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ABSTRACT

Samarium Hexaboride: The First True 3D Topological Insulator?

by

Steven G. Wolgast

Chair: Çağlıyan Kurdak

The recent theoretical prediction of a topologically protected surface state in the

mixed-valent insulator SmB6 has motivated a series of charge transport studies, which

are presented here. It is first studied using a specialized configuration designed to

distinguish bulk-dominated conduction from surface-dominated conduction. As the

material is cooled below 4 K, it exhibits a crossover from thermally activated bulk

transport to metallic surface conduction with a fully insulating bulk. The robust-

ness and magnitude of the surface conductivity, as is manifest in the literature of

SmB6, is strong evidence for the topological insulator (TI) metallic surface states

predicted for this material. This resolves a decades-old puzzle surrounding the low-

temperature behavior of SmB6. Next, the magnetotransport properties of the surface

are investigated using a Corbino disk geometry, which can directly measure the con-

ductivity of individual surfaces. Both (011) and (001) crystal surfaces show a strong

negative magnetoresistance at all magnetic field angles, due primarily to changes in

the carrier density. The low mobility value accounts for the failure so far to ob-

serve Shubnikov–de Haas oscillations below 95 T. Small variations in the mobility

and temperature dependence suggest a suppression of Kondo scattering from native

xiv



oxide-layer magnetic moments. At low fields, a dynamical field-sweep-rate-dependent

hysteretic behavior is observed. It persists at the slowest sweep rates, and cannot

be explained by quantum interference corrections; it is more likely due to extrinsic

effects such as the magnetocaloric effect or glassy ordering of the native oxide mo-

ments. Pulsed magnetic field measurements up to 60 T at temperatures throughout

the crossover regime clearly distinguish the surface magnetoresistance from the bulk

magnetoresistance. The bulk magnetoresistance is due to a reduction in the bulk gap

with increasing magnetic field. Finally, small subsurface cracks formed in SmB6 via

systematic scratching or sanding results in a counter-intuitive increase in the electri-

cal conduction due to the unique surface-conducting property of TIs, strengthening

the building case for SmB6’s topological nature. This material is attractive as a TI

because its bulk is fully insulating at a readily achieved 2 K, but it presents a large

number of scientific mysteries and experimental challenges for future research.
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CHAPTER I

Introduction: Samarium Hexaboride

1.1 Overview: Samarium Hexaboride

Samarium hexaboride (SmB6) is a rare-earth material that serves as an archetype

mixed-valent compound. Its crystal structure is simple cubic (space group Pm3m

(O1
h)) with a lattice parameter of 4.133 Å (at 23 K) [1], in which an octahedral B

cage sits at the center of the unit cell, while a Sm ion sits at the corner of the unit

cell (Figure 1.1). It is typically manufactured via zone refining by means of sintering

or arc melting. Historically, this has been accomplished most successfully in an Al

flux, but there have been recent efforts to produce Al-free samples using floating-zone

refining techniques. (Direct reactions of samarium oxide (Sm2O3) and B produced

crystals of poor quality [2].) Flux-grown single crystal pieces are dark blue and tend

to be oblong along the zone-growth direction, up to a few millimeters in length. The

samples considered in the present study were produced in an Al flux, and often contain

Al inclusions, particularly extended along the growth direction. The samples exhibit

clear growth planes in the (001) and (011) directions. Single crystals of SmB6 have a

hardness on the order of 1300 kg/mm2 [3], largely due to the mechanical rigidity of

the B cages. SmB6 does not readily cleave along any particular crystal plane.

SmB6 is one member of a series of rare-earth hexaborides (e. g., LaB6, YbB6,

CeB6, NbB6, etc.), so many studies compare the mechanical properties and electronic
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Figure 1.1: The SmB6 unit cell, with octahedral B cages in the corners and a Sm ion
in the center.

structures of these materials. However, only SmB6 has a mixed-valence character

[4–6], due to the value of the lowest 4f ionization energy lying above the bottom edge

of its conduction band (5d). Indeed, these seem to be the basic necessary ingredients

for a homogeneous mixed-valent system [7], which is characterized not by an average

mixture of integer-valence ions in a crystalline or disordered configuration, but rather

by a truly intermediate valence for each ion. This requires that some of the f electrons

move to the conduction band, leaving the f states partially ionized (Sm3+). The

ground state might then be a mixture of 4f 5 and 4f 6 electron states that hybridize

with the 5d conduction states. Other examples of mixed-valent systems which have

been useful for comparisons to SmB6 include CePd3, TmSe, the α phase of Ce, and

the “gold” phase of SmS [8]. EuB6 also has a 2+ ionic configuration determined by

Hund’s rules, but it is not mixed-valent, since the lowest f ionization energy is more

than 1 eV below the conduction band. However, the loosely bound 4f electron in Ce

and 4f hole in Yb have energies close to the 5d conduction states, so compounds of

these rare-earth elements can, by this criterion, be mixed-valent.

2



1.2 A History of Transport (and Related) Studies

SmB6 has a rich history of rigorous study and scientific debate, due primarily

to its behavior as a mixed-valent material and its unusual transport characteristics.

One of the biggest debates revolved around the fundamental nature of the zero-

temperature ground state: Is the material a metal or an insulator? This question

was first addressed by transport studies in the early 1970’s, but theoretical models

to explain the data were very slow to arrive due to the complications arising from

strong correlation effects.

The first systematic transport study of SmB6 was conducted in 1969 by Menth,

Buehler, and Geballe [2]. They reported a transition from metallic behavior at room

temperature to semiconducting behavior at cryogenic temperatures. This is supported

in their observation of an exponential increase in resistivity as the temperature is

lowered, which is consistent with a model of thermally activated transport. Such a

behavior has a temperature dependence of

ρ = ρ0e
∆

kBT , (1.1)

where ρ is the resistivity, ∆ is the transport bandgap, kB is the Boltzmann constant,

and T is the temperature. This behavior in SmB6 allowed the researchers to posit

the existence of a bulk electron gap with energy 2.3 meV at low temperatures [2].

The second key measurement in their work was the magnetic susceptibility of

SmB6, which shows no evidence for magnetic ordering down to 0.35 K. This makes

SmB6 unique among the rare-earth hexaborides, and suggests that the Sm ions are

divalent with zero net magnetic moment. Menth et al. incorporated these experimen-

tal ideas together in the following way. As the temperature is raised from absolute

zero, some of the Sm2+ ions are thermally ionized from their 4f 6 environment to

Sm3+. There is a corresponding increase in both the carrier density and the magnetic

3



susceptibility, leading to an eventual crossover to metallic behavior at higher temper-

atures. In this case, one would expect to see a gradual shift in valence from Sm2+ to

Sm3+ as the temperature is raised.

The third key observation was that the very-low-temperature data for the resistiv-

ity (<3 K) and magnetic susceptibility (<10 K) did not agree with the semiconduc-

tor model. Instead, the researchers observed a plateau in the resistivity and inverse

magnetic susceptibility at the lowest temperatures. At the time, these plateaus were

dismissed as resulting from conductive in-gap states arising from rare-earth impurities

in the crystal; the data is even omitted from the published graphs, being mentioned

only in the text. Subsequent studies also observed the plateau [9–11]. However, a

surprise came a year later from Mössbauer spectroscopy [4, 5], which indicated that

the Sm valence was relatively flat over a large temperature range, in contrast to the

expectation from Menth et al.’s model of shifting valence. The general consensus

among researchers in the field over the next decade was that the plateau was a metal-

lic feature. (Nickerson et al. proposed a narrow in-gap band based on their Hall

resistivity data [9], but Kasuya points out that their 3-band model is erroneous due

to the omission of the anomalous Hall effect and the width of the 5d band [12].) Of

course, the resistivity rise itself must be explained. The possibility that the plateau

was a manifestation of a metallic mixed-valent ground state was suggested by some

[13]; in such a picture, intense f–d scattering could result in an increase in the resis-

tivity, in analogy with the Kondo effect. Indeed, the mechanism responsible for the

resistivity rise and plateau became a primary focus for subsequent researchers, and

is the main experimental motivation for the current work.

