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ABSTRACT

Spatio-temporal spectra and spectral transfers in fluid dynamics

by

Andrew J. Morten

Co-Chairs: Brian K. Arbic & Charles R. Doering

Motivated in part by interest in low-frequency variability in complicated flows such

as the ocean or atmosphere but also by a general interest in the spatio-temporal struc-

ture of turbulent flows, we investigate two-dimensional and quasi-two-dimensional

turbulence in the wavenumber-frequency domain.

First, given a general equation of motion we derive spatio-temporal spectral trans-

fers and corresponding fluxes in terms of a general bilinear time-frequency represen-

tation. Such transfers generalize the spatial spectral transfers used in the well-known

theories for the cascade of energy or enstrophy in two- and three-dimensional turbu-

lence. Specifically for transfers based on the short-time Fourier transform, we also

develop a theoretical model that quantifies the effects of either a mean flow or isotropic

sweeping on the spatio-temporal spectral transfers.

Second, we use spatio-temporal spectral transfers as a diagnostic in simulations

of forced-dissipated two-dimensional homogeneous isotropic turbulence, where the

forcing is narrowband in both wavenumber and frequency. We use the simulations

both to illustrate the physical meaning of the spectral transfers and to investigate the

xi



robustness of the diagnostic when applied to imperfect data. We find that temporal

spectral fluxes remain quantitatively reliable for a range of dataset limitations, such

as low temporal resolution, limited record duration, and the presence of a trend.

The theory and numerical investigations outlined above provide a foundation for the

interpretation of spatio-temporal transfers in more complex systems.

Third, we conduct a wavenumber-frequency analysis of a quasi-two-dimensional

system: the single-layer shallow-water quasi-geostrophic equation on the beta plane,

one of the simplest models for large scale oceanic and atmospheric dynamics. We

report that the “nondispersive line” that sometimes appears in zonal wavenumber-

frequency spectra is not just a signature of westward propagating vortices. The

nondispersive line can also be a signature of westward propagating meandering jets,

although the propagation speed of jets is slightly slower than that of westward prop-

agating vortices. We also report the discovery of new spectral features, such as a

“nonlinear dispersive curve” that also appears in simulations with meandering jets,

and quasi-sinusoidal dispersive curves that appear in simulations with nearly zonal

jets.
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CHAPTER I

Introduction

1.1 General Introduction and Layout of Thesis

One typically begins a dissertation with some very broad statement about the

importance of the field in which the research is situated. What is that field in this

case? Because of the wide applicability of the technique presented in Chapter II,

the broadest field of research to which at least part of this thesis applies would be

“systems that change in time.” A majority of scientists agree: this is a topic worth

investigating (e.g. Newton, 1687).

However, most of this dissertation falls within the less general realm of fluid dy-

namics, with a considerable focus on fluid turbulence. Fluid dynamics itself encom-

passes a mind-boggling variety of systems: from the very large (galactic) to the very

small (quantum hydrodynamics), with many examples in between, including geophys-

ical flows (atmospheres, oceans), hydrology (rivers), geodynamical flows (mantle),

magnetohydrodynamics (plasmas), aerodynamics, industrial applications (mixing),

and hemodynamics (blood flow). The diagnostic developed and examined in this dis-

sertation could in principle be applied to systems within any of these subdisciplines.

Situated within the field of fluid dynamics is the theory of turbulence. Although

the diagnostic derived in this thesis may be applied to any flow, turbulence is such

a ubiquitous and interesting phenomenon that it warrants particular attention. For
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example, both three-dimensional and two-dimensional turbulence are thought to play

important roles in transfers of energy between scales in the ocean. Quantifying energy

transfers in the ocean is important if we want to understand how the ocean affects

Earth’s climate.

The theory of turbulence has proved to be a difficult problem, allowing for few

exact theoretical results. It has turned out that the most successful theoretical predic-

tions have involved only purely spatial quantities. For example, there is Kolmogorov’s

four-fifths law (Kolmogorov , 1941b), an exact relation for the average of the cube of

longitudinal velocity increments (which are by definition spatially separated). A re-

lated result is Kolmogorov’s prediction of the form of the wavenumber spectrum of

kinetic energy E(k) ∼ ε2/3k−5/3 in the inertial range, where k is isotropic wavenumber

and ε is the power put into the turbulent flow.

There has been less theoretical progress involving temporal quantities and spatio-

temporal quantities in the theory of turbulence. For example, there are no exact re-

sults predicting two-time correlations or the form of energy spectra in frequency space

or wavenumber-frequency space. Theoretical progress is made only by resorting to

modeling approximations that apply in certain limits, such as within the dissipation

range or when the small scale turbulence is “frozen in” a la Taylor’s hypothesis (Tay-

lor , 1938). Perhaps related to this lack of theory, until recently there have been

relatively few studies of turbulence in wavenumber-frequency space. The main contri-

bution of this dissertation is to look at a variety of flows in the wavenumber-frequency

domain.

Why should we care about analyses in the wavenumber-frequency domain? One

answer is that many flows have natural frequencies. For example, many geophysi-

cal systems experience periodic external forces, such as seasonal or diurnal cycles.

In industrial applications such as mixing there are frequencies associated with the

stirring, and in hemodynamics the heart pumps at regular intervals. Also, a wide va-
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riety of fluids are sufficiently complicated to allow one or more type of wave motion,

with dispersion relations that can be straightforwardly diagnosed in wavenumber-

frequency space. In addition to these linear effects, non-linear effects play a role

as well. Consider that the non-linear advection term common to all fluids involves

not just wavenumber triad interactions but frequency triad interactions as well. One

major contribution of this dissertation is to provide an improved interpretation of

nonlinear wavenumber-frequency triad interactions. We will show that nonlinearities

can transfer substantial amounts of energy to high and low frequencies, alongside the

well-known transfers to high and low wavenumbers. This nonlinear transfer in the

frequency domain has been shown to be important in, for instance, ocean models of

both low-frequency geostrophic flows and high-frequency internal gravity waves.

Each of the following three thesis chapters contributes to the study of fluid dy-

namics in spatio-temporal spectral space (e.g. in the frequency-wavenumber domain).

A (perhaps too much) simplified outline of this thesis could be the following: Chap-

ter II, “spatio-temporal spectral transfers generally;” Chapter III, “spatio-temporal

spectral transfers in two-dimensional (2D) turbulence;” Chapter IV, “spatio-temporal

spectra (mostly) and spectral transfers in quasi-2D turbulence;” and Chapter V, “fu-

ture directions.” The next few paragraphs provide a summary of each chapter, and

then the rest of this Introduction gives a more detailed background and motivation

for each chapter in turn.

Chapter II formulates spatio-temporal spectral transfers in a way that is very

general and can be applied to many different systems (not just fluid dynamics). After

presenting the general formulation we narrow the focus to the advection term of

pure two- or three-dimensional turbulence (i.e. Navier-Stokes flow). We conduct a

theoretical investigation of the effects of two widely used modeling assumptions –

Taylor’s 1938 hypothesis and the sweeping hypothesis (Tennekes , 1975)– on the form

of the spatio-temporal spectral transfers.
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Chapter III presents a numerical investigation of forced-dissipated two-dimensional

turbulence, utilizing the theory and testing the predictions laid out in Chapter II. The

motivation for these numerical investigations is to provide a foundation for the in-

terpretation of spatio-temporal spectral transfers in more complicated systems. In

other words, two-dimensional turbulence provides a simple “base case” for more geo-

physically interesting systems. We focus not only on the two-dimensional system but

on the robustness of the diagnostic itself. While the theory in Chapter II assumes

perfectly resolved continuous data, in Chapter III we study the effects of realistic

dataset limitations (e.g., limited record duration and finite sampling intervals) that

are important in practice.

Chapter IV focuses on the spatio-temporal spectra (with some discussion of trans-

fers) in a more geophysically interesting system: the single-layer shallow water quasi-

geostrophic equation on the planetary beta-plane (sometimes referred to as a 1 1/2

layer, or reduced gravity, or equivalent barotropic model). Chapter IV is motivated in

part by the question of how nonlinearities can cause deviations from linear dispersion

relations in wavenumber-frequency spectra, and in part by the ubiquity of westward

propagating features, identified through their signatures in wavenumber-frequency

spectra, in beta-plane systems such as Earth’s ocean. We conduct a comprehensive

wavenumber-frequency analysis of this system for a wide range of parameters, and

we discover several previously unreported phenomena.

Another way to summarize this thesis is by the equation of motion studied in each

chapter. Full descriptions of the equations below, including definitions of symbols,

can be found in their respective chapters. In Chapter II we consider a very general

equation of motion:

∂

∂t
G(χ, t) =

∑
n

An(χ, t), (1.1)
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and use as an example the forced-dissipated two-dimensional Navier-Stokes equations,

shown here as the vorticity equation in spectral space:

∂

∂t
|k|2‹ψ(k, t) = Â�J(ψ,∇2ψ)(k, t)− D̃(k, t)− ‹F (k, t). (1.2)

. In Chapter III we numerically investigate equation 1.2. In Chapter IV we add a

deformation radius Ld ≡ 1/kd and a “beta term:”

∂

∂t
(|k|2 + k2

d)
‹ψ(k, t) = Â�J(ψ,∇2ψ + βy)(k, t)− D̃(k, t)− ‹F (k, t), (1.3)

and we conduct an extensive parameter sweep of that system.

1.2 Background for Chapter II

A fundamental insight central to the theory of turbulence is the cascade picture,

in which energy (or, more generally, some other conserved quantity) is transferred lo-

cally between nearby spatial scales starting from some initial spatial scale and ending

at some some faraway dissipation scale. Much of the utility of the cascade framework

lies in the prediction of the form of the wavenumber spectrum E(k) of energy in the in-

ertial range. Wavenumber spectra predictions were derived by Kolmogorov (1941b,a);

Obukhov (1941a,b); Onsager (1945) for three-dimensional turbulence and by Kraich-

nan (1967); Kraichnan (1971); Leith (1968); Batchelor (1969) for two-dimensional

turbulence, and verified experimentally (less so for the two-dimensional case) and

numerically many times over.

An important component of this cascade picture is the spectral transfer, which

we refer to as the spatial spectral transfer in order to avoid ambiguity later. The

spatial spectral transfer quantifies the time rate of change of some spatial spectral

quantity, typically wavenumber spectra of kinetic energy E(k) or enstrophy Z(k), due
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to various terms in the equation of motion. In the cascade picture it is the spatial

spectral transfer due to the nonlinear advection term in the Navier–Stokes equations

that plays an important role in our understanding of turbulence today.

While the spatial spectral transfer has been a fruitful tool in the study of turbu-

lence – used in the derivation of some of the celebrated few exact theoretical results –

we wonder if this usefulness as a prognostic has kept a more general spatio-temporal

spectral transfer from being widely utilized as a diagnostic. In other words, while

spatio-temporal transfers are less useful than spatial transfers in deriving exact the-

oretical results, they provide a useful measure of the spatio-temporal structure of a

given flow, particularly if the flow is sufficiently complex to allow for transfers among

and between different wavenumber-frequency modes of the system.

A few recent studies have calculated temporal and spatio-temporal spectral trans-

fers and fluxes for a variety of systems. Arbic et al. (2012) diagnosed temporal spec-

tral transfers using three data sets: output from several regions of a realistic general

ocean circulation model, altimetric measurements of sea surface height in the same

regions, and the output of a simple two-layer quasi-geostrophic model. A follow-up

study (Arbic et al., 2014) diagnosed spatio-temporal transfers using roughly the same

three data sets. Arbic et al. (2012, 2014) were motivated by the possibility of linking

the well-known nonlinear inverse cascade of energy towards larger spatial scales with

low-frequency variability in the ocean. They found that in most of the examined re-

gions nonlinear advection transferred energy to longer time scales, but in some regions

energy was transferred to shorter time scales.

Concurrent and planned future research by our collaborators will apply the di-

agnostic to a variety of more complicated systems. Motivated by the ubiquitous

westward propagation seen in the oceanic mesoscale eddy field, an additional study

currently in preparation will focus on directional wavenumbers k and l in a two-layer

geostrophic model with β 6= 0. A related study in preparation will look at simulation
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output from NEMO (Nucleus for European Modelling of the Ocean) (Mandec, 2008),

and will utilize much longer time-series then those used in Arbic et al. (2012, 2014).

The diagnostic has also already been used as part of an investigation of internal

gravity waves in the ocean (Müller et al., 2015). That study looked at how well

internal gravity waves are resolved in realistic global ocean models, run at two different

horizontal resolutions (1/12◦ and 1/25◦) and forced by atmospheric fields as well as

tides. The higher resolution simulation includes additional wavenumber-frequency

triad interactions not seen in the lower resolution simulation. Ongoing work will

compute internal gravity wave spatio-temporal spectral transfers in global models

run at even higher horizontal resolution (1/48◦).

Several other ongoing studies will use spatio-temporal spectral transfers to inves-

tigate the interaction between the ocean and atmosphere. Motivated by the desire to

quantitatively separate forced and intrinsic low-frequency variability, one study will

diagnose contributions to temporal sea surface height variability separately made by

nonlinear advection versus wind stress forcing. That research will be based on output

from a state-of-the-art high resolution coupled climate model (Donner et al., 2011).

A companion paper using the same dataset will examine low-frequency contributions

to sea surface temperature variability made separately by nonlinear advection and

ocean-atmosphere heat exchange. Related studies will conduct similar investigations

using an idealized quasi-geostrophic model of the coupled ocean-atmosphere system

(Q-GCM; Hogg et al. (2003)).

There is a clear desire to use spatio-temporal and temporal spectral transfers to

study a wide variety of systems, as outlined above. This thesis provides a rigorous

foundation for the application of spatio-temporal spectral transfers in those and future

investigations.

There are a small number of other studies of temporal spectral transfers in the

literature. Four decades ago Chiu (1970) derived kinetic energy spectral equations
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in the frequency domain for large-scale atmospheric motions. Sheng and Hayashi

(1990a,b) independently derived similar equations and applied them to global atmo-

spheric simulations. Elipot and Gille (2009) derived similar spectral equations in

order to study which frequency components dominate the wind energy input into the

Ekman layer in the Southern Ocean.

The difference between the spectral transfers of earlier studies and those of Chap-

ter II is that the earlier studies derive a spectral “balance” of energy in the frequency-

or wavenumber-frequency domain, whereas here we obtain what can truly be de-

scribed as spectral “transfers” of energy in the frequency or wavenumber-frequency

domain. To directly quote Chiu (1970):

“At this point, we note that when the spectrum in the wave number do-

main is interested, [...] the real part of the complex spectral equation (or

the co-spectral equation) deals with the time rate of change of spectrum.

On the other hand, when the spectrum in the frequency domain is inter-

ested, [...] the co-spectral equation does not deal with the time rate of

change of spectrum, but with the balance among various co-spectra.”

The mathematical framework presented in this dissertation describes how to incor-

porate the “time rate of change” that was absent in earlier derivations.

In the first half of Chapter II, we derive spatio-temporal spectral transfers and

fluxes for a very general equation of motion. Although our main motivation is the

study of fluid dynamics, the theory works for any equation of the form

∂

∂t
G(χ, t) =

∑
n

An(χ, t), (1.4)

where the only requirements are the differentiability of G(χ, ·) and easily satisfied

(weak) integrability requirements involving the functions An(χ, ·). The variable χ

represents all independent variables besides time t. In fluid dynamics applications,
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χ could be a spatial variable such as position x or wavevector k, and G(χ, t) could

be the velocity, the vorticity, or a spatial Fourier or wavelet transform of the stream

function (for example).

With 1.4 as the starting point, we derive general spatio-temporal transfers. The

derivation must differ fundamentally from that of the more commonly used spatial

spectral transfers because of the presence of the time-derivative in equation 1.4. In-

stead of a purely spectral (i.e. frequency) analysis, one needs to use a more general

time-frequency analysis, such as the short time Fourier transform, a temporal wavelet

transform, or some other bilinear time-frequency representation (Cohen, 1995). The

derivations are shown for the general case of a bilinear time-frequency representation,

which is a mathematically convenient way to simultaneously handle both Fourier

transforms and wavelet transforms (and their generalizations). The use of a general

bilinear representation also makes it clear that the many details of Fourier or wavelet

analysis are not important to the derivation.

However, even the most general case of a bilinear time-frequency representation is

not quite sufficient for our needs. In practical applications we may want to perform

a detrending operation. The inclusion of a detrending operation may seem trivial,

but is in fact subtle. Interestingly, if a detrending operation is incorporated into the

mathematical framework in a particular way, then an exact spectral energy budget

can still be derived.

After the general derivation of spatio-temporal spectral transfers, the remainder

of Chapter II investigates the effect of a mean flow and isotropic sweeping on the

spectral transfers and triad interactions, specifically in 2D and 3D turbulence. We

also give an interpretation of the transfers in Chapter II. The remainder of this section

provides the necessary background for these topics.

Taylor’s hypothesis (Taylor , 1938) is often invoked in experimental investigations

of turbulence in order to reconstruct spatial information from time-resolving mea-
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surements at a single point in space. Taylor’s hypothesis states that the small-scale

turbulent flow is advected without significant distortion by the large-scale mean flow.

Another way to describe Taylor’s hypothesis is that at sufficiently small scales the

turbulence appears to be spatially “frozen” and simply translates uniformly at the

mean velocity U . Under this assumption, there is a mapping between spatial and

temporal Fourier modes given by ω = k ·U . It would require hundreds of pages just to

cite every paper that invokes Taylor’s hypothesis. The accuracy of Taylor’s hypoth-

esis has been investigated both theoretically (Lumley , 1965; Wyngaard and Clifford ,

1977; Hill , 1996) and computationally (Dosio et al., 2005; Bahraminasab et al., 2008;

Del Alamo and Jimenez , 2009; Moin, 2009, for some recent examples). It is natural

to wonder what effect the assumption of Taylor’s hypothesis has on spatio-temporal

spectral transfers, a topic that to our knowledge has seen little investigation.

In the absence of a mean flow Taylor’s hypothesis does not apply, but we may

still try to find a relationship between the spatial and temporal properties of the

spectral transfers by invoking a “sweeping hypothesis.” According to the sweeping

hypothesis (Heisenberg , 1948; Tennekes , 1975; Chen and Kraichnan, 1989; Nelkin and

Tabor , 1990), the small-scale turbulent structures are still advected by larger-scale

structures as is the case for Taylor’s hypothesis, but the large-scale structures may

have different (spatially locally averaged) mean velocities at different locations and

times. According to very simple models of sweeping, the resulting relations between

spatial statistics and temporal statistics are based on an averaging over the many

different mean velocities. This dissertation presents a model of sweeping that adds

some small improvements to the earlier models. The improvements make it possible

to predict the effects of isotropic sweeping on spatio-temporal spectral transfers and

triad interactions.
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1.3 Background for Chapter III

To illustrate the use of spatio-temporal spectral transfers, we apply them to a

simple fluid system: a modified version of the incompressible two-dimensional Navier–

Stokes equation (for reviews of two-dimensional turbulence see Boffetta and Ecke,

2012; Tabeling , 2002; Kellay and Goldburg , 2002; Kraichnan and Montgomery , 1980).

Motivated by the utility of diagnosing spatial spectral transfers in systems where

energy and enstrophy are injected within a narrow range of wavenumber (recent

examples include Danilov and Gurarie, 2001; Chen et al., 2003; Babiano and Dubos ,

2005; Chen et al., 2006; Boffetta, 2007; Xiao et al., 2009; Dritschel et al., 2009; Boffetta

and Musacchio, 2010), we choose to study the spatio-temporal spectral transfers in a

system where energy and enstrophy are injected within a narrow range of wavenumber

and frequency. To our knowledge, ours in the first study to use such a “modulated

forcing” in simulations of pure two-dimensional turbulence.

Of note, forced-dissipated turbulence with a “modulated forcing” has been previ-

ously studied in three dimensions (Lohse, 2000; Hooghoudt et al., 2001; von der Heydt

et al., 2003; Cadot et al., 2003; Kuczaj et al., 2006, 2008). In the three-dimensional

case theoretical predictions were made based on the static structure functions of Effin-

ger and Grossmann (1987). In three-dimensional modulated turbulence studies the

focus has been on the prediction and existence of a resonant frequency. To our knowl-

edge there have been no similar studies done for two-dimensional turbulence, which

may be more complicated due to the dual cascade of energy and enstrophy.

The first purpose of Chapter III is to explain the physical meaning of spatio-

temporal and temporal spectral transfers in these two-dimensional turbulence simu-

lations. The motivation for studying this system is to connect our results with prior

studies of spatio-temporal spectral transfers calculated using oceanic data and output

of realistic ocean models (Arbic et al., 2012, 2014). In those studies, for example, one

region showed energy being transferred to smaller time scales, an unexpected result
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which may be partly explained by our results in Chapter III.

The second purpose of Chapter III is to use the output of our numerical sim-

ulations to test the robustness of temporal spectral transfers as a diagnostic. The

satellite altimeter measurements of sea surface height used in calculating spectral

transfers in Arbic et al. (2012, 2014) had both limited temporal resolution and du-

ration, such that some relevant dynamical time scales were not resolved by the data.

This is a problem typical of large scale oceanic datasets. Because our numerical

simulations produce data that resolve all dynamical time scales, we are able to com-

prehensively study the effects of limited record duration, limited temporal resolution,

and temporal detrending in a way not possible with realistic data. Our investigation

in Chapter III shows that temporal spectral transfers are typically accurate over a

range of frequencies even when the data set is severely limited. This robustness of the

diagnostic is an important result, given our intent to apply spatio-temporal spectral

transfers to realistic datasets in future work.

1.4 Background for Chapter IV

Satellite altimetric measurements of sea surface height, with relatively high reso-

lution in both space and time, have made it possible to conduct systematic studies

of the ocean in the wavenumber-frequency domain. In addition to calculations of sea

surface height variance, we can also calculate kinetic energy spectra from sea surface

heights when assuming geostrophic balance (Vallis , 2006). A recent study (Wunsch,

2009) calculated wavenumber-frequency spectra for several regions in the ocean and

found that the spectra follows a “nondispersive line (NDL)” instead of any of the

proposed linear dispersion relations. Follow-up studies have created empirical mod-

els for the spectra (Wunsch, 2010; Wortham, 2013; Wortham and Wunsch, 2014)

which fit the data nicely, but do not provide a physical mechanism which explains

the observations.
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Early et al. (2011) investigated the NDL in simulations of the single-layer shallow-

water quasi-geostrophic equation, seeded with Gaussian-profile vortices similar to ed-

dies observed in the ocean. They found that if they removed the non-linear advection

term then the spectra followed the linear dispersion relation. However, if they in-

cluded non-linear advection then the spectra followed a NDL. In the nonlinear case

the vortices maintained coherence much longer as they propagated westward. Stud-

ies of wavenumber-frequency spectra in simulations of a two-layer model also found

there is a NDL in simulations that have high amplitude westward propagating vor-

tices (Berloff and Kamenkovich, 2013a,b). While these studies show that the NDL

may correspond to westward propagating coherent vortices in simple models, in the-

ory the NDL could correspond to any (somewhat) coherent westward propagating

structure.

These studies lead us to ask how common the NDL is in simulations of the single-

layer shallow-water quasi-geostrophic equation. Rather than seeding the fluid with

vortices as in Early et al. (2011), we study the case where coherent structures nat-

urally emerge in forced-dissipated statistical equilibrium. We ask whether there are

any flow regimes that produce a NDL besides westward propagating coherent vor-

tices (the answer is yes). We also investigate wavenumber-frequency spectra for flow

regimes that do not produce a NDL. As will be seen, a comprehensive investigation

of wavenumber-frequency spectra for a wide variety of flow regimes results in some

interesting observations, in particular a “nonlinear dispersive curve” (NDC) that ap-

pears to correspond to meandering jets. In addition to spectra we also calculate

nonlinear spectral transfers, which provide a direct measurement of the involvement

of nonlinearity in the formation of the NDL and NDC.

Thus, in Chapter IV we simulate the single-layer shallow-water quasi-geostrophic

equation 1.3. The three key parameters are the deformation radius Ld (or equiva-

lently, deformation wavenumber kd := 1/Ld), the meridional gradient β of the Coriolis
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parameter, and the forcing wavenumber kF . There have been relatively few studies of

the general case (kd 6= 0, β 6= 0), which is the subject of our investigation. There have

been quite a few investigations of this equation with either kd = 0 or β = 0. Much

of the literature review that follows is about these two cases. The phenomenology of

both of those cases are important for an understanding of the more general system.

Perhaps the most studied case is kd = 0 (infinite deformation radius) and β 6= 0.

The seminal paper by Rhines (Rhines , 1975) predicted that the inverse cascade of

energy is nearly arrested at the Rhines wavenumber, the wavenumber at which the

beta term reaches the same magnitude as the nonlinear advection term. In its simplest

manifestation, the Rhines wavenumber is given by kRh :=
»
β/2Urms, where Urms

is the root mean square velocity. Vallis and Maltrud (1993) studied the effects of

rough topography and also defined a transition wavenumber, kβ := (β3/ε)1/5, which

is intended to serve the same purpose as the Rhines wavenumber, but depends on ε,

the energy injection rate by the forcing. Other studies of two-dimensional turbulence

on a beta plane have investigated diffusion (Smith et al., 2002) and the structural

form of jets (Danilov and Gurarie, 2004; Danilov and Gryanik , 2004). A more recent

study (Sukoriansky et al., 2007) clarifies the interpretation of the Rhines wavenumber.

Sukoriansky et al. (2007) argue that Rhines scale is not associated with the arrest

of the inverse cascade, because the cascade continues (albeit anisotropically) to large

scales until friction is reached. They also show that the Rhines scale should not be

viewed as a crossover between turbulence and Rossby wave ranges, because Rossby

waves and turbulence co-exist at smaller scales. The beta-plane simulations with

kd = 0 have been supplemented by simulations on a sphere (Sukoriansky et al., 2007,

2008; Galperin et al., 2010), demonstrating the existence of a new class of nonlinear

waves called “zonons.”

Another well-studied case is β = 0 and kd 6= 0 (finite deformation radius). In this

case the equation of motion is equivalent to the Charney-Hasegawa-Mima equation,
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which models drift-wave turbulence in magnetically confined plasmas (e.g. tokamaks).

