Lynn and Curry (2011) investigated patterns of in-hospital deaths

and discussed cases when the signaled alarms are indeed late detections for clinical

instability leading to a delayed recognition and less successful clinical intervention.

The current limitations in the state of the art highlight the need to move from

just monitoring towards predicting physiological signals. Moving in this directions

introduces research challenges. The research in this dissertation aims at addressing

these challenges through presenting a framework for predicting physiological signals.

Although time series modeling and prediction has been greatly investigated in

many research fields, it is still a relatively new research area for physiological time

series compared to other science and engineering fields. For example, an extensive

literature exists describing time series modeling and prediction methods in manufac-

turing, economics, finance, metrology, and telecommunications (Palit and Popovic,

2006). Existing literature also describes many engineering metrics for evaluating the

prediction performance of time series models. A fundamental research question in

physiological time series is the performance evaluation for the predictions of these

time series. Existing metrics describe the error between the predicted and reference

signals without conveying information about their ability to capture regions of clin-

ical interest in physiological signals. The research in this dissertation highlights the

shortcomings of existing engineering metrics when used with physiological time series

and develops new criteria for evaluating physiological predictions from time series

2



models.

The ability to record a large number of physiological signals using multi-channel

biomedical systems motivates the need to understand the cause-effect relationship be-

tween signals. Understanding the directionality between physiological signals is cru-

cial for the development of multi-variable predictive models that incorporate signals

directly affecting the evolution of clinically relevant events in physiological signals.

The research in this dissertation addresses this directionality from a dynamic systems

perspective. Metrics are also defined to characterize the improvement achieved by

incorporating additional data into the prediction models of a physiological signal of

interest.

Engineering literature extensively describes models and strategies for multi-step

ahead prediction of time series. These methods commonly consider the error between

the predicted and reference time series as an objective for developing prediction mod-

els. Nevertheless, such models are not designed to capture clinically relevant regions

in physiological time series. Moving to prediction in place of standard monitoring re-

quires innovative models designed to predict clinical patterns of interest in physiolog-

ical signals. The research in this dissertation proposes a new paradigm for predicting

regions of clinical interest in physiological signals using a novel time series modeling

framework.

The ability to develop models and algorithms for robust predictions of physiologi-

cal signals is a fundamental step towards designing innovative prophylactic interven-

tional systems to prevent occurrence of adverse outcomes. The proactive responses

obtained using predictive models can be further utilized to improve patient outcomes

compared to existing methods that merely depend on reactive responses. In addition

to automatic interventional systems, the developed methods enable (human) advisory

control, where control actions are recommended to a patient and/or clinician based

on forecasted future values of physiological signals.

3



1.2 Contributions

The research in this dissertation develops an integrated framework as a first step

towards moving to prediction systems of physiological signals in place of currently

used monitoring ones. Three fundamental aspects of this problem are addressed

in this dissertation. Relevant performance metrics are investigated and developed

for evaluating predictions from models of these signals. The interactive dynamical

relationship between multi channel data is also incorporated to improve the ability to

predict these signals. Finally, novel time-series models are developed and optimized

to predict clinically relevant events within these time series.

The contributions of this work can be summarized as follows.

Performance Metrics for Evaluating Predictions of Physiological Signals

Standard dynamic models are typically evaluated based on the prediction error (RMSE)

between the actual and the predicted signals. Nevertheless, in physiological signals,

clinicians often prefer to predict regions of clinical interest in these signals rather than

just match them.

This dissertation develops and implements different types of metrics that can

characterize the performance of standard time series models in predicting clinically

relevant regions. Three different categories of performance metrics were developed

and investigated in this dissertation.

• Performance Evaluation Over Prediction Windows

RMSE (as the most commonly used standard prediction performance metric)

is not capable of distinguishing errors due to phase difference from errors due

to magnitude difference. However, in many clinical applications, it is not as

important for the predictive model to predict the exact time instance at which

a clinically relevant event is going to happen. Rather, clinicians are more inter-

ested in predicting the occurrence of such an event within a specific prediction

4



widow. Inspired by this application area, this dissertation proposes a perfor-

mance metric for evaluating predictions of physiological signals over prediction

windows. Using a prediction model (or a set of models), one can use the ob-

served time history up to a specific time instance to generate successive multi-

step ahead predictions over a window of interest. If a clinically relevant event

that occurred over this window is predicted by the model(s), then this is consid-

ered a successful window prediction. The proposed metric looks at all possible

scenarios resulting from comparing successive window predictions with corre-

sponding reference ones. Evaluating predictions using this metric characterizes

the overall ability of the predictive model to capture clinically relevant events

in the time series of interest over the desired window length. Additionally, this

metric provides the basis for comparing different types of models with respect

to predictions of clinical patterns of interest in a physiological time series.

• Performance Evaluation for the Longest Horizon That Can Predict a Clinically

Relevant Event

An important factor that needs to be taken into consideration when evaluating

predictive capability of dynamical models in a clinical setting is the longest

prediction horizon at which clinically relevant events can be captured. Of course,

if an adverse event can be predicted far in advance, there will be a better

opportunity for clinical intervention to prevent such an event. In contrast,

if the predictive model didn’t capture the critical event or if it predicted the

event just before its occurrence, there might not be enough time for medical

intervention.

Driven by the clinical interest of predicting clinical events as early as possible,

this dissertation develops the longest horizon that can predict a clinically rel-

evant event as a metric for evaluating predictive models for physiological time

series. Considering the onset time of any clinically relevant event, a predic-

5



tion model (or a set of models) with varying prediction horizons can be tested

starting from the most recent time instance before the onset of this event and

going backwards to find the longest horizon that can still predict this event.

Since such events typically vary with respect to the longest horizon that can

predict them, the analysis of the predictions obtained by any predictive model

results in a statistical distribution that quantifies the overall predictive power

with respect to this metric.

• Fixed Horizon Multi-Step Ahead Prediction Metrics

Previously introduced metrics consider different prediction horizons either to

evaluate window based predictions or find the longest horizon able to predict

clinical events. On the other hand, clinicians are also interested in evaluating

the physiological predictions with respect to a fixed prediction horizon (k time

steps). Thus, a predictive model can be directly evaluated by looking k steps

ahead at each time instance and seeing if it captures a clinically relevant event

that occurs after k steps. Evaluating predictions for a fixed horizon addresses

the effectiveness of the predictions at this horizon as well as their ability to

capture the onset of clinically relevant events at this horizon. Clinically relevant

events in a physiological signal are often physiologically defined with respect to

critical levels of abnormality (exceed or drop below a threshold for a minimum

time duration) or with respect to deviations from the operating baseline of the

signal. Accordingly, this dissertation addresses this metric in two ways. First,

we consider evaluating predictive models for their ability to capture abnormal

deviations from the signal baseline. Second, we consider evaluating predictive

models for their ability to predict critical levels.

As a case study, the developed metrics are used for characterizing the performance

and addressing limitations of standard auto-regressive models developed for predicting

critical oxygen saturation levels in the blood. Using the metric of the largest horizon
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that can predict critical events, it was shown that 56.2% of the critical desaturation

events in the time series of patients were able to be predicted 10-60s ahead of time

with the standard auto-regressive models. Although prediction performance shows

excellent ability to predict normal signal levels over 20s and 60s prediction windows,

a significant decrease in the ability to predict critical signal levels was noticed over

60s prediction windows compared to 20s windows. Predictions of critical signal levels

obtained with a fixed horizon of 20s are associated with a significant phase lag. This

contribution is discussed in Chapters IV and V.

Incorporating Interactive Relation Between Physiological Variables into

Predictions of Physiological Signals Multi-channel biomedical devices record

synchronized physiological signals. Understanding the causality relationship between

simultaneously recorded signals can significantly improve the ability to predict them.

This dissertation addresses the cause-effect question between different simultane-

ously recorded physiological signals from a dynamic systems point of view. Given two

physiological signals of interest A and B, we developed one dynamic model in which

A is an input to B and another dynamic model in which B is an input to A. Then

the significance of the coefficients for the two modeling choices was investigated to

understand the directionality between these physiological variables.

Furthermore, to assess the effect of including B into the prediction model of A, we

define metrics to characterize the improvement in capturing regions of clinical interest

in A with the inclusion of B.

As an application, the cause-effect relationship between pulse rate (PR) and blood

oxygenation (SpO2) (both collected by pulse oximetry monitoring systems) was in-

vestigated. No significant improvement was noticed in the ability to predict critical

desaturation levels in the blood using PR data. Results indicate oxygen in blood is

an effective input to the pulse rate rather than vice versa. This contribution is further
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discussed in Chapter IV.

Novel Auto-regressive Models for Predicting Regions of Clinical Interest

in Physiological Signals Finally, the research in this dissertation advances the

state of art in structured time-series prediction models by developing novel models

designed to capture clinically relevant patterns in physiological signals. A dynamic

auto-regressive structure with direct prediction strategy is used to build a framework

for optimizing time-series models capable of predicting regions of clinical interest in

physiological signals. Unlike standard time-series models that minimize the sum of

square errors between the predicted and reference signals, the presented modeling

framework optimizes fixed horizon prediction metrics with respect to predictions of

clinically relevant regions in physiological signals. Two broad optimization tools were

considered to identify the proposed modeling frameworks.

• Mixed integer programming (MIP).

This framework optimizes auto-regressive models with respect to predictions of

abnormal deviations from signal base line over a fixed prediction horizon of k

time steps.

• Quadratic programming (Support Vector Machine Optimization).

This framework optimizes auto-regressive models with respect to predictions of

critical signal levels over a prediction horizon of k time steps in a physiological

time series. The relative paucity of the critical levels of abnormality in a time se-

ries was addressed using a cost-sensitive learning scheme together with different

statistical measures to address the imbalance in the optimization problem.

Two case studies are considered for this contribution. First, using MIP formu-

lation, an auto-regressive modeling framework was optimized to predict abnormal

desaturation levels in the blood over a prediction horizon of 20s. Then, another auto-

regressive modeling framework was developed using SVM formulation to predict 20s
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ahead critical desaturation levels in the blood. To address the issue of the rarity of

critical desaturation events in the second problem, different statistical metrics are

considered for optimization. Results of both case studies show a significant improve-

ment in predicting clinically relevant events. Detailed discussion of this contribution

is presented in Chapter V.

1.3 Dissertation Outline

The first part of this dissertation addresses different evaluation criteria that can

characterize the performance of a standard predictive model in generating near term

future predictions that capture clinically relevant patterns in physiological time series.

This part also considers multi-channel data using a dynamic systems perspective and

defines metrics to characterize the ability to improve predictions of clinically relevant

events using multi-variate time series models. The second part addresses designing

models that optimize the proposed metrics to develop a modeling framework with an

improved ability to capture different types of clinically relevant events in physiological

time series.

In Chapter II, the concepts and tools used throughout this dissertation are defined.

Prior work in the area of time series prediction models and metrics is presented with

a brief review for the physiological signals and the clinical events investigated in the

case studies presented in this dissertation.

In Chapter III, a brief description of the medical data sets used in this research

is presented with a description of the data channels and signals specifications. Data

pre-processing techniques are also presented.

Chapter IV presents two performance metrics for evaluating predictions of phys-

iological signals. We develop the window based prediction performance metric and

the metric for the largest horizon that can predict a clinically relevant event. Us-

ing a dynamic systems perspective, we investigate the ability to improve predictions
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of clinically relevant events in a time series using additional data channels. Subse-

quently, we present a case study for predicting critical blood oxygenation levels using

the developed metrics. We also investigate the ability to improve the performance in

predicting critical blood oxygenation levels using pulse rate dynamics. In this chap-

ter, we use standard dynamical models but we show how standard evaluation metrics

that have been commonly used in analyzing engineering systems may not be relevant

for physiological ones.

Chapter V develops time series models optimized to capture clinically relevant

events. First, we start by presenting fixed horizon prediction metrics for characterizing

the performance of predictive models in capturing clinically relevant events over a

fixed horizon. Then we use these metrics for developing two modeling frameworks

capable of predicting two types of clinical events in a physiological time series. First,

we use a mixed integer programming framework for identifying auto-regressive models

capable of predicting (clinically defined) abnormal deviations from the baseline of a

physiological signal. Then, we use a quadratic optimization framework for identifying

auto-regressive models capable of predicting physiologically defined critical levels of

abnormality in physiological signals.

Chapter VI summarizes the dissertation and research contributions and then out-

line directions for future work.
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CHAPTER II

Background

In this chapter, we review the literature in time series prediction models and

metrics for evaluating predictions obtained from these models. Recent literature in

physiological signals’ prediction is also discussed with a brief review for the physio-

logical signals and the clinical outcomes investigated in the case studies presented in

this dissertation.

2.1 Time Series Modeling

In structured time series models, the signal yt+1 at time t+ 1 (t = n, ..., N , where

N denotes the total number of data samples available for modeling) depends on

previously observed signals yt−i

yt+1 = f(yt....yt−n+1) + et+1 (2.1)

where f(.) denotes the functional dependency between past and future observations

of time series y, n denotes the model order (or the embedding dimension (Casdagli

et al., 1991)), that is the number of past values used to infer future values, and et+1

represents the term that includes modeling error, disturbances, and/or noise. Equa-

tion (2.2) doesn’t impose any assumptions on the dynamics of the modeling error et+1
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and thus represents the general form of structured time series models. The dynamics

of the error residuals at each time step et+1 can be statically independent (white noise)

or could be correlated (coloured noise). In the latter case, the noise correlation can

be utilized to model et+1 = at+1 + g(at, at−1, ..., at−m+1) where at+1 is the unmodeled

part of error (white noise) and g(.) represents the functional dependence between the

m most recent modeling errors. In this dissertation, et+1 is assumed to be white noise.

In model identification, we seek to estimate (learn) the best model f̂ that can

generate the time series data. Assuming a specific model structure, a standard dy-

namical model is typically identified by minimizing the sum of squares of the one-step

ahead prediction error residuals ‖yt+1 − ŷt+1‖ (Ljung , 1987) such that

ŷt+1 = f̂(yt....yt−n+1) (2.2)

where ŷt+1 is the one-step ahead prediction and f̂(.) is the learned (one step ahead)

dynamical model. The model f̂(.) can also be updated with time as needed to address

any changes in the functional dependence between time series measurement in non-

stationary signal cases.

The field of time series modeling has been influenced significantly by linear sta-

tistical dynamical models such as auto-regressive (AR) models in which the function

f(.) is a linear combination of the n most recent observations and auto-regressive

with moving average (ARMA) models that assume g(.) to be a moving average of

the m most recent error residuals in addition to the AR part of this type of model.

Other linear statistical models such as Box-Jenkins (BJ) and Output Error (OE)

models have been also used (Ljung , 1987). On the other hand, several non-linear

time series models were proposed in the literature. In non-linear time series model-

ing, researchers often seek these models to be both easily interpreted and identified.

Examples of non-linear models that were used successfully to fit dynamical models

are non-linear auto-regressive dynamic models and block structured non-linear models
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such as Hammerstein-Wiener dynamic models (Pintelon and Schoukens , 2012; Ljung ,

1987). Nowadays, Monte Carlo simulation and bootstrapping methods are used in

non-linear time series modeling. Being less restrictive about the distribution of the

error process causes these methods to be preferred over classical non-linear modeling

techniques (Ben Taieb et al., 2012).

Recently, and with the huge advancements in computing technologies, machine

learning models have drawn a significant research attention and have established

themselves as serious contenders to classical statistical models in the research com-

munity of time series modeling (Ben Taieb et al., 2012; Ahmed et al., 2010; Palit

and Popovic, 2006; Zhang et al., 1998). These models, also called data driven mod-

els (Mitchell , 1997), are non-linear models which use only historical data to learn

the dependency between past and future observations. For example, artificial neural

networks have been successfully used to model non-linear time series (Lapedes and

Farber , 1987; Werbos , 1988). Later, other models were proposed and used such as

decision trees, support vector regression, and nearest neighbor regression (Alpaydin,

2014; Hastie et al., 2005).

2.2 Multi-Step Ahead Time Series Prediction

Time series prediction has been the focus of research in many domains. One step

ahead forecasts make use of the current and observed values of a particular variable

to estimate its expected value for the next time step following the latest observation.

On the other hand, predicting two or more steps ahead is considered a multi-step

ahead prediction problem. Unlike one step ahead, multi-step ahead forecasting is

more difficult due to various additional complications such as accumulation of errors,

reduced accuracy, and increased uncertainty (Weigend , 1994; Sorjamaa et al., 2007;

Ben Taieb et al., 2012).

The most commonly used strategies for multi-step ahead prediction rely either on
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iterated (recursive) or direct strategies (Atiya et al., 1999; Chevillon, 2007; Sorjamaa

et al., 2007; Bao et al., 2014b). Sections 2.2.1 and 2.2.2 review these prediction

strategies and Section 2.2.3 summarizes other strategies that have been less commonly

used in the literature of time series prediction models.

2.2.1 Recursive Prediction Strategy

The prediction model in the iterated (recursive) prediction strategy is constructed

by means of minimizing the one-step ahead prediction error residuals. One step ahead

predictions are then fed back recursively as inputs to the (same) model for obtaining

successive multi-step ahead predictions (Cheng et al., 2006; Hamzaçebi et al., 2009;

Sorjamaa et al., 2007; Kline and Zhang , 2004; Tiao and Tsay , 1994). Considering a

prediction horizon of K-step ahead, the recursive prediction strategy can be expressed

by the following equation

ŷN+k =


f̂(yN , ..., yN−n+1), if k = 1.

f̂(ŷN+k−2, ..., ŷN+1, yN , ..., yN−n+1), if 1 < k ≤ n.

f̂(ŷN+k−2, ..., ŷN+k−n), if n < k ≤ K.