Theoretical models capable of explaining the experimental data in SmB6 and

other mixed-valent materials were difficult to produce because there was no good

way to treat strong-correlation effects from the f electrons. The earliest attempts

[7, 14, 15] posit a model in which an itinerant d band overlaps with the smallest f

4



ionization energy with a tiny dispersion. Specifically for rare-earth compounds, if the

5d band and 4f states hybridize with an interaction strength of ∆, one would expect

a dramatic peak in the density of states at the energy of the 4f states with a width

of ∆, and the Fermi energy EF would reside in this peak. Since some of the electrons

in the 4f states move to partially fill the 5d band, this scenario naturally leads to

the mixed-valent behavior of the material indicated by Mössbauer spectroscopy [4–6].

Indeed, this was the prevailing explanation for the pressure-induced transition in SmS

from the insulating “black” phase to the metallic “gold” phase. In the black phase,

the 4f ionization energies are below the 5d band, and EF lies between them at 0 K.

As pressure is applied, the 4f ionization energy shifts up into the conduction band,

resulting in partial filling of the 5d states and metallic behavior from the material.

In the mid-1970s, the prevailing notion was that the band structure of SmB6 was

analogous to the gold phase of SmS.

In 1979, a study of the resistivity and the Hall effect was performed by Allen,

Batlogg, and Wachter, in which the metallic interpretation of the plateau was chal-

lenged [16]. These authors measured the resistivity of single-crystal samples with a

residual resistivity ratio (RRR) of 104, larger than previously seen and large enough

to suggest to them the possibility that the resistivity rise could be signaling a gap.

One motivation for the gap scenario was their realization that the resistivity rise ob-

served at low temperatures in their samples was simply too large for scattering, with

a number of carriers equal to that implied by the valence. Specifically, the resistivity

exceeded, by roughly a factor of 104, the so-called “unitarity limit” [17], given by hav-

ing a scatterer in every unit cell, scattering with the maximum possible phase shift of

π/2 per channel. However, previously published Hall effect data [9] showed a complex

low-T behavior quite inconsistent with the freezing-out of carriers expected for a gap.

Noticing that these earlier Hall effect data were for samples with a very small RRR,

Allen et al. measured the Hall effect for their samples and found a much different
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result, that the large 104 resistivity rise was accompanied by a similar 104 increase

in the magnitude of the (negative) Hall coefficient RH, which saturated only at low

T when the resistivity also saturated. This was interpreted as clear evidence for a

gap intrinsic to the material. The plateau in resistivity and RH was then ascribed

to extrinsic impurity states in the gap, and previous studies [12] showing a system-

atic correlation between larger RRR and more nearly perfect sample stoichiometry

for Sm1−xVxB6 (V = vacancy) were cited as evidence supporting this interpretation.

The Sm vacancy data were also cited as evidence against a model [18] of hopping

conduction in Fermi energy states that are Anderson-localized by disorder, on the

grounds that the low-T conductivity increases rather than decreases with increased

numbers of vacancies, i. e., more disorder.

Allen et al.’s Hall data reveals that the resistivity rise is dominated by changes in

the carrier density, rather than the changes in the mobility expected for an increase in

scattering due to a Kondo-like mechanism in a metallic system. Further, the carrier

densities obtained were consistent with small-gap semiconductor behavior at low T ,

but bad metallic behavior at higher T where kBT is an order of magnitude larger

than the bandgap. These facts taken together provide unambiguous evidence for an

intrinsic gap. This conclusion was corroborated by optical data [19], which shows a

clear bandgap of around 4 meV at 4 K, and by point-contact spectroscopy [20, 21],

which reveals a similar bandgap.

From a theory perspective, the picture of band hybridization can be consistent

with a gapped (semiconducting) band structure; if the 4f states are degenerate with

the right symmetries, then wavefunction interactions should open a small hybridiza-

tion gap at EF of a few meV, resulting in a mixed-valent insulator. Anderson argued

[22] that the 5d band could only hybridize with one of the degenerate 4f states, leav-

ing EF ungapped by the remaining 4f states. However, Mott replied [23] that the

strong correlations among the degenerate 4f states would allow a small hybridization
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gap of order ∆ to form. In 1979 [24] and in a later paper in 1981 [25], Martin and

Allen showed how to make the hybridization-gap picture realistic for SmB6. They

constructed the low-lying 4f fermion excitations from electron removal transitions

between the lowest-lying f 6 multiplet (7F0) and the lowest-lying f 5 multiplet (6H5/2).

In cubic symmetry at the Γ point in the Brillouin zone (BZ), the 5/2 state is crystal-

field split into a doublet and a quartet. Taking the doublet to have the lowest energy

(i. e., to be nearest EF), they showed that it would have the correct symmetry to

hybridize with the conduction band at all places in the BZ where parity is not a

good quantum number. Taken together with the effect of the deeper-lying B p band

repelling the f excitation at the X point (where parity is a good quantum num-

ber), this leads to a fully gapped band structure across the entire BZ. Because the

number of conduction electrons is equal to the f 5 fraction, EF must lie in this gap.

(In 1992, a similar bandgap formation mechanism was introduced by G. Aeppli and

Z. Fisk [26] for mixed-valence systems near enough to integer valence to be in the

Kondo regime. In some such systems, hybridization between the conduction band

and the renormalized 4f excitations associated with the Kondo resonance can result

in a narrow bandgap at EF. Such materials, called Kondo insulators, can be metallic

at high temperatures and then open a small “Kondo gap” at low temperatures. In

fact, there is a smooth progression between this Kondo gap situation and that of the

mixed-valence gap situation, and the term Kondo insulator is often applied to all such

materials. Indeed, there is evidence that the gap in SmB6 is temperature-dependent

[27–29].)

Of course, as discussed already, the experimental evidence for a tiny bandgap

leaves the resistivity plateau as something of a mystery. Allen et al. [16] had sug-

gested that in the gap scenario, the plateau might be due to Sm vacancies or similar

defects causing EF to lie in an impurity band inside the gap. Band tails that stretch

into the gap could be another such possibility. However, Allen et al. [16] also noted
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that even in the impurity-band scenario, the minimum theoretical conductivity, based

on the Mott impurity-band criterion [30] is still 15 times larger than what is experi-

mentally observed, so this explanation was still not really satisfactory. Other, more

exotic explanations arose during the time, notably Kasuya et al.’s idea [31] that the

conductivity arises from the phase slippage of a Wigner lattice. A perfect lattice

should have an infinite conductivity at 0 K, but disorder would pin the lattice to the

observed finite conductivities.

In 1995, a paper was published by J. C. Cooley et al. [32], which described their

pressure-dependent transport study. As the pressure is increased, the rise in resistivity

is reduced, along with the value of the plateau. Analysis of this decrease, based on

a model of thermally activated carriers, showed that the bandgap shrinks smoothly

under pressure until a critical pressure around 50 kbar, where it suddenly collapses—

evidence against a simple hybridization-gap model, for which the gap would close

continuously. Meanwhile, RH, including the plateau, shrinks under pressure. The

carrier densities extracted from these measurements below 4 K change by ∼4 orders of

magnitude with pressure before the gap collapses at 50 kbar. Meanwhile, the absolute

value of the ambient-pressure resistivity exceeds the unitarity scattering limit by a

factor of 80, assuming the ambient-pressure extracted carrier density. Cooley et al.

took this as evidence against an impurity band, and together with the absence of a

metal–insulator transition, suggested that the plateau is due to intrinsic in-gap states,

present even in pristine SmB6. Nonetheless, they acknowledged that these intrinsic

states would then have to have the property of exhibiting “superunitarity” scattering.

An important realization was made the following year by these same researchers,

in collaboration with others, when they observed that chemical etching of the samples

between 10 – 30% could dramatically alter the RRR of the samples [33]. This led

them to hypothesize that the resistivity plateau was an extrinsic surface effect due to

a “dirty metal” on the surface. Indeed, the T dependence of the resistivity was easily
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fit using a parallel-resistance model with one constant resistance (corresponding to

the surface channel) and one activated-transport resistance (corresponding to a semi-

conducting bulk channel). Their report stressed in rather brusque terms that many

earlier sets of data would need to be repeated on samples with better stoichiometry

and on chemically etched surfaces. However, etching did not completely remove the

plateau, and they concluded that “the surface crud is not a discrete layer but rather

is continuously changing spatially.” This suggests that in order to measure the clean-

est, most pristine samples and to maximize the RRR, one would have to completely

etch away the entire sample! Despite the self-inconsistency in their report, these re-

searchers did make an important connection between the plateau and SmB6 surface

effects, which introduces a new mystery: How can a layer of “crud” survive etching

and all other kinds of surface treatment in all experiments to date?