Larichev and McWilliams (1991) conducted simulations for a wide range of kd and

found coherent potential vorticity monopoles. Kukharkin et al. (1995) also studied

coherent structures in this system, and Iwayama et al. (2002) studied the equation

in the limit kd →∞. Additional studies (Tran and Bowman, 2003; Arbic and Flierl ,

2003; Tran and Dritschel , 2006) have looked at energy cascades, finding that a finite

kd acts as a shield to the kinetic energy cascade, allowing only potential energy to

cascade to larger scales. Tran and Dritschel (2006) found that this cascade of potential

energy is incredibly slow. Recently, Scott and Dritschel (2013) made predictions

for the partitioning of total energy into kinetic and potential energy at equilibrium,

assuming the large scale dissipation is by thermal damping, which is equivalent to

our choice of damping.

Finally, there is the case kd 6= 0 and β 6= 0, the focus of our study. This case has

not been investigated by direct numerical simulation nearly as often as the kd = 0

case or the β = 0 case. Kukharkin and Orszag (1996) found that jets formed when

kd = 0 are destabilized when kd takes on a finite value. Instead, coherent vortices

form with size somewhat larger than the deformation radius. Okuno and Masuda

(2003) showed that a strong horizontal divergence (equivalently, large kd) suppresses

the Rhines effect (i.e. the anisotropization of the flow). The explanation for these

observations is that for sufficiently large values of kd the beta term cannot dominate

the nonlinear term. Smith (2004) studied this system theoretical and numerically

for a wide range of parameters. Their focus was on the parameter requirements for

anisotropy and the production of jets, quite relevant to our study, although their form

of large-scale dissipation is different from our own, and they did not study the system

in the wavenumber frequency domain. A tangentially (pun intended) related study

simulates the equation on a sphere (Scott and Polvani , 2007).

Our investigation is focused on wavenumber-frequency analyses of numerical sim-
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ulations of equation 1.3 for a wide range of values of kd and β. Two very recent studies

have also looked at this system in wavenumber frequency space. Zhang and Afanasyev

(2014) conducted an experimental study of barotropic and baroclinic turbulent flows

generated in a rotating tank with a topographic beta effect. They observed the cre-

ation of jets and found evidence of linear Rossby waves in wavenumber-frequency

spectra at low wavenumber. Suhas and Sukhatme (2015) conducted a numerical in-

vestigation similar to our own. Their main result is that Rossby waves account for

most of the kinetic energy when there are jets. Our study considers a much broader

parameter sweep and finds a greater variety of features in wavenumber-frequency

spectra, and we investigate the role of nonlinear spectral transfers in the formation

of the observed spectral features.
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CHAPTER II

Spatio-temporal spectral transfers: theory

2.1 Overview of this Chapter

This chapter has a dual purpose: (1) to provide a derivation of general spatio-

temporal spectral transfers, and (2) to derive the effects of a mean flow and isotropic

sweeping on spectral transfers specifically when the transfers are based on the Fourier

transform. In regard to layout of this dissertation, the present chapter is the theory

for the results in Chapter III.

We begin (section 2.2) with the theory for spatio-temporal transfers and fluxes,

allowing for a general equation of motion and a general spatial dependence. For

example, one could apply a spatial filter or a spatial Fourier transform or wavelet

analysis to the original equation of motion before proceeding to calculate the trans-

fers. General spatio-temporal transfers are then defined in terms of temporal Fourier

transforms, temporal wavelet analysis, and more general bilinear time-frequency dis-

tributions. Importantly, the effect of a temporal detrending operation is calculated

and shown to be easily incorporated into the mathematical framework. While we

provide general forms for the spatio-temporal transfers throughout, we simultane-

ously provide an illustrative example in the form of the spatially Fourier transformed

two-dimensional vorticity equation.

We then proceed (section 2.3) to derive the effects of mean flows and isotropic
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sweeping on spatio-temporal and temporal spectral transfers in the case of the two-

dimensional vorticity equation. These results rely specifically on the use of the spatial

Fourier transform and the short-time Fourier transform, as opposed to the general

spatial transform and general bilinear time-frequency representation considered in

section 2.2. We show the effect of a Galilean transformation, which is roughly equiv-

alent to the imposition of a mean flow, and we provide a model for the effect of

isotropic sweeping on the spatio-temporal and temporal spectral transfers. We also

show that spatio-temporal and temporal triad interactions are readily defined anal-

ogous to spatial triads (Kraichnan, 1967), that similar local conservation laws are

satisfied, and that sweeping affects the locality of the generalized spatio-temporal

triad interactions.

We also provide an interpretation of the spatio-temporal and temporal transfers

following straightforwardly from the derivation. The issue of locality versus non-

locality of the temporal triad interactions is quite important in the interpretation

of spatio-temporal spectral transfers and fluxes. Temporal spectral fluxes typically

should not be interpreted as arising from a spectrally local interaction, because of the

effects of isotropic sweeping. It should be noted that spatial triad interactions are

also not strictly spectrally local either. We review the main results of Chapter II in

the Conclusion (section 2.4).

2.2 General theory for spatio-temporal spectral transfers

2.2.1 General and specific equations of motion

We derive spatio-temporal spectral transfers in a general way so they may be used

in a wide variety of fluid dynamical applications. In order to be widely applicable, the

equation of motion used as a starting point must be quite general. In order to motivate

the general equation of motion, we begin this chapter with a few concrete examples.
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We could start with the Navier–Stokes equations with generalized dissipation and

forcing terms:

∂tu(x, t) = −(u · ∇)u−∇p+ d[u] + f(x, t), ∇ · u = 0, (2.1)

where u(x, t) is the Eulerian velocity field, p is pressure, d[·] is a linear dissipation

operator, and f(x, t) is an external force. We could start with the spatial Fourier

transform of equation 2.1:

∂t‹u(k, t) = −‰�(u · ∇)u−fi∇p+ fld[u] + ‹f(k, t), k · ‹u = 0, (2.2)

where the operator “tilde” performs the two-dimensional spatial Fourier transform

defined by ‹A(k) :=
∫ ∫

d2x eik·xA(x)/L2, where L is the width of the square, periodic

domain. If we were interested in looking at individual terms in the multi-scale gradient

expansion of (Eyink , 2006a,b), we could begin with a low-pass filtered equation

∂tu(x, t, `) = −(u · ∇)u−∇ · τ + d[u] + f(x, t, `), (2.3)

where

A(x, t, `) :=
∫
dnrG`(r)A(x+ r) (2.4)

and τ := uu−u u, following the notation of Eyink (2006a,b). Lastly, we could start

with a spatial wavelet transform of 2.1 or some other primitive fluid equation.

All of the above equations can be written in the form

∂tG[u](χ, t, {αi}) =
∑
n

An[u](χ, t, {αi}), (2.5)

where G[·] and An[·] are (typically but not necessarily linear) functionals acting on the

velocity u; χ is the new spatial coordinate, which for example could be the original
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coordinate x or a spectral coordinate k; and {αi} is some collection of additional

coordinates, such as a length scale in a wavelet analysis.

The dependence of G and An on u will be used in section 2.3 when we determine

the effects of mean flows and isotropic sweeping. However, in the current section the

velocity u is irrelevant, and we can simply start with

∂tG(χ, t) =
∑
n

An(χ, t), (2.6)

where G and An are arbitrary functions (subject to suitable differentiability and

integrability requirements).

Since we are primarily motivated by fluid dynamical applications, we show how

to derive spectral transfers specifically for the two-dimensional vorticity equation in

addition to the more general case of equation 2.6. The two-dimensional vorticity

equation (with generalized forcing and dissipation) is

∂

∂t
∇2ψ(x, t) + J(ψ,∇2ψ) = D[ψ] + F, (2.7)

which is obtained by taking the z-component of the curl of equation 2.1 (and assuming

translation invariance in the z-direction). In equation 2.7, ψ(x, t) = ψ(x“x+ yŷ, t) is

the stream function, which by definition is chosen so that ∂xψ = ŷ·u and ∂yψ = −“x·u,

implying that the scalar vorticity is ∇2ψ = ẑ · (∇×u); the Jacobian J(·, ·) is defined

by J(A,B) := ∂xA∂yB − ∂yA∂xB; the dissipation term is D[ψ] := ẑ · (∇ × d[u]);

and F := ẑ · (∇× f). Here, “x, ŷ, and ẑ are the standard Cartesian coordinate unit

vectors in the three-dimensional system.

The spatial Fourier transform of equation 2.7 is

∂

∂t
k2‹ψ(k, t) = Â�J(ψ,∇2ψ)(k, t)− D̃(k, t)− ‹F (k, t), (2.8)
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where we have assumed periodic boundary conditions. In the rest of this section we

derive spatio-temporal spectral transfers not only for the general equation of motion

(equation 2.6) but also for equation 2.8.

2.2.2 Spectral transfers in k-space

It is standard practice in turbulence theory to calculate spectral transfers or

fluxes in the spatial domain, allowing one to diagnose the direction and magnitude

of the transfer of energy (or enstrophy) between different spatial scales. Thus, it

will be instructive to show first the derivation of spectral transfers in the spatial

domain (briefly; for details see e.g. Frisch, 1995). While not strictly necessary, for

simplicity we assume spatially periodic boundary conditions.

Multiplying equation 2.8 by ‹ψ∗(k, t), where ∗ denotes complex conjugate, and

taking the real part (Re[·]) gives the equation for the energy budget :

∂

∂t
E(1)(k, t) :=

∂

∂t
1
2
k2|‹ψ|2 = Re[‹ψ∗Â�J(ψ,∇2ψ)]− Re[‹ψ∗D̃]− Re[‹ψ∗‹F ], (2.9)

where E(1)(k, t) is thought of as the energy spectral density in wave-vector mode k

at time t. An additional multiplicative factor of k2 in equation 2.9 results in the

enstrophy budget :

∂

∂t
Z(1)(k, t) := k2 ∂

∂t
E(1)(k, t) = k2(r.h.s of equation 2.9), (2.10)

where Z(1)(k, t) is thought of as the enstrophy spectral density in wave-vector mode

k at time t. A subscript (1) on the energy and enstrophy is used to indicate that

this is the first definition we give for the spatial spectral densities. We will provide a

second definition later in section 2.2.5 that uses the spatio-temporal spectral densities

defined in section 2.2.4.

For each wavevector k we refer to each term on the right-hand-side of the spectral
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budgets, (2.9) or (2.10), as the energy (or enstrophy) spectral transfer into wavevector

mode k due to that term. In general, for any term An(χ, t) in the general equation

of motion (2.6) we denote the corresponding spatial spectral transfer by An(χ, t) or

simply A(χ, t). As is standard for homogeneous isotropic turbulence, when χ ≡

k, one typically integrates over all spectral angles to obtain energy (or enstrophy)

spectral transfers dependent only on the isotropic wavenumber k. We refer to the

corresponding reduced spectral densities as E(1)(k, t) and Z(1)(k, t), and we refer to

their temporal averages as E(1)(k) and Z(1)(k).

One may proceed to calculate spectral fluxes defined as integrals of the spectral

transfers:

Π>
A(k, t) :=

∞∫
k

dk′ A(k′, t), and Π>
A(k) :=

∞∫
k

dk′ A(k′) (2.11)

where A(k, t) is a spatial spectral transfer and A(k) is its time-average. Note that

we allow A to be any spatial spectral transfer term, not just the nonlinear advection

term. Because the linear terms act locally in k-space, the standard notion of a “flux

through k” makes little sense for the linear terms. However, a “transfer at k” does

make sense for the linear terms, and the corresponding flux Π>
A(k, t) is simply an

integral of the transfer.

2.2.3 A note on notation

Throughout this chapter we employ a useful convention: a single function name

may be used more than once to refer to several different functions, but each function

is uniquely defined by the number and dimensions of the inputs. For example, E(k, t),

E(k, t), E(k, ω, τ), and E(k, ω, τ) refer to four different functions (the last two are

defined later). Also, the spatial spectral transfer A(k, t) and the temporal spectral

transferA(ω, t) (defined later) are distinguished by the use of different input variables,

k versus ω; the same is true for the spatial spectral flux Π>
A(k, t) and the temporal

spectral flux Π>
A(ω, t) (also defined later). Sometimes, additional parameters will be
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included after a semicolon without changing the meaning of a function. For example

E(k, ω, τ ;T ) is the same function as E(k, ω, τ), but with the dependence on the

parameter T simply made explicit. These conventions greatly reduce the number of

symbols that the reader would otherwise need to remember.

2.2.4 Spectral transfers in (k, ω)-space

One might expect to be able to derive temporal and spatio-temporal spectral trans-

fers analogous to the derivation of spatial spectral transfers derived in section 2.2.2.

However, temporal spectral transfers are fundamentally different because of the tem-

poral derivative in equation 2.6. While the temporal derivative commutes with spatial

detrending and spatial Fourier transforms (or any other spatial operator), the tem-

poral derivative does not commute with temporal detrending and temporal Fourier

transforms.

A naive application of a temporal Fourier transform to equation 2.8 in an attempt

to derive temporal spectral transfers results in the replacement of the time-derivative

by −iω, which then drops out of the equation upon taking the real part. The absence

of a temporal derivative in the result prohibits the interpretation of the remaining

terms as rates of change (i.e. transfers) of energy in spectral space. Instead, one simply

obtains a balance of terms. Less naive methods (Chiu, 1970; Sheng and Hayashi ,

1990a,b; Elipot and Gille, 2009), which employ autocorrelation functions, also result

in a balance among terms in wavenumber-frequency space rather than provide an

interpretation of each term as a spectral transfer. In order to truly derive temporal

spectral transfers, we need both a time derivative and a frequency variable in the

final spectral budget. Thus, we turn to time-frequency representations.

In this section we define general spatio-temporal spectral transfers in terms of

general bilinear time-frequency analysis methods. The time-frequency methods take

as an input a signal f(t) and output a time-frequency representation, TFRf (ω, τ),
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that is quadratic in f . The representation TFRf (ω, τ) depends on two variables: a

frequency ω, which is typically related to the time-scale of the spectral content; and a

“central time” τ , which is typically the center of some temporal window inside which

the spectral content is calculated. See (see, e.g. Hlawatsch and Auger , 2008) for a

review of time-frequency analysis methods.

The two most commonly used bilinear time-frequency representations are the spec-

trogram and the scalogram, which are the modulus squared of the short time Fourier

transform (STFT) and the wavelet transform (WT) respectively. Given a function

f(t) we define the short time Fourier transform:

STFTf (ω, τ ;T ) :=

τ+T/2∫
τ−T/2

σT (t− τ)f(t)e−iω(t−τ)dt, (2.12)

where σT (s) is a window function of width T centered at s = 0. For later convenience

we have inserted a multiplicative factor of eiωτ into the usual definition of the STFT.

We also define the wavelet transform:

WTf (ω, τ) :=

∞∫
−∞

f(t)|ω|1/2W ((t− τ)ω)dt, (2.13)

where W (·) is the “mother wavelet,” which can be chosen according to desired prop-

erties.

Equations 2.12 and 2.13 are special cases of more general time-frequency rep-

resentations: Cohen’s class (Cohen, 1995) of time-frequency representations (which

includes the STFT) and the affine class of time-frequency representations (which in-

cludes the WT). Sometimes it is possible to use these more general forms to obtain

better temporal localization in the time-frequency representation (while also attempt-
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ing to minimize cross-terms). In general, one defines

Cf (ω, τ) :=

∞∫
−∞

∞∫
−∞

dτ ′dt φt-d(τ − τ ′, t)e−iωtf
Å
τ ′ +

t

2

ã
f ∗
Å
τ ′ − t

2

ã
(2.14)

for Cohen’s class, and

Ωf (ω, τ) :=
ω

ω0

∞∫
−∞

∞∫
−∞

dτ ′dt φt-d

Ç
ω

ω0

(τ ′ − τ),
ω

ω0

t

å
f
Å
τ ′ +

t

2

ã
f ∗
Å
τ ′ − t

2

ã
(2.15)

for the affine class, where ω0 is some reference frequency. Both of these time-frequency

representations have the form

TFRf (ω, τ) :=

∞∫
−∞

∞∫
−∞

dτ ′dt K(τ ′ − τ, t, ω)f
Å
τ ′ +

t

2

ã
f ∗
Å
τ ′ − t

2

ã
, (2.16)

where the kernel K is an arbitrary function. One reason we use equation 2.16 is that

it handles both the short-time Fourier transform and continuous wavelet transform

without reference to the specific details of each transform. The specific choice of

K, and hence whether one is using a STFT or a WT or some other transform, is

unimportant in the derivation of spatio-temporal spectral transfers.

In the above formulation of general bilinear time-frequency representations, the

function φt-d(·, ·) is the time-delay kernel (see, e.g. Hlawatsch and Auger , 2008),

which can be chosen according to desired properties. For the STFT, φt-d(s, t) :=

σ∗(−s+t/2)σ(−s−t/2), where σ(·) is the window function, and the resulting spectral

density Cf (ω, τ) is the spectrogram |STFTf (ω, τ)|2. For the WT, φt-d(s, t) is given

by the Fourier transform (in the second argument) of the Wigner-Ville distribution

Wψ(s, ω) for the mother wavelet ψ(t), and the resulting spectral density Ωf (ω, τ) is

the scalogram |WTf (ω, τ)|2. There are several other equivalent formulations of the

spectral densities Cf (ω, τ) and Ωf (ω, τ) which are obtained by convolving the Fourier

transform of the kernel with the Fourier transform of the rest of the integrand. We
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choose to present the time-delay formulation because in that case the temporal spec-

tral transfers take the simplest form and the effect of a detrending operation is most

easily derived.

It is common practice in time-series analysis to first apply a detrending operation

to the raw data prior to any other data manipulation. However, if not done cor-

rectly, detrending might substantially affect all frequencies in the analysis, because

any nonlinear term (such as the advection term) may produce nonlinear interactions

between frequency modes, warranting caution. Therefore, for our method to be useful

in practice, we should carefully incorporate the effects of detrending.

In order to incorporate a detrending operation into the standard time-frequency

analysis methods, one must first recognize that a detrended function depends not only

on time t but also on the central time τ and duration T of the window over which

the trend is calculated. That is, given some function f(t) the result of a detrending

operation is

fdetrend(t, τ ;T ) := f(t)− ftrend(t, τ ;T ), (2.17)

where ftrend(t, τ ;T ) is the trend (such as a best fit line) calculated based on data

within the range [τ − T/2, τ + T/2]. Moreover, it is typically natural to equate τ in

equation 2.17 with τ in equations 2.14 and 2.15. Thus, we may extend the definition

of a time-frequency transform to take as input a function of the form f(t, τ ;T ) rather

than just f(t), and we do so by simply replacing all evaluations of the function f(·)

in equations 2.12, 2.13, 2.14 and 2.15 by evaluations of the more general function

f(·, τ ;T ). For example, the generalized STFT is

STFTfdetrend
(ω, τ ;T ) :=

τ+T/2∫
τ−T/2

σT (t− τ)fdetrend(t, τ ;T )e−iω(t−τ)dt. (2.18)

For the WT, which does not use a window of width T , the scale (2π/ω) of the wavelet

is most naturally taken to correspond to the width of the detrending window. In that
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case, one must allow T = T (ω) to be a function of ω. For general time-frequency

representations, the width T of the detrending window could depend on both τ and

ω, but we must require ∂τT (τ, ω) = 0 for the following derivations.

Any detrending operation that satisfies certain linearity and commutation-like

requirements is allowed. Specifically, we require linearity:

(αf + βg)detrend(t, τ ;T ) = αfdetrend(t, τ ;T ) + βgdetrend(t, τ ;T ), (2.19)

for any two constants α and β and input functions f and g. We also require the

following commutation rule between time derivatives and the detrending operation:Ç
∂

∂t
f(t)

å
detrend

(t, τ ;T ) =
∂

∂t
fdetrend(t, τ ;T ) +

∂

∂τ
fdetrend(t, τ ;T ). (2.20)

We have verified that any linear least squares fit (and some generalizations thereof)

satisfies these requirements. Here linear means “linear in the fit parameters,” so

that the trend would take the form ftrend(t, τ ;T ) :=
∑
am(τ ;T )φm(t − τ ;T ), where

am(τ ;T ) are the fit parameters and {φm(t− τ ;T )} is the collection of fit functions. It

is necessary that the fit functions φm depend on t and τ through the combination t−τ ,

implying that the fit functions maintain their form relative to the center of the moving

window. In addition to linear least squares, any linear filter acting upon windowed

data would work as well. That is, ftrend could take the form of a convolution of the

windowed signal with an impulse response function. Mathematically, this would be

expressed as ftrend(t, τ ;T ) := h(t) ∗t (σT (t − τ)f(t)), where ∗t indicates convolution

over the variable t, and h(t) is the impulse response function (i.e. inverse Laplace

transform of the transfer function).

Proceeding with our derivation of the spatio-temporal transfers, for simplicity

we first consider the two linear time-frequency transforms. Let the “hat” operator
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correspond to either the generalized STFT or the WT. That is,

ÿ�fdetrend(ω, τ) := STFTfdetrend
(ω, τ ;T ) or WTfdetrend

(ω, τ). (2.21)

Then, assuming that the constraints on the detrending operation given in equa-

tions 2.19 and 2.20 are satisfied, one can (nontrivially) show the effect on a time-

derivative, (∂tf), of a detrending operation followed by a linear time-frequency trans-

form:

¤�(∂tf)detrend(ω, τ) = ∂τÿ�fdetrend(ω, τ) + ig(ω)ÿ�fdetrend(ω, τ), (2.22)

where g(ω) is a real-valued function (g(ω) ≡ 0 for wavelets and our version of the

STFT, but g(ω) ≡ ±ω for other reasonable STFT definitions). Upon multiplying

equation 2.22 by ÿ�fdetrend
∗
(ω, τ) and taking the real part, the extra term drops out,

yielding

Re[ÿ�fdetrend
∗ ¤�(∂tf)detrend(ω, τ)] = ∂τ

1
2
|ÿ�fdetrend(ω, τ)|2. (2.23)

If one substitutes k‹ψ(k, t) for f(t) in equation 2.23 and applies the result to our

example equation of motion 2.8, one obtains the spatio-temporal spectral energy

budget:

∂

∂τ
E(k, ω, τ) :=

∂

∂τ
1
2
k2

∣∣∣∣∣ÿ�‚�ψdetrend

∣∣∣∣∣
2

= Re

Çÿ�‚�ψ∗detrend

åÑ ¤�Â�J(ψ,∇2ψ)detrend

é
− Re

ñÿ�‚�ψ∗detrend
Ÿ�„�Ddetrend

ô
(2.24)

− Re

ñÿ�‚�ψ∗detrend
ÿ�‚�Fdetrend

ô
,

and an additional multiplicative factor of k2 gives the enstrophy budget. Because the

spatial Fourier transformation commutes with both the detrending operation and the
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time-frequency transform, in equation 2.24 the “tilde” operator can be applied before

the detrend, after the detrend, or after the “hat” operator. However, the order of the

detrend and the “hat” operator certainly does matter.

Note that the detrending operation in equation 2.24 acts on the nonlinear term J

but not on the stream function itself. In general, becauseÑ ¤�Â�J(ψ,∇2ψ)detrend

é
6=

Ñ ¤�Â�J(ψdetrend,∇2ψdetrend)

é
, (2.25)

it would be wrong to detrend the raw data (e.g. the stream function) before calcu-

lating the nonlinear term if one wants to rigorously interpret the result as a spatial-

temporal transfer. Of course, approximate equality in equation 2.25 might hold for

some datasets.

Finally, as our main result, we return to general bilinear time-frequency repre-

sentations and the general formulation of the original equation of motion. Given the

equation of motion 2.6, the constraints on the detrending operation (equations 2.19

and 2.20), and a bilinear time-frequency transformation TFRf of the form 2.16, one

obtains the following spatio-temporal spectral budget:

∂

∂τ
TFRGdetrend

(χ, τ, ω) =
∑
n

An(χ, τ, ω), (2.26)

where An(χ, τ, ω) is the spatio-temporal spectral transfer corresponding to An, defined

by

An(χ, τ, ω) :=

∞∫
−∞

∞∫
−∞

dτ ′dt K(τ − τ ′, t, ω) (2.27)

×
ß
An,detrend

Å
χ, τ ′ +

t

2
, τ
ã
G∗detrend

Å
χ, τ ′ − t

2
, τ
ã

+Gdetrend

Å
χ, τ ′ +

t

2
, τ
ã
A∗n,detrend

Å
χ, τ ′ − t

2
, τ
ã™

.
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2.2.5 Spectral transfers in ω-space and in other reduced spaces

Other spectral budgets can be derived by summing (or integrating) equation 2.24

or 2.27 over subsets of (k, ω, τ)- or (χ, ω, τ)-space. In particular, the temporal spec-

tral transfers, which we will diagnose in Chapter III, are obtained by summing the

spatio-temporal energy budget 2.24 and the corresponding enstrophy budget over all

wavevectors:

∂

∂τ
SE(ω, τ) :=

∑
k

∂

∂τ
E(k, ω, τ) (2.28)

=
∑
k

Re[
̂̃
ψ∗[

¤�Â�J(ψ,∇2ψ)]−
∑
k

Re[
̂̃
ψ∗
̂̃
D]−

∑
k

Re[
̂̃
ψ∗
̂̃
F ], (2.29)

∂

∂τ
SZ(ω, τ) :=

∑
k

∂

∂τ
Z(k, ω, τ) =

∑
k

k2 ∂

∂τ
E(k, ω, τ), (2.30)

where SE(ω, τ) and SZ(ω, τ) are the temporal spectral densities (at central time τ)

for energy and enstrophy, respectively, and each of the three terms on the right hand

side of (2.29) is a temporal spectral transfer, which in general we write as An(ω, τ)

or simply A(ω, τ). We define temporal spectral fluxes as integrals of the temporal

spectral transfers:

Π>
A(ω, τ) :=

∫
|ω′|>ω

dω′ A(ω′, τ), or Π>
A(ω) :=

∫
|ω′|>ω

dω′ A(ω′). (2.31)

If instead one integrates equation 2.24 over all ω or all (ω, τ), one obtains a second

form for the spectral densities in k-space:

E(2)(k, τ) :=
∫
dω E(k, ω, τ), (2.32)

E(2)(k) :=
1

τ1 − τ0

τ1∫
τ0

dτ E(2)(k, τ), (2.33)

where the interval (τ0, τ1) spans the whole dataset. For a general time-frequency
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transform, this second form may or may not equal the commonly used spectral den-

sities E(1)(k) and Z(1)(k) defined in section 2.2.2. However, if one uses the STFT,

due to Parseval’s theorem, the two forms will give nearly equal results if the effects

of windowing and detrending are negligible.