(2.3)

The use of previously predicted values in successive predictions causes an error accu-

mulation problem leading to poor prediction performance over long horizons (Chevil-

lon, 2007; Ing , 2003; Bao et al., 2014a). This shortcoming can be seen more clearly

when the prediction horizon K exceeds the model order n causing all prediction inputs

to be forecasted values instead of actual observations.

2.2.2 Direct Prediction Strategy

The direct strategy constructs a individual predictive model for any future time

step of interest (Cheng et al., 2006; Hamzaçebi et al., 2009; Sorjamaa et al., 2007;
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Kline and Zhang , 2004; Tiao and Tsay , 1994). Considering a prediction horizon of

K-step ahead, the direct prediction model can be expressed by

ŷN+K = f̂K(yt, ...yt−n+1) (2.4)

where ŷN+K is obtained using the learned model f̂K that uses the n most recent

observations to directly compute the K-step ahead predicted values. The model f̂K

is typically learned by minimizing the K-step ahead error residuals. In case all time

steps in the prediction window 1 ≤ k ≤ K are of interest, the direct prediction

strategy constructs a specific model f̂k for each prediction time step. This strategy

does not use approximate values to compute the forecasts, being more immune to the

accumulation of error. Nerveless, it demands larger computational times compared

to recursive strategy in order to generate simultaneous predictions of large windows

(Ben Taieb et al., 2012).

2.2.3 Other Prediction Strategies

In addition to recursive and direct prediction, other strategies have been proposed

but less frequently used. In this section, we summarize three more strategies that have

been popularly discussed in the recent literature of multi-step ahead prediction.

DirRec Strategy The DirRec strategy (Sorjamaa and Lendasse, 2006) combines

the architectures and the principles underlying the direct and the recursive strategies.

DirRec computes the forecasts with different models for every horizon (like the direct

strategy) and, at each time step, it enlarges the set of inputs by adding variables

corresponding to the forecasts of the previous step (like the recursive strategy). Unlike

the two previous strategies, the model order (embedding dimension) n is not the same

for all the horizons. For a K-step ahead prediction horizon, the DiRec prediction
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strategy is given by

ŷN+k =


f̂(yN , ..., yN−n+1), if k = 1.

f̂(ŷN+k−1,..., ŷN+1, yN , ..., yN−n+1), if 1 > k ≥ K.

(2.5)

where f̂k are K learned models for each prediction time step ∈ {1, ..., K}. This

method has shown very good prediction performance in some time series applications

(Sorjamaa and Lendasse, 2006). However, not much research has been done with this

strategy.

MIMO Strategy The previously discussed strategies are single output strategies

(Ben Taieb et al., 2010) since they consider the prediction models as (multiple-input)

single-output functions. Recently, Bontempi (2008) introduced a multi-input multi-

output (MIMO) strategy for multi-step ahead predictions for the goal of preserving

the stochastic dependency between the predicted values within a prediction horizon.

The forecasts over a prediction horizon K are returned in one step by a multiple-

output model F̂ as expressed in the following equation.

[ŷN+k, ..., ŷN+1] = F̂ (yN , ..., yN−n+1) (2.6)

where F̂ : Rn → RK is a vector valued function (Micchelli and Pontil , 2005).

DIRMO Strategy The need to preserve the stochastic dependencies between pre-

dictions within the same prediction window using one model has a drawback as it

constrains all the horizons to be forecasted with the same model structure. This limi-

tation potentially reduces the flexibility of the MIMO forecasting approach especially

with long prediction horizons (Ben Taieb et al., 2009).

Accordingly, the DIRMO strategy (Ben Taieb et al., 2009) was proposed to pre-

serve the most appealing aspect of both the direct and MIMo strategies through
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forecasting the all the time steps within a prediction horizon K in blocks such that

each block is forecasted in a MIMO fashion. Thus, the K-step ahead forecasting task

is decomposed into m Multiple Output forecasting tasks m = K
s

each with an output

of size s (s ∈ {1, .., K}).

When s = 1, the number of forecasting tasks m = K which corresponds to

the direct strategy. When s = K, the number of forecasting tasks m = 1 which

corresponds to the MIMO strategy. There are intermediate configurations between

these two extremes depending on the value of a parameter s. Tuning s provides a

trade off between preserving larger stochastic dependency between future values and

having a greater flexibility of the predictor.

The K step ahead forecasts in DIRMO strategy are generated by using m learned

models F̂p, p ∈ {1, ..,m} as shown in the following equation

[ŷN+p×s, ..., ŷN+(p−1)×s+1] = F̂p(yN , ..., yN − n+ 1) (2.7)

where F̂p : Rn → Rs is a vector valued function for s > 1. Recent research with this

method used a particle swarm optimization to tune s with a multi output support

vector regression (SVR) model for multi-step ahead time series prediction (Bao et al.,

2014b).

Although many methods and strategies have been developed for multi-step ahead

predictions, all these methods consider the error between the predictions and reference

values as an objective function to obtain prediction models.

2.3 Prediction of Physiological Signals

One well-studied physiological signal is blood glucose. Diabetes has been a chal-

lenging topic for feedback control approaches for many years through building differ-

ent types of models from continuous glucose monitoring (CGM) data. Several data
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driven techniques have been applied for the prediction and control of glucose concen-

trations. For example, a radial-basis function neural network has been used to develop

a predictive model for glucose levels (Trajanoski et al., 1998). Also, a Kalman filter

was employed to adjust the parameters of a first-principles model for the prediction

and control of blood glucose (Dua et al., 2006).

Several studies considered data driven auto-regressive (AR) models to build pre-

dictive models (Sparacino et al., 2007; Reifman et al., 2007; Gani et al., 2009) for

many desirable properties. Among other reasons, these models have a limited num-

ber of parameters to identify, can be fitted from relatively short data records (com-

pared to more complex data-driven models), are computationally efficient, and are

suitable for online and recursive applications. A first-order AR model, AR-1, was

used after preprocessing (smoothing) the raw CGM data to remove high-frequency

noise (Sparacino et al., 2007). A tenth order AR Model, AR-10, was used to model

CGM signals (Reifman et al., 2007). The AR coefficients were identified via regular-

ized least squares using raw (unsmoothed) signals. More recently, a thirtieth order

model, AR-30, has been proposed to predict near future glucose concentrations from

smoothed data (Gani et al., 2009). However, while biomedical signals are becom-

ing more readily available, not much research work related to identifying dynamic

models from signals besides glucose has been conducted. Recently, a twentieth-order

AR model, AR-20, has been used to model the photoplethysmogram (PLETH) signal

(Lee et al., 2011). The respiratory rate of patients was estimated through analyzing

frequency domain characteristics of the AR-20 model. Nevertheless, this model was

not used in multi-step ahead prediction of future patterns of the PLETH time series.

2.4 Pulse Oximetry Monitoring (POM)

POM devices are frequently used in general care units to record both noninvasive

oxygen saturation levels in blood (SpO2) and pulse rate (PR) at 1-2 second intervals.
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Figure 2.1: Hemoglobin saturation curve showing the sigmoid relationship between
SpO2 and pressure of oxygen in blood pO2. At an SpO2 of 90%, the curve
starts becoming steeper, such that a small decrease in the partial pressure
of oxygen results in a large decrease in the oxygen content of the blood,
Figure from (West , 2012).

These devices have been suggested as cost effective, non-invasive techniques to reduce

the risk of hypoxemic injury in high risk populations (Eichhorn, 2003) and to reduce

costly critical unit (CCU) admissions (McFadden et al., 1996; Taenzer et al., 2010).

The human body requires and regulates a very precise and specific balance of

oxygen in the blood to ensure sufficient oxygen delivery to tissues, primarily through

binding with hemoglobin. The oxy-hemoglobin binding is characterized by coopera-

tivity, that allows for more oxygen to be extracted by tissues that are suffering from

low oxygen levels. The cooperativity between oxygen and hemoglobin molecules re-

sults in a sigmoid-shaped dissociation curve (Mason et al., 2010) shown in Figure 2.1.

At an SpO2 of 90%, the curve starts becoming steeper, such that a small decrease in

the partial pressure of oxygen results in a large decrease in the oxygen content of the

blood (West , 2012). Consequently, a sudden severe reduction in SpO2 is clinically

considered to be potentially life-threatening (Stradling and Crosby , 1991; Rauscher
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et al., 1991; Kripke et al., 1997; Mooe et al., 1996; Epstein and Dorlac, 1998). A

threshold of SpO2≤ 89% has been identified as a significant marker of the need for

nocturnal oxygen treatment (Centers for Medicare and Medicaid Services , 1993).

An Oxygen Desaturation Index of 4 percent (ODI4) is clinically defined as the

number of episodes per hour of oxygen desaturations that are greater than or equal

to 4% from the base line of the signal (Berry et al., 2012). The SpO2 signals of

concerned patients can be also classified according to the frequency of occurrence of

these desaturation events. It has been shown that patients with an ODI4 ≥ 5 have

a significantly higher rate of postoperative complications than those with ODI4 < 5

and that the complication rate also increased with increasing ODI4 values (Hwang

et al., 2008). No previous studies were found on identifying predictive models from

SpO2 data.

2.5 Multi Channel Data

One of the important questions that arises with physiological signals is the causal-

ity relationship between the signals and which ones are most likely to affect which

others significantly. The availability of multi-channel biomedical devices allows syn-

chronized physiological signals to be recorded and facilitates investigating the inter-

active relationship between them. For the SpO2 and PR signals collected by POM

systems, clinical observations showed that episodic drops in blood oxygen levels have

direct impact on the autonomic nervous system control of the pulse rate (Somers

et al., 1995). Previous studies have shown transient but reproducible increases in

pulse rate with episodic drops in blood oxygen, as is seen where patients suffering

from sleep apnea are exposed to years of such changes, resulting in faster baseline

pulse rates (Vries et al., 2008; Schulte-Frohlinde et al., 2002; Griffin et al., 2005;

Williams and Galerneau, 2003; Tsuji et al., 1994; Norris et al., 2008; Riordan et al.,

2009). Up to the best of our knowledge there are no physiological based models that
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describe the directionality (cause-effect relationship) between SpO2 and PR.

The high number of physiological variables collected in intensive and general care

units reflects the challenge of proper extraction and interpretation of the information

contained in this flood of information. Previous studies in this field have focused

on statistical analysis with some efforts to use graphical methods for understanding

correlations between variables (Imhoff et al., 2002; Gather et al., 2002). Yet, not

much research has focused on dynamic model identification to quantify the cause-

effect relations between these variables. Indeed, the ability to model and analyze the

relationships between different physiological signals could be very useful in predicting

future behavior of patient’s state.

2.6 Evaluating Time Series Predictions

Although there are various methods to obtain multi-step ahead prediction models

from time series data, the performance of these models in forecasting is crucial for the

ability to utilize them practically. In physiological time series, root mean square er-

ror (a standard performance metric) has been used frequently to evaluate predictions

of physiological systems (Sparacino et al., 2007; Reifman et al., 2007; Gani et al.,

2009). Nevertheless, clinicians are often more interested in predicting clinically rele-

vant events in physiological signals rather than closely matching them. For example,

the relative rarity of critical patterns of abnormality in a physiological signal makes

it less likely for a multi-step ahead prediction model (based on minimizing the mean

squared error) to capture these clinically relevant regions. In such cases, the predic-

tion might miss these events or could capture them but with a significant phase lag

(time delay). Unlike other time series applications, the phase lag of multi-step ahead

predictions in physiological signals is very important to consider (Sparacino et al.,

2007; Gani et al., 2009). Indeed, clinicians are always interested in improving the

ability to predict the onset of these events since they typically require a clinical ac-
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tion. For long prediction horizons, a small phase lag in capturing these events might

be tolerable but a larger one will significantly limit the efficiency of the prediction.

One example of an evaluation metric well known in diabetes management is the

Clarke-Error Grid (Clarke-EGA) (Clarke, 2005). The grid, shown in Figure 2.2,

maps actual and estimated glucose concentrations into five zones, where Regions A

and B are clinically acceptable, Region C may result in unnecessary corrections,

Region D could lead to incorrect treatments, and Region E represents erroneous

treatment. Recently, this grid has been used to assess the accuracy of time-series

modeling methodologies developed to predict glucose levels using continuous glucose

monitoring (CGM) data (Gani et al., 2010). The grid illustrates the fact that it is

not necessary to predict the blood glucose accurately on an absolute scale, but rather

it is important to know whether the blood glucose will be in a normal region, or too

high (hyperglycemic) or too low (hypoglycemic).

Figure 2.2: Clark Error Grid. The grid maps actual and estimated glucose concen-
trations into five zones, where Regions A and B are clinically acceptable,
Region C may result in unnecessary corrections, Region D could lead
to incorrect treatments, and Region E represents erroneous treatment,
Figure from (Clarke, 2005).
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In other time series applications, many evaluation metrics have been utilized based

on the sum of (square or absolute) errors between the predictions and reference signal

values (Ben Taieb et al., 2012; Bao et al., 2014a; Xiong et al., 2013). In financial time

series, the directional symmetry was used as an additional measure for evaluating

the accuracy of the predictions (Yu et al., 2008; Xiong et al., 2013). This metric is

a statistical measure of a model’s performance in predicting the direction of change,

positive or negative, of a time series from one time step to the next. Although

this metric provides information about the qualitative behavior of one-step ahead

predictions, our interest in physiological signals is beyond one step ahead predictions.

In fact, we are more concerned about the ability to capture clinically relevant events

over longer prediction horizons. Even if the multi-step ahead prediction didn’t match

the direction of change of the reference signals, it can be clinically acceptable if both

are within the same clinical region. On the other hand, the multi-step prediction can

match the direction of change in the reference signal but still not be able to capture

a clinically relevant event.
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CHAPTER III

Data Sets and Processing

This section introduces the data sets used in the research along with signal pre-

processing techniques that were considered for different signals in these data sets.

3.1 Postoperative Adults

The data was collected from 119 postoperative adults following orthopedic surgery

over a 3 month period in 2009. All patients were placed on postoperative POM

(MASIMO RAD-8, Irvine CA) on arrival to the patient care unit per institutional pol-

icy. Immediately after termination of the patients’ monitoring period, device ASCII

data consisting of SpO2 and PR were downloaded using PROFOX Oximetry Software

(version PO Standard; Escondido, CA). The ODI4 values for each patient were also

computed by the PROFOX oximetry software.

This data collection was approved by the Institutional Review Board (IRB) at the

University of Michigan (IRB#HUM00069035). The data sets were collected as part

of a Quality Improvement study (IRB#HUM00027189) looking at the reliability and

nurse response times to a postoperative oximetry based paging alert system (Voepel-

Lewis et al., 2013). The data obtained for both PR and SpO2 are discrete time signals

sampled every 2 seconds and quantized for a resolution of ±1% for SpO2 and ±1 bpm

for PR. ODI4 values range for the 119 patients from 0.1 to 45.9.
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3.2 Data Pre-processing

3.2.1 Missing Measurements Imputation in POM signals

The raw POM signal of each patient includes some instances where the measure-

ments are of zero amplitude. Upon inspection, the missing measurement were noticed

to be independent of the observed measurements that lead to these missing values.

Hence, these missing measurements were treated as missing completely at random

(MCR) (Polit and Beck , 2008; Baraldi and Enders , 2010).

Zeros that extend for a duration no more than 6 sampling steps (12 seconds) were

considered anomalous sensor measurements and were replaced with the most recent

non-zero amplitude, similar to the zero-order-hold (ZOH) principle (Astrom and Wit-

tenmark , 1997). Zeros that last for more than 6 sampling steps break the continuity

of the time series and require the corresponding POM signal to be partitioned to

smaller pieces that can be modeled and analyzed separately. Also, there are some

instances where the PR signals are of amplitude less than 30 bpm which is clinically

impossible. These false measurements were treated as missing measurements in the

same way as the zero measurements.

3.2.2 POM Signals Smoothing

We considered two smoothing methods (Sparacino et al., 2007, 2010; Gani et al.,

2009).

3.2.2.1 Moving average filters

The Simple Moving Average (SMA) filter averages a number of points from the

input signal to produce each point in the output smoothed signal (Sparacino et al.,

2010)

ỹi =
1

M

M−1∑
n=0

yi−n (3.1)
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where ỹ is the smooth signal, y is the raw data signal, and M is the number of points

used in the moving average. The Exponentially Weighted Moving Average (EWMA)

filter applies weighting factors that decrease exponentially. The weighting for each

older datum point never reaches zero. The EWMA can be calculated recursively as

ỹ1 = y1 (3.2)

ỹi = αyi + (1− α)ỹi−1 , i > 1 (3.3)

where ỹ is the smooth signal, y is the raw data signal, and α is a constant smoothing

factor between 0 and 1. A higher α discounts older observations faster.

3.2.2.2 Regularization

Regularization has been proposed previously to smooth CGM signals (Gani et al.,

2009). We used Tikhnov regularization approach, which yields smoothed signals ỹ by

computing ỹ = Udw, where Ud denotes the integral operator and w denotes estimates

of the raw signals’ first derivatives. The derivatives’ estimates yield excellent data

smoothing and do not introduce lag on the smooth signal relative to the original raw

signal.

To estimate the signal’s derivatives w, we minimized the functional f(w), given

by

f(w) = ‖y − Udw‖2 + λ2
d‖Ldw‖2 (3.4)

where y denotes the N × 1 vector of the raw time series signal, Ud denotes the N ×N

integral operator, w represents the N × 1 vector of first order differences (the rate of

change in raw measurements), λd represents the data regularization parameter, and

Ld denotes a well-conditioned matrix chosen to impose smoothness constraints on the

derivative of the raw signal.