This puzzle persisted for nearly 15 more years without a satisfactory explanation.

In one notable transport study [34] from 2001, Flachbart et al. summarized their

findings by maintaining that the plateau is intrinsic to the bulk, evading the violation

of the unitarity scattering limit likely through strong many-particle interactions, but

with an additional contribution from surface states arising from a shift in Sm valence

from the mixed bulk value towards Sm3+ on the surface. The overall picture is then

a low-T hybridization gap (∼11 meV) in which resides a thermally activated bulk

band ∼3 meV below the conduction band edge. Below this band, the authors posited

an additional narrow-band bulk contribution from Mott impurity conduction [30] in

samples with more imperfections, e. g., the presence of multiple B isotopes. On top

of this, there is demonstrably a contribution to the conduction from metallic surface

states at low temperatures.

The picture of a hybridization gap with a donor-like in-gap state just below the

conduction band was also supported by spectroscopy done during this time period.

Gorshunov et al. [35] pointed out that a number of earlier works report gaps that
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fall into two ranges, 3 – 5 meV and 10 – 15 meV. They combined this evidence with

their own electrical spectroscopy measurements, presenting a unified picture with a

bandgap of 19 meV and a narrow in-gap state 3 meV below the conduction band,

the latter of which determines the activation energy of direct current (DC) transport

measurements in the 3 – 15 K range. In that work, they interpreted the plateau as

hopping among the localized in-gap states.

Meanwhile, advances in Angle-Resolved Photoemission Spectroscopy (ARPES)

permitted a more detailed study of the band structure of SmB6. For example, a study

in 2000 by Denlinger et al. [36] shows a detailed picture of the 5d band dispersing

across the localized 4f states. This study also gives a more detailed picture regarding

the presence of the 4f 6 → 4f 5 multiplet transition, and shows a broad 5d band all

the way up to EF, suggesting strong scattering with the f states. Unfortunately,

the energy resolution available to these researchers (see also Mo et al. [37]) was

not sufficient to discern the details of the tiny gap, particularly the nature of the

low-T conductivity. Ultra-high Resolution Photoemission Spectroscopy (UHRPES)

provided the necessary resolution, but largely without the k dependence of ARPES.

Such studies [38, 39] could observe an in-gap state around 3 meV below the conduction

band, but its origin still eluded a consistent explanation.

SmB6 has a rich, complex behavior, as attested by the huge experimental effort ex-

pended on it, as well as strong theoretical debates over some of its most fundamental

properties. It had taken 10 years to experimentally establish a community consensus

regarding the existence of a bandgap, let alone the mechanism responsible for its for-

mation. Even more notably, after 40 years of work, one of the earliest-known features

still eluded understanding. The resistivity plateau below 3 K, which was attributed to

a plethora of mechanisms including doping or vacancy impurity conduction, metallic

bands, band-tail conduction, Mott impurity conduction, Wigner-lattice phase slip-

page, surface “crud,” isotope impurities, and hopping mechanisms, could still not
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be explained in a holistic manner with other features of the electronic structure. In

Chapter II, the exciting new field of topological insulators is discussed, which provides

a way to resolve this long-standing puzzle.
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CHAPTER II

Introduction: Topological Insulators

2.1 Introduction

One of the most exciting developments in condensed matter in the last decade has

been the topological theory of band insulators. Born out of a theoretical treatment of

quantum Hall systems, this new theory predicts the existence of insulators with non-

trivial band topology, known as topological insulators (TIs). Although the details of

the band topology and the ingredients necessary to obtain a non-trivial topology are

interesting in their own right, the most striking feature of TIs is the existence of a

topologically protected edge or surface state for 2D and 3D TIs, respectively. The

edge (surface) state is robust against perturbations because it arises fundamentally

from the bulk band topology, rather than from the detailed edge (surface) chemistry of

the TI. This edge (surface) state is manifest as half a Dirac fermion; i. e., its k-space

representation resembles a Dirac-like conical dispersion, much like graphene, but it

has no spin (Kramers) degeneracy except at the high-symmetry points of k space

(Kramers doublets). Correspondingly, the edge (surface) state is spin–momentum

locked, usually due to a strong spin–orbit coupling mechanism. Thus, the edge (sur-

face) currents in TIs are naturally spin-polarized with respect to the direction of

current flow. This has all sorts of remarkable applications, particularly for the field

of spintronics, which relies on spin-polarized currents for device operation. 3D TIs
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Type Material Bulk Transport

2D CdTe/HgTe/CdTe insulating
3D Bi1−xSbx weakly insulating
3D Sb metallic
3D Bi2Se3 metallic
3D Bi2Te3 metallic
3D Sb2Te3 metallic
3D Bi2Te2Se moderately insulating
3D Bi2−xSbxTe3−ySey reasonably insulating
3D SmB6 fully insulating

Table 2.1: List of some known topological insulators, taken from Reference [52].

hold the additional promise of realizing Majorana fermions [40, 41], which have ap-

plications to quantum computing.

Quite remarkably, TI theory preceded experimental efforts, whereas theories typ-

ically follow experimental efforts in an attempt to explain the phenomena observed.

In contrast, the first topology-based theory for time-reversal-invariant 2D TIs [42–

44] was published in 2005, but the experimental realization of a 2D TI [45] in HgTe

was not achieved until 2007. Similarly, the extension of the theory to 3D systems

was done in 2006 [46–48], but the first 3D TI observed by ARPES, Bi1−xSbx, was

confirmed in 2008 [49], followed by the observation of the spin-polarized surface in

2009 [50, 51]. Since then, a short list of 2D and 3D TIs has been developed (See

Table 2.1 for a representative list from Ando’s review [52]). Unfortunately, most of

the known 3D TIs are not strictly insulating, as they tend to be semi-metallic and/or

suffer from bulk impurity conduction. Strategies to evade these problems have in-

cluded gating or doping to move EF into the bandgap, improved crystal quality to

reduce impurities, and growth of ultra-thin films to minimize the contribution from

the bulk conductivity. Nevertheless, bulk conductivity still remains a problem for all

transport applications.
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2.2 Experimental Signatures of 3D Topological Insulators

From an experimental perspective, perhaps the most obvious and convincing ev-

idence for a non-trivial band topology is the observation of the Dirac-like surface

states in ARPES measurements. For example, the first experimental confirmation of

the topological surface state was observed in ARPES measurements of Bi0.9Sb0.1 [49].

In this study, an odd number (5) of 2D surface bands cross the Fermi energy in the BZ

cut from the Γ point to the M point, and the Kramers degeneracy is clearly seen at

the M point. Although the surface bands look quite different from the conical Dirac

dispersion, the odd number of states and the Dirac point seen at M are sufficient

indicators for the topological state.

ARPES can also be used to probe the spin structure of the surface bands when

used with a spin-sensitive detector such as a Mott spin detector. Indeed, Spin-

resolved ARPES (SARPES) was first performed on Bi1−xSbx (x = 0.09 [53] and

x = 0.12 – 0.13 [54]) to confirm the spin–momentum locking characteristic of topolog-

ical surface states. In this type of study, the SARPES spectra for each spin direction

differ from each other slightly, permitting the identification of a surface band with

a particular spin orientation. These measurements directly demonstrated the helical

spin structure of the surface dispersion.

Transport measurements are also a powerful tool for elucidating the nature of

topological surface states, and may be necessary in TI candidate materials for which

ARPES does not work as well (e. g., failure of the material to cleave, or small

bandgaps). There are several types of experiments that can be done in this spirit

and a number of experimental signatures that should be present.

� Resistivity versus temperature – From a theoretical perspective, a material

must be a bulk insulator in order to have a well-defined band topology. Partially

filled (metallic) bands do not have a well-defined Chern number and are, by
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definition, not topological insulators. If the system in question is truly gapped,

it will exhibit its insulating behavior as a diverging resistivity as the temperature

is lowered. The Hall coefficient should behave in a similar manner.