2.3 Properties of Fourier transform-based spectral transfers

for fluid flows

2.3.1 The effect of a Galilean transformation on spectral transfers

We now show how the spatio-temporal and temporal transfers change under a

Galilean transformation, which is roughly equivalent to the imposition of a mean

flow. Such a transformation is important because many flows of practical interest

either exhibit a strong mean flow or are thought to exhibit sweeping, in which the

smaller-scale structures are swept without distortion by larger-scale structures.

The effect of a Galilean transformation differs from the effect of a mean flow

whenever there is a forcing term that sets a preferred frame of reference (as is typically

the case). Therefore, it is not strictly correct to take the results of this section as an

indication of the effect of a mean flow. However, so far as some spectral transfers,

or at least certain regions in (k, ω)-space of some spectral transfers, are independent

of the temporal properties of the forcing term (as will indeed be the case in our

numerical simulations), the analysis below should hold reasonably well.

Suppose we have two frames of reference, in which the Eulerian velocity fields are

u(1) and u(2), and that V is the (constant) velocity of the second frame with respect

to the first, so that

u(2)(x, t) = u(1)(x+ V t, t)− V , (2.34)

f (2)(x, t) = f (1)(x+ V t, t). (2.35)
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Trivially, but as a means of setting notation, the energy budgets in frames (1) and

(2) take the form

∂

∂τ
E(n)(k, ω, τ ;T ) = N (n)(k, ω, τ ;T )−D(n)(k, ω, τ ;T )−F (n)(k, ω, τ ;T ), (2.36)

where N , D, and F correspond to the nonlinear transfer, dissipation, and forcing

terms respectively in the energy budget equation 2.24, and where n = 1, 2 labels the

reference frame.

If the STFT is chosen, it can be shown that each term transforms according to

A(2)(k, ω, τ ;T ) = A(1)(k, ω + V · k, τ ;T ), (2.37)

whereA = N ,D,F , or ∂τE. The transformation of each term is simply a k-dependent

shift in the frequency variable. The enstrophy transfer terms transform in the same

way. Note that equation 2.37 is an exact equality regardless of the choice of temporal

window or detrending operation.

After integrating over all spectral angles in k-space in order to obtain A(k, ω, τ),

or after summing over all k to obtain A(ω, τ), one finds the transformation rules

A(2)(k, ω, τ ;T ) :=
∫
dΩd k

d−1A(2)(k, ω, τ ;T ) (2.38)

=
∫
dΩd k

d−1A(1)(k, ω + V · k, τ ;T ), (2.39)

A(2)(ω, τ ;T ) :=
∑
k

A(2)(k, ω, τ ;T ) =
∑
k

A(1)(k, ω + V · k, τ ;T ) (2.40)

where the integrals in (2.38) and (2.39) are over all angles in d-dimensional k-space.

According to equations 2.39 and 2.40 the spectral content in mode ω in frame (2)

corresponds to a sum of the spectral content over a range of wavevector-frequency

modes in frame (1). Above some sufficiently high wavenumber (say, k >max), the

transfers A(1)(k, ω′, τ ;T ) contribute negligibly to the sum 2.40, so the frequency
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modes ω′ which contribute non-negligibly to the sum are restricted to the range

ω − kmaxV < ω′ < ω + kmaxV , where one should note that kmax may depend on ω.

Thus, the effect of a mean flow is to “smear” out each frequency mode into nearby

frequency–wavenumber modes. This smearing of the temporal and spatio-temporal

transfers can be avoided by choosing to work in a frame with zero mean velocity.

However, even in a frame with zero mean velocity there will still be smearing effects

evident in the transfers if “sweeping” plays an important role in the dynamics, as

discussed in the next section.

2.3.2 The effect of sweeping on spectral transfers

As was alluded to at the end of the previous section, the effect of sweeping on the

spectral transfers is expected to “smear” some hypothetical non-swept version of the

spectral transfer into the spectral transfer that is ultimately observed. We attempt to

provide a little more rigor to the statement above in this section. We provide a simple

model for the effect of sweeping on the spectral transfers in the case of statistically

stationary, homogeneous isotropic turbulence.

Suppose that there is some distribution of sweeping velocities V with probability

density p(V ) and that at time t the whole fluid can be modeled as having a mean

velocity V (t). Also assume that V (t) (as well as its higher order derivatives) changes

“slowly” in time. A sufficient condition for the first derivative is that (T/2)2|k ·

V ′(τ)| � 1, which may be derived by Taylor expanding V (τ + ∆t) around τ with

∆t < T/2. Then, according to equation 2.37, which assumes we are using the STFT,

A(2)(k, ω, τ ;T ) ≈ A(1)(k, ω + V (τ) · k, τ ;T ), (2.41)

where A(1) is the spectral transfer in the reference frame in which the mean velocity

is zero at time τ . We also assume that the sweeping is isotropic, i.e. p(V ) = p(V ),
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where V = |V |.

Assuming that the fluid is in a statistically steady state, and taking this to imply

that A(1)(k, ω, τ ;T ) is independent of τ , we may average equation 2.41 over a very

wide range of τ to obtain

〈A(2)(k, ω, τ ;T )〉τ :=
1

τ1 − τ0

τ1∫
τ0

dτ A(2)(k, ω, τ ;T ) (2.42)

≈ 1

τ1 − τ0

τ1∫
τ0

dτ A(1)(k, ω + V (τ) · k, τ0;T ) (2.43)

≈
∫
ddV p(V )A(1)(k, ω + V · k, τ0;T ), (2.44)

where the width of the integration domain, τ1 − τ0 � T , is assumed wide enough

to allow the change of integration variable made in equation 2.44. The change of

integration variables is allowed by assuming ergodicity.

Now assume that the fluid is statistically homogeneous and isotropic, which im-

plies that that A(1)(k, ω, τ ;T ) = A(1)(k, ω, τ ;T )/sd(k), where sd(k) = 2πk in two

dimensions and sd(k) = 4πk2 in three dimensions. Then equation 2.44 further re-

duces to

〈A(2)(k, ω, τ ;T )〉τ ≈
∫
ddV p(V )A(1)(k, ω + V · k, τ0;T ) (2.45)

=
1

π

π∫
0

dθ′k

∫
ddV p(V )A(1)(k, ω + V k cos θ′k, τ0;T ) (2.46)

=
1

π

1∫
−1

dε′√
1− ε′2

∫
ddV p(V )A(1)(k, ω + V kε′.τ0;T ). (2.47)

To get equation (2.46) we used the assumption that p(V ) = p(V ) is radially symmet-

ric, so that the value of the integral does not change if we also average over all angles

θ′k, where V · k = V k cos θ′k. In equation (2.47) the dummy variable ε′ := cos θ′k is

not necessarily small.

34



If k is sufficiently large, then the integrands of equations 2.45 and 2.47 are non-

negligible only when ε′ ≈ 0, in which case

〈A(2)(k, ω, τ ;T )〉τ ≈
1

π

ε∫
−ε

dε′
∫
ddV p(V )A(1)(k, ω + V kε′, τ0;T ) (2.48)

=
1

π

∫
ddV p(V )

V kε∫
−V kε

dω′
1

V k
A(1)(k, ω + ω′, τ0;T ) (2.49)

≈ 1

π

∫
ddV p(V )

∞∫
−∞

dω′
1

V k
A(1)(k, ω + ω′, τ0;T ) (2.50)

=
1

πk
A(1)

(2)(k, τ0;T )
∫
ddV

p(V )

V
(2.51)

=
1

πk
A(2)

(2)(k, τ0;T )
∫
ddV

p(V )

V
(2.52)

where in the final result A(2)
(2)(k, τ0;T ) is simply the spatial spectral transfer corre-

sponding to the spatial spectral densities E(2)(k, τ) defined in equation 2.32. The last

equality (equation 2.52) is due to the fact that the spatial spectral densities are the

same in any frame.

Several assumptions were made to justify the approximations in the derivation

of 〈A(2)(k, ω, τ ;T )〉τ at large k. The approximation in equation 2.48 holds whenever

V kε > ωmax(k) for some choice of ε � 1 (in other words, V k � ωmax), where

ωmax(k) is some possibly k-dependent cutoff frequency above which contributions

to the total
∫
dω A(1)(k, ω, τ0;T ) are negligible. The approximation in equation 2.50

holds whenever |ω|±V kε > ωmax, so it suffices to require that |ω| < 2ωmax in addition

to the already mentioned requirements for equation 2.48. Since V is an integration

variable, we note that in these inequalities V must be interpreted as some minimum

velocity Vmin below which the total probability
∫
V <Vmin

ddV p(V ) is sufficiently small.

Thus, we have shown that when k � ωmax(k)/Vmin and ω < 2ωmax the spectral

transfers in (k, ω)-space become ω-independent and scale as 1/k times the spectral

transfers in k-space. In that case the smearing of frequency modes of A(1)(k, ω, τ0;T )
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into frequency modes of A(2)(k, ω, τ0;T ) covers such a wide range of frequencies that

every frequency in A(1)(k, ω, τ0;T ) contributes to each frequency in A(2)(k, ω, τ0;T ) in

a uniform way. For regions of (k, ω)-space that do not satisfy the given inequalities,

the smearing of the frequency modes occurs across only nearby frequency modes in a

non-uniform way quantified by equation 2.45.

Finally, we address two possible problems with our somewhat naive model of

sweeping, and we suggest potential resolutions for these problems. The first problem is

that we assumed that the whole fluid could be modeled with a single slowly changing,

spatially independent mean velocity V (t). However, the idea behind sweeping is that

the smaller scales (high wavenumbers) are swept not by the average velocity of the

whole fluid, but by the average velocity over local regions of the fluid. The spatial

spectral transfers calculated over the entire domain do not in general equal the sum

of the spatial spectral transfers in the subdomains, that is, unless there is significant

decoherence between the subdomains so that the cross-terms are negligible. When

using the spatial Fourier transform, it would seem that we have no choice but to hope

that is the case, and one can indeed argue that it should be. Perhaps a spatially

localized transform (say, a spatial wavelet) may be better suited for any analysis of

sweeping.

The second problem is that the window duration T was limited according to the

rate of change of the sweeping velocity: (T/2)2 maxτ k|∂τV (τ)| � 1. One would also

like to know the effects of sweeping on transfers calculated using windows with greater

duration. Again, as with the problem in the spatial domain, the answer depends on

the existence of a level of decoherence between appropriately narrow windows. On

the one hand, it again seems that a wavelet analysis might be a more appropriate

choice. On the other hand, there very well may be significant decoherence between

time intervals, as could be checked by numerical experiment, in which case the Fourier

transform may be perfectly acceptable or even preferable due to its widespread use and
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efficient numerical implementation. To put it in quantitative terms, we suspect and

later numerically show that typically A(2)(k, ω, τ0;Tlarge) ≈ 〈A(2)(k, ω, τ ;T )〉τ , where

Tlarge is some window length significantly wider than the narrow window length T

required in the above analysis.

2.3.3 Triad interactions, conservation laws, and non-locality

This section addresses the question of whether spatial triad interactions, under-

stood in terms of spatial spectral transfers, can be suitably generalized to spatio-

temporal triad interactions, understood in terms of spatio-temporal spectral trans-

fers. Spatio-temporal triad interactions are already widely used in the literature, but

in a subtly different way than is used here. The difference is that our spatio-temporal

(and temporal) triad interactions can be interpreted as transferring energy between

the various frequency modes as the central time changes, whereas spatio-temporal

triads in the literature typically make no reference to a central time and therefore

have a different interpretation. We also address the effects of mean flows and isotropic

sweeping on spatio-temporal and temporal triad interactions in this section.

We define spatio-temporal and temporal triad interactions in terms of the STFT

with no detrending operation. General time-frequency representations and detrend-

ing operations will not work, because the construction of triads explicitly makes use of

a convolution theorem. One finds that detailed conservation still holds for the tempo-

ral and spatio-temporal triad interactions as it does for the spatial triad interactions.

However, one cannot show that energy and enstrophy temporal fluxes must have op-

posite sign (i.e. the dual cascade) as was shown for spatial fluxes in Kraichnan (1967).

Moreover, one can show that the presence of either a mean flow or isotropic sweeping

turns local temporal transfers into non-local temporal transfers if high wavenumber

modes are involved. For these reasons, the dual cascade picture might make less sense

in frequency space than it does in wavenumber space. That said, the temporal and
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spatio-temporal triad interactions should not be simply discounted as being explained

away by sweeping, because only triad interactions involving high wavenumbers are

significantly affected by sweeping, and the low-wavenumber, low-frequency modes of

the flow are also of dynamical interest.

We now make some of the above statements more precise. If one chooses to use

the STFT with no detrending operation, the spatio-temporal spectral transfer due to

the nonlinear advection term in equation 2.24 can be written (making the functional

dependence of the STFT on the window σ explicit) as

N [σ](k, ω, τ ;T ) := Re[
̂̃
ψ∗[

¤�Â�J(ψ,∇2ψ)[σ](k, ω, τ ;T )] (2.53)

=
1

2

∑
p,q

∫
dωp

∫
dωq T [σ](k,p, q, ω, ωp, ωq)δk−p−q,0δ(ω − ωp − ωq),

(2.54)

where,

T [σ](k,p, q,ω, ωp, ωq) := (δijkm − kikjkm/k2) (2.55)

× Im[ ̂̃u∗i [σ](k, ω, τ ;T ) ̂̃uj[σ1](p, ωp, τ ;T ) ̂̃um[σ2](q, ωq, τ ;T )],

and σ1 and σ2 are window functions such that σ1σ2 = σ. Equations 2.53–2.62 follow

the treatment of spatial triad interections by (Kraichnan, 1967). In that study and

here, T (k,p, q) is the rate of energy injection into wavevector mode k due to nonlinear

interaction with modes p and q. Defined only here, T (k,p, q, ωk, ωp, ωq) is the rate of

energy injection into wavevector-frequency mode (k, ωk) due to nonlinear interaction

with modes (p, ωp) and (q, ωq).

The spatial energy transfers T (k,p, q) can be obtained from the spatio-temporal

transfers T (k,p, q, ωk, ωp, ωq) by integrating over all frequencies (ωk, ωp, ωq), which

may be proved using Parseval’s theorem. We define temporal energy transfers by
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summing the spatio-temporal transfers over all wavevectors:

T (ωk, ωp, ωq) :=
∑
k,p,q

T (k,p, q, ωk, ωp, ωq). (2.56)

The spatio-temporal enstrophy transfers can be written in terms of the spatio-temporal

energy transfers:

Tenstrophy(k,p, q, ωk, ωp, ωq) := k2T (k,p, q, ωk, ωp, ωq). (2.57)

The spatial enstropy transfers,

Tenstrophy(k,p, q) :=
∑

ωk,ωp,ωq

k2T (k,p, q, ωk, ωp, ωq) (2.58)

= k2T (k,p, q), (2.59)

are straightforwardly related to the spatial energy transfers T (k,p, q). However, the

temporal enstrophy transfers

Tenstrophy(ωk, ωp, ωq) :=
∑
k,p,q

k2T (k,p, q, ωk, ωp, ωq) (2.60)

have no clear relation to the temporal energy transfers T (ωk, ωp, ωq). This lack of

a connection between T (ωk, ωp, ωq) and Tenstrophy(ωk, ωp, ωq) implies that we cannot

prove that energy and enstrophy must be transferred in opposite directions in ω-space

in the same way that one proves that energy and enstrophy must be transferred in

opposite dicetions in k-space (Kraichnan, 1967).

One can verify detailed energy and enstrophy conservation for spatio-temporal
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triad interactions:

T (k,p, q, ωk, ωp, ωq) + T (p, q,k, ωp, ωq, ωk) + T (q,k,p, ωq, ωk, ωp) ≡ 0,

(2.61)

k2T (k,p, q, ωk, ωp, ωq) + p2T (p, q,k, ωp, ωq, ωk) + q2T (q,k,p, ωq, ωk, ωp) ≡ 0.

(2.62)

By summing over all (k,p, q) one also obtains detailed energy and enstrophy conser-

vation for the temporal triad interactions as well:

T (ωk, ωp, ωq) + T (ωp, ωq, ωk) + T (ωq, ωk, ωp) ≡ 0, (2.63)

Tenstrophy(ωk, ωp, ωq) + Tenstrophy(ωp, ωq, ωk) + Tenstrophy(ωq, ωk, ωp) ≡ 0. (2.64)

Thus, temporal and spatio-temporal triad interactions are similar to spatial triad

interactions in terms of following detailed conservation laws.

The effect of a Galilean transformation (or, roughly equivalently, the effect of

imposing a mean flow) on the spatio-temporal triad interaction in equation 2.55 is

T (2)(k,p, q, ωk, ωp, ωq) = T (1)(k,p, q, ωk + V · k, ωp + V · p, ωq + V · q), (2.65)

where V is the velocity of reference frame (2) in frame (1). The main implication of

equation 2.65 is that temporal triad interactions may be made to be more non-local

by the imposition of a mean flow or sweeping. This should be expected as it has long

been known (Tennekes , 1975) that in the presence of sweeping, Kolmogorov-type

arguments cannot be made for frequency spectra as they are made for wavenumber

spectra, at least at sufficiently high wavenumber.

In the case of spatially isotropic sweeping, one may gain insight into the resulting

transfer by integrating equation 2.65 over all directions of V while holding the magni-
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tude V = |V | constant. More general sweeping velocity distributions may be handled

by linear superposition. Suppose that the transfer in the absence of sweeping (i.e.

in frame 1) takes non-zero values only on the triad (K1,K2,K3,Ω1,Ω2,Ω3), and let

the sweeping velocity take the form

V = V cos(φ) cos(θ)“x+ V cos(φ) sin(θ)ŷ + V sin(φ)ẑ, (2.66)

where φ is the angle between V and the plane defined by the triad (K1,K2,K3),

and θ is the angle between K1 and the projection of V onto that plane.

Restricting the analysis to two spatial dimensions, so that φ = 0, the effect of

integrating equation 2.65 over all θ (i.e. the effect of isotropic sweeping) is to re-

distribute the transfer at (Ω1,Ω2,Ω3) onto a circle in (ωk, ωp, ωq)-space centered at

(Ω1,Ω2,Ω3), with the circle lying in the plane defined by ωk = ωp +ωq. In that plane,

one may define an orthonormal coordinate system with components (ω′1, ω
′
2) given by

ω′1 =
»

3/2(ωp + ωq) =
»

3/2ωk and ω′2 =
»

1/2(ωp − ωq). The radius of the circle in

the ω′1-ω′2 plane is

3V
|K+ ×K−|

(K2
+ +K2

−)1/2
=

3
√

3

2
V

|K2 ×K3|
(K2

2 +K2
3 +K2 ·K3)1/2

, (2.67)

where K+ := (K2 +K3)/
√

2 and K− := (K2 −K3)/
√

6. Thus, when K2 and K3

are nearly collinear, the radius is nearly zero, which implies that sweeping has little

effect. At the other extreme, when (K1,K2,K3) forms an equilateral triangle, the

radius is maximized, in which case sweeping has maximal effect.

The three-dimensional case is a simple extension of the two-dimensional case. In

three dimensions the effect of integrating over all θ is to form a circle in the ω′1-ω′2

plane exactly as in the two-dimensional case, except that V is replaced by V cos(φ).

So, upon integrating over all φ, the interior of the circle is filled as well, albeit non-

uniformly with lowest density near the center of the circle.
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local

nonlocalnonlocal

local

Figure 2.1: The effect of isotropic sweeping on spatio-temporal triad interactions for
two different spatial triads (K1,K2,K3). Triad interactions get redistributed onto
circles in the (ω′1, ω

′
2)-plane, which is defined by ωk = ωp + ωq. The redistributed

transfers are shown for four different sweeping velocities (0.1V, V, 2V, 4V ) and are
projected onto the (ωp, ωq)-plane (left) and shown in the (ω′1, ω

′
2)-plane (right). Re-

gions of each plane that correspond to nonlocal temporal triad interactions (as define
by equation 2.68) are shaded. The effect of sweeping by a sufficiently high velocity is
to redistribute any given transfer onto a wide array of local and nonlocal transfers.
The effect of sweeping on the temporal triad is maximal when the spatial triad is
most local.
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Figure 2.1 shows the effect of several sweeping velocities on two different spatio-

temporal triads: one with a nearly collinear spatial triad and the other with an

equilateral spatial triad. The figure shows the projection of the swept transfers onto

the ωp-ωq plane as well as the swept transfers in the ω′1-ω′2 plane. Shaded regions

correspond to nonlocal temporal triads, while unshaded regions correspond to local

temporal triads. We define as “local” any temporal triad (ωk, ωp, ωq) that satisfies

γ :=
max(|ωk|, |ωp|, |ωq|)
min(|ωk|, |ωp|, |ωq|)

< 3, (2.68)

and we note that temporal triads are inherently more nonlocal than spatial triads

due to the fact that frequencies are scalars. That is to say, while it is possible to

simultaneously satisfy |k|=|p|=|q| and k = p + q, it is not possible to satisfy both

|ωk| = |ωp| = |ωq| and ωk = ωp + ωq. Moreover, the most “local” any temporal triad

can possibly be is to have γ = 2, as defined by (2.68); hence our choice of γ < 3 as

our definition of locality.

According to (2.67), the radii of the circles in the ω′1-ω′2 plane are directly pro-

portional to the sweeping velocity V and the size K of the spatial triad. Thus for

sufficiently large V or K, the circle will be large enough to encompass many regions

of locality and nonlocality in the ω′1-ω′2 plane, causing any originally local temporal

triad to be distributed into an equal number of local and nonlocal triads. Of course,

there is also dependence on the shape of the spatial triad. Interestingly, it is precisely

the most local spatial triads that exhibit the greatest temporal nonlocality due to

sweeping, while the most nonlocal spatial triads remain unaffected by sweeping.

It may be possible to test for the sweeping hypothesis by observing the spatio-

temporal spectral transfers in the ω′1-ω′2 plane for several different spatial triads and

checking whether the observed transfers are consistent with a single sweeping velocity

distribution. Such a diagnostic would take into account more dynamical information
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than would, say, a simple comparison of the slopes of the spatial and temporal spectral

densities.

2.3.4 Interpretation of spatio-temporal and temporal spectral transfers

We now interpret the spatio-temporal and temporal spectral transfers based on

the theory in this chapter. Additional interpretation of the transfers based on two-

dimensional turbulence simulations can be found in chapter III.

First of all, the spatio-temporal spectral transfersA(k, ω, τ) give the τ -time rate of

change of spectral density E(k, ω, τ) in wavenumber-frequency mode (k, ω) straight-

forwardly analogous to how the spatial spectral transfers give the t-time rate of change

of the spectral energy density E(k, t). Summing over wavevectors k, the tempo-

ral spectral transfers A(ω, τ) give the τ -time rate of change of the spectral density

SE(ω, τ), as defined in equation 2.28. The same can be said for enstrophy, of course.

Imagine forcing a fluid at some well-defined wavenumber-frequency pair (kF , ωF ),

with the initial fluid being at rest. Consider the spatial spectral transfer N (k, t) cor-

responding to the nonlinear advection term. In the standard spatial cascade picture

we expect at early times to see N (k, t) take energy out of the forcing wavevectors

and inject it into nearby wavevectors, according to triad locality, and then further

on toward the dissipation scale, during which time the fluid is non-stationary and

has a net injection by N (k, t) of energy into the inertial range. After a statistically

stationary state has been reached, there should be little time-averaged net injection

of energy or enstrophy at each wavevector in the inertial ranges: 〈N (k, t)〉 ≈ 0 for

k in an inertial range, while the time-averaged spatial transfer 〈N (k, t)〉 should be

non-zero in the dissipation range and the forcing range such that the sum of all the

time-averaged transfer terms equals zero (due to statistical stationarity and assumed

ergodicity).

That picture mostly holds true for the spatio-temporal spectral transfersN (k, ω, τ)
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and N (ω, τ) as well. At early times we might expect energy and enstrophy injected

spectrally near the forcing region (|k|, |ω|) ≈ (kF , ωF ), that is, assuming that ωF is

not so high that the fluid cannot respond accordingly. At intermediate times τ there

should be a positive net injection N (k, ω, τ) at intermediate wavenumber-frequency

pairs between the forcing scales and the dissipation scales. After a statistically sta-

tionary state has been reached, there should be no net injection outside of the forcing

and dissipation ranges. The caveat here is that there is no guarantee of temporal

triad locality. Indeed, spatio-temporal triad non-locality is expected at the highest

wavenumbers due to the sweeping hypothesis. This issue is important to bear in

mind if one is tempted to think of the spatial transfers and temporal transfers as

fully analogous – they are not in this one crucial way.

2.4 Conclusion

We have shown how temporal and spatio-temporal spectral transfers in fluid tur-

bulence may be defined quite generally in terms of time-frequency analysis methods

such as the short time Fourier transform, or wavelet analysis, or more general time-

frequency transforms. Moreover, the standard time-frequency analysis methods can

be modified to include a fairly general detrending operation in such a way that the

temporal and spatio-temporal spectral budgets remain exact even after detrending.

The most general definition of spatio-temporal spectral transfers was given by (2.26)

and (2.27) .

We derived various theoretical properties of temporal and spatio-temporal spectral

transfers, including the effect of a mean flow and the effect of “sweeping” in the case of

homogeneous isotropic turbulence, where the effect is to widen the temporal spectral

transfers, consistent with wide temporal spectral fluxes observed in satellite altimeter

data, idealized model output, and realistic model output by Arbic et al. (2012, 2014).

We showed that analogous to results for spatial spectral transfers, we may for temporal
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and spatio-temporal spectral transfers properly define triad interactions, derive local

conservation laws, and discuss locality versus non-locality of the triad interactions in

frequency space. We also quantified how sweeping typically makes the temporal triad

interactions more non-local than spatial triad interactions.