For a chosen Ld, the quality of smoothing is determined by λd. When λd = 0, no
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regularization is performed resulting in the original raw data y. As λd increases, the

solution w (and hence ỹ) increasingly satisfies the imposed smoothness constraint,

resulting at the same time in larger deviations from the raw data.

Figure 3.1 shows smoothed SpO2 signals for 6-minutes data of Patient No. 12. For

the SMA filter shown in dotted red line, M = 5, for EWMA filter shown in dash-dot

blue line α = 0.35, and for the regularized signal shown in dashed green line λd = 20.
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Patient No. 12: Raw Data: Black, SMA: Red, EWMA: Blue., Reg−Data: Magenta 
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Figure 3.1: Raw data and smoothed data for the SpO2 signal of a postoperative pa-
tient (Patient No. 12). Raw data: black, simple moving average: red,
exponentially weighted moving average: blue, regularized data: magenta.
Regularization yields excellent data smoothing and do not introduce lag
on the smooth signal relative to the original raw signal.
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CHAPTER IV

Characterizing Performance of Predictive Models

for Physiological Signals

The work presented in this chapter appears in proceedings of the 2013 American

Control Conference (ACC) (ElMoaqet et al., 2013b) and the Journal of Physiological

Measurement (ElMoaqet et al., 2014a).

4.1 Introduction

In physiological time series, clinicians are often interested in evaluating predictive

models for their ability to capture critical levels of abnormality more than their abil-

ity to exactly match reference signals. Sections 2.1 and 2.2 reviewed modeling and

prediction techniques that have been proposed in time series literature. Nevertheless,

these techniques have been traditionally evaluated for the (absolute or square) error

between the prediction and reference signals.

This chapter proposes methods for evaluating predictions of clinically relevant

events in physiological signals. The main contribution of this chapter is defining new

performance metrics for evaluating predictions of existing (standard) time series mod-

els with respect to their ability to predict regions of clinical interest in physiological

time series. We present two performance metrics for evaluating predictions. First,
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we develop a window based performance metric for evaluating predictions of critical

levels of abnormality within a physiological signal. Second, we present another metric

that characterizes the longest horizon at which a clinically relevant event can be pre-

dicted. Subsequently, we use a dynamic systems perspective to investigate the ability

to improve predictions of clinically relevant events in a time series using additional

data channels. As a case study, the developed metrics are used for evaluating predic-

tions of critical blood oxygenation levels in SpO2 time series. Then, we incorporate

the pulse rate signal into the SpO2 prediction process. In this chapter, we use stan-

dard auto-regressive dynamical models but we address the shortcomings of standard

evaluation metrics.

4.2 Evaluating Predictions of Critical Levels of Abnormality

in Physiological Signals

In this section, we consider evaluating dynamical models of physiological signals

for their ability to predict critical levels of abnormality (exceeding or dropping below a

critical signal threshold ycr). In some clinical cases, the physiological event of interest

is defined by breaching ycr for a minimum duration ∆ time steps. We will define the

proposed metric for the general case of ∆ > 1 time step.

First, we define a utility function Score(S, ycr,∆,Flag) in Algorithm 1. The input

arguments for this function are a physiological time series segment S, the correspond-

ing critical signal level ycr, the minimum duration (∆ time steps), and a flag to specify

whether critical low or high signal levels are of interest. The function returns the clin-

ically relevant events (defined by start and end times) in the segment S or Null if no

clinically relevant events are present in this segment.

Consider a time series y in the interval [ti, tf ] with an arbitrary t ∈ [ti, ...., tf ] and

a prediction window of K steps corresponding to time KTs, where Ts is the sampling
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Algorithm 1 Function for scoring clinically relevant events in physiological time
series
Data: Time Series Segment S
Input: ycr, Critical signal level
Input: ∆ Minimum duration that defines a clinical event
Input: Flag ∈ {’Critical Low’, ’Critical High’}
1: function Score(S, ycr , ∆, Flag)
2: If Flag= ’Critical Low’ Then
3: [ClinicalEvents]=Find([S ≤ ycr] ≥ ∆)
4: Else IF Flag= ’Critical High’ Then
5: [ClinicalEvents]=Find([S ≥ ycr] ≥ ∆ )
6: end If
7: If NotEmpty([ClinicalEvents]) Then
8: return [ClinicalEvents]
9: Else
10: return Null
11: end If
12: end function

interval of the discrete signal y. Assuming a dynamic model M with a multi-step

ahead prediction strategy, one can obtain the set of predictions ŷt+k where 1 ≤ k ≤ K.

A prediction vector PVt can then be constructed as shown in Equation (4.1).

PVt =

[
ŷt+1 ŷt+2 . . . ŷt+K

]
(4.1)

On the other hand, the reference vector (RVt) over the same window can be expressed

by Equation (4.2).

RVt =

[
yt+1 yt+2 . . . yt+K

]
(4.2)

The vectors PVt and RVt are then passed to the Score function. The prediction at

time t is evaluated by comparing comparing PVt and RVt with respect to capturing

the critical signal level ycr for a minimum duration of ∆ time steps. Repeating this

procedure for all time instances t ∈ [ti, tf ] develops the proposed evaluation metric

summarized in Algorithm 2.

The prediction grid used for assessing the quality of the prediction process is
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Algorithm 2 Evaluating predictions of critical signal levels over prediction windows

Data: Time Series yt, t ∈ {ti, ..., tf}
Input: Predictive Model M
Input: K, Prediction horizon (window length)
Input: ycr Critical signal threshold
Input: ∆ Minimum duration that defines a clinical event
Input: Flag ∈ {’Critical Low’, Critical High’}
1: while t ∈ {ti, ..., tf} do
2: for k = 1 : 1 : K do
3: compute ŷt+k
4: end for
5: PVt =

[
ŷt+1 ŷt+2 . . . ŷt+K

]
6: RVt =

[
yt+1 yt+2 . . . yt+K

]
7: [PredEvent]=Score(PVt, ycr,∆, Flag)
8: [RefEventt]=Score(RVt, ycr,∆, Flag)
9: If NotEmpty([PredEvent]) & NotEmpty([RefEvent]) Then
10: t maps to Region A
11: Else If NotEmpty([PredEvent]) & Empty([RefEvent]) Then
12: t maps to Region B
13: Else If Empty([PredEvent] & NotEmpty([RefEvent]) Then
14: t maps to Region C
15: Else
16: t maps to Region D
17: end If
18: t = t+ 1
19: end while
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shown in Table 4.2. Pred.= +1 denotes a window prediction of a clinically relevant

event (NotEmpty([PredEvent])in Algorithm 2) and Pred.= −1 denotes a window

prediction of normal signal levels. The same analogy applies to Ref.= +1 and −1

using the reference signal.

Table 4.1: Prediction Grid for proposed metric

Ref.= +1 Ref.= −1

Pred.= +1 A B

Pred.= −1 C D

Points in Regions A and D on the main diagonal represent points of good prediction,

points in Region C off-diagonal represent the ones at which the model fails to detect

critical events, and points in Region B off-diagonal represent false prediction points.

Figure 4.1 shows an example illustrating the different regions of the prediction

grid. The prediction of blood oxygenation signal SpO2 over a prediction window

of 60s is considered in this example. The critical low threshold for this signal is

ycr = 89%. Note that a critical desaturation event starts as soon as y ≤ ycr = 89%

(∆ = 1 time step) and continues until the signal recovers to a level higher than ycr

(Oliver and Flores-Mangas , 2006).

The proposed grid can be considered as a statistical binary classification function

(Altman and Bland , 1994a,b) with sensitivity, specificity, positive predictive value,

negative predictive value, and accuracy used as statistical measures to evaluate its

performance. We assign Regions A, B, C, D as the true positive, false positive, false

negative, and true negative areas respectively. Mathematically, this can be expressed
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Figure 4.1: Examples of prediction grid regions, blue: actual, green-dotted: predic-
tion. The grid can considered a binary classification function (Altman
and Bland , 1994a).

as follows.

Prediction Sensitivity (TPR) =
|A|

|A|+ |C|
× 100% (4.3)

Prediction Specificity (TNR) =
|D|

|B|+ |D|
× 100% (4.4)

Positive Predictive Value (PPV) =
|A|

|A|+ |B|
× 100% (4.5)

Negative Predictive Value (NPV) =
|D|

|C|+ |D|
× 100% (4.6)

Accuracy (ACC) =
|A|+ |D|

|A|+ |B|+ |C|+ |D|
× 100% (4.7)

where |A|, |B|, |C|, and |D| are the the number of points in Regions A, B, C, and D.

Using Equations (4.3-4.7), we can characterize the performance of a time series

model in predicting critical levels of abnormality within any physiological time series

of interest.
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4.3 Evaluating Predictions for the Longest Horizon that Can

Predict Clinically Relevant Events

Another way to look at the predictive capability of a model of a physiological

signal is to evaluate how early an adverse event can be predicted.

Considering the onset time of any clinically relevant in a time series, a predictive

model (or a set of models) with varying prediction horizons can be tested starting from

the most recent time instance before the onset of this event and going backwards to

find the longest prediction horizon that still captures this event. Figure 4.2 illustrates

using this metric for evaluating how early a critical event starting at time ts can be

predicted. The set of prediction horizons are 1 ≤ k ≤ km, where km is the maximum

tested prediction horizon, are tested iteratively to find the longest one that is able to

predict the critical events that starts at time ts.

This metric can be used to test all critical events within a time series as sum-

marized in Algorithm 3. Using the Score function described earlier, the start time

(ts) and the end time (te) for the events at the which ycr is breached for a minimum

time of ∆ time steps can be found. For each test horizon k, the dynamic model M

(of order n) uses the n most recent observations up to time t = ts − k to generate

the k-steps ahead prediction ŷts. To reduce signal noise effects, the proposed ap-

proach evaluates the model at each test prediction horizon for continuous accurate

predictions of critical signal levels within each event of interest.

The analysis of the predictions obtained by any predictive model with this metric

results in a statistical distribution that quantifies the overall predictive power of

this model. As an example, Figure 4.3 shows a histogram of the largest prediction

horizon that can predict critical desaturation events within the SpO2 time series of a

postoperative patient using an auto-regressive model of order 10 (AR-10). 20 critical

events (57.1% of the total number of events) were able to be predicted 20 - 60 seconds
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Figure 4.2: Illustration for testing predictive models for the largest horizon that can
predict a critical event. After identifying the start time of the critical
event, we test iteratively a set of prediction horizons 1 ≤ k ≤ kmax to find
the largest prediction horizon that can predict the critical event.
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Algorithm 3 Evaluating predictions of the longest horizon that can predict a critical
signal level

Data: Time Series yt, t ∈ {ti, ..., tf}
Input: Predictive Model M
Input: kmax, Max test prediction horizon
Input: ycr Critical signal threshold
Input: ∆ Minimum duration that defines a clinical event
Input: Flag ∈ {’Critical Low’, Critical High’}
1: [ClinicalEvents]=Score(y, ycr,∆, Flag)
2: [NumEvents]=size([ClinicalEvents])
3: for i = 1 : 1 : NumEvents do
4: ts: start time of event i
5: for k = kmax : −1 : 1 do
6: ŷts=Predict([yts−n−k+1, ..., yts−k], M, k)
7: ŷts+1=Predict([yts−n−k+2, ..., yts−k+1], M, k)
8: ...
9: ŷts+∆−1=Predict([yts−n−k+∆, ..., yts−k+∆−1], M, k)
10: If {ŷts, ...ŷts+∆−1} breaches ycr
11: return k
12: break
13: end If
14: end for
15: end for
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ahead of time using this type of model.

0 10 20 30 40 50 60
0

5

10

15

Time (Seconds)

N
o.

 o
f A

dv
er

se
 E

ve
nt

s

Histogram of the the largest prediction horizon that can predict a critical desatutation event − P#12

Figure 4.3: Histogram of the longest prediction horizon that can predict critical de-
saturation events within the SpO2 time series of a postoperative patient
using an AR-10 model.

4.4 Evaluating Predictions with Multi-Channel Data

In this dissertation, we consider a dynamic systems perspective to understand the

cause-effect relationship between physiological signals. Figure 4.4 shows the approach

considered for two physiological signals of interest A and B.

(a) Choice (1): B is input to A. (b) Choice (2): A is input to B.

Figure 4.4: Modeling choices to study the directionality between two physiological
signals A and B.
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To understand the directionality between these two physiological signals A and

B, we developed dynamic models (MA→B) in which A is an input to B and other

dynamic models in which B is an input to A (MB→A). n and m in Figure 5.1 represent

the order of the output and input polynomials (i.e., the number of historical output

and input observations needed to predict the next output value). The significance

of the coefficients for the two modeling choices was investigated to understand the

directionality between these physiological variables.

Although improved RMSE results might be achieved due to the additional degrees

of freedom in the predictive model with additional data, the main goal of including ad-

ditional data channels is to improve the ability to predict regions of clinical relevance

within a physiological signal of interest. To evaluate the improvement in predicting

regions of clinical relevance, we define the following metrics:

1. Evaluate the improvement in prediction sensitivity TPR of critical signal levels

over different prediction windows due to the additional data channels.

2. Determine whether the inclusion of the additional data channels allows pre-

diction of critical signal levels with a longer prediction horizon (improves the

earliest time at which critical signal levels can be predicted).

Sections 4.5.1.2 and 4.5.3.3 present a detailed case study that applies the proposed

approach for understanding the cause-effect relationship between SpO2 and PR, both

collected using POM systems. The dynamic model (M) used to understand the

directionality between these signals is a standard linear auto-regressive model with

exogenous input (ARX model). We built ARX models in which SpO2 is an output to

the PR output, and other ARX models in which PR measurements are input and the

SpO2 measurements are output. Using the proposed method, our analysis shows that

the two physiological variables might be best characterized by the SpO2 measurements

being an input (cause) and the PR values as an output (effect). Although SpO2 ARX
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models with PR input show a slightly improved RMSE for predicted SpO2 signals,

the proposed metrics show no significant improvement in the ability to predict critical

desaturation events using PR data.

4.5 Case Study: Predicting Critical Desaturations in SpO2

Time Series

This section presents a case study for using data driven dynamic models with blood

oxygenation signals (SpO2) recorded by POM devices. Linear autoregressive discrete

time models are used to predict near future oxygen saturation levels of the hemoglobin

in blood. Standard modeling methods are used in identifying dynamic systems models

for these physiological signals. The metrics proposed in this dissertation are then

used to evaluate the performance of the identified models in predicting critical oxygen

desaturations in the blood. Using the proposed SpO2 prediction metrics, we show that

the combination of predictive models and frequent pulse oximetry measurements can

be used as a warning of critical oxygen desaturation events that might have adverse

effects on the health of patients. Moreover, we investigate the effect of including

pulse rate dynamics (PR) as an input to SpO2 models. We show no improvement in

predicting critical desaturations if PR dynamics are included in the SpO2 predictive

models. Our results indicate oxygen in blood is an effective input to the pulse rate

rather than vice versa.

We used SpO2 and PR data (Section 3.1) for 119 postoperative adult patients

generated by the pulse oximetry system. For demonstrating our results, 10 represen-

tative patients are presented here. The study was based on 15, 000 points of the data

sets of each patient. The first 7500 points were used for model estimation and the

second 7500 points were used for evaluating prediction results.
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4.5.1 Time Series Modeling

4.5.1.1 Autoregressive models to predict future values of SpO2

We have considered three scenarios to build AR Models.

Basic AR Modeling In AR modeling, the predicted signal ŷt at time t (t =

n+1, ..., N where N denotes the total number of data samples available for modeling)

is inferred as a linear combination of previously observed signals yt−i

ŷt =
n∑
i=1

θiyt−i (4.8)

where θ denotes the vector of AR coefficients to be determined, and n denotes the

order of the model (i.e., the number of previously observed SpO2 measurements yt−i

used to predict a future SpO2 value ŷt). The AR models are identified by finding

the coefficients θ that best describe the dependencies in the time-series y. These

coefficients are obtained based on the least squares fit (Ljung , 1987).

Basic AR modeling with smoothed data Equations (3.1), (3.2), or (3.4) can

be used to smooth the raw time series and then the smoothed series can be used to

identify AR Models.

Regularized AR modeling with smoothed data Regularization of AR models

is performed by imposing a smoothness constraint on the least squares fit of the

coefficients in Equation (4.8), resulting in the regularized least squares functional

g(θ̃), given by

g(θ̃) = ‖ỹ − Umθ̃‖2 + λ2
m‖Lmθ̃‖2 (4.9)

where ỹ denotes the (N − m) × 1 vector of smoothed SpO2 data, Um denotes the

(N−m)×m design matrix, θ̃ represents the m×1 vector of regularized AR coefficients,
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λm represents the model regularization parameter, and Lm denotes a well conditioned

matrix chosen to impose smoothness on the AR coefficients.

4.5.1.2 Auto-regressive Models with Exogenous Input (ARX)

To study the interactive relationship between the oxygen saturation in blood

(SpO2) and the pulse rate (PR), we assume linear system models as approxima-

tions to the full nonlinear model around an operating condition. Therefore, we can

use standard system identification techniques to fit linear autoregressive models with

exogenous input (ARX) between these physiological variables. For an ARX(n,m),

the predicted signal ŷt at time t (t = max(n,m) + 1, ..., N where N denotes the total

number of data samples available for modeling) is inferred as a linear combination of

previously observed output yt−i and previously observed inputs ut−i

ŷt +
n∑
i=1

aiyt−i =
m∑
i=0

biut−i (4.10)

where n and m denote the order of output and input polynomials. The ARX models

are identified by finding the coefficients ai and bi that best describe the dynamics of

the output time-series y. These coefficients are estimated from input/output data

using least squares fit principle (Ljung , 1987).