� Surface transport – For a material to be a TI, it must exhibit metallic surface

states. These can be distinguished from the bulk by using geometry-dependent

experiments (e. g., varying slab thickness) and angle-dependent magnetoresis-

tance (MR) measurements. They may also be indicated by the presence of

Shubnikov–de Haas (SdH) oscillations, which depend on the magnetic field per-

pendicular to the 2D state.

� Shubnikov–de Haas oscillations – Because the topological surface states

are 2D, they should exhibit quantum oscillations when a magnetic field is ap-

plied. The maxima and minima of the oscillations can be used to elucidate

the Berry phase of the surface, which should be π if the surface electrons are

Dirac fermions. This is a critical assessment for determining the topology of

a material for which spectroscopic techniques are not capable of resolving the

topological features.

� Weak anti-localization – Normally, an electron interferes constructively with

itself over a closed path and over the corresponding time-reversed path, leading

to an enhancement in the localization of the electron, known as weak local-

ization (WL). However, because of the accumulated Berry phase of π for the

Dirac surface electron, the interference for the TI surface electron is destruc-

tive, which leads instead to weak anti-localization (WAL). Thus, any TI surface

should exhibit WAL, which can be detected by resistivity measurements as the

magnetic field is swept through 0.

The first transport study to give evidence for a 3D TI was again on Bi1−xSbx

(x = 0.06 – 0.09) [50]. These researchers demonstrated a rise in resistivity as the tem-
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perature is lowered, especially for x = 0.09, corresponding to an insulator. However,

the resistivity rise is suppressed below 40 K, indicating the presence of some other

conductance channel such as impurity conduction. These researchers also observed

SdH oscillations, indicating the presence of the topological 2D transport channels.

Correspondingly, they also observed de Haas–van Alphen (dHvA) oscillations in the

magnetization of Bi0.91Sb0.09. There are two distinct oscillation channels they ob-

served. For one, the amplitude changes with field angle θ as sin−1(θ), indicating that

it originates from a 2D Fermi surface which corresponds also to the SdH oscillations.

For the other channel, the amplitude is finite at all angles, indicating that it originates

from a 3D (bulk) Fermi surface. WAL has also been observed [55] on Bi2Se3 surfaces

as early as 2010.

There are two direct transport-related consequences of the spin–momentum lock-

ing on the surface states. One is the suppression of backscattering, since a fully-

backwards scattering event must also be a spin-flip event. From a Boltzmann-

transport-based perspective, this leads to a 4-fold enhancement in the carrier mobility.

Although this cannot be directly probed via resistivity measurements (since one can-

not arbitrarily alter the spin structure of a real material), the suppression itself can

be seen in Scanning Tunneling Spectroscopy (STS) when examining the quasiparticle

interference pattern obtained from Fourier analysis. In fact, the first evidence for

the spin helicity in Bi0.92Sb0.08 was the suppression of backscattering verified in STS

measurements [51] by the absence of the peaks corresponding to backscattering in the

quasiparticle interference pattern.

The second direct consequence of spin–momentum locking is the generation of

spin current via charge current. This effect is exciting from a device-engineering

perspective, since the surface states can be used as a spin injector for spintronic

applications. Spin currents have very recently been detected via transport methods

in Bi2Se3 thin films [56] using metal ferromagnetic tunnel barriers fabricated on the
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sample surface. The voltage on the (virtually) floating ferromagnets should depend on

the relative orientation of the ferromagnets’ magnetization with respect to the average

spin orientation of the current. Thus, the researchers were able to confirm the spin–

momentum-locking origin of the spin signal by changing the current direction and the

ferromagnets’ magnetization. Although other effects, e. g., Rashba splitting, can also

produce a spin-polarized current, the TI spin-polarization can be distinguished from

these by its magnitude and sign [57].

2.3 Topological Enhancement Factor

An external magnetic field can reduce the suppression of backscattering, lead-

ing to a decrease in the mobility and to a positive MR [58]. This is due essentially

to a skewing of the spin–momentum locking, which can change the scattering rates

(momentum relaxation time) determined using a Boltzmann transport model. Specif-

ically, one can define a Topological Enhancement Factor (TEF) as the ratio of the

momentum relaxation time including spin effects (τTI) to the relaxation time exclud-

ing them (τ):

TEF ≡ τTI

τ
,

1

τ
=

∫
W (k,k′)(1− cos θ)d2k,

1

τTI

=

∫
W (k,k′)S(s, s′)(1− cos θ)d2k,

where θ is the angle between k and k′, W (k,k′) is the scattering rate between these

two wavevectors, and S(s, s′) is the scattering rate between the two corresponding

momentum-locked spins s and s′. Since the spin contribution is always a value between

0 and 1, the enhanced conductivity will always be greater than or equal to that of

the identical system without a spin structure. For a system in which the momentum

relaxation time is dominated by a short-range disorder potential, the TEF is 4 at zero
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field, and approaches 1 at (very) large out-of-plane fields. For unscreened long-range

disorder, the TEF is 2 at zero field, again approaching 1 at (very) large out-of-plane

fields. The screened case takes an intermediate value between that of the unscreened

case and the short-range scattering case; as screening is turned on, the TEF changes

smoothly from that of the unscreened case to that of the fully-screened case (where

short-range scattering dominates). These cases are plotted in Figure 2.1. The field

scale is determined by BTI = ~vFkF

gµB
, where vF is the Fermi velocity, g is the Landé

g-factor, and µB is the Bohr magneton. In a real system such as Bi2Se3 with vF =

5 × 105 ms−1 and kF ≈ 1 nm−1 [59, 60], BTI ≈ 2840 T. Thus, in the comparatively

small range that is experimentally accessible, the small correction to the TEF is

approximately quadratic, leading to a small positive quadratic MR. Although the

effect is small for known TIs, it should make a larger contribution to low-carrier-

density TIs.
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Figure 2.1: Magnetic field dependence of the Topological Enhancement Factor for
different scattering ranges.

2.4 Overview of Some Known Topological Insulators

Although Bi1−xSbx was the first experimentally-confirmed 3D TI, it proved to be

a poor candidate for studying the topological surface states because it also harbors
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two pairs of trivial surface band-crossings at EF that are native to Bi, and which

exhibit Rashba splitting. Fu and Kane had also suggested that Bi2Te3 might be a TI

[61], but the parity calculations necessary to show this were done by Zhang et al. [62],

who confirmed (theoretically) that the chalcogenides Bi2Te3, Bi2Se3, and Sb2Te3 (but

not Sb2Se3) should all be TIs. These atomically-layered van der Waals compounds

all exhibit a single surface-state Dirac cone at EF, which greatly simplifies the study

of the surface states. These materials also possess the advantage of cleaving easily

between quantum layers, and are relatively easy to grow as single crystals.

Bi2Se3 was verified to be a TI in 2009 via ARPES by Xia et al. [59]. Bi2Te3’s TI

nature was confirmed via ARPES (also in 2009) by Chen et al. [63] and Hsieh et al.

[64]. The k-resolved spectrum of Bi2Se3 is especially nice because it exhibits a clean,

circular Dirac cone, and the Dirac point lies within the bandgap of the material.

In contrast, Bi2Te3’s spectrum has considerable hexagonal warping due to the spin–

orbit coupling, and its Dirac point lies below the top of the valence band, making it

difficult to access via transport. Bi2Se3 also has a comparatively large bandgap of 0.3

eV, which makes the in-gap surface states accessible at room temperature without

activated bulk transport (Bi2Te3’s bandgap is about 0.17 eV). Unfortunately, both

of these materials tend to be degenerately doped by crystalline defects, resulting in a

bulk conduction that tends to swamp the surface transport. For example, in transport

measurements in a Bi2Te3 slab with thickness ∼100 µm [65], the surface conduction

accounts for an estimated ∼0.3% of the total conductance, with the highest bulk

conductivity around 10 mΩ · cm.