The issue of locality versus nonlocality of triad interactions is particularly im-

portant when discussing temporal or spatio-temporal fluxes. One might be inclined

to think of fluxes as arising from a local operator, but in k- or ω- or (k, ω)-space a

flux is almost always a non-local functional of the spectral quantity of interest. In

three dimensions this operator is expected to be somewhat narrow in k, and in two

dimensions a bit wider. However, the operator could be significantly wider in ω due

to sweeping. One should always keep this in mind when diagnosing spectral transfers

and fluxes in the frequency domain.
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CHAPTER III

Wavenumber-frequency spectral transfers:

two-dimensional turbulence simulations

3.1 Overview of this Chapter

As an illustrative example of the use of spatio-temporal spectral transfers, we

show their application to a simple fluid system: a modified version of the incompress-

ible two-dimensional Navier–Stokes equation, as discussed in the Introduction. This

chapter has three parts: Numerical setup, Numerical results, and Conclusion.

In the Numerical setup (section 3.2) we describe our pseudo-spectral simulations

of two-dimensional turbulence forced stochastically and dissipated at both large and

small spatial scales. In the Numerical results (section 3.3), we diagnose the spatial,

temporal, and spatio-temporal spectral transfers and fluxes for these simulations. We

show how various limitations of the data may affect the diagnosis of the transfers.

Such limitations include poor temporal resolution, inadequate duration of the dataset,

and the existence of a trend. We show that for our two-dimensional simulations the

temporal transfers and fluxes are fairly robust when applied to imperfect data. We

also show how the temporal spectral transfers change in time starting with a fluid

at rest, diagnose the effects of detrending, and look for evidence of sweeping in the

spatio-temporal spectral transfers. In the Conclusion (section 3.4) we provide further
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discussion along with a brief summary of the key results.

3.2 Numerical setup

3.2.1 The equation of motion

We numerically simulate the two-dimensional Navier–Stokes equations (in the

vorticity formulation) modified by a general dissipation and a forcing term. In spectral

space, assuming spatially periodic boundary conditions, the simulated equation takes

the following form:

∂

∂t
k2‹ψ(k, t) = Â�J(ψ,∇2ψ)(k, t)− D̃(k, t)− ‹F (k, t), (3.1)

where the forcing term ‹F and the dissipation term D̃ will be described below. The

width of the square, periodic domain is L.

3.2.2 The choice of forcing

Just as studies of the wavenumber cascade in two-dimensional turbulence tend to

employ a forcing that is narrowband in wavenumber, here we choose a forcing that is

narrowband in both wavenumber and frequency. We do so by starting with a stochastic

forcing that has a spectral peak at ω = 0, and then shifting the spectral peak via

multiplication by eiωF t in the temporal domain, where ωF is the forcing frequency.

We add to that a second (statistically independent, but otherwise identical) forcing

shifted via multiplication by e−iωF t. The result is a forcing that produces statistically

stationary turbulence.

For the initial choice of stochastic forcing we use a version of the force first

used by Lilly (1969), but slightly modified to be statistically radially symmetric in

wavenumber as in Maltrud and Vallis (1991). For each wavevector k, the force at
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a) b)

Figure 3.1: Spectral properties of the forcing. (a) Temporal spectral densities SF (ω)
of the four different forcing frequencies plotted as log-log (top) and area-preserving
spectral densities ωSF (ω) plotted as semi-log (bottom). (b) Snapshot of the forcing
F (x, t0) at initial time (top) and the corresponding area-preserving spatial spectral
density kEF (k) (bottom), which was the same for all four forcing frequencies. Vertical
axes have arbitrary units.
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time-step n is defined in terms of the force at the previous time-step as follows:

‹F±0 (k, tn) = R‹F±0 (k, tn−1) + f0(k)
√

1−R2eiφ
±
n (k), (3.2)

where {φ±n (k)}∞n=0 is a set of independent, identically distributed random phases on

the interval [0, 2π). The ± superscript indicates that we are defining two (statistically

independent) forcing terms ‹F+
0 and ‹F−0 . This forcing has two adjustable parameters:

the real-valued function f0(k) controls the expected magnitude of the forcing, and

R ∈ [0, 1] controls the integral time scale of the forcing. The case R = 0 corresponds

to white noise forcing, while the case R = 1 corresponds to constant forcing. The

integral time scale of ‹F±0 is τF0 = 0.5∆t(1 + R)/(1 − R), where ∆t is length of a

single time-step. The power spectrum of ‹F±0 is centered at ω = 0 and takes the shape

roughly of a Lorentzian.

The forcing used in the numerical simulations is constructed from ‹F+
0 and ‹F−0

through a shifting of their spectral peaks by ±ωF as described earlier. Thus, the

forcing term in equation 3.1 is given by

‹F (k, t) := ‹F+
0 (k, t)e+iωF t + ‹F−0 (k, t)e−iωF t. (3.3)

One can show that the integral time scale of F is the same as for F±0 (i.e. τF = τF0). In

order to obtain a sharp spectral peak in the power spectrum of the forcing, the integral

time scale τF must be set sufficiently large relative to the forcing period 2π/ωF . We

found that τF = 5× 2π/ωF was sufficient for producing a narrow peak, and all of our

simulations use that parameter choice. The k-dependent forcing amplitude was set to

f0(k) := ((kF +∆kF )2−k2)(k2−(kF −∆kF )2) in the range kF −∆kF < k < kF +∆kF

and f0(k) := 0 for all other k. In our simulations, which had a resolution of 10242,

we chose (L/2π)kF = 59 and (L/2π)∆kF = 4, which provided roughly one decade (in

k-space) each for the development of the energy and enstrophy cascades. Figure 3.1
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shows the temporal and spatial spectral densities of the forcing for each the four

forcing frequencies ωF used in this Chapter. For the time-frequency analysis method

we used a STFT having a Tukey window with σT (t) = 1 for ninety percent of the

full length of the dataset. Figure 3.1 also shows a snapshot of the forcing in physical

space for comparison with snapshots of stream function and vorticity shown later in

the results section.

Instead of choosing a forcing that is narrowband in frequency, we could have chosen

a forcing such that the energy and enstrophy injection rates would be narrowband

in frequency. In particular we could have defined either F̃±0 (k, t) = a±(k)/ψ∗(k, t)

or F̃±0 (k, t) = b±(k)ψ(k, t)/
∑

k b(k)|ψ(k, t)|2, the former having been used in Chen

et al. (2003, 2006) to obtain constant energy injection with ωF = 0. We chose not to

use this type of forcing out of concern for the effects on the spatio-temporal transfers,

particularly at high forcing frequencies. It should not be possible to inject energy or

enstrophy at arbitrarily high frequencies due to the natural response time-scales of

the fluid.

3.2.3 The choice of dissipation

Because simulations are done pseudo-spectrally, we allow a general dissipation

term in the form of a wavenumber filter. Thus, instead of multiplication of Fourier

mode ‹u(k, t) by a hyperviscosity term νnk
2(n+1) (corresponding to νn(−∇2)n+1 in

physical space) we allow multiplication by an arbitrary function fdiss(k). We choose

to have the dissipation term in equation 3.1 take the form

D̃(k, t) := fdiss(k)k2‹ψ(k, t), (3.4)

fdiss(k) :=
∑
m

νm


(k − km)|m|, k > km (m > 0)

(k−1 − k−1
m )|m|, k < km (m < 0)

0, otherwise.

(3.5)
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Typically in simulations of 2D turbulence, both a hyperviscosity (m > 1, νm 6= 0, km =

0) and an inverse viscosity (m < 0, νm 6= 0, km = ∞) are employed for the purpose

of obtaining wider inertial ranges. While it has been shown that these unphysi-

cal dissipation terms affect the statistics in the inertial range near the dissipation

range (Lamorgese et al., 2005; Frisch et al., 2008; Bos and Bertoglio, 2009), for our

purpose here we think it to be more important to obtain wide inertial ranges given

our limited resolution. To that end, the inertial ranges are extended even further by

replacing the hyper- and inverse viscosities by high wavenumber filters (m > 0) and

“inverse” wavenumber filters (m < 0), as defined by equation 3.5. These wavenumber

filters depend not only on the exponent m but also on a “cutoff” wavenumber km

below (m > 0) or above (m < 0) which there is no dissipation. We report only on our

simulations that used these wavenumber filters with cutoffs, because the spatial spec-

tral transfers were cleaner and the inertial ranges were wider than in our simulations

that utilized unmodified hyper- or inverse viscosities.

The values of the parameters in equation 3.5 were set to ν8 = 1.3 × 10−11, k6 =

366 ≈ 0.715kN , ν−6 = 1.2 × 109, k−6 = 7.9 ≈ 0.0154kN , where kN is the Nyquist

wavenumber. All other viscosity parameters were set equal to zero. The cut-off

wavenumber for the inverse wavenumber filter was chosen sufficiently high so that

the stream function would not be significantly spatially correlated with itself halfway

across the domain. Because the cut-off wavenumber was k−6 = 7.9, the largest

structures in the stream function were smaller than the domain size by about a

factor of eight. This choice was made in order to be reasonably confident that the

lowest frequencies observed in the system were not appreciably affected by the spatial

periodicity.
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3.2.4 Simulation method and other numerical details

For the numerics we used a parallelized pseudo-spectral method (Canuto et al.,

2007a,b), with domain size L = 2π and a spatial resolution of 10242. Because we

needed to save snapshots of vorticity frequently for temporal statistics, we did not

increase the spatial resolution further due to data storage limitations. Even at a

spatial resolution of only 10242 we analyzed over 100 terabytes of data.

Most runs were not fully de-aliased, but the wavenumber filter removed practically

all enstrophy at wavenumbers larger than 5/6 times the Nyquist wavenumber. A

single fully de-aliased simulation was conducted for comparison, and there was no

significant change in the results. The time-stepping increment was either ∆t = 2−12

or 2−13 for all runs.

The vorticity was iterated using third-order Adams–Bashforth time-stepping, while

the forcing term was iterated separately using Euler’s method with a smaller time

step. While technically the inclusion of a stochastic forcing term changes the strong

(root-mean-square) convergence of the numerical scheme from third order to first or-

der, the error is better represented by O(∆t3 + ∆t/M), where M is the ratio of the

vorticity-term time step to the forcing-term time step. This effectively third-order

numerical scheme (for sufficiently large M) bears a resemblance to other schemes de-

veloped for stochastic systems with small noise (Buckwar and Winkler , 2006, 2007,

and references therein). We found that M = 1 was actually sufficient for the conver-

gence of all statistics we present.

3.3 Numerical results

3.3.1 Overview of the results section

In this section we show the results of our numerical simulations. We show first

the spatial, temporal, and spatio-temporal spectral transfers and fluxes of energy
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and enstrophy in statistically equilibrated simulations of two-dimensional turbulence

forced at four different frequencies (section 3.3.2). To test the robustness of the

diagnostic, we then show the effects of varying the window size and sampling rate

on the numerically calculated spectral transfers (section 3.3.3). We also show the

effect of detrending on temporal spectral fluxes when the simulation output is non-

stationary (section 3.3.4). Lastly, we examine spatio-temporal spectral transfers in

the dissipation ranges in order to detect the effects of isotropic sweeping (section 3.3.5)

predicted in Chapter II.

3.3.2 Effects of varying the forcing frequency

We simulate the two-dimensional vorticity equation 3.1 for four different choices

of the forcing frequency, ωF/2π ∈ {0.01, 0.1, 1, 10}, with corresponding integral time

scales of τF = 5 × 2π/ωF . We will discuss nondimensionalization of the time scale

in the next two paragraphs. All other parameters are held constant, with numerical

values as described in section 3.2. Figure 3.2 shows snapshots of vorticity and stream

function, taken after the simulation had reached a statistically steady state, for three

of the runs (ωF/2π = 0.01, 1, and 10). The snapshots of vorticity and stream function

for the three lowest forcing frequencies (ωF/2π = 0.01, 0.1, and 1) are quite similar,

with the exception that the run forced at the lowest frequency (ωf/2π = 0.01) exhibits

slightly larger vortices than the other runs. The run forced at the highest frequency

(ωF/2π = 10) is significantly less energetic (with a root mean square velocity ap-

proximately a factor of five lower) than the other three runs, but otherwise looked

qualitatively similar.

There is some freedom in choosing how to nondimensionalize the time scale in

this system. We compute two different natural frequencies and show the results in

table 3.1. Following the literature on modulated turbulence, the first natural time
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(a)

(b)

Figure 3.2: Streamfunction and vorticity snapshots. (a) Snapshots of vorticity
∇2ψ(x, t0) at time t0, taken after statistical equilibrium has been reached for three
of the four forcing frequencies. Two magnified (6x) insets are chosen to show regions
with and without strong vortices. The vorticity snapshot for the missing forcing fre-
quency (ωF/2π = 0.1) is visually and quantitatively similar to the case ωF/2π = 1.
Note the decreased range of scale in the rightmost plots (ωF/2π = 10). (b) Snap-
shots of stream function ψ(x, t0) with magnified insets corresponding to the vorticity
snapshots above.
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scale and corresponding natural frequency is

tnat =
c

〈|u|〉kF/2π
=⇒ ωnat

2π
=
〈|u|〉kF/2π

c
, c & 1, (3.6)

where c is some nondimensional constant, 〈|u|〉 is the average Eulerian speed, and kF

is the forcing wavenumber. The three-dimensional modulated turbulence literature

suggests a value of c = 2.7 (von der Heydt et al., 2003), yielding a time scale “of the

cascade process.” We choose a value of c is based on the ωF/2π = 10 simulations. In

the ωF/2π = 10 runs, energy and enstrophy are injected not at the forcing frequency

but rather within a range of lower frequencies (as can be seen in figure 3.3 or more

easily in figure 3.4), centered at a frequency which we take to be the natural frequency

of the fluid at the forcing scale. Inserting this frequency into equation 3.6 sets the

value c = 2.0, which we use for all of our runs. For the simulations forced at the three

lowest frequencies, the natural frequency is consistently ωnat = 2.0 in dimensional

units. For the simulation forced at the highest frequency the natural frequency is

only ωnat = 0.4. Because we would like a scale time by a consistent factor in all

simulations, we define the constant ω∗nat = 2.0.

We define the second natural frequency in terms of the locations of the energy and

enstrophy dissipation ranges in frequency space. In all of our simulations, energy is

dissipated over a wide range of relatively low frequencies while enstrophy is dissipated

over a wide range of higher frequencies. Motivated by the notion that a natural

forcing frequency should lie between the two dissipation ranges, we define the natural

frequency ωdiss/2π as the frequency that best divides the ranges. Because the edges

of the dissipation ranges in our simulations overlap slightly in frequency, ωdiss/2π

is easily approximated. For the simulations forced at the three lowest frequencies,

the natural frequency consistently lies within the range 0.4–1.0 in dimensional units.

For the simulation forced at the highest frequency the natural frequency lies within
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ωF/2π ωnat/2π ωdiss/2π ω∗nat/2π ω∗diss/2π ωF/ω
∗
nat ωF/ω

∗
diss

0.01 2.0 0.4–1.0 2.0 0.63 0.005 0.016
0.1 2.0 0.4–1.0 2.0 0.63 0.05 0.16
1 2.0 0.4–1.0 2.0 0.63 0.5 1.6

10 0.4 0.08–0.2 2.0 0.63 5.0 16

Table 3.1: Nondimensionalized forcing frequencies. For each forcing frequency ωF/2π,
this table shows the corresponding natural frequency ωnat/2π = 0.5〈|u|〉kF/2π as well
as an alternative natural frequency ωdiss/2π defined as the frequency below which
energy is dissipated and above which enstrophy is dissipated. The resulting nondi-
mensionalized forcing frequencies ωF/ω

∗
nat and ωF/ω

∗
diss are shown in the rightmost

columns.

the range 0.08–0.2 in dimensional units (again a factor of five less). In order to

nondimensionalize time by a scale factor that is constant over all runs, we define

ω∗diss = 0.63 based on the geometric mean of the observed range of natural frequencies

for the three lowest forcing frequencies.

To summarize the previous two paragraphs and table 3.1, we have two nondi-

mensionalizations of the time scale in this system. The former gives nondimensional

forcing frequencies ωF/ω
∗
nat ∈ {0.005, 0.05, 0.5, 5} while the latter gives nondimen-

sional forcing frequencies ωF/ω
∗
diss ∈ {0.016, 0.16, 1.6, 16}. Because the dimensional

values of ωF/2π ∈ {0.01, 0.1, 1, 10} lie between these two possibilities, we simply

show all results in terms of the dimensional time scale. We indicate one or both of

the natural frequencies in later figures where appropriate.

Moving on to the analysis of model output, for each of the four forcing frequencies

three datasets (each approximately one terabyte in size) are created by sampling the

simulation at three different sampling rates. The longer simulations are sampled less

frequently such that 32, 768 snapshots are saved for each dataset. For each dataset the

window size used in calculating the spectral transfers is equal to the entire length of

the dataset. Thus, the calculated spectral transfers take the formA(k, ω, tmax/2; tmax)

with tmax ∈ {256, 1024, 4096}.

57



N

F

D1D2

F N

N

N

N

N

D1

D2

F

F

Figure 3.3: Spatial spectral fluxes and transfers. Spatial spectral fluxes
“Π>K
A (k) vs. k” (top row) of energy and enstrophy (left to right); and the corre-

sponding spatial spectral transfers “A(k) vs. k” (bottom row); where A = N , F , D1

and D2 are the nonlinear, forcing, filter, and inverse-filter terms, respectively, in the
spatial spectral budgets of energy and enstrophy for the ωF/2π = 1 simulation. The
fluxes and transfers have been averaged over 32, 768 snapshots. A negatively sloping
flux corresponds to a positive transfer, while a positively sloping flux corresponds to
a negative transfer.
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Figure 3.3 shows the spatial spectral transfers and fluxes for one of the four forc-

ing frequencies (ωF/2π = 1). While the theory presented earlier in this paper focuses

primarily on spectral transfers, we show both transfers and fluxes because some read-

ers will be more familiar with spectral fluxes. We also note that many readers will

be accustomed to seeing much “noisier” spatial spectral transfers. Our transfers are

quite smooth because we average over a very large number of snapshots. We follow

the convention that a positive transfer at wavenumber k corresponds to the injection

of energy (or enstrophy) at that wavenumber. The convention we follow in the defini-

tion of fluxes (equation 2.11) implies that a positive flux corresponds to a downscale

transfer (direct cascade) to larger k, and a negative flux corresponds to an upscale

transfer (inverse cascade) to smaller k. We note that the spatial spectral transfers

and fluxes for the other three forcing frequencies are qualitatively similar, with the

main difference being that the run forced at the highest frequency exhibited transfers

and fluxes of smaller magnitude.

As expected for two-dimensional turbulence, we see that, regardless of the forcing

frequency, energy is injected at spatial scale 2π/kF and transferred to larger spatial

scales where it is dissipated by the inverse wavenumber filter. Similarly, enstrophy

is injected at spatial scale 2π/kF and transferred to smaller spatial scales where it

is dissipated by the wavenumber filter. Other studies have shown that the spatial

transfers are somewhat local, so that energy (or enstrophy) may be considered to

“cascade” from spatial-scale to neighboring spatial-scale up (or down) to the dissi-

pation length-scale, in which case the notion of a “flux through spatial scale 2π/k”

makes sense. Because the temporal spectral fluxes shown next are less local, it may

be useful to think of the corresponding transfers when viewing the fluxes.

The temporal spectral transfers and fluxes are shown in Figure 3.4. The second

and third columns show the energy and enstrophy fluxes respectively, while the first

column shows the corresponding energy transfers (plotted in area-preserving format)
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for the highest two forcing frequencies. We show the results for all three sampling

rates on each plot. There is a large degree of agreement for the results with the

different sampling rates, except at the highest and lowest frequencies resolved by

each dataset, as must be the case. The large degree of agreement indicates that the

temporal spectral transfers and fluxes are reasonably robust diagnostics for datasets

that resolve most but not all dynamical time scales.

We are somewhat hesitant to show the temporal results as spectral fluxes rather

than spectral transfers, because we think the use of fluxes may bias one’s intuition

regarding the “locality” of the temporal transfers in ω-space. However, the plots

of temporal spectral transfers typically exhibit high spectral peaks at the forcing

frequencies, making it difficult to show spectral transfers at other frequencies on the

same plot. Moreover, when there is aliasing at high frequencies due to low sampling

rates, the temporal spectral transfers tend to be noisy while the temporal spectral

fluxes tend to be smooth. Therefore, for graphical clarity we show mainly spectral

fluxes here and elsewhere in the results section.

As seen in figure 3.4, the temporal spectral transfers and fluxes may differ con-

siderably for different forcing frequencies. Consider the first three rows of Figure 3.4,

corresponding to the three lowest forcing frequencies. In those three cases the spectral

flux for the forcing term demonstrates that energy and enstrophy are injected within a

narrow band of frequencies surrounding the forcing frequency. The spectral fluxes for

the wavenumber (inverse wavenumber) filters indicate enstrophy (energy) dissipation

over wide ranges of high (low) frequencies. The spectral fluxes due to the dissipation

terms are largely independent of the forcing frequency for these three cases. The

spectral fluxes for the nonlinear term show that energy and enstrophy are removed

within a narrow band near the forcing frequency and are injected at the dissipation

frequencies. The sum of all the flux terms approximately equals zero, implying there

is roughly no net energy injection into any of the frequency modes. Because the flux

60



F F

D2 D1

N

NN

N

N

N

N

N

N

Figure 3.4: Temporal spectral fluxes. For each of the four forcing frequencies (rows)
we plot temporal spectral fluxes of energy (middle column) and enstrophy (right
column). For the two highest forcing frequencies, the temporal spectral transfers are
shown as well (left column), corresponding to the spectral fluxes directly to their
right. The upper legend defines each term in the spectral budget. The lower legend
indicates values of tmax (and hence sampling rate). The two natural frequencies
ωdiss/2π < ωnat/2π are indicated by gray vertical dash-dotted lines.
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due to the forcing term depends strongly on the forcing frequency but the fluxes due

to the dissipation terms do not, a wide range of behaviors for the fluxes due to the

nonlinear term are possible: energy can be transferred to lower frequencies, higher

frequencies, or both. However, enstrophy is always transferred to higher frequencies.

The lowest forcing frequency case (ωF/2π = 0.01) is particularly interesting, as it

shows energy may be injected at very low frequencies and then transferred to higher

dissipation frequencies (indicated by a positive flux). This may be related to the

positive temporal energy flux calculated by Arbic et al. (2012, 2014) for one region

of the ocean. In that one region, the time scale associated with energy injection

by baroclinic instability is much longer than the eddy time scale, significantly more

so than in the other regions considered. There may be other explanations, such as

inadequate spatio-temporal resolution of the data, for the positive temporal energy

flux observed in Arbic et al. (2012, 2014). However, we have shown here that a

positive flux is actually possible when energy is injected at low frequencies.

Now consider the fourth row of Figure 3.4, corresponding to the highest forcing fre-

quency (ωF/2π = 10). In that case the spectral flux of the forcing term demonstrates

that energy and enstrophy are injected not at the forcing frequency but within a wide

range of frequencies below the forcing frequency centered at ω/2π = 0.4. The spec-

tral fluxes for the wavenumber and inverse wavenumber filters indicate enstrophy and

energy dissipation over wide ranges of frequencies that begin at lower frequency than

was the case for the other three forcing frequencies. The spectral flux for the nonlinear

term demonstrates energy and enstrophy removal from the injection frequency and

deposition at relatively lower (for energy) or higher (for enstrophy) frequencies. The

injection frequencies are lower than the forcing frequency. The total energy injected

by the forcing is lower than the energy injection for the other three forcing frequencies

by a factor of about a hundred. This lower injection rate should be expected when

the fluid cannot respond to the forcing on short time scales.
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While figure 3.4 shows the temporal spectral energy transfers in a noisy unedited

form for the highest two forcing frequencies, in figure 3.5 we show cleaned up versions

of the temporal spectral energy and enstrophy transfers for these two runs. In order

to to make the transfers more presentable for figure 3.5 we choose not to utilize over-

lapping results from the three datasets with three different durations. Instead we use

the longest duration dataset for the lowest frequencies, the shortest duration dataset

for the highest frequencies, and the intermediate duration dataset for the intermediate

frequencies (without any overlap). That choice removes all of the noise due to alias-

ing at the highest frequencies and also removes incorrectly calculated transfers at the

lowest frequencies. In addition, for the ωF/2π = 1 case, we scaled the vertical axes

to make the nonlinear transfer outside of the forcing range more visible. Figure 3.5

clearly shows that for both forcing frequencies there is a transfer of energy to lower

frequencies and a transfer of enstrophy to higher frequencies relative to the forcing

injection frequency. When the fluid is forced at the highest frequency (ωF/2π = 10)

the injection of energy and enstrophy by the forcing occurs at frequencies lower than

ωF/2π centered near ω/2π = 0.4.

Figure 3.6 shows the full spatio-temporal spectral transfers for all four forcing

frequencies. The top plot combines the results for the three lowest forcing frequencies.

The combination of these three cases in one plot is possible because the transfers due

to dissipation remain largely unchanged while the transfers due to the forcing do

not overlap. The transfers due to the nonlinear term are not shown, because they

can be simply calculated based on the fact that the sum of all the transfers is zero

everywhere in (k, ω)-space (the residual was effectively zero). Any of the fluxes or

transfers shown in figure 3.4 or figure 3.5 can be obtained by integrating the spatio-

temporal transfers shown in figure 3.6 over all k and (for the fluxes) partially over ω.

One feature highlighted by the spatio-temporal spectral transfers is that energy (or

enstrophy) is typically injected at the forcing frequency unless the forcing frequency
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Figure 3.5: Temporal spectral transfers “ωA(ω, τ ;T ) vs. ω/2π” of energy (left) and
enstrophy (right) for the simulations forced at the two highest forcing frequencies,
ωF/2π = 1 and ωF/2π = 10, displayed in area-preserving format. The multiplicative
factor of ω preserves the area under the transfers on the semi-log plot. Each plot is
created using the same data as in figure 3.4. Unlike the transfers shown in figure 3.4,
the noisiest regions of each dataset are removed. In bottom row, the transfers near
ω/2π = 10 are noisy, but they integrate to zero (the total transfer in that frequency
range is negligible), which is made clear by the smoothness of the fluxes in that region
as shown in figure 3.4. The two natural frequencies ωdiss/2π < ωnat/2π are indicated
by gray vertical dash-dotted lines.
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is too high. In the latter case significantly less energy (or enstrophy) is injected, and

the injection takes place over a much wider range of lower frequencies. While the

spatio-temporal transfers for this particular two-dimensional fluid are quite simple

when viewed as in figure 3.6, we note that the usefulness of the transfers is in the

quantification of the spatial- and time-scales involved in the injection of energy and

enstrophy.