To investigate the interaction between SpO2 and PR signals, we have built dy-

namic models using the approach discussed in Section 4.4.

4.5.2 Multi-Step Ahead SpO2 Prediction

4.5.2.1 Linear Prediction

Future values of a discrete-time signal characterized by a linear identified time-

series model are forecasted k steps into the future using historical data such that the

predicted output ŷN+k of a time series y can be seen as a linear function of previous

available measurement of this time series ŷN+k = f(yN , yN−1, ..., y0). k is called the

41



prediction horizon, and corresponds to predicting output at time kTs, where Ts is

the sampling time of the discrete signal (2 seconds for POM data). For example, the

one-step ahead predictor of an AR model can be expressed by the following equation:

ŷN+1 =
m∑
i=1

θiyN−i+1 (4.11)

where y, θ can be replaced by ỹ, θ̃ as appropriate. Also, the same equation is used with

ARX models but with the inclusion of the input terms. k-step ahead predictions are

obtained using recursive prediction strategy by applying Equation (4.11) recursively.

4.5.2.2 Prediction Evaluation Metrics

Root Mean Square Error (RMSE) Linear dynamic models are fitted using

least square error principle and it is a common practice in AR modeling to assess the

prediction capability by calculating the root mean square error (RMSE) between the

predicted and reference measurements of the time series. RMSE can be expressed as

follows

RMSE(ŷ, ỹ) =

√√√√ 1

n

n∑
i=1

(ŷi − ỹi)2 (4.12)

where ŷ is the predicted signal, ỹ is the reference smoothed data signal, and n is the

number of predicted output measurements. We define the best fit model as the model

that provides the lowest mean square error on the validation data set.

SpO2 Prediction Grid Following Section 4.2, we developed the SpO2 prediction

grid shown in Table 4.2 to evaluate the ability of the AR model to predict critical

desaturation events over prediction windows K in the the test time series for each

patient. The critical signal level is chosen as ycr = 89% due to its clinical significance

(Centers for Medicare and Medicaid Services , 1993). Since a critical desaturation

starts as soon as y ≤ ycr = 89%, Pred.= +1 and −1 can be expressed by Pred.≤ 89%
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and ≥ 89% respectively. Similar analogy applies to Ref.= +1 and Ref.= −1 in the

reference SpO2 signal.

Table 4.2: Prediction grid for K-seconds prediction windows.

Ref. ≤ 89% Ref. > 89%

Pred. ≤ 89% A B

Pred. > 89% C D

4.5.3 Results

4.5.3.1 Performance of different AR Modeling Techniques

We have developed software codes to build the three types of AR models presented

in Section 4.5.1.1. The flexibility within the codes helped to test SpO2 signals with

different smoothing and modeling schemes.

We present here an example for Patient No. 12; a patient who experienced a very

high frequency of desaturation events (ODI4 = 45.9). A model order n = 10 and

a prediction horizon k = 10 steps (20s) are illustrated. For signal smoothing, we

used a moving average filter (MVA) of span M = 5 and compared the results to

regularization using a regularization coefficient λd = 20. Figure 4.5 shows 20-seconds

ahead prediction results for Basic-AR-10 from raw data compared to Basic-AR-10

and Reg-AR-10 from MVA smoothed data. Figure 4.6 shows the performance of the

20-seconds ahead prediction for the Basic-AR-10 and Reg-AR-10 models, both built

from the regularized signal. Smoothing via regularization showed superior results

compared to the moving average smoothing. For the Basic-AR-10 model, the noise in

the signal and the discretization effects limited the prediction capability of this type of

model. Table 4.3 summarizes RMSE performance for 20-seconds ahead predictions

of different types of AR-10 models identified for patient No. 12 where it can be clearly

seen that smoothing via regularization enhanced the prediction accuracy of the AR
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Figure 4.5: 20-seconds ahead prediction results using moving average smoothing, Pa-
tient No. 12. Discretization limited the prediction capability of AR Model.
No significant improvement in prediction performance was noticed with
Moving Average (MVA) smoothing.
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Figure 4.6: 20-seconds ahead prediction results using smoothing via regularization,
Patient No. 12. Regularization significantly improved prediction perfor-
mance compared to moving average smoothing methods.
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models. Our results show that the dynamics of SpO2 signals can be captured with

an AR-10 model constructed from the regularized signal. Comparing the RMSE of

20s ahead predictions from AR-10 with the RMSE of predictions obtained using a

higher model order such as AR-30 didn’t show a statistically significant improvement

(p-value> 0.9).

Table 4.3: 20-s ahead RMSE of AR-10 for Patient No. 12

AR-Type RMSE

Basic AR-10 with raw data 2.8873

Basic-AR-10, MVA-Smoothed Data,M = 20 2.8302

Reg-AR-10, MVA Smoothed-Data,M = 20 2.8292

Basic AR-10, Reg-Data,λd = 20 0.9257

Reg-AR-10, Reg-Data,λd = 20 1.2896

4.5.3.2 Evaluating SpO2 Predictions

Two prediction windows (intervals) were considered K = 20s and 60s respectively.

Figures 4.7(a) and 4.7(b) show the performance of the identified AR-10 models in

the prediction intervals of 20 and 60 seconds respectively. Although the accuracy

of prediction in the 60-seconds intervals is not as good as the 20-seconds ones, the

AR-10 model is still able to capture critical desaturation events that will happen in

the 60-seconds prediction intervals. The performance in predicting critical regions in

both prediction intervals needs to be evaluated.

Table 4.4: Prediction grid for 20s prediction windows, Patient No. 12

Ref. ≤ 89% Ref. > 89%

Pred. ≤ 89% 712 40

Pred. > 89% 96 6642
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(a) AR-10 model performance in 20-seconds prediction intervals for three patients. The prediction
performance needs to be evaluated with respect to capturing critical signal levels over this prediction
interval.
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(b) AR-10 model performance in 60-seconds prediction intervals for three patients. Although increas-
ing the prediction decreased the prediction accuracy, the model is still predicting critical destructions.
The performance in predicting critical regions needs to be evaluated.

Figure 4.7: AR-10 model performance in 20s and 60s prediction intervals for three
patients.
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Table 4.5: Prediction grid for 60s prediction windows, Patient No. 12

Ref. ≤ 89% Ref. > 89

Pred. ≤ 89% 759 126

Pred. > 89% 577 6008

Table 4.6: Prediction grid results for 20s prediction windows using AR-10 models

P# |A| |B| |C| |D| TPR TNR PPV NPV ACC

10 0 0 0 7490 NA 100% NA 100% 100%

12 712 40 96 6642 88.1% 99.4% 94.7% 98.6% 98.2%

18 124 1 10 7355 92.5% 99.9% 99.2% 99.9% 99.9%

37 339 20 22 7109 93.9% 99.7% 94.4% 99.7% 99.4%

59 232 12 21 7225 91.7% 99.8% 95.1% 99.7% 99.6%

80 81 9 6 7349 93.1% 99.9% 90.0% 99.9% 99.8%

89 71 0 7 7412 91% 100% 100% 99.9% 99.9%

118 38 2 5 7445 88.4 % 100% 95.0% 99.9% 99.9%

125 1181 84 99 6126 92.3% 98.6% 93.4% 98.4% 97.6%

136 130 13 12 7335 91.5% 99.8% 90.9% 99.8% 99.7%

Applying the proposed metric on the AR-10 model identified for patient No. 12, the

prediction grid results for 20 and 60 seconds ahead in Tables 4.4 and 4.5 respectively

show that the specificity (TNR) for both prediction intervals are excellent (99.4%,

and 97.4% respectively) indicating that the model was able to identify successfully

almost all of areas out of the dangerous zones in both prediction intervals. Also,

the 60-seconds ahead prediction grid shows a relatively high positive predictive value

(PPV ) of 85.8% which reflects a high likelihood that the predicted desaturation events

will be actual ones in both prediction intervals. On the other hand, the prediction

grid results for 20 seconds prediction windows show a high sensitivity (TPR = 88.1%)

but for a prediction interval of 60 seconds it decreased to 56.7% indicating that the
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Table 4.7: Prediction grid results for 60s prediction windows using AR-10 models

P# |A| |B| |C| |D| TPR TNR PPV NPV ACC

10 0 0 0 7470 NA 100% NA 100% 100%

12 759 126 577 6008 56.8% 97.9% 85.8% 91.2% 90.6%

18 126 5 89 7251 58.6% 99.9% 96.2% 98.8% 98.7%

37 359 17 174 6920 67.4% 99.8% 95.5% 97.5% 97.4%

59 244 7 136 7083 64.2% 99.9% 97.2% 98.1% 98.1%

80 70 13 80 7307 46.7% 99.8% 84.3% 98.9% 98.8%

89 72 14 66 7318 52.2% 99.8% 83.7% 99.1% 98.8%

118 38 9 45 7378 45.8% 99.9% 80.9% 99.4% 99.3%

125 1213 82 503 5672 70.7% 98.6% 93.7% 91.9% 92.2%

136 143 14 163 7150 46.7% 99.8% 91.1% 97.8% 97.6%

predictive model is still able to capture more than 50% of the critical events over

the longer prediction window. Tables 4.6 and 4.7 show prediction grid results with

TPR, TNR, PPV , NPV , and ACC values for 20 and 60 seconds ahead predictions

respectively for ten patients. As shown in these tables, the values of TNR for both

prediction intervals are close to 100% for all patients. Also, in general the PPV

results are high in both intervals. In both prediction horizons, the AR model for

Patient No. 10 who didn’t experience any critical desaturation events didn’t predict

any false critical ones.

4.5.3.3 Effect of Pulse Rate (PR)

We have developed software codes to investigate the interactive relationship be-

tween SpO2 and PR measurements. The regularized SpO2 and PR were used to

construct these models. The software codes identify dynamic systems models with

different orders (n,m) using 7500 points of the two time series and the models are
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validated on 7500 points of the time series that are different from the ones used for

modeling. For efficient computation, the software codes select the model order that

yields the lowest RMSE using candidate model orders n and m ranging from 1 to 15.

Best fit modeling results are shown in Figure 4.8. The distribution of the ARX

model coefficients (n,m) shows that the effect of SpO2 historical measurements on

the PR output values is larger than the effect of the historical PR values on the

SpO2 measurements. The effect of PR as an input affecting SpO2 dynamics can be

analyzed through the number (m) and magnitude (bi) of the input coefficients of the

PR measurements. The PR input has a very short memory effect on SpO2 (max

time lag m = 3) and the coefficients have negligible values (max |bi| = 0.00003).

Although the model order could be freely selected, the low values of the coefficients

(bi) represent low dependencies between PR and SpO2 measurements in a model that

assumes PR as an input to SpO2. Including the PR data in predicting SpO2 in linear

models is not effective. In contrast, it can be seen easily that SpO2 is an effective

input to PR.

Therefore, according to this analysis, these two physiological variables might be

best characterized by the SpO2 measurements being an input (cause) and the PR val-

ues as an output (effect). This agrees with previous studies and clinical observations

that indicated pulse rate changes lag behind the changes in the SpO2 (Somers et al.,

1995).

However, our goal is to assess whether better prediction of critical events can

be achieved by incorporating PR dynamics in the SpO2 models. To compare SpO2

prediction results with and without the input from PR dynamics, we considered

an ARX(10,10) and compared prediction results for this model with the previously

obtained prediction results with the AR-10 model. Thus, we tested these models over

60s prediction intervals with the proposed SpO2 prediction grid as shown in Table

4.8. Comparing these results to the previously obtained ones with AR-10 models in
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Figure 4.8: Distribution of Best Fit ARX model coefficients for two modeling choices
for SpO2 and PR. The effect of SpO2 historical measurements on the PR
output values is larger than the effect of the historical PR values on the
SpO2 measurements.

Table 4.7 shows no improvement in the TPR of the predictions of the critical events

in the SpO2 time series of patients (p-value=0.814).

4.5.3.4 Predictive Capability Based on the Longest Horizon that Can

Predict Critical Desaturation Events

We can now look once again at the identified linear models but this time trying to

inspect the ability of these models to predict adverse events by evaluating how early

these models are able to predict critical events. Figure 4.9 shows the histograms of the

duration between the time AR-10 and ARX(10,10) models predict the critical event

and that actual time of occurrence of the desaturation event reflecting how early a

critical event can be predicted using both types of models. The red histogram of

AR-10 predictions show that 46 critical events (56.2% of the total number of events)

were able to be predicted 10 - 60 ahead of time using this type of model. However,

looking at same histogram but for ARX(10,10), no improvement in detecting these

50



Table 4.8: Prediction grid results for 60s prediction windows using ARX(10,10)

P# |A| |B| |C| |D| TPR TNR PPV NPV ACC

10 0 0 0 7470 NA 100% NA 100% 100%

12 672 2 664 6133 50.3% 99.9% 99.7% 90.2% 91.1%

18 125 4 90 7252 58.1% 99.9% 96.9% 98.8% 98.7%

37 358 17 175 6920 67.2% 99.8% 95.5% 97.5% 97.4%

59 233 20 147 7070 61.3% 99.7% 92.1% 98% 97.8%

80 65 7 85 7313 43.3% 99.9% 90.3% 98.9% 99.8%

89 72 6 66 7326 52.2% 99.9% 92.3% 99.1% 99%

118 36 28 47 7359 43.4% 99.6% 56.3% 99.4% 99%

136 134 9 172 7155 43.8% 99.9% 93.7% 97.7% 97.6%

125 1226 65 490 5689 71.4% 98.9% 95% 92.1% 92.6%

adverse events can be noticed due to the inclusion of the PR dynamics in the models

(p-value 0.986). These results also agree with our aforementioned results.

4.6 Summary

This chapter proposed new approaches for evaluating predictions of physiological

signals. The metrics presented evaluate predictions of physiological signals for their

ability to predict critical levels of abnormality within these signals. First, evaluating

predictions over prediction windows of fixed lengths is discussed. Then, evaluating

predictions for the largest horizon that can be predict critical events is considered.

Furthermore, a dynamic systems approach is presented for investigating the inter-

active relationship between multi-channel physiological data. Metrics are defined to

characterize the improvement in prediction using additional data channels.

A case study was presented for evaluating predictions of critical desaturation

events in the SpO2 time series of patients. While the models used in this case study
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Figure 4.9: Duration between AR-10 & ARX-(10,10) predictions and adverse events
occurrence for 10 patients. No improvement on the largest horizon that
can predict a critical desaturation events can be noticed due to the inclu-
sion of the PR dynamics in the models (p-value 0.986).

were standard linear models, they provided the insight needed to show the importance

of introducing prediction evaluation metrics that are more suitable for physiological

systems. The case study presented was based on 15000 points (4.17 hrs) of the data

sets of each patient. The first 7500 points were used for model estimation and the sec-

ond 7500 points were used for evaluating prediction results. Future work may include

evaluating prediction results using a population based model instead of individualized

(patient specific) models to reduce the amount of time needed for monitoring patients

before starting to make real time predictions. Also, future efforts may include consid-

ering shorter data lengths for building models that can be updated over time as more

data becomes available. The prediction results and proposed metrics were presented

with AR models but in our other work we investigated ARMA models and artificial

neural networks (ANN) and no significant improvements in predicting critical events

were found (ElMoaqet et al., 2013a).
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CHAPTER V

Models to Predict Clinically Relevant Events in

Physiological Signals

The work presented in this chapter appears in proceedings of the 2014 IEEE

Conference on Medical Measurements and Applications (ElMoaqet et al., 2014b) and

also has been submitted for journal publication (ElMoaqet et al.).

5.1 Introduction

The research in this chapter advances the state of art in time-series prediction

models by developing novel models optimally designed to capture clinically relevant

patterns in physiological signals. New metrics are considered for optimizing time series

models with respect to predictions of clinically relevant events instead of (standard)

prediction error based metrics.

We consider two problems in this chapter. First, we consider predicting abnormal

deviations from (operating) signal baseline. Second, we consider predicting only crit-

ical signal levels within the time series. The second problem considers more extreme

signal levels which are rare events within physiological signals. Thus, to address the

issue of the relative paucity of such events in physiological data, different statistical

metrics are considered for optimization.
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In both problems, we consider a fixed prediction horizon (k time steps) for de-

veloping the proposed models. Note that small letter k is used to stress that a fixed

prediction horizon is used for developing models. The selection of a fixed horizon

is driven by the clinical interest of evaluating all physiological predictions in a time

series with respect to the same prediction horizon. Moreover, fixing the prediction

horizon addresses the effectiveness of the predictions in capturing the onset of the

events of interest.

5.2 Predicting Abnormal Deviations from Signal Baseline

5.2.1 k-Step Ahead Dynamically Adjusted Threshold Prediction Metric

In the dynamics of physiological time series, abnormal deviations from signal

(operating) baseline are often defined by either a reduction or increase in the signal

value that exceeds a specific percentage or a threshold from the current baseline. In

such cases, the signal baseline is the reference from which deviations are compared.

In fact, abnormal deviations from signal baseline have been used to define several

disease conditions and also have been linked to several health complications (for

example: blood pressure, air flow, and SpO2) (Pool et al., 2009; Swigris et al., 2009;

American Academy of Sleep Medicine, 2007). Depending on the evolving baseline of

the signal and the amount of change in the signal value, these types of events may

or may not result in more extreme critical signal levels. Nevertheless, these events

themselves are of clinical interest to be predicted ahead of time.