A more promising TI material was the ternary compound Bi2Te2Se, which was

first reported in a 2010 ARPES study [66]. Although the bulk of this material has a

metallic n-type behavior, a shift of the stoichiometry towards Se-rich samples [67] can

result in bulk resistivities beyond 1 Ω · cm; the surface state conduction was about

6% of the total conduction in a 260 µm-thick sample. In fact, further exploration of
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this type of compound resulted in the most bulk-insulating 3D TI material known

before the present work, the quaternary Bi2−xSbxTe3−ySey [68, 69]. Specifically, in

Bi1.5Sb0.5Te1.7Se1.3, for which the bulk resistivity is as large as ∼10 Ω · cm, it has

been possible to achieve surface-dominated transport, once the sample thickness has

been reduced below ∼10 µm. Yet, despite these advances, the bulk conductivity

still remains a significant part of the total transport, and a great deal of effort has

gone towards the search for fully-insulating TIs for which the surface transport is not

polluted by bulk transport channels.

2.5 Topological Kondo Insulators

In 2010, the topological theory of band insulators was extended by Dzero et al.

to strongly correlated electron systems [70]. Although the strong correlation effects

make theoretical treatment of the full electronic structure difficult, the band topology

can be deduced from a few simple symmetry and parity arguments one can make

regarding the hybridization of f and conduction electrons. These theorists accomplish

this by demonstrating that a model Kondo insulator Hamiltonian is adiabatically

connected to the tight-binding model, of which the topology is determined by the

non-interacting band structure. In contrast to conventional TIs, the topology in these

systems arises directly from the spin–orbit coupling associated with the hybridization

between conduction and f electrons, making these systems a distinct class of TIs

known as topological Kondo insulator (TKI)s. In the simple cubic case discussed in

the letter, the nature of the topology is determined by the parity property of the

f electrons at the eight high-symmetry points of the BZ, which is itself determined

by the relative energy difference between the f level and the conduction band edge.

Specifically, the spectrum contains regions which correspond to a strong TI system

(the product of all eight parity factors is −1) and regions which correspond to a

weak TI system (the product of the four parity factors that correspond to a coplanar
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subset of the eight high-symmetry points is −1)1; while the former is protected against

disorder, the latter is not.

Dzero et al.’s paper also contains a brief mention of two candidate TKIs. It specu-

lates that CeNiSn is a weak TKI, while SmB6 lies near the border between a weak TKI

and a strong TKI, based on the valence value of the rare-earth ion in each material.

The prediction regarding SmB6 was further supported by Takimoto’s spectrum calcu-

lations using an effective quasiparticle Hamiltonian, which can be obtained through

Gutzweiler projection or a slave boson approach from a first-principles Hamiltonian

[71]. Specifically, SmB6 was calculated to be a strong TKI, and the in-gap states

are identified as the topological surface states. This prediction and the promise of

experimentally realizing a new class of TIs are the primary motivations behind the

present work.

1Basically, the weak TI can be thought of as a stack of 2D TIs. Since there are three equivalent
directions (x, y, z) in which the stacking may occur, there are correspondingly three weak topological
indices.
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CHAPTER III

Bulk versus Surface Transport Experiment

3.1 Introduction

With the prediction [70, 71] that SmB6 might be a strongly-correlated TI, a new

interpretation of the low-temperature resistivity plateau presents itself—that of a

topologically protected surface state. Evidence had already been presented [33, 34]

that linked the plateau, at least in part, to the surface. The possibility of a topolog-

ical surface state could account for most of the observations regarding the plateau.

First, since it is not a bulk transport mechanism, it evades the necessity for a the-

ory of superunitarity scattering. Second, the topological protection of such a state

explains how a surface interpretation of the plateau can be robust against surface

treatments such as polishing or etching. Thus, the topological theory provides a nice,

if unexpected, way to finally understand what is happening below 3 K in SmB6.

In order to establish the validity of this hypothesis, it was first necessary to es-

tablish unambiguously whether the residual plateau was actually a bulk effect or a

surface effect. This chapter describes the experiment that made this determination,

the results of which have been published elsewhere [72]. It starts with the conceptual

design of the experiment in Section 3.2. In Section 3.3, the fabrication of the exper-

iment sample is described. The results of the experiment are covered in Section 3.4,

and Finite Element Analysis (FEA) simulations of the experiment are presented in
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Section 3.5. Finally, Section 3.6 contains a discussion of the experimental outcome,

its relation to the FEA simulations, and its implications for both historical and future

work on SmB6.

3.2 Experiment Design

To understand the design of the experiment, consider the simple case of a material

with an isotropic electrical conductivity. The macroscopic current density ~ can be

expressed in terms of the local electric field ~E, stated by Ohm’s Law:

~ = σ ~E, (3.1)

where σ is the isotropic conductivity of the material. Suppose an arbitrarily shaped

sample of the material has two voltage readout contacts at positions A and B. Because

∇× ~E = 0 for steady-state conduction, the path integral of ~ from one contact to the

other is uniquely given by
B∫

A

~ · d~s = σVB−A, (3.2)

where VB−A is the voltage difference measured at the contacts and does not depend

on the path chosen.

Now suppose that an additional two contacts at positions C and D supply a current

IC,D to the sample. If we divide Equation 3.2 by IC,D, we get

B∫
A

~

IC,D

· d~s = σRC,D;A,B, (3.3)

where RC,D;A,B ≡ VB−A

IC,D
. The integral on the left has units of inverse length, and

depends only on the shape of the sample and the location of the four contacts. Thus,

for a given sample geometry, we may define this as the geometrical factor gC,D;A,B.
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Figure 3.1: Schematic diagram of experiment configuration.

Since σ is isotropic, we may rewrite the expression as

RC,D;A,B(T ) = ρ(T )gC,D;A,B, (3.4)

where ρ(T ) is the isotropic resistivity of the material. The T dependence of ρ(T )

and RC,D;A,B(T ) are explicit here to emphasize the experimental usefulness of this

expression; i. e., ρ(T ) can be obtained simply by measuring RC,D;A,B(T ) if the geo-

metrical factor is known. In the case for anisotropic σ, the geometrical factor can also

have a subtle T dependence if the relative directional components of σ do not change

uniformly with temperature, such as during a crystallographic phase transition. The

T dependence of gC,D;A,B can be even stronger if there are multiple transport mech-

anisms simultaneously present in the material that differ both in T dependence and

in the directional dependence of their respective σs. The extreme case for this is

expected in bulk three-dimensional (3D) TIs, where one channel has a bulk σ with

insulating behavior at low T , and the other channel is a two-dimensional (2D) surface

conductor with metallic behavior at low T .

If the geometrical factor has a strong T dependence, a single measurement geom-

etry cannot distinguish between changes due to ρ(T ) and changes due to gC,D;A,B(T ).
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Our goal, then, is to devise a scheme on a single sample with at least two contact

geometries which respectively maximize and minimize the geometry’s contribution to

RC,D;A,B(T ). Such a scheme is diagrammed in Figure 3.1. A very thin crystal has a

row of electrical contacts placed near each other in the center of both the front-side

face and the back-side face. We use three measurement (geometry) configurations,

listed below:

1. Lateral—Current is passed between contacts 1 and 4 on the front face. The

voltage is measured using contacts 2 and 3 on the front face. This scheme

minimizes the effect of gC,D;A,B(T ) by providing approximately the same current

path to both the bulk transport and the surface transport. It is also similar to

most previous measurements of single-crystal SmB6.

2. Hybrid—Current is passed between contacts 1 and 4 on the front face. The

voltage is measured using contacts 6 and 7 on the back face. This scheme has

a much larger dependence on gC,D;A,B(T ). Because the sample is thin, the bulk

transport geometry is similar to that of the Lateral scheme, and RC,D;A,B(T )

will mimic that of the Lateral scheme. However, the surface transport will give

a very different result because, without bulk conduction, the voltage contacts

(6 and 7) are electrically isolated from the majority of current flow, yielding a

substantially smaller RC,D;A,B than the Lateral scheme.

3. Vertical—Current is passed between contact 2 on the front face and the corre-

sponding contact 6 on the back face. The voltage is measured using a different

pair of front-side and back-side contacts, 4 and 8. This scheme maximizes the

effect of gC,D;A,B(T ). If the current is a bulk current, the vast majority of it will

pass directly through the bulk straight from 2 to 6. The voltage contacts (4 and

8), which are far from the current contacts compared to the current path, will

only measure a tiny voltage. Conversely, if the current is a surface current, all
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of it must flow around the long edges of the sample. The voltage contacts will

then be quite close to the current contacts compared to the total current path,

and will yield a very high value for RC,D;A,B.