Lastly, figure 3.7 shows how the fluxes of energy and enstrophy change in time τ

during spin-up beginning at rest and forced at either ωF/2π = 1 or ωF/2π = 10. This

is somewhat of a test of our interpretation of the temporal spectral transfers, though

perhaps the range of frequencies involved is too narrow to be conclusive. For the

run forced at the lower frequency (ωF/2π = 1), energy and enstrophy are consistently

injected at the forcing frequency. As the central time τ increases, energy is transferred

to even lower frequencies while enstrophy is transferred to even higher frequencies,

though the effect is somewhat small. For the ωF/2π = 1 simulation, the injection

frequency range for both energy and enstrophy shifts to higher frequencies as time

progresses. This shift of injection frequency to higher frequencies is likely due to the

increase of the average velocity of the fluid. The dissipation ranges of energy and

enstrophy also evolve over time, with the energy dissipation range moving to lower

frequencies and the enstrophy dissipation range moving to higher frequencies. This

evolution of the dissipation ranges corresponds to the development and widening of

the spatial cascades of energy and enstrophy.

3.3.3 Effects of varying the window size and sampling rate

We calculated the temporal spectral transfers A(k, ω, τ ;T ) for a wide range of

window sizes T and for a wide range of sampling rates. The former tests the depen-

dence of the temporal spectral transfers on a parameter inherent to the time-frequency

method as discussed at the end of section 2.3.4, while the latter tests the dependence
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Figure 3.6: Spatio-temporal spectral transfers for the three lowest forcing frequencies
(top) and the highest forcing frequency (bottom). We only show the forcing and
dissipation terms, because the nonlinear term is approximately the negative of the
sum of the other terms. Transfers of both energy and enstrophy are shown, because
the dominant features do not overlap in (k, ω)-space, except at the forcing frequen-
cies for which only energy transfers are shown. Because the dissipation terms are
quantitatively similar for the three lowest forcing frequencies, the upper plot shows
only the case ωF/2π = 1. The lower half of each plot is based on the longest dataset
(tmax = 4096), while the upper half of each plot is based on the shortest dataset
(tmax = 256). In the bottom plot, the symbol “x” marks the location of (kF , ωF ),
which is notably outside the range of frequencies in which energy is injected by the
forcing.
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Figure 3.7: Temporal spectral fluxes during spin-up. Temporal spectral fluxes
“Π>Ω
N (ω, τ ;T ) vs. ω/2π” of energy (left) and enstrophy (right) for sixteen values of

the central time τ = τ1 < τ2 < · · · < τ16 corresponding to contiguous non-overlapping
windows starting from the spin-up of a fluid beginning at rest. For the energy fluxes,
we choose the duration of each window to be T = 64, while for the enstrophy fluxes
we choose T = 16. We only show results for the simulations forced at the highest two
frequencies, ωF/2π = 1 and ωF/2π = 10. In both cases one observes a change in the
transfer of energy to lower frequencies, and of enstrophy to higher frequencies, as τ
increases.
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of the transfers on the limited temporal resolution of discrete datasets (an issue not

discussed in Chapter II which assumed the datasets to be continuous in time).

In Figure 3.8 we show the temporal spectral transfers A(k, ω, τ ;T ) for window

sizes T ∈ {212, 210, 28, 26, 24} and sampling rates chosen so that the total number of

snapshots is always 512, purposely on the small end of what might be considered

good number of samples in a realistic dataset. Results for both energy (upper plots)

and enstrophy (lower plots) are shown. Each column corresponds to a single forcing

frequency, with the leftmost column forced at the lowest frequency. In each column,

the lowest dataset is sampled the least frequently while the highest dataset is sampled

most frequently. Each y-axis shows the scale for the lower-leftmost plot on that axis.

The remaining plots have been shifted vertically so that they do not all overlap with

each other. Each column “leans” to the right, because the sampling rate increases

from bottom to top while the number of samples remains constant. To save space, we

overlapped the graphs for the four forcing frequencies, with the graphs for the lowest

three forcing frequencies sharing the same vertical scale.

Because there is a lot of information in Figure 3.8, it helps to examine the figure

systematically, one flux term at a time. Considering first the energy dissipation by

the inverse wavenumber filter (“inv filter”), we see that the flux calculated at each

resolved frequency remains roughly constant throughout all figures, demonstrating

that even when the datasets are not long enough to capture all of the dynamics,

the temporal spectral fluxes remain fairly accurate down to the lowest resolved fre-

quencies. As for datasets that are too infrequently sampled, the temporal spectral

fluxes become inaccurate only at the very highest resolved frequencies, due to alias-

ing of the unobserved higher-frequency modes into lower modes. Fluxes due to the

dissipation of enstrophy by the wavenumber filter (“filter”) exhibit similar behaviors,

except that the aliasing effect at higher frequencies is more readily apparent. Despite

the aliasing, the total transfer (given by the flux at the lowest resolved frequency)
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Figure 3.8: Effect of window size and sampling rate on temporal spectral fluxes.
Temporal spectral fluxes of energy (top half) and enstrophy (bottom half) for the
four forcing frequencies (columns) using datasets created by sampling at six different
sampling rates (rows), while keeping the total number of samples in each dataset
constant (N = 512). Each column corresponds to a single simulation. In each
column, the bottom set of fluxes uses the least frequently sampled dataset while the
top set of fluxes uses the most frequently sampled dataset. For each vertical axis, the
lower-leftmost set of fluxes is plotted correctly centered at zero, while all other fluxes
are plotted to-scale but shifted vertically.
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remains roughly the same throughout the datasets, indicating that aliasing effects are

localized to higher frequencies.

Turning to the forcing term (“forcing”) for both energy and enstrophy, we see

that the calculated fluxes are basically correct if and only if the forcing frequency is

not too close to the edge of the interval of resolved frequencies. For example, when

the forcing frequency is far too low to be resolved by a short dataset, or when the

forcing frequency is far too high to by resolved by the sampling rate, the calculated

flux is basically correct at each frequency (except for the very highest frequencies in

the latter case, due to unavoidable aliasing in the highest frequencies). When the

forcing frequency is near the edge of the interval of resolved frequencies, then the

flux due to the forcing tends to flatten out, particularly as seen in the case for the

energy flux when ωF/2π = 1 and T = 210 (second set of fluxes from the bottom).

When the forcing frequency is just a bit lower than the smallest resolved frequency,

as in the case ωF/2π = 0.01 and T = 28 (third from the bottom), one again sees the

representative flattening of the flux.

Due to the effectively zero residual flux for all of the evaluated datasets, the ef-

fect of the window size and sampling rate on the temporal flux due to the nonlinear

advection term (“nonlinear”) is a combination of the effects on the forcing and dissi-

pation terms. We note that the nonlinear flux term tends to have the correct sign and

roughly the correct shape, except when the forcing frequency is barely unresolved by

the sampling rate, as characterized by the energy fluxes when ωF/2π = 1 and T = 210

or by the enstrophy fluxes when ωF/2π = 1 and T = 210 or T = 28. Those cases give

particularly inaccurate temporal spectral fluxes because neither the forcing frequency

nor the enstrophy dissipation range are resolved by the sampling rate. These prob-

lematic cases may actually be representative of real world datasets (for large systems,

like the ocean, where the shortest time scales are not resolved by data). However, the

fluxes are inaccurate only at the highest resolved frequencies, while the fluxes at the
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remaining resolved frequencies seem to be reliable.

3.3.4 Effects of varying the detrending method

For most of our simulations we calculate temporal spectral transfers both with

and without the use of a temporal detrending operation (specifically, the removal of

a linear trend). In previous sections, we reported only on results that did not include

a detrending operation. For datasets with sufficiently long duration (figures 3.4, 3.5

and 3.6), because the simulations are statistically stationary, the trends are effectively

zero and the detrending operation has no effect on the spectral fluxes. For datasets

with shorter durations (as in figure 3.8), the effect of the detrending on the temporal

fluxes is only seen at the lowest two or three resolved frequencies.

To study the effect of the detrending operation on the lowest resolved frequen-

cies, we specifically looked at datasets that had durations significantly shorter than

the forcing period, with the intent of interpreting the forcing as an externally im-

posed trend. Figure 3.9 shows temporal spectral fluxes calculated without and with

detrending for eight independent datasets of length tmax = 16 that were forced at

the longest forcing period, 2π/ωF = 100. For comparison, the “true” values of the

temporal spectral fluxes, determined from a much longer dataset, are indicated by

arrows. The temporal flux due to the forcing term is brought much closer to the

true value of the flux through the act of detrending. The same result holds for the

dissipation term as well. The flux due to the nonlinear term, on the other hand, was

not consistently brought closer to the true value after applying a detrending opera-

tion. However, we note that the discrepancy between the true nonlinear flux and the

calculated nonlinear flux in both the detrended and non-detrended cases is never very

large. In summary, the detrended transfers are typically closer to the “true” transfers

(except for the nonlinear term), but usually not by much and only at the very lowest

frequencies.
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Figure 3.9: Effect of detrending on temporal spectral fluxes. Temporal spectral fluxes
of energy calculated for eight independent datasets each of length tmax = 16 and
forced at the lowest forcing frequency, ωF/2π = 0.01. The low-frequency forcing is
the source of the trend. The resulting eight transfers are shown using the STFT
without detrending (left) and with detrending (right). The arrows indicate the “true”
values for the fluxes (at frequency ω = 2π/16) obtained from a much longer data
set with the same temporal resolution. Good matches with the correct fluxes are
indicated by check marks (X).

3.3.5 Evidence for the sweeping hypothesis in 2D turbulence

Recall that in Chapter II we predicted the effects of isotropic sweeping on the

spatio-temporal spectral transfers. One of our predictions was that the spatio-temporal

transfers A(k, ω, τ) should become ω-independent when k is large and ω sufficiently

small (relative to a threshold that is dependent on the distribution of sweeping veloc-

ities). Indeed, as expected we see this effect in the enstrophy dissipation range but

not in the energy dissipation range.

Figure 3.10 displays the spatio-temporal spectral transfers of energy and enstrophy

due to the two dissipation terms. We show the transfers due to the dissipation terms,

but we could have just as well shown the transfers due to the nonlinear advection

term, since the total transfer adds to (effectively, although not numerically) zero at

each (k, ω) pair. The results are shown for two of the four forcing frequencies, namely

ωF/2π = 1 and ωF/2π = 10, with the former being representative of the other two
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runs. In each plot we show the line ω/2π = k〈|u|〉/2. We see that at frequencies

below approximately ω/2π = k〈|u|〉/2 the spatio-temporal transfers of enstrophy

become roughly ω-independent. Moreover, more than half of the total transfer occurs

at frequencies below that rough cutoff. Note the changes in scale of the ω/2π-axes

between the upper and lower plots, indicating that the more energetic ωF/2π = 1 run

has the widest range of frequency-independence, consistent with a higher sweeping

velocity. Whether or not this is to be considered evidence for sweeping, it is at least

perfectly consistent with the predictions made using the simple model for sweeping

in section 2.3.2.

3.4 Conclusion

In this chapter, we provided illustrative examples of the theory presented in the

previous chapter, through simulating homogeneous isotropic two-dimensional turbu-

lence forced by a range of frequencies and diagnosing the resulting temporal and

spatio-temporal spectral transfers. We examined the effects on the spectral transfers

of varying the forcing frequency, varying the window size and sampling rate, and

varying the detrending method. We also examined how temporal transfers of energy

and enstrophy evolve in time in a forced fluid spun up from an initial at rest.

In completed, ongoing, and planned future work we have diagnosed (or will diag-

nose) spatio-temporal spectral transfers in complicated systems (e.g. ocean datasets

and realistic-domain ocean models) that are not perfectly resolved by the available

data. With that in mind, the main practical result of this Chapter is that the tempo-

ral and spatio-temporal spectral transfers and fluxes as calculated for finite datasets

are quite robust to limitations typical of realistic data. Changes to window size,

sampling rate, and detrending method usually have little effect on the temporal spec-

tral transfers or fluxes except at marginal frequencies. For short duration datasets,

temporal spectral fluxes tend to be accurate even when the lowest frequencies in the
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Figure 3.10: Effect of sweeping on spatio-temporal spectral transfers. Spatio-temporal
spectral transfers of energy and enstrophy due to the dissipation terms for the runs
forced at the highest two forcing frequencies. These are the same transfers as the
dissipation terms shown in Figure 3.6, except that here the x- and y-axes use linear
rather than log scales. If there is sweeping, then there should be frequency inde-
pendence of the spatio-temporal spectral fluxes at sufficiently high wavenumber and
low frequency. This effect is seen in the enstrophy dissipation range at frequencies
below k〈|u|〉/2, where 〈·〉 represents spatial or temporal averaging. Note the changes
in scale of the ω/2π-axes between the plots, indicating that the more energetic run
(ωF/2π = 1) had the widest range of frequency-independence, consistent with the
higher sweeping velocity. As expected, the effect of sweeping is not observed in the
energy dissipation range, because k is not sufficiently large.
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system are not resolved by the data. When the highest frequencies are not resolved,

then there is aliasing into the highest resolved frequencies, but the temporal spectral

fluxes at the remaining lower frequencies remain accurate. We found that one must

be careful in the special case when the forcing frequency is close to (above or below)

the highest resolved frequency, as the temporal spectral fluxes become particularly

untrustworthy at nearby frequencies (but, importantly, only at nearby frequencies).

In that case the worst effect (fluxes having the wrong sign) occurs only when the

forcing frequency is slightly too high to be resolved and the dissipation range is also

not resolved, a situation in which one should in any case be skeptical of the highest

resolved frequencies.

We found that when the temporal window is narrow, a detrending operation may

increase the accuracy of the temporal spectral transfers when the forcing frequency

is unresolved, but the effect is small and only important at the few lowest resolved

frequencies. Perhaps a study of detrended temporal spectral transfers would be better

suited for a less idealized fluid than the one modeled here, which exhibits no long-term

trend once statistical stationary states are reached.

Moving beyond testing of the diagnostic, a physical result found here is that while

the spatial spectral transfers change little over a wide range of forcing frequencies,

with energy cascading spatially upscale and enstrophy cascading spatially downscale,

the temporal spectral transfers are quite sensitive to the forcing frequency, allowing

both downscale and upscale temporal spectral transfers of energy, but only downscale

transfers of enstrophy. This can be easily understood, as described in the following

paragraph, in terms of the requirement that the sum of the spectral transfer terms

be zero everywhere in (k, ω)-space for a statistically stationary flow.

The spatio-temporal spectral transfers due to the dissipation terms are largely

unaffected by the forcing frequency as long as the forcing frequency is not too high.

The spectral transfers due to the forcing term vary in (k, ω)-space according to the
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choice of the forcing frequency ωF . Because the spectral transfers due to the nonlinear

advection term must equal minus the sum of the other terms in a statistically stead

state, the differences in nonlinear spectral transfers are explained entirely be the

difference in the forcing spectral transfers. A physical explanation is that at forcing

frequencies that are not too high the fluid allows energy and enstrophy to be injected

and removed right at the forcing frequency, which may be incidentally lower or higher

than the frequencies at which dissipation occurs. The resulting temporal spectral

transfer of energy or enstrophy to the dissipation frequency scale may be partially or

fully non-local, bypassing any need for a cascade through frequency space.

In the simulation with the highest forcing frequency, the fluid can not respond

to the dominant time-scale of the forcing. Turbulence still develops but at a less

energetic level, as was previously found in other studies of “modulated” turbulence

in three-dimensions. Because the fluid cannot respond to arbitrarily high frequencies

(without changing the forcing amplitude), there is an upper limit for the frequency at

which enstrophy can be injected. If this limiting injection frequency is lower than the

highest frequencies associated with the enstrophy dissipation range, then there cannot

be a transfer of enstrophy to frequencies below the injection frequency. Thus, while

energy can be transferred either upscale or downscale from the injection frequency,

enstrophy probably can only be transferred downscale in two-dimensional turbulence

(likewise for energy in three-dimensional turbulence).
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CHAPTER IV

Wavenumber-frequency analysis: single-layer

shallow water quasi-geostrophic equation

4.1 Outline

This chapter has three main parts: Numerical setup (section 4.2), Numerical re-

sults (section 4.3), and Summary of results (section 4.4). In the Numerical setup

(section 4.2) we describe the single-layer shallow-water quasi-geostrophic model (on

the beta plane) and discuss the possible ways to nondimensionalize the system. We

settle on three nondimensional parameters constructed as ratios of various length

scales in the system. Based on these three parameters, we design a parameter sweep

that we argue is oceanographically relevant and that is quite comprehensive, consist-

ing of a total of fifty-four distinct cases. This large number of cases spans a wide range

of behaviors, including isotropic turbulence, westward propagating vortices, vortices

co-existing with jets, meandering jets, and strong nearly zonal jets.

In the Numerical results (section 4.3) we investigate the wavenumber-frequency

spectra and spectral transfers for this large collection of simulations. We have diag-

nosed zonal and meridional wavenumber-frequency spectra and spectral transfers for

all of these runs. However for the sake of brevity we focus on the select few figures

that demonstrate the phenomona of interest. The Summary of results (section 4.4)
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distills the many and varied lines of evidence in the Numerical results section into a

more compact narrative.

4.2 Numerical Setup

The equation of motion for forced-dissipated single-layer shallow-water quasi-

geostrophic turbulence is

∂t(∇2 − k2
d)ψ + J(ψ,∇2ψ + βy) = (ν−2∇−2 + ν6∇6)∇2ψ + F. (4.1)

As in the two-dimensional vorticity equation 2.7 studied in Chapters II and III,

ψ(x, t) = ψ(x“x + yŷ, t) is the stream function, J(·, ·) is the Jacobian, and F is an

imposed external forcing. In contrast to equation 2.7, equation 4.1 contains a finite

deformation radius Ld ≡ 1/kd and a non-zero meridional gradient β of the Coriolis

parameter. Whereas in Chapter III we used wavenumber cutoff filters for dissipation

at large and small scales, here we use smoother operators: low order hypoviscosity

(∇−2) with coefficient ν−2 and moderately low order hyperviscosity (∇6) with coeffi-

cient ν6. A future study could also include a linear drag term (ν0∇2ψ) instead of or

in addition to hypoviscosity.

We simulate equation 4.1 using a fully de-aliased pseudospectral method with

third-order Adams–Bashforth time-stepping. The pseudospectral method is based on

the spatial Fourier transform of equation 4.1, which is

∂t(k
2 + l2 + k2

d)
‹ψ = Â�J(ψ,∇2ψ + βy)− (ν−2|k|−2 + ν6|k|6)|k|2‹ψ + ‹F , (4.2)

assuming spatially periodic boundary conditions. For mathematical convenience, the

the spatial period is set to L = 2π in each direction, so the smallest non-zero zonal

and meridional wavenumbers are k = 1 and l = 1. As is customary in oceanographic
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applications, in this chapter we define the zonal wavenumber k := “x · k and the

meridional wavenumber l := ŷ · k. This differs from the notation of the previous

two chapters, in which k was the isotropic wavenumber |k|. While this may seem

confusing, we simply follow what is standard in the literature.

The forcing F is chosen to be statistically isotropic in space, narrowband in

wavenumber, and effectively white noise in time (having a very short integral timescale).

The forcing is defined in Chapter III (equation 3.2). We set the integral timescale

τF0 = 0.1, which is relatively short compared to the enstrophy containing timescales

in all of our simulations. Unlike the forcing used in Chapter III, the forcing used

here has no periodic modulation. The forcing is narrowband in wavenumber, having

nonzero values only in the range kF −∆kF < |k| < kF + ∆kF , where ∆kF = 2. As

part of our parameter sweep, four different forcing wavenumbers will be considered:

kF ∈ {6, 15, 30, 90}. The amplitude of the forcing is chosen such that the (expected

value of the) spatial root mean square of the forcing is numerically equal to one.

The dissipation coefficients are set dynamically during spin-up and then set to

fixed values after statistical equilibrium is reached. The coefficient of hypoviscosity is

chosen such that on average one tenth of the total potential energy is in spatial modes

|k| ≤ 3. The coefficient of hyperviscosity is chosen such that on average 1× 10−10 of

the total enstrophy is in spatial modes |k| ≥ 2kNy/3 ≈ 342, where kNy is the Nyquist

wavenumber. This choice ensures an effective de-aliasing of the nonlinear term via

the 2/3 rule (Canuto et al., 2007a,b), giving an error of order 10−10 while maximizing

the use of the available spatial resolution.

In order to construct a parameter sweep for equation 4.2, we need to determine

the important non-dimensional parameters. We do so by determining the important

length scales in this system and then taking their ratios. Two obvious candidates are

the deformation radius Ld = 1/kd and the forcing scale 2π/kF . In forced-dissipated

simulations, two more length scales are set by the large-scale dissipation of potential
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energy and the small-scale dissipation of enstrophy. These dissipation scales may be

defined by the wavenumber centroids of potential energy and enstrophy:

kPE :=

∫ ∫
d2k|k||·�ψ(k, t)|2∫ ∫
d2k|·�ψ(k, t)|2

and kZ :=

∫ ∫
d2k|k||k|4|·�ψ(k, t)|2∫ ∫
d2k|k|4|·�ψ(k, t)|2

. (4.3)

Our use of dynamic hypoviscosity ensures that a certain fixed fraction of potential

energy is at the smallest wavenumbers, which in turn sets a fairly uniform value of

kPE for all of our equilibrated runs. Generally, 4 < kPE < 5 in every simulation that

has reached statistical equilibrium.

Several recent studies (Sukoriansky et al., 2007, 2008; Galperin et al., 2010) have

argued for the importance of the large-scale dissipation scale when the deformation

radius is infinite (they do not consider the finite case). We follow their lead by letting

kPE be one of our chosen length scales. We select also the deformation radius and the

forcing wavenumber, which gives a total thus far of two nondimensional parameters:

γd :=
kd
kPE

and γF :=
kF
kd
. (4.4)

Based on the measurements of eddy size in the North Atlantic by Eden (2007),

we chose three values of deformation radius Ld ≡ k−1
d that span the observed values

of the ratio kd/kPE. Given that kPE ≈ 4.5 in equilibrated simulations, we choose

kd ∈ {6, 15, 30}, so approximately γd = kd/kPE ∈ {1.3, 3, 6}. The middle value

of γd is the most common in the North Atlantic and the outer values lie near the

extrema of the observations. In order to mimic baroclinic instability we try several

kF ∈ {6, 15, 30, 90} restricted by requiring γF = kF/kd ≥ 1.

There may be an additional length scale associated with the choice of β, which

may govern the transition to jets. There are several contenders in the literature.
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There is the Rhines wavenumber (Rhines , 1975)

kRh :=
»
β/2Urms, (4.5)

where Urms is the root mean square velocity of the fluid. However, the derivation of the

Rhines scale does not take into account a finite deformation radius, so its applicability

to our simulations is questionable. Taking into account a finite deformation, one can

derive a modified Rhines wavenumber (Okuno and Masuda, 2003):

k′Rh :=
»
k2
Rh − k2

d, (4.6)

which is sometimes purely imaginary, in which case the beta-effect is small relative to

nonlinearity. This “inhibition of the beta-effect” by a finite deformation radius (and

hence inhibition of jets) has been useful in explaining the positions of stormy regions

on Jupiter (Theiss , 2006) and Saturn (Penny et al., 2010).

An alternative to the Rhines wavenumber (and its modification) is the transitional

wavenumber (Vallis and Maltrud , 1993),

kβ := (β3/C3/2ε)1/5, (4.7)

where ε is the mean energy injection rate by the forcing, and by assumption kd = 0.

Equation 4.7 is derived by equating the Rossby wave period with the eddy turnover

time, where the eddy turnover time is calculated based on an assumed form of

the wavenumber spectra E(k) (in this case assumed to follow Kolmogorov scaling

E(k) = Cε2/3k−5/3). If we allow for a finite deformation radius, we obtain a modified

transitional wavenumber k′β defined implicitly by

k′β := largest k that solves a · (k/kd) = (k/kd)
6 + 1, (4.8)
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where a = β/(C1/2ε1/3k
5/3
d ), as is shown in Smith (2004). When equation 4.8 has no

solution, then there is expected to be no anisotropy.

It is not clear from the literature which of these length scales is the most useful.

Additionally, they all depend on a post priori quantity such as Urms or ε, so their

values cannot be directly chosen beforehand. Thus, we simply vary β over a wide

range and report the resulting values of kRh and k′Rh in Appendix A. We also report

in Appendix A the related nondimensional parameters γRh := kRh/kPE and γ′Rh :=

k′Rh/kPE, as well as the dimensional values of Urms used in their calculation.

At mid-latitudes in Earth’s ocean, β ≈ 2 × 10−11 m−1s−1 (e.g. Vallis , 2006),

Ld ≈ 3–5×104 m (Chelton et al., 1998), and Urms ≈ 10–100 cm s−1 (Stammer , 1997).

Therefore, the Rhines wavenumber lies within the range kRh ≈ 3–10 × 10−6 m−1.

Given the range of values for Ld, we get the nondimensional ratio kRh/kd ≈ 0.1–0.5,

which can be compared to the same ratio in our simulations. In Appendix A we

report both kRh and kd as well the ratio γRh := kd/kPE. Because kd/kPE ≈ 1–7 in

the ocean, this gives γRh ≈ 0.1–3. We do not argue whether kRh/kd or kRh/kPE is

more relevant for comparison with the ocean. Our simulations give ratio values which

more than span the oceanic regime. Simulations that lie outside the oceanic regime

by either measure, due to large β and the formation of nearly zonal jets, may be more

appropriate for comparison with the atmospheres of Jupiter or Saturn.