Therefore, we define a dynamically adjusted threshold metric to evaluate phys-

iological predictions based on their ability to predict abnormal deviations from the

signal baseline. Without loss of generality, consider an abnormal deviation defined by

a significant reduction from the current signal baseline g(µt), where g is real valued

function that computes the (dynamic) threshold that is clinically considered as an

54



abnormal deviation from the baseline at time t (µt). At each time step t, the dynamic

threshold performance metric can be evaluated by forecasting the signal k steps into

the future to obtain ŷt+k and checking whether or not the predicted signal value is

able to capture abnormal deviations from the current baseline µt.

The proposed performance metric can be expressed as a binary classification func-

tion (Altman and Bland , 1994a,b) that considers all k-steps ahead predictions of a

physiological time series y. The k-steps ahead dynamically adjusted threshold per-

formance metric is shown in table 5.1. The binary function regions A, B, C and D

are assigned to true positive (TP ), false positive (FP ), false negative (FN), and true

negative (TN) regions respectively.

Table 5.1: k-steps ahead dynamically adjusted threshold metric

yt+k ≤ g(µt) yt+k > g(µt)

ŷt+k ≤ g(µt) A B

ŷt+k > g(µt) C D

Furthermore, we can use sensitivity (TPR), specificity (TNR) and positive pre-

dictive value (PPV ) in Equations (4.3-4.5) as statistical measures to evaluate the

performance of the dynamic models in predicting k-steps ahead abnormal events.

5.2.2 Case Study: A Novel Model for Predicting Abnormal Desatura-

tions in SpO2

Having developed the metric that characterizes the performance of prediction

models in capturing abnormal deviations from signal baseline, we will now use it in

developing a time series model that optimizes this metric with respect to predictions

of such clinical events within the time series.

The proposed model is an auto-regressive prediction model implementing the di-

rect prediction strategy such that the k-step ahead prediction at any time t can be
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predicted as a linear combination of the last n available measurements as follows

ŷt+k =
n∑
i=1

φiyt−i+1 (5.1)

where φ1, φ2, ..., φn are coefficients of the k-step ahead prediction model. Since the

proposed model implements direct prediction strategy (discussed in Section 2.2.2),

the model coefficients φ1, φ2, ..., φn depend on the prediction horizon of interest k.

Recognizing that the clinical definition of the baseline abnormal deviations needs

to be incorporated in the model optimization, we will present the model development

with a case study of predicting abnormal deviations from SpO2 baseline. Here, we

need to clinically define the SpO2 baseline and abnormal deviations from this baseline.

SpO2 baseline: Following Oliver and Flores-Mangas (2006) and Lee et al. (2004),

the baseline can be computed as the moving average over a window of 5 minutes of

SpO2 data after all the data lower than the ninety-fifth quartile are filtered such that

only the top 5% of the samples are considered for calculating the mean.

Abnormal deviations from SpO2 baseline: Following Berry et al. (2012) and

Swigris et al. (2009), abnormal events in the SpO2 time series are desaturations in

which SpO2 falls 4 points or more below the signal baseline . Thus, the (dynamic)

threshold for abnormal events at each time step t is defined by g(µt) = µt− 4. It can

be noticed from the SpO2 baseline definition that no significant changes in baseline

are expected in k time steps (near future). Thus, we will compare predictions at time

t+ k with the dynamic threshold computed at the current time t since this threshold

can be readily computed using the available SpO2 measurements.

Figure 5.1 illustrates the dynamically adjusted threshold compared to the critical

signal threshold over two SpO2 windows for two patients. The SpO2 time series in

Figure 5.1(a) shows abnormal desaturations that breach the adaptive threshold while
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no abnormal desaturations exist over the SpO2 signal shown in Figure 5.1(b).
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(a) Dynamically adjusted threshold captures abnormal desaturation levels in the SpO2 time series of
a patient that experiences a high frequency of desaturation events.
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(b) No noticeable changes are observed in the dynamically adjusted threshold and no abnormal events
noticed for a patient with a low frequency of destauration events.

Figure 5.1: Illustration of the dynamically adjusted threshold g(µt) compared to the
critical signal threshold ycr for the SpO2 time series of two patients.

To maximize the ability to predict abnormal deviations from signal baseline in k-

step ahead predictions, we formulated a mixed integer programming problem (MIP).

The elements of this optimization problem are discussed as follows.
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5.2.2.1 Parameters/Inputs

The inputs to the optimization problem are as follows.

• yt ∈ R, t = 1, ...N ; regularized SpO2 signal measurements in the time period

{1, ..., N} (training data).

• zt ∈ {0, 1}, t = 1, ..., N − k; indicators for yt whether or not an abnormal

desaturation event happens at yt+k (i.e dynamic threshold check for observed

signal).

zt =


1, if yt+k ≤ µt − 4.

0, otherwise.

(5.2)

5.2.2.2 Decision variables

The decision variables of the model optimization problem are defined as follows.

• φi , i = 1, .., n; coefficients of the proposed dynamic model of order n.

• ŷt+k ∈ R, t = n, ..., N − k; k-step ahead predicted SpO2 measurements at each

time step t.

• ẑt ∈ {0, 1}, t = n, ..., N − k; indicators for ŷt+k whether or not an abnormal

desaturation event is predicted at time t + k (i.e. dynamic threshold check for

predicted measurements).

ẑt =


1, if ŷt+k ≤ µt − 4.

0, otherwise.

(5.3)
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5.2.2.3 Optimization Model: Minimizing FN

To optimize the metric in Table 5.1, we will consider in this problem minimizing

FN (i.e., minimize instances at which the k-step ahead prediction fails to predict an

abnormal signal level that occurs in the reference SpO2 signal at this horizon). Note

that minimizing FN (Region C) is equivalent to maximizing TP (Region A) of the

prediction grid in Table 5.1. The optimization model can be expressed as follows.

min
N−k∑
t=n

(1− ẑt)zt︸ ︷︷ ︸
FN(Region C)

(5.4)

subject to:

ŷt+k =
n∑
i=1

φiyt−i+1 (5.5)

0 ≤ ŷt+k ≤ 100, t = n, .., N − k (5.6)

ẑt ≥ (µt − 4− ŷt+k)/100, t = n, ..., N − k (5.7)

1− ẑt ≥ (ŷt+k − µt + 4)/100, t = n, ..., N − k (5.8)

ẑt ∈ {0, 1}, t = n, ..., N − k (5.9)

In this model, objective function (5.4) is a linear function. Equation (5.5) expresses

the k-step ahead SpO2 prediction at each time t as a linear combination of the n

most recently observed measurements up to time t. Inequality (5.6) ensures the

predicted oxygen saturation level is neither negative nor exceeds the max possible

SpO2 saturation level. Inequalities (5.7, 5.8) provide a compact representation of

binary labels ẑt based on k-step ahead predictions ŷt+k at each time step t. This

representation is equivalent to the definition of ẑt in Equation (5.3) but is more

convenient to optimization solvers.

It should be mentioned here that the set up of this optimization problem prevents

the solution that trivially predicts abnormal signal levels at all time steps resulting in
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TPR = 100% while not being able to predict any normal signal levels (TNR = 0% or

equivalently a false positive rate FPR = 100%− TNR = 100%. First, the objective

function is set to a cost minimization problem. Second, the inequalities (5.7, 5.8) are

defined such that zt and ẑt are set to 1 whenever yt+k and ŷt+k respectively represent

an abnormal signal level and zero otherwise. Although FP predictions (Region B) are

not explicitly included in the optimization model, the formulation of the optimization

problem implicitly rejects trivial prediction models.

5.2.3 Results and Discussion

We used SpO2 signals described in Section 3.1. For the analysis of this study,

2500 continuous points were used for constructing predictive dynamic models from

the SpO2 time series of each patient and distinct 2500 points were used for evaluating

predictions. To account for inter-patient variability, models were individualized for

each patient. For demonstrating our results, 10 representative patients are considered

here.

In Section 4.5.3.1, we have shown that an AR-10 is sufficient to model the dy-

namics of SpO2 signals and that higher order models might not be needed for them.

Therefore, in this study, we fix the order for the proposed model to n = 10 to com-

pare its performance with standard AR model of the same order. For illustrating

results, we use a prediction horizon of 20 seconds (k = 10) to construct the proposed

predictive models and compare them with the performance of the standard AR-10

models in predicting abnormal desaturations in the blood.

5.2.3.1 Minimizing FN (Region C) of the Dynamic Threshold Metric

Considering the objective function in Equation (5.4), we can fit models with max-

imized TPR. Figure 5.2 compares 20s ahead predictions using the proposed AR-10

model with predictions obtained using standard AR-10 model for Patients Nos. 68,
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83 and 125. The red line in each of the subplots in the figure represents the dy-

namic threshold with respect to SpO2 baseline at different time instances. As seen

in this figure, the 20s ahead predictions obtained from the proposed model, shown in

green, are better able to detect regions of abnormal desaturations through magnify-

ing the prediction response in areas of abnormal events to maximize the number of

true predictions in these regions. Thus, significant under-predictions in some areas

of abnormal events as well as significant over-predictions in some areas of normal

SpO2 levels are noticed compared to standard AR-10. Nevertheless, the objective is

to maximize the ability to predict abnormal SpO2 events rather than minimizing the

prediction error.

RMSE values for predictions obtained from both types of models are shown in the

last column of Tables 5.2 and 5.3. As expected, RMSE values for predictions obtained

from proposed model are not as good as RMSE from standard AR-10 model. For

Patients Nos. 68, 83 and 125, Figure 5.2 illustrates the increase in RMSE. On the other

hand, the proposed model has better ability to capture abnormal changes of SpO2

in blood. Using the proposed AR-10, prediction sensitivity (TPR) increases from

69.7%, 69.4% and 84.7% to 95.5%, 99.1% and 98.9% respectively showing significant

improvement in predicting clinically relevant events.

In order to evaluate the overall predictive capability of the proposed AR-10 model

compared to the standard AR-10 model, we need to construct the dynamic threshold

prediction grid and analyse the performance of the predictive models through the

statistical measures of the grid TPR, PPV and TNR. Tables 5.2 and 5.3 show

dynamic grid results for 20s ahead predictions obtained from proposed AR-10 and

standard AR-10 respectively. As shown in these tables, there is a significant increase

in prediction sensitivity (TPR) for the proposed AR-10 over the standard AR-10.

This increase in TPR indicates that the proposed model is better able to explain the

dynamic behavior for abnormal changes of SpO2 in blood. Furthermore, although
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Figure 5.2: 20s ahead predictions using proposed AR-10 compared to standard AR-10
for P# 68, 83, 125

there is a slight decrease in prediction specificity (TNR) for the proposed model, it is

still able to identify regions of normal behavior of SpO2 dynamics in an acceptable way.

However, inspecting the positive predictive values (PPV ) shows that the improved

performance in predicting abnormal events is accompanied with increase in the rate of

false predictions reflected by decreased PPV . These results show that the objectives

of minimizing both false negatives and false positives (regions C and B in the dynamic

grid) are competing ones.

5.2.3.2 Incorporating FP (Region B of the Dynamic Threshold Metric)

Explicitly in the Optimization Model

To investigate the ability to improve the prediction performance by explicitly

incorporating FP in the optimization model, we modified the objective function in

Equation 5.4 as follows
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Table 5.2: 20s ahead dynamic grid results and RMSE for proposed AR-10 model

P# |A| |B| |C| |D| TPR PPV TNR RMSE

9 241 262 26 1812 90.3% 47.9% 87.4% 1.36

10 181 21 55 2084 76.7% 89.6% 99% 0.47

12 275 267 12 1787 95.8% 50.7% 87% 1.28

42 222 34 56 2029 79.9% 86.7% 98.4% 0.7

59 106 84 5 2146 95.5% 55.8% 96.2% 0.69

68 211 204 10 1916 95.5% 50.8% 90.4% 1.17

83 214 216 2 1909 99.1% 49.8% 89.8% 1.13

89 158 133 18 2032 89.8% 54.3% 93.9% 0.78

99 199 31 8 2103 96.1% 86.5% 98.5% 0.95

125 259 197 3 1882 98.9% 56.8% 90.5% 1.92

Table 5.3: 20s ahead dynamic grid results and RMSE for standard AR-10 model

P# |A| |B| |C| |D| TPR PPV TNR RMSE

9 162 75 105 1999 60.7% 68.4% 96.4% 0.67

10 192 17 44 2038 81.4% 91.9% 99.2% 0.37

12 219 71 68 1983 76.3% 75.5% 96.5% 0.63

42 216 33 62 2030 77.7% 86.7% 98.4% 0.62

59 84 22 27 2208 75.7% 79.2% 99% 0.42

68 154 64 67 2056 69.7% 70.6% 97% 0.55

83 150 28 66 2097 69.4% 84.3% 98.7% 0.50

89 113 21 63 2144 64.2% 84.3% 99% 0.49

99 198 22 9 2112 95.7% 90% 99% 0.63

125 222 23 40 2056 84.7% 90.6% 98.9% 0.42

63



min
N−k∑
t=n

(1− ẑt)zt︸ ︷︷ ︸
FN(Region C)

+ ẑt(1− zt)︸ ︷︷ ︸
FP (Region |B|)

(5.10)

The modified objective function in Equation (5.10) is a two sided objective function

that minimizes both FN (Region C) and FP (Region B) of the dynamic threshold

metric. The goal of the optimization model is to fit the time series model by mini-

mizing the number of mismatches between the predicted and reference k-step ahead

SpO2 values. The solution returned for the optimization problem in this setting was a

null model that avoids making any predictions to maintain the lowest number of false

predictions. Indeed, maximizing the sensitivity of the abnormal level predictions is

accompanied with a larger increase in false predictions. Thus, the total value of the

objective function with contributions from the two terms in Equation (5.10) is higher

than the one returned by a null model that simply suggests to predict the mean of

the signal at each time step.

5.2.4 Summary

This section presented a new approach for modeling and predicting the dynamics

of physiological signals. Recognizing the clinical definition for abnormal changes in a

physiological signal, a performance metric based on an adaptive threshold is defined to

evaluate predictive models for their ability to capture baseline abnormal deviations

in a physiological signal. Then, the new performance metric is used to identify a

novel modeling framework that optimizes this metric. As a case study, the modeling

approach was applied to SpO2 time series to develop auto-regressive models that

maximize the ability to predict abnormal events over a prediction horizon of k = 20s.

Our results show that the proposed model is better able to capture the dynamic

behavior for abnormal changes of SpO2 compared to standard autoregressive models.

Results show that minimizing false negative predictions is accompanied with an
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increase in the rate of false positive prediction due to the competing nature between

the regions of false negatives and true positives. Future work may include improving

the solution with a modified cost function that allows incorporating false positive

predictions explicitly in the optimization problem. Alternatively, the false positive

predictions may be constrained at a fixed level and then a prediction model can be

fitted to maximize prediction sensitivity while not exceeding the maximum allowed

rate of false positives.

5.3 Predicting Critical Signal Levels

In this section, we consider the problem of developing time series models optimized

with respect to predictions of critical levels of abnormality within a physiological time

series. First, a performance metric is proposed for evaluating multi-step ahead pre-

dictions of critical levels of abnormality over a fixed prediction horizon k time steps.

The proposed metric addresses the fact that it is more important to predict regions

of critical signal levels than the absolute amplitudes of these signals. Subsequently,

this metric is used to build a framework for optimizing auto-regressive models ca-

pable of predicting regions of clinical interest in physiological signals. The model

structure used is a standard auto-regressive structure that implements a direct pre-

diction strategy but the major contribution is optimizing this predictive model to

capture clinically relevant events in time series. To address the issue of the relative

paucity of critical events in physiological data, different statistical metrics are consid-

ered for optimization. To account for inter-patient variability, the proposed models

are individualized for each patient.

5.3.1 k-Step Ahead Prediction Metric for Critical Signal Levels

k-step ahead prediction has been typically used in evaluating predictive models

of physiological time series (Sparacino et al., 2007; Reifman et al., 2007; Gani et al.,
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2009). The classical definition of this metric doesn’t address the ability to predict

critical signal levels. This can be further illustrated by looking at Figure 5.3 where

we would like to perform multi-step ahead prediction for the signal y at time t using

the observed time history of y. For example, ŷt+k2 ≤ ycr is needed for this prediction

to be successful. On the other hand, ŷt+k1 > ycr indicates that ŷt+k1 mispredicts the

critical signal value yt+k1 ≤ ycr.

Figure 5.3: Modified k-step ahead Metric

Accordingly, we need to modify the traditional k-step ahead definition to ensure

predicting clinically relevant regions in physiological signals. Considering a physio-

logical time series in the interval [ti, tf ], we can denote the occurrence of a critical

signal level k steps after time instance t ∈ [ti, tf ] by Equation (5.11)

γt =


+1, if yt+k ≤ ycr.

−1, if yt+k > ycr.

(5.11)

66



Similarly, we can denote the prediction state by γ̂t defined by Equation (5.12)

γ̂t =


+1, if ŷt+k ≤ ycr.

−1, if ŷt+k > ycr.

(5.12)

Considering a critical signal threshold ycr has been breached k steps from time in-

stance t, our target is to evaluate whether or not the prediction ŷt+k is able to cap-

ture this critical signal threshold. Repeating this recursively to test all time instances

t ∈ [ti, tf ] results in the k-step ahead prediction grid shown in Figure 5.4 where points

in Regions A and D on the main diagonal represent points of good prediction, points

in Region C off-diagonal represent the ones at which the model fails to detect critical

events, and points in Region B off-diagonal represent false prediction points. Regions

A, B, C, D are assigned as the true positive (TP ), false positive (FP ), false negative

(FN), and true negative (TN) areas respectively.

Figure 5.4: Proposed k-step ahead prediction metric.