FEA simulations1 of each of these configurations are presented in Figure 3.2. Be-

cause each of the three configurations has such a different dependence on gC,D;A,B(T ),

any shift in the current geometry should be immediately distinguishable. If gC,D;A,B

is T independent, all the measurement configurations will yield resistances that scale

uniformly with each other and with ρ(T ). However, a scenario in which there is a

crossover from bulk to surface conduction as T is lowered will yield resistances that

behave quite differently from each other within the crossover temperature range.

3.3 Sample Fabrication

Perhaps the biggest challenge to the reinterpretation of the pre-TI SmB6 literature

within the context of surface conduction is the historical assumption that the residual

is a bulk conduction, and that the geometrical dimensions of the crystals are therefore

not important. Most of the studies [2, 9, 16, 32–34, 73] do not report the sample

dimensions or surface treatments on the samples. The information presented here

is therefore included for completeness, as well as to highlight some of the unique

approaches to assembling this experiment.

3.3.1 Surface Preparation and Mounting

The SmB6 crystals used were grown via the Al-flux-growth method. The most

promising as-grown SmB6 crystal we received from the crystal grower was nearly

400 µm thicker than desired, so we mechanically polished one side of it to a total

thickness of 150 µm using silicon carbide (SiC) abrasive pads ranging from P1200

1The simulations themselves are discussed in Section 3.5
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Figure 3.2: Cross sections of bulk slabs for three measurement geometries. The Verti-
cal configuration is depicted for a bulk conductor and a surface conductor
in (a) and (b), respectively. The Hybrid and Lateral configurations are
shown together for a bulk conductor and a surface conductor in (c) and
(d), respectively. Current is depicted by the black arrows, and the poten-
tial is depicted in shades of orange from light to dark. For the bulk cases
((a) and (c)), equipotential lines are shown in green. For the surface cases
((b) and (d)), the potential is also denoted by the thickness of the orange
border.
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(15 µm) to P2400 (6.5 µm) grit sizes.2 Scanning Electron Microscope (SEM) images

of the polished surface reveal pocks 1 − 2 µm wide and scratches ∼0.25 µm deep

(Figure 3.6 (g – k)). SEM images of the as-grown side are free from these polish-

ing defects, showing a smooth surface with diffusely scattered debris <1 µm in size

(Figure 3.6 (b – e)). The final sample was 2750× 1750× 210 µm in size.

Contact pads for wire soldering were produced by lithographically patterning eight

parallel 200 µm contacts spaced 50 µm apart onto a Si/SiO2 wafer piece. Au was

deposited via physical vapor deposition and liftoff. The resulting piece was then

cleaved perpendicularly to the contacts, overlapping them by a small margin. Thus,

each of the contacts extended all the way to the edge of the cleave and provided a

relatively straight edge to butt against the flat SmB6 crystal. Because the cleave did

not always occur 90° to the surface, the lower corner of the substrate along the cleave

edge was polished down by hand using the P1200-grit paper. Two of these contact

pieces were prepared, one for each side of the SmB6 crystal.

The SmB6 crystal was bathed in dilute nitric acid (HNO3) and hydrochloric acid

(HCl) (1:1:50 HNO3:HCl:H2O) for several minutes. A small amount of bubbling

occurred initially, indicating the etching of residual Al remaining on the surface from

the flux growth.

The SmB6 sample and the contact pieces were mounted to a substrate Si wafer

piece using Torr Seal® vacuum epoxy, as shown in Figure 3.3. After the epoxy cured,

the Au contacts on both sides of the SmB6 crystal were nearly flush against the crystal

surface, with a gap ranging from 3− 20 µm.

3.3.2 Ion-Beam-Induced Deposition

Typical procedures for attaching contacts to crystals for transport measurements

include soldering (either by hand or using prefabricated solder balls), wirebonding,

2P grit sizes are specified by the Federation of European Producers of Abrasives. P1200 = Amer-
ican National Standards Institute (ANSI) 600 and P2400 = ANSI 800.
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Figure 3.3: Diagram of sample assembly. (a) Torr Seal® vacuum epoxy is placed on a
substrate. (b) Si wafer pieces with gold contacts are situated on the Torr
Seal® with a gap between them. (c) The SmB6 piece is placed upright
in the gap. (d) The Si pieces are pushed together, holding the SmB6 slab
upright. The entire assembly is held in place by the Torr Seal®.

and painting with conductive epoxy, all of which have roughly 100 µm precision. Due

to the small size of the crystals, a way was needed to make contacts much smaller

than this, on the order of a few microns. On flat surfaces, lithographic procedures

are sufficient for doing physical vapor deposition of contacts, but this doesn’t work

for the 90° junctions in the sample design. The solution was the unconventional

use of Ion Beam-Induced Deposition (IBID) using a Focused Ion Beam (FIB). In

this procedure, while the FIB is incident on a sample, a gas of metal carbonyls

or metal-halogen complexes is injected near the focus spot. The ion beam breaks

down the metal compound and deposits the metal atoms on the surface of the sample

(Figure 3.4). Because the scanning of the FIB is under computer control, the resulting

metal deposition can be patterned at a variable rate. In the electron beam version

of this process, arbitrary nanoscale 3D structures are possible [74]. However, the

deposition rates using IBID are much higher than for an electron beam, allowing the

production of several 5 µm or 10 µm contacts in a few hours. Because the technique

is capable of producing 3D structures, it is well-suited for shaping a contact across
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Figure 3.4: Diagram of typical IBID operation. A gas of metal carbonyls or metal-
halogen complexes is injected through a needle near the ion beam focus
spot. The ions break down the gas at the focus spot, and the free metal
atoms stick to the substrate surface. The remaining gaseous organic prod-
ucts are removed by the ambient vacuum.

the 90° junction.

An FEI Nova Nanolab Dualbeam Focused Ion Beam Workstation and SEM were

used to perform sample and contact imaging and Pt contact deposition. The electron

beam and the ion beam were mounted at 52° with respect to each other; the sample

was on a stage with three translational and two rotational degrees of manipulation.

Figure 3.5 illustrates the sample and beam geometry during deposition.

Both circular and rectangular raster patterns were tested for making the contacts

(Figure 3.7). SEM images of the resulting contacts are shown in Figure 3.6. The

circular contacts were programmed to make 10 µm circles 5 µm tall, but typically

grew as roughly spherical lumps (only one was deposited on the final sample, shown

in Figure 3.6 (j)). In contrast, the rectangular contacts, programmed to make 5 −

10× 20− 40 µm rectangles 10 µm tall, resulted in lamella-shaped contacts that were
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Figure 3.5: Orientation of ion beam and electron beam relative to the sample during
IBID. The ion beam follows the raster pattern to deposit the platinum
contact across the gap. The electron beam is used for viewing before and
after the deposition.

31



Figure 3.6: E-beam images of platinum contacts. (a) Interface between SmB6 and
contact pads, with four contacts visible, shown zoomed in (b – e). (f)
Interface between SmB6 and other contact pads, with five contacts visible,
shown zoomed in (g – k).
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Figure 3.7: Raster patterns for IBID. (a) Pattern used for creating circular contacts.
(b) Pattern used for creating rectangular contacts.

securely attached to both target pieces with a gentle L-bend at the 90° interface.

What is particularly remarkable is that these L-shaped contacts spanned a gap at the

interface that, in places, exceeded 10 µm without any special consideration beyond

the programmed length of the contact. In some of the gaps between the contact

pads and the SmB6 in Figure 3.6 (b – e), the Torr Seal® wet the gap, providing

an insulating bridge across the gap for the Pt contact. During the experiment, the

smooth contacts shown in Figure 3.6 (b – e) behaved well with a linear response over

the current range used and a two-terminal resistance below 1 kW. In contrast, the bent

contacts shown in Figure 3.6 (g – k) suffered from high resistances or simply failed at

cryogenic temperatures. Figure 3.6 also shows that a thin layer of Pt accumulated in

halos around the deposition sites. This may have altered the quantitative resistances

observed during the experiment, but does not alter the basic qualitative reasoning

used to interpret the result.
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Configuration Current Voltage

Lateral (b) (d) (c) (e)∗

Hybrid (b) (d) (k) (i)
Vertical (i) (c) (k) (b)

∗This contact broke and was replaced by
hand with a gallium blob ∼200 µm to the
right of the original contact.