In summary, we conduct the following parameter sweep. Based on the measure-

ments by Eden (2007) we choose kd ∈ {6, 15, 30}, which approximately corresponds

to γd ∈ {1.3, 3, 7}. We select kF ∈ {6, 15, 30, 90}, but consider only forcing at scales

equal to or smaller than the deformation radius (i.e. kF/kd ≥ 1). For example, when

kd = 6 we conduct simulations for each kF ∈ {6, 15, 30, 90}, but when kd = 30 we only

consider kF ∈ {30, 90}. As discussed above, because the remaining nondimensional

parameter is determined post priori, we simply vary β over a wide range. We conduct

simulations for all β ∈ {0, 0.1, 1, 10, 100, 1000}, yielding a wide range of flow regimes.
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4.3 Numerical Results

In this section we primarily focus on wavenumber-frequency spectra, with a limited

focus on wavenumber-frequency spectral transfers. We display kinetic energy spectra,

E(k, l, ω) := (k2 + l2)|̂̃ψ(k, l, ω)|2, (4.9)

and note that the same general features are seen in spectra of potential energy and

enstrophy. We show zonal wavenumber-frequency spectra,

E(k, ω) :=
∑
l

E(k, l, ω), (4.10)

meridional wavenumber-frequency spectra,

E(l, ω) :=
∑
k

E(k, l, ω), (4.11)

and various slices of E(k, l, ω) at constant l or k. Note that E(k, ω) and E(l, ω) are

two completely different functions, whose meanings are made clear by context and by

their use of different inputs.

The nonlinear spectral transfers are

T (k, l, ω) := Re[
̂̃
ψ(k, l, ω)∗

¤�Â�J(ψ,∇2ψ)], (4.12)

where the “hat” operator is a detrended, windowed, discrete Fourier transform, and

a∗ indicates the complex conjugate of a. Zonal and meridional wavenumber-frequency

spectral transfers, T (k, ω) and T (l, ω), are defined by summing over either all l or all

k.
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Figure 4.1: A schematic of the linear Rossby dispersion relation, the nondispersive
line (NDL), and the nonlinear dispersive curve (NDC). The top row displays both
positive and negative frequencies and zonal wavenumbers, thus clarifying the form of
the NDC. The bottom row shows only positive frequencies, as do all other plots of kω-
spectra in this chapter. When plotted as in the bottom row, the NDC appears as two
disjoint sections. The dash-dotted curves show the l = 0 Rossby dispersion relation,
while the dotted curves show the l = kd Rossby dispersion relation. The slope of the
NDL indicates the uniform propagation speed. The “long-wave” NDL corresponds
to the Rossby wave speed when (k, l) = (0, 0). The “slower” NDL corresponds to the
Rossby wave speed when (k, l) = (0, kd).
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4.3.1 A schematic of observed phenomena

Figure 4.1 is a schematic of the various phenomena we observe in zonal wavenumber-

frequency spectra. Real spectra (such as in Figure 4.2) are noisy and display scatter

in the kω-plane, while Figure 4.2 displays simple curves that can be thought of as

representing local maxima of idealized two-dimensional spectra. The top three pan-

els show schematics of kω-spectra for both positive and negative values of k and ω.

However, because of the symmetry E(k, ω) = E(−k,−ω), it is redundant to show all

wavenumbers and frequencies. Removing the redundancy, the bottom three panels

show the same schematics limited to just the upper half-plane (ω ≥ 0). It is instruc-

tive to show the spectra both ways in figure 4.1 in order to emphasize the fact that

the nonlinear dispersive curve (NDC) is one continuous curve. The NDC appears as

two disjoint curves when kω-spectra are viewed in the upper half-plane. All other

plots of kω-spectra in this chapter show only the upper half-plane. In like manner,

all plots of lω-spectra in this chapter show only the upper right quadrant, due to an

additional symmetry in the equation of motion.

For equation 4.1 the linear dispersion relation, otherwise known as the Rossby

dispersion relation, is

ω =
−βk

k2 + l2 + k2
d

. (4.13)

The phase speed is

ω

k
=

−β
k2 + l2 + k2

d

, (4.14)

such that the long-wave Rossby speed is −β/k2
d, obtained in the limit |k| → 0.

In contrast to Rossby waves, which are dispersive, a uniformly zonally propagating

feature will show up as a straight line in kω-spectra. The slope of such a line is the

zonal propagation speed (negative for westward propagation). We often see such a

line in spectra and refer to it as a “non-dispersive line” (NDL). The left panels of

figure 4.1 show a NDL corresponding to the long-wave Rossby speed when l = 0. The
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middle panels show a NDL corresponding to a slower speed (the Rossby phase speed

with (k, l) = (0, kd)).

Aside from Rossby waves and uniform propagation, we sometimes will see another

feature in kω-spectra which we refer to as a “non-dispersive curve” (NDC). The right

panels of figure 4.1 show a prototypical NDC. At the time of writing, because we

have no theoretical prediction for this curve, we have simply plotted a third degree

polynomial that approximates the form of the NDC.

With reference to figure 4.1 we can easily summarize the main features of our

kω-space investigations. At moderate values of β, we observe a NDL with slope

approximately equal to the long-wave Rossby speed. At β large enough to produce

jets we also observe a NDL, but sometimes with a slower velocity. At these values of

β we also sometimes observe a NDC, or both a NDC and a NDL. At very high β, we

observe the linear Rossby dispersion relation.

4.3.2 The importance of statistical equilibrium

A few of the simulations presented in this chapter are not as yet fully equilibrated.

In particular, all of the runs with β = 1000 and some of the runs with β = 100 are

still ongoing. Equation 4.1 is notorious for long equilibration times. The beta effect

increases the equilibration time because the inverse cascade must proceed anisotrop-

ically, an inefficient and slow process. The finite deformation radius implies that the

inverse cascade to large scales is dominated by a cascade of potential energy, which,

dimensional arguments show, slows down the cascade further.

Fortunately, we have strong evidence for the unimportance of equilibration to

the various features observed in the spectra. When a run is slow to equilibrate, it is

because the potential energy takes a very long time to reach the large-scale dissipation

range. However, kinetic energy and enstrophy reach equilibrated values much sooner.

Despite a very slow cascade of kPE to smaller wavenumber, features (such as a NDL
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or NDC) observed in kinetic energy kω-spectra remain unchanged, beginning from

very early stages of the spin-up from rest.

As a typical example of the unimportance of equilibration on the form of the

spectra, consider the case (kd, kF , β) = (15, 90, 100), which exhibits a strong NDC and

NDL. The potential energy is nearly equilibrated after two months (computational

time) of spin-up, but the form of the spectra has not changed since day two, although

the magnitude has changed. In that time the potential energy has increased by a

factor of 100, but the enstrophy only increased by a factor of two, and the form of

the NDC and the NDL has barely changed at all. Including this example, all of our

unequilibrated simulations have spun up more than a factor of ten times longer than

what was needed for the spectral features to stabilize.

4.3.3 Zonal wavenumber-frequency spectra

Figures 4.2–4.8 show kω-spectra of kinetic energy, and snapshots of vorticity ∇2ψ

for a wide range of runs. Each figure corresponds to a choice of kd and kF , and shows

results for all six values of β ∈ {0, 0.1, 1, 10, 100, 1000}. Table 4.1 gives the values

of the parameters kd and kF , for the runs shown in figures 4.2–4.8. For each of the

three values of kd ∈ {6, 15, 30} we show results for kF = kd (deformation radius scale

forcing) and kF = 90 (small-scale forcing). Because we wish to show one run with

intermediate scale forcing, and because the kd = 15 case is the most oceanographically

relevant, when kd = 15 we also show results for kF = 30 (intermediate-scale forcing).

Figures (4.x) kd ≡ 1/Ld kF
2, 3 6 6, 90

4, 5, 6 15 15, 30, 90
7, 8 30 30, 90

Table 4.1: Parameter choices kd and kF for the simulations shown in figures 1–7.

To begin, figure 4.2 shows the case (kd, kF ) = (6, 6), which has the largest defor-

mation radius and the largest scale forcing in the simulations shown in this chapter.
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Figure 4.2: Zonal wavenumber-frequency spectra and vorticity snapshots for sim-
ulations with (kd, kF ) = (6, 6) and six values of β. The beta values are given in
the upper plots. The lower plots are organized such that the β values correspond
to those in the upper plots. (a) Kinetic energy spectra, log10E(k, ω). Dashed lines
denote propagation at the long-wave Rossby speed. Dash-dotted curves show the
(l = 0) Rossby dispersion relation. The observed NDLs correspond to speeds slower
than the long-wave Rossby speed. (b) The corresponding snapshots of vorticity.
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Figure 4.3: As in figure 4.2 but for simulations with (kd, kF ) = (6, 90). (a) Kinetic
energy spectra, log10E(k, ω). Dashed and dash-dotted lines are as in figure 4.2. The
observed NDLs correspond to speeds slower than the long-wave Rossby speed. There
are prominent NDCs when β = 10 and β = 100. (b) The corresponding snapshots of
vorticity. The β = 10 case corresponds to meandering jets co-existing with coherent
vortices.

89



Judging from the kω-spectra, for the smallest three values of β there is not much

sensitivity to β in the system. All of the corresponding vorticity snapshots exhibit

coherent vortices. The size of the vortices reaches the deformation radius, which we

note again is at the same scale as the forcing. When β = 10, the kω-spectra exhibits

a wide NDL, indicating a tendency for uniform westward propagation. The westward

propagation speed appears to be somewhat slower than the long-wave Rossby speed

(indicated by a dashed line in each plot), but the discrepancy is not conclusive due

to the great width of the NDL. The snapshot of vorticity in the β = 10 case shows

weaker coherent vortices. The β = 100 case has no vortices and is instead dominated

by jets. The kω-spectra in this case shows a much narrower NDL, indicating uniform

westward propagation at a speed that is clearly slower than the long-wave Rossby

speed. When β = 1000 there appears to still be a NDL, but it mostly coincides with

the linear Rossby dispersion relation at low k and does not extend much into larger

k. In order to distinguish a NDL from Rossby waves in this and similar cases, we

must also consider lω-spectra or various slices of E(k, l, ω).

Next, figure 4.3 shows the case (kd, kF ) = (6, 90), i.e. the case employing the

largest deformation radius and the smallest scale forcing of the values used in this

chapter. The snapshots of vorticity indicate that the system is quite different from

the previous case. Here the size of the coherent vortices does not exceed the forcing

scale, which is much smaller than the deformation radius. In the (kd, kF ) = (6, 90)

case, when β = 1 we get a hint of uniform westward propagation at roughly the long-

wave Rossby speed. Indeed, in animations of vorticity snapshots one sees westward

propagation of the coherent vortices. The β = 10 case is the first example thus far

of a NDC in addition to a NDL. The NDL indicates uniform propagation at a speed

slower than the long-wave Rossby speed. The NDC is clearly visible at both negative

and positive k, indicating both westward and eastward phase speeds. For the NDC,

at high k the phase speed appears to be independent of k (i.e. is linear), but the phase

90



velocity does not equal the group velocity since the line does not pass through the

origin. The vorticity snapshot shows coherent structures co-existing with meandering

(i.e. non-zonal) jets. When β = 100, the coherent vortices are gone, and again we

observe both a “slow” NDL and a NDC. When β = 1000 it appears that the (l = 0)

Rossby dispersion relation acts as a boundary of the spectra, consistent with the

possibility that the spectra consists of Rossby waves for all l-values. We investigate

whether these are Rossby waves later in this chapter.

Figures 4.4–4.6 show kω-spectra for (kd, kF ) = (15, 15), (15, 30), and (15, 90),

arguably the most relevant cases for the ocean. We summarize the main points of

these figures below. First, the size of the coherent vortices decrease along with the

forcing scale. Second, the NDL appears in runs with only vortices (no jets) and in

runs with only jets (no vortices), but the slope of the NDL appears to differ in the

two cases. When there are no jets, the NDL indicates propagation at or near the

long-wave Rossby speed, but when there are jets the uniform westward propagation

appears to be slower. Third, while we observe NDLs regardless of the forcing scale,

we only observe NDCs when the forcing scale is smaller than the deformation radius.

When the forcing scale is large (kF = 15), we observe no NDC. When the forcing

scale is intermediate (kF = 30) we see a hints of NDCs when β = 10 and 100. When

the forcing scale is small (kF = 90) we see clear NDCs for both of those values of

β. Fourth, all of the cases that exhibit a NDC also exhibit meandering (i.e. non-

zonal) jets. Fifth, when β takes its largest value, the jets become nearly purely zonal,

the NDC disappears, and the linear Rossby dispersion relation appears to become

important.

Figures 4.7–4.8 show kω-spectra for the smallest deformation radius cases, which

are (kd, kF ) = (30, 30) and (30, 90). Again, we do not see a NDC when kd = kF , but

we do when kd < kF , and we only see a NDC when there are meandering jets. The

NDL follows the long-wave Rossby speed when there are no jets, but follows a slower
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Figure 4.4: As in figure 4.2 but for simulations with (kd, kF ) = (15, 15). (a) Kinetic
energy spectra, log10E(k, ω). Dashed and dash-dotted lines are as in figure 4.2. In
the β = 10 case, which exhibits no jets, the NDL appears at the long-wave Rossby
speed. In the β = 100 case, which exhibits meandering jets, the NDL is slower. (b)
The corresponding snapshots of vorticity.
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Figure 4.5: As in figure 4.2 but for simulations with (kd, kF ) = (15, 30). (a) Kinetic
energy spectra, log10E(k, ω). Dashed and dash-dotted lines are as in figure 4.2. In
the β = 10 case, which exhibits no jets, the NDL appears at the long-wave Rossby
speed. In the β = 100 case, which exhibits meandering jets, the NDL is slower. There
is a NDC when β = 100. (b) The corresponding snapshots of vorticity. The β = 100
case corresponds to meandering jets with no long-lived vortices.
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Figure 4.6: As in figure 4.2 but for simulations with (kd, kF ) = (15, 90). (a) Kinetic
energy spectra, log10E(k, ω). Dashed and dash-dotted lines are as in figure 4.2. In
the β = 10 case, there are weak meandering jets, the NDL is slightly slower than the
long-wave Rossby speed, and a weak NDC is apparent at positive k. In the β = 100
case, the NDL is even slower, and there is a clear NDC. There is a NDC when β = 100.
(b) The corresponding snapshots of vorticity.
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Figure 4.7: As in figure 4.2 but for simulations with (kd, kF ) = (30, 90). (a) Kinetic
energy spectra, log10E(k, ω). Dashed and dash-dotted lines are as in figure 4.2. In
the β = 10 case, which exhibits no jets, the NDL appears at the long-wave Rossby
speed. In the β = 1000 case, the NDL is slightly slower. (b) The corresponding
snapshots of vorticity.
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Figure 4.8: As in figure 4.2 but for simulations with (kd, kF ) = (90, 90). (a) Kinetic
energy spectra, log10E(k, ω). Dashed and dash-dotted lines are as in figure 4.2. In
the β = 10 case, which exhibits no jets, there is a narrow NDL at the long-wave
Rossby speed. In the β = 100 case, which exhibits meandering jets co-existing with
vortices, the NDL is slightly slower, and there is a weak NDC. In the β = 100 case,
there is a less pronounced, slower NDL. (b) The corresponding snapshots of vorticity.
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propagation speed when when there are jets. The highest β case, which involves

nearly zonal jets, still show a NDL in addition to what will later prove to be Rossby

waves.

To summarize, we see that for the three values of kd used here and for a wide range

of kF there is a consistent progression of features as one increases β: isotropic vortices,

westward propagating vortices with a NDL at the long-wave Rossby speed, meander-

ing jets with a slower NDL for all kF and a NDC for kF > kd, and finally (nearly)

zonal jets which roughly follow the linear Rossby dispersion relation. Although this

story is consistent from figure to figure, we note large differences in the appearance

of the jets from case to case. These differences in the jets make it worthwhile to show

snapshots for all of these runs.

4.3.4 Zonal investigation of the NDL and NDC

In this section we look at the NDC in more detail. Whereas before we showed the

kinetic energy spectra E(k, ω) :=
∑
lE(k, l, ω), summed over all meridional wavenum-

bers, here we show E(k, l, ω) for various fixed values of l. In addition to the spectra

we also show the nonlinear spectral transfers T (k, ω) :=
∑
l T (k, l, ω) and T (k, l, ω)

for various l.

For each of the three values of kd ∈ {6, 15, 30}, we examine the case that produced

the most prominent NDC. We examine te (kd, kF , β) = (6, 90, 10) case in figure 4.9,

the (15, 90, 100) case in figure 4.10, and the (30, 90, 100) case in figure 4.11. As

a reminder, the top-left panel of each figure shows the kω-spectra, already shown

earlier, in order to highlight the NDCs again. While all these cases display a NDC,

the corresponding jets are quite different.

Figure 4.9a shows E(k, ω) and E(k, l, ω) at fixed l for the (kd, kF , β) = (6, 90, 10)

case, which exhibits both a NDL and a NDC. For small l the NDC is strong and there

is no NDL. In contrast, for large l the NDL is strong and there is no NDC. Thus, the
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Figure 4.9: Zonal wavenumber-frequency spectra and nonlinear spectral transfers
sliced at constant l for the case (kd, kF , β) = (6, 90, 10). The corresponding vorticity
snapshot can be found in figure 4.3. Dash-dotted line shows propagation at the long-
wave Rossby speed. Dash-dotted curve shows the Rossby dispersion relation. (a)
Top left shows kinetic energy log10E(k, ω) := log10

∑
lE(k, l, ω). Other five plots

show log10E(k, l, ω) at fixed values of l ∈ {0, 1, 5, 10, 20}. (b) As in (a), but for
nonlinear spectral transfers.
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NDC is roughly a meridional phenomena, because typically k > l along the NDC.

The NDL involves both zonal and meridional structures, since both k < l and k > l

along the NDL.

Figure 4.9b shows the nonlinear spectral transfers T (k, ω) and T (k, l, ω) for the

same values of l. Displaying the nonlinear transfers explicitly implicates the involve-

ment of nonlinearity in the formation of the NDC and NDL. The transfers behave

in a similar manner as the spectra: the NDC dominates at small l while the NDL

dominates at large l.

Figure 4.10 shows E(k, ω), E(k, l, ω), T (k, ω) and T (k, l, ω) at fixed l for the

(kd, kF , β) = (15, 90, 100) case. We remind the reader that kd = 15 is the most

oceanographically relevant case, and that figure 4.10 displays the kd = 15 case having

the most prominent NDC. The spatio-temporal resolution is much better than in the

previous figure, and the story is very clear: the NDC is again most prominent at small

l while the NDL dominates at large l. The main difference between the kd = 15 case

shown in figure 4.10 and the kd = 6 case shown in figure 4.9 is that the cutoff value

of l above which the NDC disappears is now higher. In other words, the meridional

modes accessible by the NDC appear to depend on the deformation radius.

Figure 4.11 shows E(k, ω), E(k, l, ω), T (k, ω) and T (k, l, ω) at fixed l for the

(kd, kF , β) = (30, 90, 100) case, in which the deformation radius is smaller than in the

previous two cases. This case differs from the previous two in that the NDC appears

to be much weaker. The NDC is clearly seen in the spectra when l < kd, but is

barely noticeable in the spectral transfers. Unlike the previous two cases, the NDL is

prominent at all l.

4.3.5 Meridional investigation of the NDL and NDC

In this section we examine cross-sections of E(k, l, ω) at constant zonal wavenum-

ber k, in contrast with the sections at constant l shown in the previous section. We
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Figure 4.10: As in figure 4.9 but for the (kd, kF , β) = (15, 90, 100) case with l ∈
{0, 5, 10, 20, 50}. The corresponding vorticity snapshot can be found in figure 4.6.
Dashed and dash-dotted lines are as in figure 4.9.
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Figure 4.11: Zonal wavenumber-frequency spectra and nonlinear spectral transfers
sliced at constant l when (kd, kF , β) = (30, 90, 100). This run produces a strong NDL
and a weak NDC. The corresponding vorticity snapshot can be found in figure 4.8.
Dashed and dash-dotted lines are as in figure 4.9.
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Figure 4.12: Meridional wavenumber-frequency spectra sliced at constant k for the
(kd, kF , β) = (15, 90, 100) case. The corresponding vorticity snapshot can be found
in figure 4.6. Dashed lines, as in previous figures, indicate the signature of uni-
form westward propagation at the long-wave Rossby speed. Dash-dotted curves
show the linear Rossby dispersion relation. Top left panel shows kinetic energy
log10E(l, ω) := log10

∑
k E(k, l, ω). Other five plots show log10E(k, l, ω) at fixed

values of k ∈ {1, 2, 5, 10, 20}.

show only a single case, with kd = 15, kF = 90, and β = 100. This run has the

most prominent NDC of all of the kd = 15 runs; recall that kd = 15 has been deemed

the most oceanographicaly relevant case. In addition to a NDC this run exhibits a

prominent NDL.

Figure 4.12 shows E(l, ω) :=
∑
kK.E.(k, l, ω) and E(k, l, ω) for various fixed values

of k. The top-left panel shows that E(l, ω) consists of a sequence of horizontal lines,

most clearly at small frequency and wavenumber. For uniform zonal propagation at

speed U , the dispersion relation is ω = Uk, which is independent of l and scales

linearly with k. Thus, the signature of a NDL in lω-space is a horizontal line at

constant frequency, with the frequency directly proportional to k. In the figure we

include dashed lines indicating the location of a hypothetical NDL at the long-wave

Rossby speed. We also show the linear Rossby dispersion relation (dash-dotted lines).

The figure clearly demonstrates that most of the energy lies along a NDL with speed
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Figure 4.13: Zonal wavenumber-frequency spectra sliced at constant l for the
(kd, kF , β) = (6, 90, 1000) case, which produces strong zonal jets. The correspond-
ing vorticity snapshot can be found in figure 4.3. Dashed and dash-dotted lines are as
in figure 4.9. Top left shows kinetic energy log10E(k, ω) := log10

∑
lE(k, l, ω). Other

five plots show log10E(k, l, ω) at fixed values of l ∈ {0, 5, 10, 20, 50}.

slightly slower than the long-wave Rossby speed. Each stripe in the top-left panel

corresponds to one of the discrete values of k, and corresponds to a peak in the

frequency spectrum, E(ω) :=
∑
k,lE(k, l, ω), not shown here. Although this run has

a prominent NDC, there is no clear signature of the NDC in lω-space.

4.3.6 Zonal investigation of strong jets

In this section we again examine kinetic energy spectra E(k, l, ω) for various fixed

values of l, but now in simulations with very large values of β, which produce strong

nearly zonal jets. In section 4.3.4, investigations of zonal wavenumber-frequency

spectra E(k, ω) could not conclusively determine whether these jets (or waves on the

jets) satisfy the linear Rossby dispersion relation.

For each of the three values of kd ∈ {6, 15, 30}, we consider the run with the

smallest scale forcing and the highest value of β. Thus, we examine the following three

simulations: (kd, kF , β) = (6, 90, 1000) in figure 4.13, (15, 90, 1000) in figure 4.14, and
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Figure 4.14: As in figure 4.13 but for the (kd, kF , β) = (15, 90, 1000) case. The
corresponding vorticity snapshot can be found in figure 4.6. Dashed and dash-dotted
lines are as in figure 4.9.

(30, 90, 1000) in figure 4.15. The top-left panel of each figure shows the E(k, w) while

the remaining panels show E(k, l, ω) for fixed l ∈ {0, 5, 10, 20, 50}.

We can summarize these three figures as follows. When l <= 20 most of the

energy lies along the linear Rossby dispersion relation. When l = 50 some energy

also appears along a NDL. Specifically in the case kd = 30, when l = 50 there is

another curve between the NDL and the linear Rossby dispersion relation. It appears

in the same location as a NDC would, but it is too short to convincingly claim it is

the same phenomenon seen in other runs with lower β.

4.3.7 Meridional investigation of strong jets

To continue our investigation of the simulations with strong zonal jets (β = 1000),

we now show E(l, ω) :=
∑
k E(k, l, ω) and E(k, l, ω) at fixed values of k. We use the

same runs as in the previous section, but because the kd = 6 has poor resolution we

only show the kd = 15 and kd = 30 cases. Those runs had forcing at the smallest scales

(kF = 90). We also show the (kd, kF , β) = (15, 30, 1000) case, which has intermediate-
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Figure 4.15: As in figure 4.13 but for the (kd, kF , β) = (30, 90, 1000) case. The
corresponding vorticity snapshot can be found in figure 4.8. Dashed and dash-dotted
lines are as in figure 4.9.
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Figure 4.16: Meridional wavenumber-frequency spectra sliced at constant k for the
(kd, kF , β) = (15, 90, 1000) case, which produces strong nearly zonal jets. The cor-
responding vorticity snapshot can be found in figure 4.6. Dashed lines, as in previ-
ous figures, indicate the signature of uniform westward propagation at the long-wave
Rossby speed. Dash-dotted curves show the linear Rossby dispersion relation. Top left
panel shows kinetic energy E(l, ω) :=

∑
k E(k, l, ω). Other five plots show E(k, l, ω)

at fixed values of k ∈ {1, 2, 5, 10, 20}.
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Figure 4.17: As in figure 4.16 but for the (kd, kF , β) = (30, 90, 1000) case. The
corresponding vorticity snapshot can be found in figure 4.8. Dashed and dash-dotted
lines are as in figure 4.16.

scale forcing and features a surprising sinusoidal pattern in the spectra that is only

hinted at in the other cases.

Figure 4.16 shows E(l, ω) and E(k, l, ω) at fixed k for the case kd = 15 (most

oceanographically relevant deformation radius) and kF = 90. The top-left panel

shows that E(l, ω) consists of a series of stripes in lω-space. The remaining panels

show that each stripe corresponds to the linear Rossby dispersion relation (dash-

dotted curves) for each fixed k. We also see some features that do not follow the

linear Rossby dispersion relation: faint hints of additional curves that look somewhat

sinusoidal.