The proposed metric can be considered as a statistical binary classification func-

tion (Altman and Bland , 1994a,b) with sensitivity (TPR), specificity (TNR), positive

predictive value (PPV ), and accuracy (ACC) in Equations (4.3-4.5, 4.7) used as sta-

tistical measures to evaluate its performance.
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Figure 5.5: Predicting clinically relevant regions

5.3.2 A Framework for Optimizing k-Step Ahead Predictions of Critical

Patterns

Having redefined the k-step ahead metric for threshold based physiological signals,

we will next use it in identifying an AR modeling framework for optimizing models for

critical signal levels in these signals. The inputs to the proposed model at each time

instance t will be the n most recent observations while the output will characterize

the physiological state of ŷt+k instead of the predicted value. We can express this

model by Equation (5.13)

ẑt =
n∑
i=1

φiyt−i+1 = ΦTYt (5.13)

where Φ = [φ1...φn] is a vector of autoregressive model coefficients of length n and

Yt = [yt....yt−n+1] contains the n most recent observation up to time t. ẑt > 0 indicates

prediction of a critical signal level (γ̂t = 1) while ẑt < 0 indicates a normal prediction

(γ̂t = −1). Using this formulation will allow identifying models optimized to predict

regions of clinical relevance as shown in Figure 5.5.
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We will pose the model identification problem as a support vector machine (SVM)

problem (Bishop et al., 2006) in which the target is to identify the nth dimensional

decision hyperplane defined by Φ that maximizes the margin for predictions of crit-

ical and normal signal levels while correctly classifying them. Recognizing that the

distance at any prediction instance t to the decision surface is given by γtΦTYt
‖Φ‖ , the

maximum margin solution is given by Equation (5.14)

argmax
Φ

{
1

‖Φ‖
min
t

[
γtΦ

TYt

]}
(5.14)

The solution of this optimization problem would be very complex and so it is converted

to an equivalent quadratic programming (QP) problem (Bishop et al., 2006) as shown

in Equations (5.15, 5.16)

argmin
Φ

1

2
‖Φ‖2 (5.15)

s.t. γt(Φ
TYt) ≥ 1, t = n, ..., N − k (5.16)

In practice, however, the predictions of critical and normal signal levels might not

be linearly separable in the space of auto-regressive inputs. To allow misclassified

predictions, the objective function (5.15) needs to be modified to a soft support

vector machine that maximizes the margin while softly penalizing the misclassified

predictions as shown in Equation (5.17)

argmin
Φ,ζt

1

2
‖Φ‖2 + α

N−k∑
t=n

ζt (5.17)

s.t. γt(Φ
TYt) ≥ 1− ζt, t = n, ..., N − k (5.18)

ζt ≥ 0, t = n, .., N − k (5.19)
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where ζt, t = n, ..., N − k are slack variables introduced to relax the hard margin

constraint and allow misclassified predictions such that 0 ≤ ζt ≤ 1 indicates a correct

prediction at time t while ζt > 1 indicates a misclassified prediction at this time in-

stance. α is a regularization parameter that controls the trade-off between complexity

of decision hyperplane and the number of misclassified predictions. Thus, Equation

(5.17) can be solved to obtain the AR model that minimizes misclassified predictions

(maximize ACC in Equation (4.7)). Since the critical levels of abnormality are gen-

erally rare events within the time series of patients, this solution will not address the

ability to predict critical signal levels. To account for the statistical imbalance in this

problem, the formulation was adjusted by adding different weights for both classes as

shown in Equation (5.20)

arg minΦ,ζt

1

2
‖Φ‖2 + αβ+

∑
t:γt=1

ζt + αβ−
∑

t:γt=−1

ζt (5.20)

s.t. γt(Φ
TYt) ≥ 1− ζt, t = n, ..., N − k (5.21)

ζt ≥ 0, t = n, .., N − k (5.22)

where β+ and β− are weighting parameters for the predictions of critical and normal

signal levels respectively.

5.3.3 Optimizing Prediction Framework

The quadratic optimization problem in Equation (5.20) can be solved by con-

structing the Lagrange dual and solving the dual optimization problem to identify

the predictive model. On the other hand, we need to optimally identify this model

to maximize the ability to predict clinically relevant events. To do so, we first need

to tune the objective function regularization parameter (α), class weights (β+, β−) as

well as selecting the optimal model order (n).
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The classical way of considering ACC (Equation (4.7)) as a performance objective

would not lead to the maximum ability to predict the critical signal levels. Naturally,

tuning the objective function to maximize the sensitivity would be the ideal solu-

tion. However, the fact that the four regions of the prediction grid are collectively

exhaustive ones would indicate that maximizing performance over any region in the

grid would affect performance over the other ones. Thus, we identified AR models

by tuning the proposed model framework with respect to five different performance

measures considering different regions of the prediction grid.

M1: Maximizing Sensitivity (TPR) This performance measure considers true

positives (region A of the prediction grid) only to identify models with best ability

to predict critical signal levels in the patient’s time series.

M2: Maximizing Precision (PPV) This performance measure considers false

positives (region B of the prediction grid) only and so leading to models with the

fewest possible false predictions.

M3: Combining Sensitivity and Specificity (BAC) Maximizing the sensitivity

alone would potentially affect the specificity and so we consider optimizing our models

for maximum mathematical mean of sensitivity and specificity which is the Balanced

Accuracy (BAC) (Garćıa et al., 2009), defined by Equation (5.23).

BAC =
TPR + TNR

2
(5.23)

M4: Combining Sensitivity and Precision (Fµ-score) The Fµ-score (Powers ,

2011) was used to consider both true and false positives (regions A and B of the
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prediction grid). For any µ > 0, The Fµ-score can be expressed by Equation (5.24)

Fµ = (1 + µ2)
TPR.PPV

TPR + µ2PPV
(5.24)

where µ > 1 weights sensitivity higher than precision while µ < 1 emphasizes precision

more than sensitivity. The selection of µ depends on the nature of application and how

important is maximizing sensitivity of the predictions compared to their precision.

In this dissertation, results for F3-score are reported.

M5: Maximizing Area Under Receiver Operating Characteristic Curve

(AUC) The ROC curve is a graphical plot used to illustrates the performance of

a classifier as its classification threshold is varied (Zweig and Campbell , 1993). The

curve is created by plotting the TPR against the false positive rate (FPR = 100%−

TNR) at various threshold settings.

5.3.4 k-Step Ahead Prediction Algorithm

To simplify tuning the objective function, we set β− = 1 and β+ to be proportional

to N−
N+

where N+ and N− are the number of positive and negative labels respectively

(critical and normal signal levels associated with ycr). Using this approach enables

cost-sensitive learning (Tang et al., 2009) and Equation (5.20) can now be expressed

as follows

argmin
Φ,ζt

1

2
‖Φ‖2 + αη

N−
N+

∑
t:γt=1

ζt + α
∑

t:γt=−1

ζt (5.25)

s.t. γt(Φ
TYt) ≥ 1− ζt, t = n, ..., N − k (5.26)

ζt ≥ 0, t = n, .., N − k (5.27)
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where η controls the class weight for the critical predictions. The smallest allowable

value ηmin = N+

N−
will assign equal weights to both classes. η ≤ ηmin were not con-

sidered since these will provide higher weights on predictions of normal signal levels.

Note that this formulation assumes that critical signal levels exist within the data

available for developing the prediction model.

The prediction performance of the proposed AR modeling approach (with respect

to any of the performance measures) directly depends on the tunable parameters

of the objective function (η and α). Very small α values likely generate underfitted

models incapable of predicting critical signal levels while very high α values will likely

generate overfitted models that can’t generalize over independent data sets. Also, the

weighting parameter η needs to be tuned with respect to the performance measure of

interest. Larger η values are more likely to generate models with higher TPR than

lower ones by giving higher weight to the predictions of critical signal levels. Unlike

previous studies that select model order based on the error between predicted and

reference signals, we consider selecting the model order with respect to the ability to

predict critical signal levels in time series. Algorithm 4 was used for tuning α, η, n,

as well as training and validating the proposed AR modeling framework. A nested

cross validation scheme was used for selecting the model order n and the objective

function tunable parameters (η and α). The algorithm starts by specifying the desired

prediction horizon k as well as the range of search for n, η, and α. Selecting any of

the performance measures (Mi, i = 1, ...5) as a training objective, the algorithm

uses K-fold cross validation to select the parameters that maximize the performance

with respect to the desired training objective. Finally, the final model is applied to

an independent test set in which the predictions are evaluated with respect to all

performance measures M1, ...M5.
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Algorithm 4 AR models optimized for k-step ahead predictions of critical signal
levels
Data: Training: TrData, Testing: TsDat
Input: k, prediction horizon
Input: αtest = {αmin, ..., αmax}
Input: ηtest = {ηmin, ..., ηmax}
Input: ntest = {nmin, ..., nmax}
Input: K for K-fold cross validation
Input: i for training performance Mi, i = 1, ..., 5
Output: Mi on TrDat
Output: M1,M2, ...,M5 on TsDat
1: Compute N+, N− from TrDat
2: for each α ∈ αtest do
3: for each η ∈ ηtest do
4: for each n ∈ ntest do
5: for L = 1 to K do
6: Hold out data in fold L for validation
7: Solve Eq. (5.25) using TrDat \ L
8: Evaluate Mi on fold L (MiL)
9: end for

10: Mi(α, η, n) =

K∑
L=1

MiL

K

11: end for
12: end for
13: end for
14: αMi, ηMi, nMi = argmaxα,η,nMi
15: Solve Eq. (5.25) with (αMi, ηMi, nMi ) using TrDat return Mi on TrDat &

M1,M2, ...,M5 on TsDat
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5.3.5 Case Study: Predicting Critical Desaturations in SpO2 Time Series

We used SpO2 and PR data (Section 3.1) for 119 postoperative adult patients

generated by the pulse oximetry system. For each patient, 13, 000 points were used for

training SpO2 predictive models and separate 2, 000 points were used for reporting test

results. We demonstrate results for k = 20s ahead predictions of critical desaturations

characterized by the critical SpO2 threshold ycr = 89%. To illustrate the results of the

proposed prediction algorithm, 10 representative patients were selected with major

critical events in both the training and test sets.

5.3.5.1 Prediction Framework Optimization Results

Using Algorithm 4, an exhaustive search was performed for the 3D space formed

by the different parameters’ choices in order to select the optimal ones with regard to

the 5 statistical measures presented earlier. The range of α tested was {e−9, ..., e+1}

with 11 evenly spaced values in the log space between e−9 and e1 while the range of

η tested was from ηmin = N+

N−
to ηmax = 1 with a step size of 0.05. The range of n

tested was from 1 to 10 with a step size of 1. To make sure the models are trained

sufficiently to tune these parameters, we used a 10-fold cross validation (K = 10).

Upon completion of cross validation, the set of parameters that maximize the

prediction performance along each statistical measure are used to build predictive

models with the whole training data. Finally, the models were evaluated on the test

sets.

For the critical threshold ycr = 89% with SpO2 time series, our results show

that the best ability to predict critical signal levels was achieved by maximizing over

the M1 = TPR and M3 = BAC performance measures. Results for optimizing

the models with each of the performance measures M1,M2, ...,M5 are presented

hereafter followed by an in depth discussion for these results.
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5.3.5.2 Maximal Sensitivity (M1) AR-Models

Table 5.4: Maximal TPR (M1) AR models

Optimal α, η, n for max Sensitivity AR models

P# log(α) η n

12 1 0.81 9

18 1 0.91 6

21 1 0.86 5

63 1 0.80 9

86 1 0.92 9

93 1 0.82 6

94 1 0.97 9

97 1 0.86 7

111 1 0.95 9

113 1 0.99 9

The optimal set of parameters that maximize TPR for each patient are shown in

Table 5.4. High α values were needed to increase the cost of missed predictions as

well as high η values to increase the weights of the positive class significantly over the

negative class to obtain the highest possible TPR.

Results for maximal TPR AR models are shown in Table 5.5 where the TPR

performance is noticed to be excellent. TNR and BAC are generally high. The AUC

values for the predictions are also excellent. However, the high TPR is accompanied

with a decrease in PPV which also affects the F3-score values.
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Table 5.5: Training and Test Performance for Maximal Sensitivity (M1) AR Models

Maximal Sensitivity (M1) AR Models

P#
TrDat Performance TsDat Performance

TPR TPR TNR PPV BAC F3-Score AUC

12 96.9% 98.2% 51.1% 35.7% 74.6% 0.84 0.88

18 100.0% 82.5% 95.3% 42.3% 88.9% 0.75 0.94

21 95.1% 93.1% 96.5% 28.1% 94.8% 0.76 0.99

63 100.0% 100.0% 98.4% 11.4% 99.2% 0.56 1.00

86 98.6% 100.0% 87.5% 7.1% 93.8% 0.43 0.97

93 96.8% 85.0% 97.1% 23.0% 91.1% 0.67 0.96

94 96.0% 94.3% 94.0% 57.7% 94.2% 0.89 0.99

97 92.5% 100.0% 94.5% 6.0% 97.3% 0.39 0.99

111 93.1% 100.0% 98.8% 14.3% 99.4% 0.63 1.00

113 88.8% 97.0% 92.4% 40.2% 94.7% 0.85 0.98
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5.3.5.3 Maximal Precision (M2) AR-Models

The optimal set of parameters that maximize PPV for each patient are shown in

Table 5.4. Generally lower α values compared to maximal TPR models were needed

which decreased the cost of missed predictions to identify these models. very low η

values (≈ ηmin) were needed to maximize the precision of the AR models indicating

that highest precision occur with nearly equal class weights.

Results for maximal precision AR model are shown in Table 5.7. High PPV

values are generally not achievable with a critical signal level ycr = 89%. Indeed,

using PPV as a modeling metric would lead to models that ignore predictions of

critical patterns similar to the cases of Patients Nos. 63, 86, 97, 111, 113. Its worthy

to be mentioned that higher PPV could have been obtained with η < ηmin but these

will further decrease TPR. Nevertheless, TNR of the predictions are excellent and

the AUC values are also high while low BAC and F3-scores are noticed.

Table 5.6: Maximal PPV (M2) AR models

Optimal α, η, n for max-precision AR models

P# log(α) η n

12 -1 0.06 7

18 -7 0.06 6

21 1 0.01 5

63 -6 0.05 6

86 0 0.07 6

93 1 0.02 7

94 1 0.02 6

97 -4 0.11 5

111 -4 0.05 8

113 -4 0.04 7
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Table 5.7: Training and Test Performance for Maximal Precision (M2) AR Models

Maximal Precision (M2) AR Models

P#
TrDat Performance TsDat Performance

PPV TPR TNR PPV BAC F3-Score AUC

12 50.0% 15.0% 97.4% 61.9% 56.2% 0.16 0.85

18 38.5% 33.8% 99.3% 65.9% 66.5% 0.35 0.85

21 95.0% 13.8% 99.8% 50.0% 56.8% 0.15 0.98

63 66.7% 0.0% 100.0% NA 50.0% NA 0.79

86 55.4% 0.0% 99.9% NA 50.0% NA 0.98

93 93.3% 65.0% 99.9% 86.7% 82.4% 0.67 0.95

94 88.2% 3.8% 99.9% 75.0% 51.8% 0.04 0.98

97 50.0% 0.0% 100.0% NA 50.0% NA 0.96

111 66.7% 0.0% 100.0% NA 50.0% NA 0.98

113 84.2% 0.0% 100.0% NA 50.0% NA 0.96

5.3.5.4 Maximal BAC (M3) AR-Models

The optimal set of parameters that maximize BAC for each patient are shown

in Table 5.8. As shown in this table, optimal α values were similar to maximal

TPR models but generally lower η values than maximal TPR models were needed

to maximize BAC.

Results for maximal BAC AR models are shown in Table 5.9. High TPR and

TNR are noticed and slightly improved PPV and F3-score compared to maximal

sensitivity AR models. High AUC values were also noticed with these models.
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Table 5.8: Maximal BAC (M3) AR models

Optimal α, η, n for max BAC AR models

P# log(α) η n

12 1 0.81 9

18 1 0.86 9

21 1 0.66 6

63 1 0.80 9

86 1 0.77 10

93 1 0.67 9

94 1 0.82 9

97 1 0.96 10

111 1 0.95 10

113 1 0.99 9

5.3.5.5 Maximal Fµ-score (M4) AR-models

Setting µ = 3 generated models with generally better results on the sensitivity

side of the predictions compared to lower µ values. The optimal set of parameters

that maximize F3-score for each patient are shown in Table 5.4. Optimal η values are

higher than the corresponding ones of maximal PPV models and lower than those of

the maximal TPR models.