Table 3.1: List of contacts used for each measurement configuration. Each entry
indicates the corresponding panel in Figure 3.6.

3.4 Experimental Methods and Data

The sample was mounted on a cryogenic insert and cooled in a variable-temper-

ature cryogenic system. The four-terminal resistance was measured for each of the

configurations discussed in Section 3.2 by passing an AC current of 50 µA at 17.759 Hz

across two terminals and measuring the corresponding AC voltage across two different

terminals using a Stanford Research Systems SR830 lock-in amplifier. Because the

contacts on the side shown in Figure 3.6 (a) had low resistances, these were preferred

for passing current. The contacts used for each configuration are summarized in

Table 3.1, with each entry corresponding to a panel in Figure 3.6. The resistances

obtained from each configuration are plotted on a log scale in Figure 3.8, and on a

linear scale in the figure’s inset. Interpretation of these results will be discussed in

Section 3.6.

3.5 Finite Element Analysis Simulations

To better conceptualize the outcome of the transport experiment, Kai Sun per-

formed FEA simulations of the crystal’s electric potential for both the bulk residual

scenario and the surface residual scenario. The single crystal in the experiment was

modeled as a rectangular slab, subdivided into a 275 × 175 × 21 grid of finite ele-

ments, maintaining the approximate aspect ratios of the real sample, with each grid
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Figure 3.8: Four-terminal resistances plotted as a function of temperature. RLateral,
RHybrid, and RVertical are shown in blue, green, and red, respectively. IN-
SET: RLateral and RHybrid plotted with a linear scale.
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element corresponding to a 10 × 10 × 10 µm cube. Neumann boundary conditions

were established using a flux of zero current everywhere along the surface of the slab

except at the elements corresponding to the locations of the current contacts on the

real sample, where a constant current (corresponding to a constant potential) could

be tuned to match that of the experiment.

To simulate the experimentally observed behavior of the resistance for the bulk

residual scenario, a two-channel bulk conductivity was used, one of which was a

thermally activated transport channel with energy gap ∆ and, in the T → ∞ limit,

resistivity σa. The other channel was a constant conductivity (of unknown physical

origin) σ0 corresponding to the plateau region of the resistance curve, giving, together

with the first channel, the following:

σ(T ) = σae
− ∆

kBT + σ0 (3.5)

Meanwhile, for the surface residual scenario, the two channels were separated into

two geometrically distinct rules. The thermally activated transport was used for all

elements interacting with each of its neighbors, but the constant conductivity σ0 was

replaced by σs and restricted to occurring between surface elements. It is important

to note that σs has a different unit dimension (Ω) than σ0 (Ω · cm) because it is a

2D conductivity rather than a 3D conductivity. In a thin sample, these are usually

related by the thickness t of the slab (σ0 = tσs), but t is non-universal, varying from

sample to sample.

For each of the two cases, the parameters ∆, σa, and σ0 (or σs) were tuned to

reproduce the Arrhenius curve (Lateral configuration) from the experiment. Cross

sections of the slab showing current arcs and equipotentials are shown in Figure 3.2

for both the bulk-dominated conduction and surface-dominated conduction for each

set of contact configurations. Simulated values for R(T ) from each measurement
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Figure 3.9: Simulated resistance curves from the FEA for each configuration. LEFT:
simulated resistances for the bulk-residual scenario on a log-log plot.
RHybrid and RLateral lie nearly on top of each other. RIGHT: simulated
resistances for the surface-residual scenario on a log-log plot.

configuration are plotted in Figure 3.9 for both the bulk residual scenario and the

surface residual scenario.

A few observations can be made from the simulations. Perhaps the most dra-

matic distinction is how each of the resistances in the bulk-residual scenario scales

directly with each other with a fixed proportionality factor, reflecting the T depen-

dence of ρ(T ) and the lack of T dependence in gC,D;A,B in each curve; meanwhile, in

the surface-residual scenario, the resistances scale with each other at low and high

temperatures, but they behave dramatically differently at an intermediate tempera-

ture regime (∼3 – 5 K), the crossover temperature, reflecting the diverse changes in

gC,D;A,B for each configuration as the conduction crosses over from bulk-dominated

conduction to surface-dominated conduction. A second key observation is that RLateral

and RHybrid are nearly identical when the bulk is the dominant conduction channel,

but take very different values in the case of surface-dominated conduction, with a

distinct peak in RHybrid around 4 K, the crossover temperature. A third important

observation is that while RVertical follows ρ(T ) in the bulk-residual case, it changes by

several orders of magnitude within the crossover temperature range in the surface-
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residual case; this cannot be attributed to an intrinsic mechanism, but rather reflects

the dramatic change in gC,D;A,B for this configuration. A final observation is that in

both of the simulated cases, RLateral has the same qualitative behavior, showing that

the two cases can be indistinguishable when using this conventional measurement

configuration alone.

3.6 Discussion of Experimental Results

The measurements of the real sample, shown in Figure 3.8, behave remarkably

like the surface-residual case of the simulations, with a distinct peak in RHybrid at

3.8 K, demonstrating conclusively that SmB6 becomes a surface conductor below

this temperature. In particular, RLateral and RHybrid scale with each other on each

side of the crossover regime, suggesting that the current path remains fixed at these

temperatures, but they diverge near the crossover temperature, indicating a change in

the current path. RVertical increases dramatically as the temperature drops below the

crossover, even more than predicted in the simulation. This discrepancy is attributed

to geometrical differences between the simulated slab surface and the real sample

surface. These features cannot be explained by bulk conduction in any cubic system,

even with the most extreme anisotropic conductivity.

This experiment proves unambiguously that as the temperature is reduced, the

system turns from a 3D bulk conductor into a 2D surface conductor with an insulating

bulk. It resolves the long-standing puzzles surrounding SmB6 at low temperatures,

which are caused by treating the low-T conductivity as a bulk conductivity. In fact,

the RRR, which has historically been used to assess the quality of SmB6 crystals, is

now expected to be non-universal, depending on the bulk stoichiometry, the surface

quality, and the sample thickness, which are all independent parameters. The impli-

cation, then, is that such historical experiments must be reinterpreted or even redone

with this result in mind. For example, in the etching work done by Kebede et al. [33],
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the thickness of the bulk was changed by etching. Even if the final surface has identi-

cal conditions to the initial surface (which should give the same total resistance), the

apparent 3D resistivity changes because the thickness of the sample has changed.

In many cases, reinterpretation of the low-T conductivity is tenuous at best; not

only is it necessary to know the sample thickness (which is often not reported) to ob-

tain the correct 2D resistivity, but surface-dominated conduction implies all surfaces,

including the sides and any unseen internal surfaces, can contribute to the conduc-

tion. This makes a determination of gC,D;A,B impossible without detailed knowledge of

the crystal’s precise geometry and morphological quality. Even with this knowledge,

surface conditions can also vary across a single sample, depending on preparation

methods and exposure to ambient laboratory conditions. Any systematic approach

to understanding the behavior of the surface conductivity must first address these

difficulties.
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CHAPTER IV

Magnetoresistance of SmB6

4.1 Introduction

Since the surface state(s) experimentally demonstrated in Chapter III were virtu-

ally unstudied as independent 2D states, the first step in understanding these states

is to perform magnetotransport measurements of the surface. A Hall bar structure

is typically used to characterize the magnetotransport of both 2D and 3D conductive

states. However, 3D TIs pose particular difficulties for this conventional geometry.

Section 4.2 describes the first näıve attempts to perform magnetotransport measure-

ments using a Hall bar structure, and also gives a discussion of the problems this

geometry presents. This data has been published elsewhere [72]. Section 4.3 de-

scribes an alternative measurement configuration using a Corbino disk, which evades

many of the difficulties presented by the Hall bar geometry. Section 4.4 covers the

magnetotransport measurements performed below 3 K, including the negative MR

that was observed at high fields, as well as the low-field hysteresis behavior of the

surface. The data and discussion from this section have been published elsewhere

[75]. Finally, Section 4.5 describes MR measurements at extreme magnetic fields

across the crossover temperature range; the temperature dependence reveals closure

of the hybridization gap as the field is increased.
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Figure 4.1: SmB6 sample configured in van der Pauw-like geometry.