Figure 4.17 shows E(l, ω) and E(k, l, ω) at fixed k for the case kd = 30 (smallest

deformation radius) and kF = 90. The spectra E(k, ω) is again a series of stripes, but

they are not solely attributed to Rossby waves. The stripes are horizontal at large l,

indicating uniform westward propagation. As can be seen in the various slices at fixed

k, there are three types of curves present in the spectra: the linear Rossby dispersion

relation (especially at small l), a NDL with propagation slightly slower than the long-
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Figure 4.18: As in figure 4.16 but for the (kd, kF , β) = (15, 30, 1000) case. The
corresponding vorticity snapshot can be found in figure 4.5. Dashed and dash-dotted
lines are as in figure 4.16.

wave Rossby speed (especially at larger l), and hints of various horizontal sinusoidal

curves that coincide with the linear Rossby dispersion relation at small l. The period

of each sinusoid appears to be lperiod = 45 = kF/2, and the maxima occur at l = 0,

l = kF/2, and l = kF .

Figure 4.17 shows E(l, ω) and E(k, l, ω) at fixed k for the case kd = 30 (smallest

deformation radius) and kF = 30 (intermediate-scale forcing). There is still energy

along the linear Rossby dispersion relation, but we also see a remarkable new feature;

for each fixed value of k there is an unambiguous sinusoidal curve. Each sinusoidal

curve coincides with the Rossby dispersion relation at small l, and reaches its first

minimum at l = kd = 15 where it departs from the linear Rossby dispersion relation.

The period of each sinusoid appears to be lperiod = 30 = kF , and that maxima occur

at l = 0, l = kF , and l = 2kF .

In all three cases, there is a maxima of the sinusoid at l = kF , and kF is also an

integer multiple of kd. We suspect these are not coincidences, but are unable to say

more here. Further investigation of this phenomenon will be left for future work.
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4.4 Summary of Results

We conclude with a summary of the main results of this chapter. We investigate

beta-plane turbulence in the wavenumber-frequency domain in the case of a finite de-

formation radius. Several values of the deformation radius are considered, spanning a

range that we argue is most relevant oceanographically. Based on the measurements

of eddy size in the North Atlantic by Eden (2007), we chose three values of deforma-

tion radius Ld ≡ k−1
d that span the observed values of the ratio kd/kPE. We chose

kd/kPE ≈ 1.3, 3, and 6, with the middle value being the most common in the North

Atlantic, and the outer values being near the extrema of the observations.

We conduct a broader parameter sweep than other recent studies of beta-plane

turbulence with a finite deformation radius. We vary a total of three non-dimensional

parameters, defined in terms of ratios of length scales. The corresponding wavenum-

bers are kPE, kd, kF , and a fourth wavenumber associated with β (there are several

possibilities).

Among several features we report, the most interesting may be the appearance of

a non-dispersive curve (NDC) observed in kω-spectra of kinetic energy when β is just

large enough to allow the formation of jets. This NDC involves both westward and

eastward phase and group velocities, with the smallest scales traveling eastward. The

NDC corresponds to neither Rossby waves nor the previously reported non-dispersive

line (NDL) indicative of uniform westward propagation. The formation of a NDC is

fairly robust in that it appears for all values of kd considered here and for all values

of kF > kd (forcing at scales smaller than but not equal to the deformation radius).

The formation of a NDC appears to correspond to the formation of meandering jets

(as opposed to purely zonal jets), although the meridional excursion of the jets need

not be large.

Besides the discovery of the NDC, we also report on the occurrence, strength, and

slope of a NDL for various parameters. Even in the cases where a NDC appears, it
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bears mentioning that the NDL is still the dominant feature of the spectra. While the

NDL can be attributed largely to westward propagating vortices when β is relatively

small, the NDL still dominates the kω-spectra when β is large enough such that jets

form (with no or relatively weak vortices). However, if β is turned much higher, the

NDL appears to shorten or vanish. Additionally, while it appears that westward prop-

agating vortices propagate westward at approximately the long-wave Rossby speed

(consistent with ideas about monopole propagation), when jets dominate the system

the resulting NDL indicates a westward propagation speed substantially slower than

the long-wave Rossby speed. This slower propagation speed is clearest when the po-

tential energy containing scale is not much larger than the deformation radius (i.e.

kPE . kd). The speed of the westward translation of the jets appears to be closer

to the phase speed of a Rossby wave with wavevector kjet, where kjet is the most

energetic mode.

When β is very large, so that strong nearly zonal jets are produced, the kω-spectra

display the signature of Rossby waves. In some cases at high meridional wavenumber

l there is evidence of a NDL as well, but the linear Rossby dispersion relation always

appears at low l.

We examine lω-spectra as well as kω-spectra. Investigations in lω-space of runs

that exhibit a NDC show that the NDC is strongest at low zonal wavenumber k,

unlike the NDL which dominates at higher k. This is consistent with the premise

that the NDC corresponds to meandering (i.e. non-zonal) jets. When jets are very

strong (nearly purely zonal), lω-spectra indicate that the linear Rossby dispersion is

obeyed by a significant fraction of the energy, although sometimes there are significant

nonlinear effects as well, such as a perplexing sinusoidal curve in lω-spectra when

sliced at constant k.

Finally, we remark on the effects that forcing scale has on this system. In sim-

ulations without jets, the forcing scale appears to determine the size of the vortices
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(as measured by half-widths of the vorticity peaks). Because of this, the centroids,

kKE and kZ , of kinetic energy and enstrophy are greatly affected by the choice of

forcing scale. Furthermore, only when the forcing scale is smaller than the deforma-

tion radius, i.e. kF > kd, do we observe a NDC, and the larger the ratio kF/kd the

more prominent the NDC. It may be that the appearance of the NDC depends on

the formation of narrow jet barriers and that larger scale forcing more easily disrupts

such barriers.
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CHAPTER V

Conclusion

In this dissertation we developed spatio-temporal spectral transfer and flux diag-

nostics and applied them to simulations of two-dimensional and quasi-two-dimensional

fluids. We also conducted a comprehensive study of wavenumber-frequency spectra

over a wide range of parameter space for a quasi-two-dimensional system, specifically

the single-layer shallow-water quasi-geostrophic equation. In this final section of the

dissertation we discuss some limitations of the research presented here and proposed

topics for further investigation.

The theory of spatio-temporal spectral transfers presented in Chapter II is quite

general but still has limitations. One limitation is that everything (the data, the

time-frequency transform, the detrending) was assumed to be continuous rather than

discrete in time. The motivation for assuming temporal continuity is that the original

equation of motion involves a time derivative and the mathematical treatment of the

continuous case is much cleaner. However, realistic data is always discrete. There

are subtle, but important, differences between continuous and discrete time-frequency

methods, particularly in wavelet analysis. Rigorously deriving spatio-temporal spec-

tral transfers in the discrete case would be a clear next step for this research.

The model for isotropic sweeping used in Chapter II could also be improved upon.

This is not so much a criticism of the model used here as it is a acknowledgment
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that all models of sweeping, including our own, tend to be quite simplistic. In fact,

models of sweeping found in the literature (Heisenberg , 1948; Tennekes , 1975; Chen

and Kraichnan, 1989; Nelkin and Tabor , 1990; He and Zhang , 2006) are often even

more simplistic than ours, particularly in regards to the angle between the sweeping

velocity and the wavevector of interest. We have made some attempt to develop a

more rigorous model of sweeping, but the work is incomplete and was therefore left out

of this thesis. A more nuanced treatment of isotropic sweeping in turbulence would

be highly welcome, and we note that some progress has already been made (Kaneda,

1993; Kaneda et al., 1999; Cholemari and Arakeri , 2006; Dekker , 2011).

There is also a need for careful interpretation of the spatio-temporal spectral

transfer and flux diagnostics. In particular, one could easily be misled by the signifi-

cance of zero versus non-zero values of spectral energy transfers due to the nonlinear

advection term. A value of zero for nonlinear spectral energy transfer at any given

wavenumber-frequency mode (k, ω) provides no indication of whether nonlinear triad

interactions are active at (k, ω). This is because wavenumber-frequency triad interac-

tions obey local conservation laws, implying that in statistical equilibrium nonlinear

transfers should be zero outside of the forcing and dissipation ranges. In the idealized

cascade picture, spatial spectral transfers due to nonlinear advection are exactly zero

in the cascade range, even though that is precisely the range where nonlinearity plays

the dominant role.

One way to circumvent this issue is to note that the nonlinear advection term in

spectral space takes the form of a convolution sum. Each term in the sum can be

considered to be a separate term in the equation of motion, with a corresponding

spectral transfer. Alternatively, the full convolution sum can be separated into a few

physically motivated parts. For instance, focusing on the transfer at wavevector k, the

sum can be split into three parts: transfers into k from larger wavenumbers, transfers

into k from smaller wavenumbers, and transfers into k from similar wavenumbers. In
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the inertial range, while the sum of all three terms would be zero, the individual terms

would be non-zero indicating the direction of the cascade. A similar decomposition

could take into account frequency triads. Separating the nonlinear spectral transfer

into different components as just described would make it more useful as a measure

of the role of nonlinearity in moving energy around in wavenumber-frequency space

outside of the forcing and dissipation ranges.

Another issue is the effect that persistent vortices may have on the spatio-temporal

spectral transfers. In our simulations much of the energy and enstrophy resides within

vortices. Perhaps one could calculate the spectral transfers in spatial regions that

contain no vortices separately from regions of high vorticity while also calculating

the spectral transfers due to the resulting cross-terms. We felt that such an analysis

would have been too lengthy for the current presentation, and therefore leave it for

future work.

Suppose we were to attempt to calculate spectral transfers within vortices, within

the background, and between the two, as suggested in the preceding paragraph. Then,

a spatial or temporal wavelet analysis might be more appropriate than a Fourier

transform, which is spatially and temporally nonlocal. Because our simulations did

have strong vortices, for that reason alone a wavelet analysis may have been better.

A Fourier analysis was deemed much simpler as a first step, but future studies of

spatio-temporal spectral transfers in systems that have localized features (in space or

time) would surely benefit from moving beyond the Fourier transform.

The numerical results in Chapter III performed little investigation of locality ver-

sus nonlocality of spatio-temporal spectral triad interactions. In Chapter II we uti-

lized a simple sweeping model to predict the nonlocality of the temporal triads, but in

Chapter III we performed no direct investigation of the effect. It would be interesting

to quantify the non-locality of the temporal triad interactions analogous to similar

studies of spatial triad interactions (Kraichnan, 1971; Burgess and Shepherd , 2013).
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There is a long-running debate over whether the slope of frequency spectra can

be derived from Kolmogorov-like arguments, or whether isotropic sweeping causes

the slopes in the frequency domain to equal the slopes in the wavenumber domain.

Whether a Kolomorov-like argument can be made for frequency spectra depends on

whether the temporal spectral transfers are sufficiently local in the inertial range. One

might suppose that the simulations in Chapter III could address this issue, but there

is a significant obstacle: coherent structures greatly effect spatial spectral slopes, and

therefore Kraichnan’s spectral slope predications (−5/3 and −3) are not applicable.

There are plenty of examples in the two-dimensional turbulence literature (Chen et al.,

2003, 2006; Boffetta, 2007; Xiao et al., 2009; Boffetta and Musacchio, 2010) that

produce the predicted spectral slopes in the inertial ranges. What distinguishes those

simulations from our own is a (perhaps unphysical) choice of forcing that inhibits the

production of vortices. If we used such a forcing, which would permit the predicted

spatial cascades, in that case a study of the non-locality of temporal triad interactions

would be a noteworthy contribution to the cascade picture.

Another limitation of Chapters II and III is that we did not consider the effects

of a linear dispersion relation on the spectral transfers. Our simulations were for

homogeneous isotropic turbulence for which there is no dispersion relation and for

which the effects of “sweeping” provide the only relation between spatial and temporal

statistics, at least at small scales. In an energy or enstrophy spatio-temporal spectral

budget, the linear dispersion terms are only involved in the time-evolution (or more

accurately, τ -evolution) of the complex phase of the spatio-temporal Fourier modes.

That means that the linear dispersion relation terms do not take part in a transfer

of energy or enstrophy, rendering it unclear precisely what spectral transfers can say

about systems dominated by linear waves. Of course, if the nonlinear spectral transfer

convolution sum is decomposed into individual triad interactions, then certainly the

spectral transfers can say something about interactions among the various linear
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waves. Further investigation on this topic is needed.

The inclusion of a “planetary beta” term as in the β-plane approximation of a

geophysical fluid (e.g. Vallis , 2006) may provide an instructive example of a simple

case with a linear dispersion relation. Some work has already been done along these

lines, as Chen (2013); Chen et al. (2015) made use of an independently derived spatio-

temporal flux to diagnose the effects of striations in barotropic quasi-geostrophic tur-

bulence. We also studied this system in Chapter IV, but we emphasized spectra over

spectral transfers, and in most cases the dispersion relation was not at all apparent

in the spectra (we mostly observed NDLs and NDCs).

Another limitation of Chapters II and III is that we only applied the diagnostic

to numerical simulations of a simple two-dimensional system. Ongoing and future

studies of more complicated systems (e.g. the ocean) will surely have to check for

effects of data limitations as well. However, such studies will typically not have

access to longer or higher resolution datasets for comparison. Our thorough study of

the robustness of the diagnostic for two-dimensional turbulence simulations may be

regarded as evidence that the diagnostic will be robust in other applications.

In Chapter IV we numerically investigated the single-layer shallow-water quasi-

geostrophic equation. We conducted a wide sweep of parameter space, varying the

deformation radius, the forcing scale, and planetary beta. We found a range of behav-

iors in physical space and discovered new features in wavenumber-frequency space.

One newly discovered phenomenon is the nonlinear dispersive curve that appears to

be a signature of meandering jets. Another discovery is a nondispersive line corre-

sponding to speeds slower than the long-wave Rossby speed when there are jets, in

contrast with the nondispersive line at the long-wave Rossby speed when there are

propagating vortices without jets. We also detect nonlinear sinusoidal features in

lω-spectra in simulations with very high planetary beta. While the observations of

spectral features are interesting in their own right, we would also like to be able to
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explain them. We conclude this thesis by suggesting some possible research directions

that may help to explain the observed spectra.

The existence of the NDL for small β (before the onset of jets) is likely due to

westward propagating vortices. There is already much research on the existence of

such vortices for various values of kd and β. In the absence of forcing and dissi-

pation, there exist fully nonlinear, steady state or uniformly propagating, localized

solutions called modons, Rossby vortices, or Rossby solitons. Modons were first pro-

posed by Stern (1975) for the case kd = 0. Larichev and Reznik (1976) considered the

case kd 6= 0, and McWilliams and Flierl (1979); Flierl et al. (1980) considered a two-

layer model. Many subsequent studies have made refinements, looked at instability

properties, and studied the effects of various background flow regimes (Antipov et al.,

1983; Flierl , 1987, 1988; Chassignet and Cushman-Roisin, 1991; Nycander and Su-

tyrin, 1992; Smith, 1997; Kizner et al., 2003; van Leeuwen, 2007). In theory westward

propagating modons have a north-south anti-symmetry. However, westward propa-

gating coherent vortices observed in simulations or the ocean are typically nearly

radially symmetric. A recent study (Reznik , 2010) considers this issue and looks at

the dynamics of westward propagating non-stationary monopoles.

In theory, Rossby solitons travel faster than the long wave Rossby speed, but

our simulations show a NDL at the long wave Rossby speed. According to Reznik

(2010), sufficiently strong and large (Lvortex > Ld) monopoles radiate Rossby waves,

thus slowing the vortex until its propagation speed reaches the long wave Rossby

speed −βL2
d. At that speed wave radiation is greatly diminished, and the so-called

self-binding effect (Horton, 1989) kicks in, which greatly increases the lifetime of

the vortex. Thus, the NDL that we observe in experiments without jets can be

explained by slowly decaying westward propagating monopoles traveling at the long

wave Rossby speed.

An explanation of the NDL for large beta simulations, dominated by meandering
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jets, is more difficult. The NDLs in large beta simulations correspond to propagation

speeds slower than the long wave (l = 0) Rossby speed. It is likely not a coincidence

that the propagation speed is near the long wave (l = ljet) Rossby speed, where

ljet is the meridional wavenumber of the dominant mode. A time series of vorticity

snapshots shows that the jets translate nearly uniformly westward. That is different

from saying that the jets have westward flows, which they of course do. The NDL

indicates nearly uniform westward propagation of the structure of the meandering

jets, not the direction of the flow within the jets.

We are not aware of any theory for uniform westward propagation of jets. Possibly,

such a theory could be derived by modifying the theory for westward propagating

modons. One would replace the requirement that the velocity decays to zero at infinity

with a requirement of spatial periodicity (perhaps only along the zonal direction).

While this may sound simple, it may actually be impossible to find analytical solutions

for such a setup. Modons only admit exact solutions for circular geometries and

simple relations between stream function and potential vorticity. The geometry of

meandering jets is necessarily more complicated.

Explanations of the NDC for large beta (simulations with meandering jets) and

for the sinusoidal features seen in lω-space for very large beta (strong zonal jets) also

await theoretical explanations. Perhaps these phenomena can be explained in terms

of solitary waves, which take into account some degree of nonlinearity. Most theories

of solitary Rossby waves assume that the background flow is zonally uniform, likely a

poor assumption in the case of the NDC which appears to correspond to meandering

jets. Hodyss and Nathan (2002) considered the case of solitary Rossby waves in a

zonally varying background, possibly relevant to the NDC. Another possible avenue

for explaining the large-beta NDCs is stochastic structural stability theory using

second-order cumulant expansions as in Srinivasan and Young (2012); Constantinou

et al. (2014); Bakas and Ioannou (2014). Such theories are capable of predicting the
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emergence of non-zonal structures. Perhaps the form of the NDC could be predicted

in terms of modulational instability, as studied recently in Connaughton et al. (2010).

Finally, McIntyre (2008) looked at the interaction of Rossby waves and jets, which

might be relevant to the formation of the NDC or the sinusoidal lω-spectra.

As can be seen, there are a variety of theoretical approaches that could be tried.

Different approaches might be needed for different cases (meandering jets versus

strong nearly zonal jets). Any successful approach could be generalized to a two-

layer model, making it more oceanographically relevant.
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APPENDIX A

Simulation parameters for Chapter IV
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γRh := γ′Rh :=
kd kF β Urms kPE kRh kRh/kd kRh/kPE k′Rh k′Rh/kd k′Rh/kPE

6 6 0 0.27 4.4 0.0 0.0 0.0 6.0i 1.0i 1.4i
6 6 0.1 0.27 4.4 0.4 0.1 0.1 6.0i 1.0i 1.4i
6 6 1 0.28 4.2 1.3 0.2 0.3 5.8i 1.0i 1.4i
6 6 10 0.25 4.2 4.5 0.7 1.1 4.0i 0.7i 0.9i
6 6 100 1.60 4.6 5.6 0.9 1.2 2.2i 0.4i 0.5i
6 6 1000 1.96 5.7 16.0 2.7 2.8 14.8 2.5 2.6
6 15 0 0.23 5.2 0.0 0.0 0.0 6.0i 1.0i 1.2i
6 15 0.1 0.27 4.8 0.4 0.1 0.1 6.0i 1.0i 1.3i
6 15 1 0.22 5.0 1.5 0.2 0.3 5.8i 1.0i 1.2i
6 15 10 0.26 4.2 4.4 0.7 1.1 4.1i 0.7i 1.0i
6 15 100 1.05 5.6 6.9 1.2 1.2 3.4 0.6 0.6
6 15 1000 0.70 9.2 26.8 4.5 2.9 26.1 4.3 2.8
6 30 0 0.19 5.3 0.0 0.0 0.0 6.0i 1.0i 1.1i
6 30 0.1 0.19 5.6 0.5 0.1 0.1 6.0i 1.0i 1.1i
6 30 1 0.16 5.1 1.8 0.3 0.3 5.7i 1.0i 1.1i
6 30 10 0.22 4.5 4.8 0.8 1.1 3.6i 0.6i 0.8i
6 30 100 0.91 6.4 7.4 1.2 1.2 4.4 0.7 0.7
6 30 1000 0.57 9.3 29.7 4.9 3.2 29.1 4.8 3.1
6 90 0 0.10 5.8 0.0 0.0 0.0 6.0i 1.0i 1.0i
6 90 0.1 0.10 6.1 0.7 0.1 0.1 6.0i 1.0i 1.0i
6 90 1 0.07 5.0 2.7 0.5 0.5 5.3i 0.9i 1.1i
6 90 10 0.17 4.5 5.5 0.9 1.2 2.5i 0.4i 0.6i
6 90 100 0.43 6.3 10.8 1.8 1.7 9.0 1.5 1.4
6 90 1000 0.38 10.7 36.5 6.1 3.4 36.0 6.0 3.4

Table A.1: Dimensional and nondimensional parameters for Chapter IV simulations
with kd = 6. Asterisks on kPE values indicate runs that have not reached statistical
equilibrium. The modified Rhines wavenumber k′Rh and the resulting nondimensional
parameters can be purely imaginary, indicated with i =

√
−1.
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γRh := γ′Rh :=
kd kF β Urms kPE kRh kRh/kd kRh/kPE k′Rh k′Rh/kd k′Rh/kPE

15 15 0 0.20 4.5 0.0 0.0 0.0 15.0i 1.0i 3.3i
15 15 0.1 0.19 5.1 0.5 0.0 0.1 15.0i 1.0i 3.0i
15 15 1 0.19 4.7 1.6 0.1 0.3 14.9i 1.0i 3.2i
15 15 10 0.16 4.9 5.7 0.4 1.2 13.9i 0.9i 2.8i
15 15 100 0.30 5.4 13.0 0.9 2.4 7.5i 0.5i 1.4i
15 15 1000 0.63 8.1 28.2 1.9 3.5 23.8 1.6 3.0
15 30 0 0.16 4.8 0.0 0.0 0.0 15.0i 1.0i 3.1i
15 30 0.1 0.17 4.8 0.5 0.0 0.1 15.0i 1.0i 3.1i
15 30 1 0.16 5.0 1.8 0.1 0.4 14.9i 1.0i 3.0i
15 30 10 0.13 4.6 6.1 0.4 1.3 13.7i 0.9i 3.0i
15 30 100 0.32 6.0 12.6 0.8 2.1 8.2i 0.5i 1.4i
15 30 1000 0.47 11.3 32.6 2.2 2.9 29.0 1.9 2.6
15 90 0 0.08 4.8 0.0 0.0 0.0 15.0i 1.0i 3.1i
15 90 0.1 0.08 4.7 0.8 0.1 0.2 15.0i 1.0i 3.2i
15 90 1 0.07 4.8 2.6 0.2 0.5 14.8i 1.0i 3.1i
15 90 10 0.08 4.6 8.0 0.5 1.8 12.7i 0.8i 2.8i
15 90 100 0.30 5.7 12.9 0.9 2.3 7.7i 0.5i 1.4i
15 90 1000 0.39 15.0 36.0 2.4 2.4 32.8 2.2 2.2

Table A.2: As in table A.1 but with kd = 15.

γRh := γ′Rh :=
kd kF β Urms kPE kRh kRh/kd kRh/kPE k′Rh k′Rh/kd k′Rh/kPE

30 30 0 0.12 5.0 0.0 0.0 0.0 30.0i 1.0i 6.0i
30 30 0.1 0.12 5.0 0.6 0.0 0.1 30.0i 1.0i 6.0i
30 30 1 0.12 5.0 2.0 0.1 0.4 29.9i 1.0i 6.0i
30 30 10 0.12 4.9 6.6 0.2 1.4 29.3i 1.0i 6.0i
30 30 100 1.35 4.3 6.1 0.2 1.4 29.4i 1.0i 6.9i
30 30 1000 0.50 7.7 31.6 1.1 4.1 10.0 0.3 1.3
30 90 0 0.07 4.7 0.0 0.0 0.0 30.0i 1.0i 6.4i
30 90 0.1 0.07 5.3 0.8 0.0 0.2 30.0i 1.0i 5.6i
30 90 1 0.07 5.1 2.7 0.1 0.5 29.9i 1.0i 5.9i
30 90 10 0.07 5.2 8.4 0.3 1.6 28.8i 1.0i 5.5i
30 90 100 0.12 5.0 20.3 0.7 4.0 22.1i 0.7i 4.4i
30 90 1000 0.40 23.7 35.4 1.2 1.5 18.7 0.6 0.8

Table A.3: As in table A.1 but with kd = 30.

122



BIBLIOGRAPHY

123



BIBLIOGRAPHY

Antipov, S. V., M. V. Nezlin, V. K. Rodionov, E. N. Snezhkin, and A. S. Trub-
nikov (1983), Rossby solitons - stability, collisions, asymmetry and generation by
flows with a velocity shear, Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 84 (4),
1357–1372.

Arbic, B. K., and G. R. Flierl (2003), Coherent vortices and kinetic energy ribbons
in asymptotic, quasi two-dimensional f-plane turbulence, Physics of Fluids, 15 (8),
2177–2189, doi:http://dx.doi.org/10.1063/1.1582183.

Arbic, B. K., R. B. Scott, G. R. Flierl, A. J. Morten, J. G. Richman, and J. F.
Shriver (2012), Nonlinear cascades of surface oceanic geostrophic kinetic energy in
the frequency domain, J. of Phys. Oceanogr., 42 (9), 1577–1600, doi:10.1175/jpo-
d-11-0151.1.

Arbic, B. K., M. Mueller, J. G. Richman, J. F. Shriver, A. J. Morten, R. B.
Scott, G. Serazin, and T. Penduff (2014), Geostrophic Turbulence in the
Frequency-Wavenumber Domain: Eddy-Driven Low-Frequency Variability, J.
Phys. Oceanogr., 44 (8), 2050–2069, doi:10.1175/JPO-D-13-054.1.

Babiano, A., and T. Dubos (2005), On the contribution of coherent vortices to the
two-dimensional inverse energy cascade, Journal of Fluid Mechanics, 529, 97–116,
doi:10.1017/S0022112004003271.

Bahraminasab, A., M. D. Niry, J. Davoudi, M. Reza Rahimi Tabar, A. A. Masoudi,
and K. R. Sreenivasan (2008), Taylor’s frozen-flow hypothesis in burgers turbulence,
Phys. Rev. E, 77, 065,302, doi:10.1103/PhysRevE.77.065302.

Bakas, N. A., and P. J. Ioannou (2014), A theory for the emergence of coherent
structures in beta-plane turbulence, Journal of Fluid Mechanics, 740, 312–341,
doi:10.1017/jfm.2013.663.