Results for maximal F3-score AR models are shown in Table 5.10. Of course, the

prediction sensitivities are not as good as maximal TPR models but on the hand,

using the F3 score generally improved the precision. Its also noticed that Fµ with

µ > 3 might be needed for Patient Nos. 63, 96 to improve TPR. The personalized

modeling framework provides flexibility to select the best Fµ-score that would result

in acceptable TPR and PPV .
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Table 5.9: Training and Test Performance for Maximal BAC (M3) AR Models

Maximal BAC (M3) AR Models

P#
TrDat Performance TsDat Performance

BAC TPR TNR PPV BAC F3-Score AUC

12 94.8% 98.2% 51.1% 35.7% 74.6% 0.84 0.88

18 98.6% 81.3% 95.8% 44.5% 88.5% 0.75 0.92

21 96.1% 93.1% 97.8% 38.0% 95.4% 0.81 0.99

63 98.7% 100.0% 98.4% 11.4% 99.2% 0.56 1.00

86 94.4% 89.5% 88.5% 6.9% 89.0% 0.41 0.97

93 95.6% 85.0% 97.4% 24.6% 91.2% 0.68 0.96

94 94.0% 94.3% 94.4% 59.3% 94.4% 0.89 0.99

97 93.1% 100.0% 95.0% 6.5% 97.5% 0.41 0.99

111 93.1% 100.0% 98.9% 15.4% 99.4% 0.65 1.00

113 92.3% 97.0% 92.4% 40.2% 94.7% 0.85 0.98
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Table 5.10: Training and Test Performance for Maximal F3-score AR Models

Maximal F3-Score AR Models

P#
TrDat Performance TsDat Performance

F3-Score TPR TNR PPV BAC F3-Score AUROC

12 0.58 65.6% 85.4% 55.4% 75.5% 0.64 0.87

18 0.79 70.0% 97.0% 49.1% 83.5% 0.67 0.90

21 0.80 79.3% 99.5% 71.9% 89.4% 0.78 0.99

63 0.76 0.0% 100.0% NA 50.0% NA 1.00

86 0.68 84.2% 93.8% 11.5% 89.0% 0.52 0.98

93 0.76 80.0% 98.9% 42.1% 89.4% 0.73 0.95

94 0.78 91.2% 96.2% 67.4% 93.7% 0.88 0.99

97 0.61 28.6% 99.3% 12.5% 63.9% 0.25 0.99

111 0.55 100.0% 99.4% 25.0% 99.7% 0.77 1.00

113 0.82 91.0% 95.2% 50.0% 93.1% 0.84 0.98
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Table 5.11: Maximal F3-score (M4) AR models

Optimal α, η, n for max F3-score AR models

P# log(α) η n

12 1 0.11 8

18 0 0.11 8

21 1 0.16 6

63 1 0.05 6

86 1 0.32 10

93 1 0.17 10

94 1 0.32 10

97 1 0.16 8

111 1 0.20 8

113 1 0.59 9

5.3.5.6 Maximal AUC (M5) AR-Models

The optimal set of parameters that maximize AUC for each patient are shown in

Table 5.13. Optimal η values are either very high similar to the corresponding ones

in the maximal TPR models or very low and close to those of the maximal PPV

models.

Results for maximal AUC models ares shown in Table 5.12. Excellent AUC

values are noticed but the TPR values varied from excellent (100%) to very poor

(0%). Of particular interest to note that the AUC as a modeling metric doesn’t

guarantee very good TPR and may result in models that completely ignore critical

predictions. Nevertheless, the high AUC could be always be utilized to select a

different classification threshold at which these models can perform with higher TPR

while maintaining an acceptable FPR.
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Table 5.12: Training and Test Performance for Maximal AUC (M5) AR Models

Maximal AUC (M5) AR Models

P#
TrDat Performance TsDat Performance

AUC TPR TNR PPV BAC F3-Score AUC

12 0.98 0.0% 100.0% NA 50.0% NA 0.89

18 1.00 81.3% 95.7% 43.9% 88.5% 0.75 0.93

21 0.98 93.1% 95.9% 25.2% 94.5% 0.73 0.99

63 1.00 100.0% 98.3% 10.5% 99.1% 0.54 1.00

86 0.98 0.0% 100.0% NA 50.0% NA 0.99

93 0.99 85.0% 97.2% 23.6% 91.1% 0.67 0.96

94 0.98 94.3% 93.8% 56.8% 94.1% 0.88 0.99

97 0.99 0.0% 100.0% NA 50.0% NA 0.99

111 0.99 0.0% 100.0% NA 50.0% NA 1.00

113 0.97 97.0% 92.9% 42.0% 95.0% 0.86 0.98
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Table 5.13: Maximal AUC (M5) AR models

Optimal α, η, n for max AUC AR models

P# log(α) η n

12 0 0.01 7

18 1 0.91 10

21 1 0.96 9

63 1 0.90 9

86 1 0.02 10

93 1 0.97 9

94 1 0.97 6

97 1 0.01 5

111 1 0.00 9

113 1 0.99 8

5.3.6 Discussion of Results

For the critical threshold ycr = 89% with SpO2 time series, our results show that

the best ability to predict critical signal levels was achieved by maximizing over the

TPR and BAC performance measures. Although there are differences between n

values that maximize BAC and TPR, the most noticeable effect on these measures

was through η values. Figure 5.6 shows η effect on the cross validation TPR, BAC,

and AUC for Patient No. 21 while fixing n and α to the values that maximize each

of these measures. Both TPR and BAC increase as η increases but the BAC is

maximized at at a lower η value than TPR. In all patients, maintaining high TPR

needed relatively high η values. The high AUC over all η values indicate excellent

classification ability for the algorithm. Nevertheless, the non-significant change in

this measure with η doesn’t guarantee high TPR of the maximal AUC AR-model.
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Figure 5.6: Cross validation performance measures vs. η. BAC is maximized at a
smaller η value. No significant change in AUC as η changes.
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The range of α, η, and n were sufficient to maximize over the different performance

measures M1, ...,M5. For example, our results show that better prediction results

couldn’t be achieved with ηmax > 1. On the other hand, avoiding η < N+

N−
guarantees

excluding solutions that would give higher class weight for the normal predictions.

For the range of α, we didn’t allow α > e1 to avoid potentially overfitted models.

Also, our results show that high model orders (n > 10) may not be needed for short

term predictions of critical patterns in SpO2 time series. This is also favorable since

higher order models are more easily affected by noise in measurements.

The main computational effort in the algorithm is in using cross validation to find

the optimal set of parameters α, η, and n. Indeed, this is comparable to standard

AR models where similar techniques are used to find model order and regularization

parameter in Equations (4.8, 4.9). Moreover, since the most noticeable effect on dif-

ferent statistical measures is through η, we can improve the computational efficiency

of this algorithm by setting α and n values a priori and then modify the algorithm

to select the optimal η values that maximize any of the performance measures. This

would be a slightly suboptimal approach but with an accurate tuning for η, a suf-

ficiently good performance could be obtained. Once these parameters are set, the

model can be trained and used for online prediction efficiently.

Of particular interest is the dependence of the prediction results on ycr. Setting

this threshold to very low/ high values will generally decrease the likelihood to see

events associated with it. Thus, higher η values will be needed which also affects

PPV . Although the predictions obtained for less extreme thresholds might have

higher PPV , this improvement should be evaluated with respect to the clinical sig-

nificance of predicting levels associated with the less extreme thresholds. Another

key factor that would influence the selection of ycr is the patient’s health state. The

choice to fit individualized models would enable them to be tailored to patient needs

with respect to setting ycr as well as the performance measure needed for model
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Figure 5.7: Comparison between 20s ahead predictions using standard and maximal
BAC AR models

The selection of ycr affects not only the performance measure needed for fitting

the model, but also the amount of data needed to build it. Extremely low/ high

thresholds will require monitoring patients for longer times in order to incorporate

rare occurrences, associated with the selected ycr, for building the models. Thus, the

personalized predictive modeling framework could be used to build models at earlier

monitoring stages (with less data and using less extreme thresholds). Then, these

models could be gradually adapted with more extreme thresholds depending on the

patient state after longer monitoring times.

Overall, the statistical measures presented show the tradeoff between prediction

results obtained through optimizing different regions (or combination of regions) of

the prediction grid in Figure 5.4. The selection of any of these measures depends on

the clinical application, nature of the physiological signal, and the critical signal level

desired for building the models.
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5.3.7 Comparison to Standard AR Models

For a standard k-step ahead AR model, the k-step ahead predicted signal ŷt+k at

time t+ k is inferred as a linear combination of previously observed signals yt−i+1 up

to time t

ŷt+k =
n∑
i=1

φiyt−i+1 (5.28)

where Φ = [φ1, ..., φn]T denotes the vector of AR coefficients to be determined, n

denotes the order of the model.

Considering N sampled data points of a time series, the coefficients Φ in Equation

(5.28) are estimated using regularized least squares fit (Ljung , 1987; Bishop et al.,

2006). A regularization parameter λ is typically used to decrease model complexity

and allow better generalization over independent data sets (Bishop et al., 2006). For

each patient time series, the model order n and λ are tuned optimally using cross

validation (Bishop et al., 2006; Geisser , 1993).

For comparison with the proposed modeling framework, individualized standard

AR models were identified for each patient using 13, 000 data points and the models

were evaluated over 2000 points of the SpO2 time series of each patient. The data

sets are identical to the ones used in evaluating the proposed algorithm. Models with

order n ∈ {1, 2, 3, ..., 10} and λ ∈ {e−1, e0, e1 } were tested to select the optimal set

of parameters for the minimum RMSE using cross validation. Our results show that

no significant improvement could be obtained with n > 10 or λ < e−1.

Figure 5.7 shows a comparison between the performance of the 20s ahead pre-

dictions of the maximal BAC AR model and the standard LSE AR model for two

patients (P#94,111). The proposed algorithm shows a better ability in predicting

critical levels than the standard AR model while maintaining an excellent capability

in predicting regions of normal signal levels. For P#94, the proposed AR model was

able to predict the critical SpO2 levels (without any phase lag) while the standard
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AR model failed to predict them. For the first critical desaturation epoch shown for

P#111, the 20s prediction for the first occurrence of a critical signal level is delayed

by 4s for the proposed model compared to 10s of delay for the standard AR model.

For the second critical epoch, the 20s ahead prediction of the proposed AR model

captured the onset of the critical epoch without any phase lag compared to 6s of delay

for the standard AR model. The standard AR model fails to predict the critical levels

for 8s after that before successfully predicting the remaining critical level instances

in the second critical desaturation epoch.

Table 5.14: Training and Test Performance for LSE AR Models

Standard LSE AR Models

P#
TrDat Performance TsDat Performance

RMSE TPR TNR PPV BAC F3-score RMSE

12 1.14 13.3% 98.8% 75.3% 56.1% 0.15 1.17

18 0.74 66.3% 98.9% 70.7% 82.6% 0.67 0.76

21 0.96 51.7% 99.8% 78.9% 75.8% 0.54 0.99

63 0.89 0.0% 100.0% NA 50.0% NA 0.91

86 0.71 0.0% 99.5% 0.0% 49.8% NA 0.73

93 1.18 75.0% 99.7% 71.4% 87.3% 0.75 1.21

94 0.73 63.5% 98.9% 83.5% 81.2% 0.65 0.74

97 1.10 0.0% 100.0% NA 50.0% NA 1.13

111 1.03 0.0% 100.0% NA 50.0% NA 1.05

113 0.98 36.0% 98.9% 63.2% 67.4% 0.38 1.01

To evaluate the ability of the standard AR model to predict the critical signal levels

in the patients’ time series, the proposed k-step ahead prediction metric was applied

to the predictions of the standard AR model and the results are shown in Table

5.14. The proposed algorithm outperforms the standard AR model in predicting
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critical desaturation levels. Prediction sensitivity for maximal TPR and maximal

BAC AR models are significantly better than standard AR models (p < 0.0001). This

significant improvement in TPR is found in two main aspects. First, the proposed

algorithm is able to predict critical signal levels that are not predicted by the standard

model. Second, a negligible (if any) lag in the predictions of critical signal levels by

the proposed algorithm is noticed compared to the more pronounced phase lag of the

standard AR model predictions.

On the other hand, the standard AR model shows a superior TNR compared

to the proposed model indicating higher ability to predict normal regions than the

critical signal levels. Minimizing the mean square error in the standard AR model

restricts its ability to predict large or sudden deviations from the mean of the signal

(y ≤ ycr = 89). Interestingly, with the significantly improved TPR, the proposed

algorithm maintained a generally high TNR. The competing nature of the TPR and

PPV objectives caused the standard AR model to show higher PPV compared to

the proposed algorithm. In fact, our results show that the prediction performance of

the standard AR model is very close to the maximal PPV AR model in the presented

framework.

5.3.8 Summary

This section presented a comprehensive framework for multi-step ahead predic-

tions of critical levels in physiological signals. A performance metric for evaluating

k-step ahead predictions was proposed and used to build a prediction framework for

auto-regressive models capable of predicting regions of clinical interest in physiolog-

ical signals. Using the proposed algorithm, a significant improvement was achieved

in the ability to predict critical signal levels compared to standard auto-regressive

models.

The development of this framework enables more interaction with clinicians to get
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better insight into the prediction of specific critical patterns. Also, the development of

such high fidelity predictive models for critical signal levels is a fundamental step for

designing novel interventional systems that can automatically apply necessary ther-

apeutic treatment to prevent adverse outcomes associated with these critical levels.

Clinical evaluation for the prediction performance at different signal thresholds will

enable selecting the ones that can improve the performance and maximize the clinical

use of the prediction algorithm.
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CHAPTER VI

Conclusions and Future Work

6.1 Conclusions

The objective of this dissertation is to develop a research framework for both

evaluating and optimizing predictive models of physiological time series. Moving

from monitoring to predicting physiological signals introduces research challenges in

designing models that are able to make accurate near-term predictions for clinically

relevant events as well as evaluating predictions with respect to these events. The

main contributions can be divided into three categories.

6.1.1 Performance Metrics for Evaluating Predictions of Physiological

Signals

Inspired by the clinical preference of predicting regions of clinical interest in phys-

iological signalise, several performance metrics were developed and applied to clinical

data sets.

Chapter IV considered characterizing performance over prediction windows. This

metric addresses applications where it is a greater clinical interest to predict the

occurrence of clinically relevant events within a specific prediction widow rather than

the exact instances at which these event will occur. A clinically relevant event is
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physiologically defined by breaching a critical threshold for a predefined minimum

duration.

Of particular interest in clinical applications is the ability to predict clinically rel-

evant events as early as possible. Recognizing the high importance of this aspect in

a clinical setting, Chapter IV develops another metric for characterizing the perfor-

mance of a time series model of a physiological signal using the longest horizon that

can predict clinical events of interest in this signal. The analysis of the predictions

obtained by any predictive model results in a statistical distribution that quantifies

the overall predictive power of this model with respect to this metric.

Chapter V considers evaluating predictions of clinically relevant events with re-

spect to a fixed prediction horizon. Most importantly, this metric characterizes the

performance in capturing the onset of clinically relevant events over the horizon of

interest. Two main types of clinically relevant events are defined in the clinical lit-

erature. Thus, Chapter V considers two methods for defining fixed horizon metrics.

First, a metric is considered for predictions of abnormal deviations from the signal

baseline. Second, a metric is developed for predictions of critical levels of abnormality.

Chapter IV applies the developed metrics for a case study of characterizing the

performance of standard auto-regressive models in predicting critical oxygen satu-

ration levels in the blood. Using the metric of the largest horizon that can predict

clinically relevant events, it was shown that 56.2% of the critical desaturation events

in the time series of patients were able to be predicted 10-60s ahead of time using

the standard auto-regressive model. Although prediction performance shows excel-

lent ability to predict normal signal levels, the standard model has a limited ability

to predict critical signal levels. Analysis with the fixed horizon metric, discussed

in Chapter V, shows that predictions of critical signal levels over a fixed horizon of

20s are associated with a significant phase lag that limits the performance over this

horizon.
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6.1.2 Incorporating Directionality into Predictions of Physiological Sig-

nals

Chapter IV considers a dynamic systems perspective to understand the direction-

ality between any two physiological signals A and B. A dynamic model is developed

in which A is an input to B and another dynamic model is developed with B as

an input to A. The significance of the coefficients for the two modeling choices was

investigated to understand the directionality between these physiological signals.

For any physiological signal of interest, the goal is to incorporate additional data

channels that improve the ability to predict regions of clinical relevance in that signal.

Two metrics are defined in Chapter IV to characterize the improvement in predicting

regions of clinical interest with multi-channel data:

1. Evaluate the improvement in prediction sensitivity TPR of critical signal levels

over different prediction windows due to the additional data channels.

2. Determine whether the inclusion of the additional data channels allows pre-

diction of critical signal levels with a longer prediction horizon (improve the

earliest time at which critical signal levels can be predicted).

A case study was considered for investigating the cause-effect relationship between

pulse rate (PR) and blood oxygenation (SpO2) dynamics. No significant improvement

was noticed in the sensitivity (TPR) of 20s and 60s predictions of critical desaturation

levels in the blood. Also, including PR data in the SpO2 predictive models didn’t

increase horizons that predict critical desaturation events. Results indicate oxygen in

blood is an effective input to the pulse rate rather than vice versa.
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6.1.3 Novel Models for Predicting Regions of Clinical Interest in Physi-

ological Signals

Characterizing the performance of standard models of physiological signals re-

vealed the need to design new models optimized to capture clinically relevant events

in these signals. A framework for optimizing time series models with respect to pre-

dictions of clinically relevant events was developed. Two types of clinically defined

regions were considered.

6.1.3.1 Predicting Abnormal Deviations from Signal Baseline

A mixed integer programming framework was used for optimizing models in this

problem. A cost minimization optimization problem was formulated to minimize

false negatives FN in the k-step ahead dynamically adjusted threshold metric in

Table 5.1. Due to the dependence of the optimization problem setup on the the

clinical definition for the baseline of the signal, this problem was presented with a case

study of predicting abnormal deviations from SpO2 baseline. The clinical literature

was used to define both SpO2 baseline and abnormal deviations from this baseline.

Models that minimize FN (maximizing TPR) showed significant improvement in

the ability to predict 20s ahead abnormal SpO2 levels. Nevertheless, the improvement

in TPR was accompanied (in some cases) with magnifying predictions in regions of

abnormal signal levels. As a result, the improvement in TPR was associated with

a decrease in PPV . The optimization problem setup was designed to reject the

trivial solution that always predicts an abnormal deviation (regardless the model

input) through the design of the objective function and constraints. Incorporating

FP explicitly in the model optimization resulted in models that continuously predict

the mean of the signal to maintain the lowest FP .
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6.1.3.2 Predicting Critical Signal Levels

In the second problem, models optimized with respect to predictions of critical

signal levels were presented. A quadratic programming (support vector machine)

framework was used to develop models. To avoid problems associated with magnifying

predictions in regions of critical signal levels, the models were defined to directly

predict the physiological state associated with the clinical definition of the critical

signal level. Note that signal levels in the second problems are much more extreme

ones than abnormal deviations from baseline. Thus, to address the issue of the

relative paucity of such events in physiological data, different statistical metrics are

considered for optimization. Considering the prediction metric in Figure 5.3, the

models were optimized for sensitivity (TPR), precision (PPV ), balanced accuracy

(BAC), F -score, and AUC. The selection of any of these statistical metrics depends

on the clinical application, nature of the physiological signal, and the critical signal

level desired for building the models.

A case study was presented for developing an auto-regressive modeling framework

to predict critical desaturation events in the SpO2 time series. For the critical thresh-

old ycr = 89% with SpO2 time series, our results show that the best ability to predict

critical signal levels was achieved by maximizing over the TPR and BAC performance

measures. Significant improvement in the ability to predict critical signal levels was

achieved compared to standard AR models. The improvement in TPR was found in

two main aspects. First, the proposed modeling framework is able to predict extreme

levels when predictions of the standard model are not low enough to capture them.

Second, a negligible phase lag in the predictions of critical signal levels is noticed

compared to the more pronounced phase lag of the standard AR model predictions.
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6.2 Next Step: Developing Time Series Models for Predict-

ing Sleep Apnea

6.2.1 Sleep Apnea

Sleep apnea is a sleep disorder that is defined as a transient reduction or complete

cessation of breathing during sleep (Quan et al., 1999). The American Academy

of Sleep Medicine (2007) defines the criteria for scoring a sleep apneic event by a

clear decrease (≥ 90%) in the air flow from the corresponding baseline for a duration

≥ 10s. The airflow baseline is defined as the mean amplitude of stable breathing and

oxygenation in a 2-min window or the mean amplitude of the three largest breaths

in case of unstable breathing (Mendez et al., 2010). Clinicians usually divide sleep

apnea into three major categories: obstructive, central, and mixed apnea (American

Academy of Sleep Medicine, 2007; De Chazal et al., 2003). Obstructive sleep apnea

(OSA) is characterized by intermittent pauses in breathing during sleep caused by

the obstruction or collapse of the upper airway. The airway is blocked at the level of

the tongue or soft palate preventing air from entering the lungs in spite of continued

efforts to breathe. Central sleep apnea (CSA) is a neurological condition which causes

the loss of all respiratory effort during sleep. With CSA, the airway is not necessarily

obstructed. Mixed sleep apnea combines components of both CSA and OSA, where

an initial failure in breathing efforts allows the upper airway to collapse. Sleep apneic

events are typically followed by a significant reduction in blood oxygen saturation.

Standard scoring for sleep apnea is carried out by an expert sleep clinician in a

dedicated sleep lab where concerned patients undergo an overnight polysomnography

(PSG). Due to the cost and relative scarcity of diagnostic sleep laboratories, it is

estimated that sleep apnea is widely under diagnosed (Young et al., 1997). Hence,

several techniques that aim to provide a simple detection of sleep apnea with fewer

and simpler measurements and without the need for specialized sleep labs have been
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proposed (Mendez et al., 2010; De Chazal et al., 2003). Majority of studies in this

area focused on using the electrocardiogram (ECG) signal since it is highly influenced

during the apneic events and can be easily measured in a non-invasive way and with

high signal-to-noise ratio even in a nonclinical environment (Penzel et al., 2002).

Although considerable attention has been given to apnea detection methods, pre-

diction of an impending apnea episode has been rarely reported in the literature. For

example, (Dagum and Galper , 1995) and (Bock et al., 1998) use limited data from

OSA patients to to predict 1s ahead OSA espisodes. A recent study by Le et al.

(2013) uses Dirichlet process based Gaussian process mixture (DPMG) model to pre-

dict the evolution of two signal features derived from the ECG signal. Univariate

time series models are used for generating 1-3 minutes ahead predictions of each of

these signals on a minute by minute basis. Then, the predictions are fed to an of-

fline support vector machine algorithm trained against expert apnea annotations to

classify if these predictions correspond to an apneic event or not. No studies were

found on developing multi-channel time series models with predicting apneas as an

objective for model optimization.

6.2.2 Polysomnography (PSG) Data

This data set is composed of 100 patients. For these patients, we have full

polysomnography (PSG) data that were recorded at the University of Michigan Sleep

Lab. The PSG data for each patient consists of 21 signal channels. In addition to the

SpO2 and PR recorded by the POM systems, we have other signals collected during

the overnight stay for the patient in sleep lab. The available signal channels along

with their sampling frequencies are listed in Table 6.1.

The PSG monitors human body functions during sleeping period (usually at

night). The activities of brain and muscles are monitored through EEG and EMG

respectively. The heart rhythm is monitored through ECG as well as PR while eye
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Table 6.1: Signals available from PSG data

No. Signal Label Signal Name No. of Channels Sampling (Hz)

1 EOG Electrooculogram 2 256

2 ECG Electrocardiogram 3 256

3 EMG Electromyogram 3 256

4 EEG Electroencephalography 6 256

5 PLETH Plethysmography 3 256

6 SNORE Snore 1 256

7 NPRE Nasal Pressure 1 32

8 NO Nasal/Oral Air Flow 1 32

9 SpO2 Blood Oxygenation 1 16

10 PR Pulse Rate 1 16

movement is monitored through EOG. The breathing functions are monitored by

NO, NPRE, and PLETH in addition to SpO2. Nasal pressure and Nasal/Oral airflow

(NPRE and NO), typically measured using transducers fitted in or near the nostrils,

are used to measure the rate of respiration and to identify interruptions in breathing

(Iber , 2007). The plethysmography has 3 signal channels. Two of them monitor the

the movement of the chest and abdominal walls to evaluate pulmonary ventilation

(Konno and Mead , 1967). The third channel, often obtained from pulse oximeters,

measures the changes in blood volume in the skin. The plethysmography is used to

monitor respiration, heart rate, and cardiac cycle (Shamir et al., 1999; Shelley et al.,

2006)

The patients in this data set have a medical diagnosis for their disease states. They

are diagnosed with obstructive sleep-apnea, central sleep-apnea, or normal state.
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6.2.2.1 ECG Signals

The preprocessing of the ECG signal includes bandpass filtering to remove noise

and retain the clinical features in the QRS complexes of the ECG signals. Follow-

ing the University of Michigan Sleep Lab settings, and to minimize the effect of

physiological and measurement artefact in the ECG signals, the differential signal

ECG12 = ECG1−ECG2 was considered. The ECG12 signal was filtered by apply-

ing a pass-band filter between 0.3−70 Hz prior to applying QRS detection algorithm

for extracting beat to beat intervals. The filtered ECG12 signal was used in subse-

quent analysis.

6.2.2.2 RR Time Series

QRS Detection We used an open source QRS detection software (Niskanen et al.,

2004) for annotating the R-wave occurrences in the ECG signals. Careful editing and

visual inspection of the ECG signal helped to eliminate sources of errors arising from

missing QRS complexes or spurious QRS detections.

After the QRS complex occurrence times have been estimated, the RR (inter-beat)

intervals are obtained as the differences between successive R-wave occurrence times

as shown in Figure 6.1. The nth RR interval is obtained as the difference between the

R-wave occurrence times RRn = tn − tn−1. Accordingly, the time series of available

RR intervals (tn, RRn) was constructed.

RR Intervals Correction Due to poor signal to noise ratio and errors in the

automatically generated QRS detections, the time series of RR-intervals contained

physiologically unreasonable times. The following algorithm was used to generate a

corrected sequence of RR-intervals with all intervals physiologically reasonable (Chen

et al., 2015; De Chazal et al., 2003).

A median filter of width 5 was applied to the sequence of RR-intervals to find
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Figure 6.1: Extracting RR intervals. The nth RR interval is obtained as the difference
between the R-wave occurrence times RRn = tn − tn−1.

suspect RR intervals. The filtered signal provided a robust estimate for the expected

value for each RR interval. Any RR interval that is significantly different from the

robust estimate was considered a suspect RR-interval which could be either spurious

QRS detections, or missed QRS complexes.

Spurious detections were found by comparing the sum of adjacent RR-intervals

with the robust RR-interval estimate. If this sum was numerically closer to the

robust estimate than either of the individual RR-intervals, then a spurious detection

was considered to be present. The two RR-intervals were merged to form a single

RR-interval.

If the RR-interval was a factor of 1.8 times or greater than the robust estimate

then this was considered as an indication that one or more QRS complexes were

missed. To estimate the times of the missing QRS complexes, the RR-interval was

divided by the sequence of integers 2, 3, 4, ... until it best matched the robust estimate

of the RR-interval. The single RR-interval was then subdivided by the appropriate

integer to form a series of new detections that were placed in the missed locations.
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6.2.2.3 ECG Derived Respiratory (EDR) and R-Wave Amplitude Signals

During the breathing cycle, the ECG signal is affected by the variations in the

relative distance between the electrode located on the chest surface and the heart, and

by the changes in the thoracic impedance produced by the inflation and deflation of

the lungs (Mendez et al., 2009). The effect is most obviously seen as a slow modulation

of the ECG amplitude at the same frequency as the breathing cycle (Moody et al.,

1985; Travaglini et al., 1998). To access the EDR signal, the ECG signal was filtered

with a median filter of 200ms for ECG baseline estimation (Mendez et al., 2009;

Sörnmo and Laguna, 2005). Then, the resulting signal was subtracted from the ECG

signal to produce the baseline corrected ECG. Each sample point of the EDR signal

was then obtained by calculating the area enclosed by the baseline corrected ECG in

a temporal window of 100ms before and after the R-peak value of the corresponding

QRS complex.

The baseline corrected ECG signal was also used to extract the time series of

R-wave amplitudes using the peaks of successive QRS complexes.

6.2.3 Research Plan

For this problem, we plan to develop a multi-channel time series model for sleep

apnea prediction. The primary source for detecting the occurrence of a sleep apneic

event is the air flow signal (NO) (American Academy of Sleep Medicine, 2007). In

addition to air flow, the proposed model will include ECG and SpO2 as inputs to the

prediction algorithm.

The first step is to define a robust performance metric for characterizing sleep

apnea. Several algorithms will be evaluated to characterize airflow changes during

apnea. After defining a relevant metric, we will formulate an optimization problem

with respect to predictions of sleep apnea. In this problem, we will design the proposed

model to operate over prediction windows of fixed length. The rationale behind this
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selection is that the reduction in airflow needs to last for at least 10s during an apneic

event. Performance of the proposed model with respect to predicting sleep apnea will

be evaluated using the PSG data set.

6.3 Future Work

Future extensions to the work presented in this dissertation include new methods

and applications for defining prediction performance metrics for physiological signals

as well as continuing to develop predictive models that broaden the approach with

new problems and different signals.

6.3.1 Prediction Performance Metrics

6.3.1.1 Engineering Metrics for Evaluating Physiological Predictions

The first step in the process of developing high fidelity predictive dynamical mod-

els of physiological signals is to define engineering metrics that are able to accurately

characterize the prediction performance in capturing clinically relevant events. Cur-

rent research in this area lacks the presence of robust consistent definitions for metrics

that can be applied to prediction.

One major limitation is that the clinical literature has defined many critical pat-

terns using different published standards (Ruehland et al., 2009). Moreover, many

clinically relevant events are defined in a way that is geared towards identifying them

by an ”expert eye” instead of accurately characterizing the underlying changes in the

physiological signal(s) of interest during the occurrence of such events. For example,

the gold standard for scoring sleep apnea and other sleep disorders are the manual

annotations provided retrospectively by sleep lab technicians (American Academy of

Sleep Medicine, 2007). A study has shown that there is a significant intraobserver and

interobserver variability when used to identify these events (Whitney et al., 1998). In
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fact, expert evaluation and scoring for clinically relevant patterns is not only affected

by human error, but also doesn’t provide enough insight into the actual dynamical

changes of the corresponding signal during such events.

To enable accurate predictions of physiological signals, future research is needed

to fill this gap by developing performance metrics that can accurately characterize

changes in physiological signals during occurrence of critical events. Defining perfor-

mance metrics that can be used for online prediction is of great clinical value.

6.3.1.2 Probabilistic Metrics for Evaluating Predictions

In physiological signals, clinicians are interested in maximizing the ability to pre-

dict clinically relevant events over a specific prediction horizon of interest. In Chap-

ter V, we considered a fixed horizon prediction metric and used it for developing

models that optimize this metric with respect to the ability to predict clinically rel-

evant events. We showed that this approach generates models with much improved

performance in predicting the onset of such critical events.

Future research includes investigating probabilistic metrics for predicting clinically

relevant events. For example, probabilistic information in the predictive distribution

of k-step ahead models can be used to improve the ability to predict critical signal

levels. Figure 6.2 illustrates a common case that could occur in threshold based eval-

uation for k-step ahead predictions when ŷt+k is slightly higher than ycr. A phase lag

of δ time steps is noticed in predicting the onset of the critical event (ŷ(t+δ)+k ≤ ycr).

Future research includes investigating approaches for generating robust probabilistic

predictions of critical signal levels when expected values ŷt+k are not able to capture

them. Sequential Monte Carlo sampling methods can be used to generate these prob-

abilistic predictions when no analytical form exists for the probability distribution of

the k-step ahead model.
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Figure 6.2: Binary vs. probabilistic based evaluation for k-step ahead predictions.

6.3.2 Models to Predict Clinically Relevant Events

6.3.2.1 Optimizing Models over Prediction Windows

In Chapter V, we identified models with respect to a fixed prediction horizon

of k steps driven by the objective to maximize the ability to detect the onset of the

clinically relevant events with respect to to this horizon. In some physiological signals,

clinically relevant events only occur after breaching the critical signal threshold for

a minimum duration of time. For example, sleep apnea is defined with a significant

reduction (more than 90%) in the baseline airflow for at least 10s. Thus, it would be

more convenient to consider performance over prediction windows in such cases.

Future work includes developing predictive models that operate over prediction

windows. New objective functions need to considered while maintaining convexity

of the optimization problem. In terms of prediction strategy, direct and multi input

multi output (MIMO) strategies can be evaluated. The latter method has fewer

parameters to fit but is also less flexible than the direct prediction strategy. Future
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research is needed to address tradeoffs between these two methods with respect to

the ability to predict clinically relevant events over the window of interest. Objective

function for fitting these predictive models will consider maximizing the area between

the critical threshold and signal levels below this threshold over the window of interest.

Lessons learned from Chapter V can be incorporated for metrics that need to be used

for optimization with rare events.

6.3.2.2 Multi-channel Dynamical Models

Multi Input Single Output (MISO) Models The developed models in Chap-

ter V are single channel predictive models. The work can be extended to develop

multi input models optimized for predicting critical signal levels within a physiologi-

cal signal of interest. The metrics in Chapter IV can be used to evaluate and select

channels to be incorporated in the prediction algorithm. Future research includes

selecting the smallest possible set of physiological signals that maximizes the ability

to predict clinically relevant events. Multiple time series will be derived from each

channel to maximize the ability to predict clinically relevant events within the time

series of interest. For example, RR time series, R-wave time series, and ECG derived

respiratory signal (EDR) can be derived from ECG. Also, non-linear techniques rep-

resenting measures of complexity in physiological time series can be used to improve

the prediction algorithms.

Multi Input Multi Output (MIMO) Models Predicting regions of clinical rel-

evance assumes direct access to the corresponding physiological signal in order to

generate future predictions based on the observed history of this signal. In practice,

some physiological signals are known to be invasive, uncomfortable and not very re-

liable. For example, Nasal Pressure and Nasal/Oral Air Flow (NPRE and NO) that

are used to identify interruptions in breathing during sleep are typically measured

107



using sensors fitted in or near the nostrils causing these sensors themselves to disturb

sleep.

Future research includes developing multi input multi output (MIMO) models to

predict critical events of interest assuming no access to the corresponding physiological

signal. Prediction windows over which the clinically relevant event under study occurs

need to be considered. Metrics can then be defined in terms of signal changes in the

other data channels during the occurrence of the critical event of interest. For each

data channel to be included in the model, a metric needs to be defined to characterize

the changes in the corresponding signal during the occurrence of the event of interest.

Since each of the derived metrics represents the effect of the critical event of interest

on the corresponding data channel, an objective function that considers these metrics

together is needed to optimize a MIMO model that uses the desired data channels

to predict the occurrence of the critical event as predicted by the metrics defined for

each signal.

With continued research, new metrics and models will be developed for prediction

of physiological signals. Using recorded physiological time series, relevant engineering

metrics can be developed and used to create predictive models. Clinical assessment

for the predictions can then be used to adapt or update the modeling methods or even

refine the metrics. Figure 6.3 shows a schematic diagram of what it is anticipated for

the future of physiological signals’ prediction. The presented framework clearly mo-

tivates synergy between engineering and clinical research communities. The research

approach in this dissertation has the potential to be applied to a wide range of the

vast amounts of data that is currently being gathered. The broader impact of this

research is the potential for improved quality of health care for monitored patients in

hospitals.
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Figure 6.3: Future for physiological signals’ prediction. Using recorded physiological
time series, relevant engineering metrics can be developed and used to
create novel predictive models. Clinical assessment for the predictions
can then be used to adapt or update the modeling methods or even refine
the metrics to improve and optimize the prediction performance with
respect to the clinical events of interest.
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