Batchelor, G. K. (1969), Computation of the energy spectrum in homogeneous two-
dimensional turbulence, Phys. Fluids, 12, 233–239, doi:10.1063/1.1692443.

Berloff, P., and I. Kamenkovich (2013a), On spectral analysis of mesoscale eddies.
part i: linear analysis, J. Phys. Oceanogr., 43 (12), 2505–2527, doi:10.1175/JPO-
D-12-0232.1.

124



Berloff, P., and I. Kamenkovich (2013b), On spectral analysis of mesoscale eddies. part
ii: nonlinear analysis, J. Phys. Oceanogr., 43 (12), 2528–2544, doi:10.1175/JPO-D-
12-0233.1.

Boffetta, G. (2007), Energy and enstrophy fluxes in the double cas-
cade of two-dimensional turbulence, J. Fluid Mech., 589, 253–260, doi:
10.1017/S0022112007008014.

Boffetta, G., and R. E. Ecke (2012), Two-dimensional turbulence, in Annu. Rev. Fluid
Mech. Vol. 44, Annu. Rev. Fluid Mech., vol. 44, edited by Davis, S. H. and Moin,
P., pp. 427–451, Annual Reviews, doi:10.1146/annurev-fluid-120710-101240.

Boffetta, G., and S. Musacchio (2010), Evidence for the double cascade
scenario in two-dimensional turbulence, Phys. Rev. E, 82 (1, 2), doi:
10.1103/PhysRevE.82.016307.

Bos, W. J. T., and J.-P. Bertoglio (2009), Large-scale bottleneck ef-
fect in two-dimensional turbulence, J. of Turbul., 10 (30), 1–8, doi:
10.1080/14685240903273873.

Buckwar, E., and R. Winkler (2006), Multistep methods for sdes and their application
to problems with small noise, SIAM Journal on Numerical Analysis, 44 (2), 779–
803.

Buckwar, E., and R. Winkler (2007), Improved linear multi-step methods for stochas-
tic ordinary differential equations, Journal of Computational and Applied Mathe-
matics, 205 (2), 912–922.

Burgess, B. H., and T. G. Shepherd (2013), Spectral non-locality, absolute equilibria
and Kraichnan-Leith-Batchelor phenomenology in two-dimensional turbulent en-
ergy cascades, Journal of Fluid Mechanics, 725, 332–371, doi:10.1017/jfm.2013.192.

Cadot, O., J. Hugues Titon, and D. Bonn (2003), Experimental observation
of resonances in modulated turbulence, J. Fluid Mech., 485, 161–170, doi:
10.1017/S0022112003004592.

Canuto, C., M. Y. Hussaini, A. Quarteroni, and T. A. Zang (2007a), Spectral Meth-
ods: Fundamentals in Single Domains, Scientific Computation, Springer Berlin
Heidelberg.

Canuto, C., M. Y. Hussaini, A. Quarteroni, and T. A. Zang (2007b), Spectral Methods:
Evolution to Complex Geometries and Applications to Fluid Dynamics, Scientific
Computation, Springer Berlin Heidelberg.

Chassignet, E. P., and B. Cushman-Roisin (1991), On the influence of a lower layer
on the propagation of nonlinear oceanic eddies, J. Phys. Oceanogr., 21 (7), 939–957,
doi:10.1175/1520-0485(1991)021〈0939:OTIOAL〉2.0.CO;2.

125



Chelton, D. B., R. A. DeSzoeke, M. G. Schlax, K. El Naggar, and N. Si-
wertz (1998), Geographical variability of the first baroclinic Rossby ra-
dius of deformation, J. Phys. Oceanogr., 28 (3), 433–460, doi:10.1175/1520-
0485(1998)028〈0433:GVOTFB〉2.0.CO;2.

Chen, R. (2013), Energy pathways and structures of oceanic eddies from the ECCO2
state estimate and simplified models, Ph.D. thesis, Massachusetts Institute of Tech-
nology, (chapter 5).

Chen, R., G. R. Flierl, and C. Wunsch (2015), Quantifying and Interpreting Striations
in a Subtropical Gyre: A Spectral Perspective, J. Phys. Oceanogr., 45 (2), 387–406,
doi:10.1175/JPO-D-14-0038.1.

Chen, S. Y., and R. H. Kraichnan (1989), Sweeping decorrelation in isotropic turbu-
lence, Phys. Fluids A-Fluid, 1 (12), 2019–2024, doi:10.1063/1.857475.

Chen, S. Y., R. E. Ecke, G. L. Eyink, X. Wang, and Z. L. Xiao (2003), Physical
mechanism of the two-dimensional enstrophy cascade, Phys. Rev. Lett., 91, doi:
10.1103/physrevlett.91.214501.

Chen, S. Y., R. E. Ecke, G. L. Eyink, M. Rivera, M. P. Wan, and Z. L. Xiao (2006),
Physical mechanism of the two-dimensional inverse energy cascade, Phys. Rev.
Lett., 96 (8), doi:10.1103/physrevlett.96.084502.

Chiu, W. (1970), On the spectral equations and the statistical energy spectrum
of atmospheric motions in the frequency domain, Tellus, 22 (6), 608–619, doi:
10.1111/j.2153-3490.1970.tb00529.x.

Cholemari, M. R., and J. H. Arakeri (2006), A model relating Eulerian spatial
and temporal velocity correlations, Journal of Fluid Mechanics, 551, 19–29, doi:
10.1017/S0022112005008074.

Cohen, L. (1995), Time-frequency analysis, Prentice Hall Signal Processing Series, 1
ed., Prentice Hall PTR.

Connaughton, C. P., B. T. Nadiga, S. V. Nazarenko, and B. E. Quinn (2010), Modu-
lational instability of Rossby and drift waves and generation of zonal jets, Journal
of Fluid Mechanics, 654, 207–231, doi:10.1017/S0022112010000510.

Constantinou, N. C., B. F. Farrell, and P. J. Ioannou (2014), Emergence and equilibra-
tion of jets in beta-plane turbulence: Applications of stochastic structural stability
theory, Journal of the Atmospheric Sciences, 71 (5), 1818–1842, doi:10.1175/JAS-
D-13-076.1.

Danilov, S., and V. M. Gryanik (2004), Barotropic beta-plane turbulence in a regime
with strong zonal jets revisited, Journal of the Atmospheric Sciences, 61 (18), 2283–
2295, doi:10.1175/1520-0469(2004)061〈2283:BBTIAR〉2.0.CO;2.

126



Danilov, S., and D. Gurarie (2001), Forced two-dimensional turbulence in spectral
and physical space, Physical Review E, 63 (6, 1), doi:10.1103/PhysRevE.63.061208.

Danilov, S., and D. Gurarie (2004), Scaling, spectra and zonal jets in beta-plane
turbulence, Physics of Fluids, 16 (7), 2592–2603, doi:10.1063/1.1752928.

Dekker, H. (2011), Turbulence: Large-scale sweeping and the emergence
of small-scale Kolmogorov spectra, Physical Review E, 84 (2, 2), doi:
10.1103/PhysRevE.84.026302.

Del Alamo, J. C., and J. Jimenez (2009), Estimation of turbulent convection velocities
and corrections to Taylor’s approximation, Journal of Fluid Mechanics, 640, 5–26,
doi:10.1017/S0022112009991029.

Donner, L. J., et al. (2011), The Dynamical Core, Physical Parameterizations,
and Basic Simulation Characteristics of the Atmospheric Component AM3 of the
GFDL Global Coupled Model CM3, Journal of Climate, 24 (13), 3484–3519, doi:
10.1175/2011JCLI3955.1.

Dosio, A., J. V. G. De Arellano, A. A. M. Holtslag, and P. J. H. Builtjes (2005),
Relating Eulerian and Lagrangian statistics for the turbulent dispersion in the at-
mospheric convective boundary layer, Journal of the Atmospheric Sciences , 62 (4),
1175–1191, doi:10.1175/JAS3393.1.

Dritschel, D. G., R. K. Scott, C. Macaskill, G. A. Gottwald, and C. V. Tran (2009),
Late time evolution of unforced inviscid two-dimensional turbulence, Journal of
Fluid Mechanics, 640, 215–233, doi:10.1017/S0022112009991121.

Early, J. J., R. M. Samelson, and D. B. Chelton (2011), The evolution and prop-
agation of quasigeostrophic ocean eddies, J. Phys. Oceanogr., 41 (8), 1535–1555,
doi:10.1175/2011JPO4601.1.

Eden, C. (2007), Eddy length scales in the North Atlantic Ocean, Journal of Geo-
physical Research-Oceans, 112 (C6), doi:10.1029/2006JC003901.

Effinger, H., and S. Grossmann (1987), Static structure-function of turbulent-flow
from the Navier-Stokes equations, Z. Phys. B Con. Mat., 66 (3), 289–304, doi:
10.1007/bf01305419.

Elipot, S., and S. T. Gille (2009), Estimates of wind energy input to the Ekman layer
in the Southern Ocean from surface drifter data, Journal of Geophysical Research-
Oceans, 114, doi:10.1029/2008JC005170.

Eyink, G. L. (2006a), A turbulent constitutive law for the two-dimensional inverse
energy cascade, J. Fluid Mech., 549, 191–214, doi:10.1017/S0022112005007883.

Eyink, G. L. (2006b), Multi-scale gradient expansion of the turbulent stress tensor,
J. Fluid Mech., 549, 159–190, doi:10.1017/S0022112005007895.

127



Flierl, G. R. (1987), Isolated eddy models in geophysics, Annual Review of Fluid
Mechanics, 19, 493–530, doi:10.1146/annurev.fluid.19.1.493.

Flierl, G. R. (1988), On the instability of geostrophic vortices, Journal of Fluid Me-
chanics, 197, 349–388, doi:10.1017/S0022112088003283.

Flierl, G. R., V. D. Larichev, J. C. McWilliams, and G. M. Reznik (1980), The
dynamics of baroclinic and barotropic solitary eddies, Dynamics of Atmospheres
and Oceans, 5 (1), 1–41, doi:10.1016/0377-0265(80)90009-3.

Frisch, U. (1995), Turbulence: the legacy of A. N. Kolmogorov, Cambridge University
Press.

Frisch, U., S. Kurien, R. Pandit, W. Pauls, S. S. Ray, A. Wirth, and J.-Z. Zhu
(2008), Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence, Phys.
Rev. Lett., 101 (14), 144501, doi:10.1103/PhysRevLett.101.144501.

Galperin, B., S. Sukoriansky, and N. Dikovskaya (2010), Geophysical flows with
anisotropic turbulence and dispersive waves: flows with a beta-effect, Ocean Dy-
namics, 60 (2, SI), 427–441, doi:10.1007/s10236-010-0278-2, 1st International Work-
shop on Modeling the Ocean, Natl Taiwan Normal Univ, Taipei, Taiwan, Feb 23-26,
2009.

He, G. W., and J. B. Zhang (2006), Elliptic model for space-time correlations in tur-
bulent shear flows, Physical Review E, 73 (5, 2), doi:10.1103/PhysRevE.73.055303.

Heisenberg, W. (1948), Zur statistischen theorie der turbulenz, Z. Phys., 124 (7-12),
628–657, doi:10.1007/BF01668899.

Hill, R. J. (1996), Corrections to Taylor’s frozen turbulence approximation, Atmo-
spheric Research , 40 (2-4), 153–175, doi:10.1016/0169-8095(95)00032-1.

Hlawatsch, F., and F. Auger (2008), Time-frequency analysis: concepts and methods,
Digital signal and image processing series, ISTE.

Hodyss, D., and T. R. Nathan (2002), Solitary Rossby waves in zonally varying
jet flows, Geophysical and Astrophysical Fluid Dynamics, 96 (3), 239–262, doi:
10.1080/03091920290011012.

Hogg, A. M., W. K. Dewar, P. D. Killworth, and J. R. Blundell (2003), A quasi-
geostrophic coupled model (Q-GCM), Monthly Weather Review, 131 (10), 2261–
2278, doi:10.1175/1520-0493(2003)131〈2261:AQCMQ〉2.0.CO;2.

Hooghoudt, J. O., D. Lohse, and F. Toschi (2001), Decaying and kicked turbulence
in a shell model, Phys. Fluids, 13 (7), 2013–2018, doi:10.1063/1.1375146.

Horton, W. (1989), Drift wave vortices and anomalous transport, Pysics of Fluids B
– Plasma Pysics, 1 (3), 524–537, doi:10.1063/1.859168.

128



Iwayama, T., T. G. Shepherd, and T. Watanabe (2002), An ‘ideal’ form of decay-
ing two-dimensional turbulence, Journal of Fluid Mechanics, 456, 183–198, doi:
10.1017/S0022112001007509.

Kaneda, Y. (1993), Lagrangian and Eulerian time correlations in turbulence, Physics
of Fluids A-Fluid Dynamics, 5 (11), 2835–2845, doi:10.1063/1.858747.

Kaneda, Y., T. Ishihara, and K. Gotoh (1999), Taylor expansions in powers of time
of Lagrangian and Eulerian two-point two-time velocity correlations in turbulence,
Physics of Fluids, 11 (8), 2154–2166, doi:10.1063/1.870077.

Kellay, H., and W. I. Goldburg (2002), Two-dimensional turbulence: a review of
some recent experiments, Rep. Prog. Phys., 65 (5), 845–894, doi:10.1088/0034-
4885/65/5/204.

Kizner, Z., D. Berson, G. Reznik, and G. Sutyrin (2003), The theory of the beta-plane
baroclinic topographic modons, Geophysical and Astrophysical Fluid Dynamics,
97 (3), 175–211, doi:10.1080/0309192031000108706.

Kolmogorov, A. N. (1941a), The local structure of turbulence in incompressible vis-
cous fluid for very large Reynolds’ numbers, Dokl. Akad. Nauk SSSR, 30, 301–305.

Kolmogorov, A. N. (1941b), Dissipation of energy in locally isotropic turbulence,
Dokl. Akad. Nauk SSSR, 32, 16.

Kraichnan, R. H. (1967), Inertial ranges in two-dimensional turbulence, Phys. Fluids,
10, 1417–1423, doi:10.1063/1.1762301.

Kraichnan, R. H. (1971), Inertial-range transfer in 2-dimensional and 3-dimensional
turbulence, J. Fluid Mech., 47, 525–535, doi:10.1017/s0022112071001216.

Kraichnan, R. H., and D. Montgomery (1980), Two-dimensional turbulence, Rep.
Prog. Phys., 43 (5), 547–619, doi:10.1088/0034-4885/43/5/001.

Kuczaj, A. K., B. J. Geurts, and D. Lohse (2006), Response maxima in time-
modulated turbulence: direct numerical simulations, Europhys. Lett., 73 (6), 851.

Kuczaj, A. K., B. J. Geurts, D. Lohse, and W. van de Water (2008), Turbulence
modification by periodically modulated scale-dependent forcing, Comput. Fluids,
37 (7), 816–824, doi:10.1016/j.compfluid.2007.01.012.

Kukharkin, N., and S. A. Orszag (1996), Generation and structure of Rossby vortices
in rotating fluids, Physical Review E, 54 (5), R4524–R4527.

Kukharkin, N., S. A. Orszag, and V. Yakhot (1995), Auasicrystallization of vor-
tices in drift-wave turbulence, Physical Review Letters, 75 (13), 2486–2489, doi:
10.1103/PhysRevLett.75.2486.

129



Lamorgese, A. G., D. A. Caughey, and S. B. Pope (2005), Direct numerical simulation
of homogeneous turbulence with hyperviscosity, Phys. Fluids, 17 (1), 015,106, doi:
10.1063/1.1833415.

Larichev, V. D., and J. C. McWilliams (1991), Weakly decaying turbulence in an
equivalent-barotropic fluid, Physics of Fluids A-Fluid Dynamics, 3 (5, 1), 938–950,
doi:10.1063/1.857970.

Larichev, V. D., and G. M. Reznik (1976), 2-Dimensional solitary Rossby waves,
Doklady Akademii Nauk Sssr, 231 (5), 1077–1079.

Leith, C. E. (1968), Diffusion approximation for 2-dimensional turbulence, Phys.
Fluids, 11 (3), 671–672, doi:10.1063/1.1691968.

Lilly, D. K. (1969), Numerical simulation of two-dimensional turbulence, Phys. Fluids
Suppl., 12, 240–249.

Lohse, D. (2000), Periodically kicked turbulence, Phys. Rev. E, 62, 4946–4949, doi:
10.1103/physreve.62.4946.

Lumley, J. L. (1965), Interpretation of time spectra measured in high-intensity shear
flows, Physics Of Fluids, 8 (6), 1056, doi:10.1063/1.1761355.

Maltrud, M. E., and G. K. Vallis (1991), Energy-spectra and coherent structures
in forced 2-dimensional and beta-plane turbulence, J. Fluid Mech., 228, 321–342,
doi:10.1017/s0022112091002720.

Mandec, G. (2008), Nemo ocean engine, Note du Pole de modelisation, 27, doi:
http://dx.doi.org/10.1063/1.1582183.

McIntyre, M. E. (2008), Potential-vorticity inversion and the wave-turbulence jigsaw:
some recent clarifications, Advances in Geosciences, 15, 47–56, doi:10.5194/adgeo-
15-47-2008.

McWilliams, J. C., and G. R. Flierl (1979), On the evolution of iso-
lated, nonlinear vortices, J. Phys. Oceanogr., 9, 1155–1182, doi:10.1175/1520-
0485(1979)009〈1155:OTEOIN〉2.0.CO;2.

Moin, P. (2009), Revisiting Taylor’s hypothesis, Journal of Fluid Mechanics , 640,
1–4, doi:10.1017/S0022112009992126.

Müller, M., B. K. Arbic, J. G. Richman, J. F. Shriver, E. L. Kunze, R. B. Scott,
A. J. Wallcraft, and L. Zamudio (2015), Toward an internal gravity wave spec-
trum in global ocean models, Geophysical Research Letters, 42 (9), 3474–3481, doi:
10.1002/2015GL063365.

Nelkin, M., and M. Tabor (1990), Time correlations and random sweeping in isotropic
turbulence, Phys. Fluids, 2 (1), 81–83, doi:10.1063/1.857684.

130



Newton, I. (1687), Philosophiæ Naturalis Principia Mathematica, Jussu Societatis
Regiæ ac Typis Joseph Streater.

Nycander, J., and G. G. Sutyrin (1992), Steadily translating anticyclones on the beta-
plane, Dynamics of Atmospheres and Oceans, 16 (6), 473–498, doi:10.1016/0377-
0265(92)90002-B.

Obukhov, A. M. (1941a), On the distribution of energy in the spectrum of turbulent
flow, Dokl. Akad. Nauk SSSR, 32, 22–24.

Obukhov, A. M. (1941b), Spectral energy distribution in a turbulent flow, Izv. Akad.
Nauk SSSR, 5, 453–466.

Okuno, A., and A. Masuda (2003), Effect of horizontal divergence on the geostrophic
turbulence on a beta-plane: Suppression of the rhines effect, Physics of Fluids,
15 (1), 56–65, doi:http://dx.doi.org/10.1063/1.1524188.

Onsager, L. (1945), The distribution of energy in turbulence, Phys. Rev., 68 (11-1),
286.

Penny, A. B., A. P. Showman, and D. S. Choi (2010), Suppression of the Rhines effect
and the location of vortices on Saturn, Journal of Geophysical Research-Planets,
115, doi:10.1029/2009JE003384.

Reznik, G. M. (2010), Dynamics of localized vortices on the beta plane, Izvestiya At-
mospheric and Oceanic Physics, 46 (6), 784–797, doi:10.1134/S0001433810060095.

Rhines, P. B. (1975), Waves and turbulence on a beta-plane, Journal of Fluid Me-
chanics, 69 (June 10), 417–443, doi:10.1017/S0022112075001504.

Scott, R. K., and D. G. Dritschel (2013), Halting scale and energy equilibration
in two-dimensional quasigeostrophic turbulence, Journal of Fluid Mechanics, 721,
doi:10.1017/jfm.2013.120.

Scott, R. K., and L. M. Polvani (2007), Forced-dissipative shallow-water turbulence
on the sphere and the atmospheric circulation of the giant planets, Journal of The
Atmospheric Sciences, 64, doi:10.1175/JAS4003.1.

Sheng, J., and Y. Hayashi (1990a), Estimation of atmospheric energetics in the
frequency domain during the FGGE year, J Atmos Sci, 47 (10), 1255–1268, doi:
10.1175/1520-0469(1990)047〈1255:EOAEIT〉2.0.CO;2.

Sheng, J., and Y. Hayashi (1990b), Observed and simulated energy cycles in
the frequency domain, J Atmos Sci, 47 (10), 1243–1254, doi:10.1175/1520-
0469(1990)047〈1243:OASECI〉2.0.CO;2.

Smith, K. S. (2004), A local model for planetary atmospheres forced by small-
scale convection, Journal of the Atmospheric Sciences, 61 (12), 1420–1433, doi:
10.1175/1520-0469(2004)061〈1420:ALMFPA〉2.0.CO;2.

131



Smith, K. S., G. Boccaletti, C. C. Henning, I. Marinov, C. Y. Tam, I. M. Held, and
G. K. Vallis (2002), Turbulent diffusion in the geostrophic inverse cascade, Journal
of Fluid Mechanics, 469, 13–48, doi:10.1017/S0022112002001763.

Smith, S. G. L. (1997), The motion of a non-isolated vortex on the beta-plane, Journal
of Fluid Mechanics, 346, 149–179.

Srinivasan, K., and W. R. Young (2012), Zonostrophic instability, Journal of the
Atmospheric Sciences, 69 (5), 1633–1656, doi:10.1175/JAS-D-11-0200.1.

Stammer, D. (1997), Global characteristics of ocean variability estimated from
regional TOPEX/POSEIDON altimeter measurements, J. Phys. Oceanogr., 27,
1743–1769, doi:10.1175/1520-0485(1997)027〈1743:GCOOVE〉2.0.CO;2.

Stern, M. E. (1975), Minimal properties of planetary eddies, Journal of Marine Re-
search, 33 (1), 1–13.

Suhas, D. L., and J. Sukhatme (2015), Low frequency modulation of jets in quasi-
geostrophic turbulence, Physics of Fluids, 27 (1), doi:10.1063/1.4905710.

Sukoriansky, S., N. Dikovskaya, and B. Galperin (2007), On the arrest of inverse
energy cascade and the rhines scale, Journal of the Atmospheric Sciences, 64 (9),
3312–3327, doi:10.1175/JAS4013.1.

Sukoriansky, S., N. Dikovskaya, and B. Galperin (2008), Nonlinear waves
in zonostrophic turbulence, Physical Review Letters, 101 (17), doi:
10.1103/PhysRevLett.101.178501.

Tabeling, P. (2002), Two-dimensional turbulence: a physicist approach, Phys. Rep.,
362 (1), 1–62, doi:10.1016/S0370-1573(01)00064-3.

Taylor, G. I. (1938), The spectrum of turbulence, Proceedings of the Royal Society
of London. Series A - Mathematical and Physical Sciences, 164 (919), 476–490,
doi:10.1098/rspa.1938.0032.

Tennekes, H. (1975), Eulerian and lagrangian time microscales in isotropic turbulence,
J. Fluid Mech., 67, 561–567, doi:10.1017/s0022112075000468.

Theiss, J. (2006), A generalized Rhines effect and storms on Jupiter, Geophysical
Research Letters, 33 (8), doi:10.1029/2005GL025379.

Tran, C. V., and J. C. Bowman (2003), Energy budgets in Charney-Hasegawa-
Mima and surface quasigeostrophic turbulence, Physical Review E, 68 (3, 2), doi:
10.1103/PhysRevE.68.036304.

Tran, C. V., and D. G. Dritschel (2006), Impeded inverse energy transfer in the
Charney-Hasegawa-Mima model of quasi-geostrophic flows, Journal of Fluid Me-
chanics, 551, 435–443, doi:10.1017/S0022112005008384.

132



Vallis, G. K. (2006), Atmospheric and oceanic fluid dynamics, 745 pp., Cambridge
University Press, Cambridge, U.K., doi:10.2277/0521849691.

Vallis, G. K., and M. E. Maltrud (1993), Generation of mean flows and jets on
a beta-plane and over topography, J. Phys. Oceanogr., 23 (7), 1346–1362, doi:
10.1175/1520-0485(1993)023〈1346:GOMFAJ〉2.0.CO;2.

van Leeuwen, P. J. (2007), The propagation mechanism of a vortex on the beta plane,
J. Phys. Oceanogr., 37 (9), 2316–2330, doi:10.1175/JPO3107.1.

von der Heydt, A., S. Grossmann, and D. Lohse (2003), Response maxima in modu-
lated turbulence, Phys. Rev. E, 67 (4), 046,308, doi:10.1103/physreve.67.046308.

Wortham, C. (2013), A multi-dimensional spectral description of ocean variability
with applications, Ph.D. thesis, Massachusetts Institute of Technology.

Wortham, C., and C. Wunsch (2014), A multidimensional spectral description of
ocean variability, J. Phys. Oceanogr., 44 (3), 944–966, doi:10.1175/JPO-D-13-
0113.1.

Wunsch, C. (2009), The oceanic variability spectrum and transport trends,
Atmosphere-Ocean, 47 (4), 281–291, doi:10.3137/OC310.2009.

Wunsch, C. (2010), Toward a midlatitude ocean frequency-wavenumber spectral
density and trend determination, J. Phys. Oceanogr., 40 (10), 2264–2281, doi:
10.1175/2010JPO4376.1.

Wyngaard, J. C., and S. F. Clifford (1977), Taylors hypothesis and high-frequency
turbulence spectra , Journal of the Atmospheric Sciences , 34 (6), 922–929, doi:
10.1175/1520-0469(1977)034〈0922:THAHTS〉2.0.CO;2.

Xiao, Z., M. Wan, S. Chen, and G. L. Eyink (2009), Physical mechanism of the inverse
energy cascade of two-dimensional turbulence: a numerical investigation, J. Fluid
Mech., 619, 1–44, doi:10.1017/s0022112008004266.

Zhang, Y., and Y. D. Afanasyev (2014), Beta-plane turbulence: Experiments with
altimetry, Physics of Fluids, 26 (2), doi:10.1063/1.4864339.

133