4.2 Hall Bars as a Poor Tool for Analyzing Surface Conduc-

tion

The first attempt at surface transport characterization was performed on a sample

with a van der Pauw-like geometry [76]. The sample was 3.47 mm × 1.32 mm × 170

µm, and the two large faces were polished with P4000 grit paper. The sample was

mounted to a glass substrate with Varian Torr Seal®, and indium contacts were placed

along the edge (Figure 4.1). Two leads extended along the short edges to function

as current leads, while four additional leads were placed along the long edges, two on

each side, for voltage contacts. In this configuration, the geometry resembles that of

two parallel Hall bars (the polished top and bottom surfaces of the crystal).

This geometry was used to näıvely determine the conductivity of the sample using

two voltage leads on the same edge via lock-in techniques at 26.6 Hz in a 3He cryostat.

Below the crossover temperature, the sample had a remarkably low sheet resistance

ρxx of 9.1 W. This geometry was also configured for Hall measurements using op-

posing leads on opposite edges, and the magnetic field was swept perpendicularly to

the flat surfaces of the sample. The Hall measurements were pathological, with a

barely detectable slope and a large temperature-dependent feature near 0 field (Fig-

ure 4.2 (a)). As the temperature is lowered, the Hall coefficient RH rises in a manner
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consistent with insulators, but it suddenly drops by about two orders of magnitude

at the crossover temperature and plateaus at lower temperatures (Figure 4.2 (b)).

Such a result would be difficult to interpret in the context of bulk conduction, but is

completely expected in the surface-conduction scenario. This behavior is reminiscent

of some prior Hall measurements of SmB6 [16, 32], in which the Hall coefficient peaks

at the crossover temperature, and drops and plateaus at a lower value at lower tem-

peratures. In other measurements [9], the Hall coefficient dramatically changes sign

at the crossover temperature. Of course, the quantitative details of the crossover and

the plateau are expected to depend heavily upon the surface quality and preparation.

For our sample, RH above the crossover temperature is about a factor of 10 smaller

than that reported by Cooley et al. [32], and at the lowest temperatures is less than

4× 10−4 W/T.

The small-field peak is strong in our Hall measurements, but 10 times weaker in our

measurements of ρxx. In fact, measuring ρxx using the contacts on the opposite edge

of the sample changes the direction of the peak. Meanwhile, the value of ρxx measured

on the opposite edge is only 43% of the first edge’s value. The apparent symmetry of

the sample in Figure 4.1 makes this discrepancy a mystery. From this, it is clear that

the current does not flow uniformly along the long axis of the sample on the polished

faces, as would be expected from the apparent geometry alone. Speculative ideas that

could explain this discrepancy include variations in the conductivity along the sides or

corners of the sample, hidden cracks or Al flux buried inside the sample with electrical

access to the surface, or variations in carrier density across the surfaces that depend

on the details of the surface morphology. In any case, it is clear that the geometry of

the current is not really known, making a systematic study of transport parameters

such as carrier density and mobility using this type of measurement unreliable, at

best.

Nevertheless, it is instructive to compare the conductivity of SmB6 to those of
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Figure 4.2: Hall data from the Hall bar sample. (a) Uncorrected values of ρxy plotted
as a function of the magnetic field for various temperatures. INSET:
Corrected values of ρxy for select temperatures. (b) RH obtained from
the (a) inset, plotted versus temperature. (c) Height of the anomalous
peak of ρxy at 0 field, plotted versus temperature.
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Figure 4.3: Comparison of SmB6 conductivities with conventional 2D electron gas
structures.

other 2D electron systems. Figure 4.3 plots several early measurements of the SmB6

surface [16, 32, 72, 77] alongside some of the record conductivities for these sys-

tems as a function of carrier density. These systems include GaAs/AlGaAs [78–80],

GaN/AlGaN [81–83], and InAs [84] heterostructures; graphene [85]; Si surfaces [86,

87]; the GdTiO3/SrTiO3 interface [88]; and the surface of liquid He [89, 90]. (Historic

measurements [16, 32] of SmB6, originally interpreted in the context of 3D conduc-

tion, have been re-evaluated here based on estimates of the crystal size via private

communication [91].) The quantum conductance is included for comparison. The

kF limit, i. e., the upper limit on the carrier concentration imposed by the BZ and

corresponding to one carrier per unit cell, is also shown.

First, the range of conductivities reported both from historic measurements and

current data is competitive with the best 2D electron systems, despite being taken
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after exposure to various surface conditions including ambient air and polishing ma-

terials. This is in stark contrast to conventional systems, in which the 2D layer is

protected by a cap layer or measured in situ in ultra-high vacuum. Second, all the

various estimates of the SmB6 carrier density are higher than is physically possible for

a 2D electron system. The resolution of this discrepancy is not obvious, but perhaps

the most likely explanation is that the conduction is not limited to the visible slab

surfaces. Rather, additional surfaces may lie beneath the exterior surfaces, contribut-

ing to the conduction and giving the impression of a higher carrier density. This

possibility is discussed further in Chapter V, and it has particular implications for

the interpretation of the pressure study data by Cooley et al. [32]. Cooley says the

following of this experiment:

One caveat to keep in mind is that in the bridgeman [sic] cell brittle

samples always fracture, so when I depressurized and took them out, all

you get is small chunks. In addition, the capacitance of the measurement

circuit changed as pressure was increased [sic] and I always assumed it

was due to cracking of the sample. So there may be some extra surfaces

from the cracking which are jammed tightly together, but one must be

careful to point out that is speculative [91].

Although only a few studies on the material involved high-pressure cells, the

complication posed by unknown or unaccounted surfaces is a general one that makes

the (re)interpretation of many transport measurements difficult at best. The present

effort to mitigate this problem involves a transport geometry that is sensitive only to

a single surface—the Corbino disk.
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4.3 Corbino Measurement Geometry

Although a Hall bar structure is typically used to characterize magnetotransport

of both 2D and 3D conductive states, 3D TIs pose particular difficulties for this

conventional geometry. All surfaces of the Hall bar contribute to the total conduction,

including any edges or corners that are not perpendicular to the magnetic field, and

may vary in surface condition due to preparation procedures such as polishing. For

example, this can lead to an effective “edge channel” that would short the quantum

Hall insulator state of the surfaces perpendicular to the field. Another complication

arises if the surface states exhibit ambipolar conduction, as is indicated in calculations

by Lu et al. [92]. The value of RH is sensitive to charge sign, and in a multi-channel

scenario with both electron and hole conduction, the contributions of one channel

to RH can compensate the other. In Section 4.2, the Hall bar measurements on

SmB6 [72] indicated carrier densities that were unphysically large for a 2D system,

as shown in Figure 4.3, perhaps because any or all of these complications reduced

the measured value of RH. Unfortunately, these complications also now make a large

volume of detailed low-temperature transport work in SmB6 (which assumed the

low-temperature resistivity plateau to be a bulk effect) very difficult to interpret,

especially since details about crystal size and geometry are usually not reported.

These particular difficulties can be avoided by fabricating Corbino disks on single

surfaces of SmB6. This geometry is not sensitive to the sign of the charge(s), and it is

sensitive only to the surface on which it is fabricated. The longitudinal conductivity

σxx of the surface can be directly obtained from the two-terminal resistance and the

geometry of the disk. There is a geometrical diminution of σxx under a perpendicular

magnetic field because the current begins to circulate, lengthening the path over which

an average charge carrier must travel through the system. This spiraling current was

first described by Boltzmann in 1886 [93], but the idea was treated specifically for

disks by Corbino in 1911 [94], who performed measurements of the circulating current
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in bismuth disks. The diminution of σxx was derived four years later by Adams [95],

who calculated the circular current due to the magnetic field as though it were an

effective circular electric field or electromotive force. This permits a calculation of

the power dissipation by both the radially- and circularly-directed currents. The

conductivity of a single-carrier system is then given by

σxx(B) =
neµ

1 + µ2B2
⊥
, (4.1)

where n is the carrier density of the surface, µ is the carrier mobility, and B⊥ is the

perpendicular component of the magnetic field. For this work, the dependence on the

magnetic field allows us to obtain values for µ and n. A modern derivation of these

transport equations follows, including the treatment of multiple superimposed carrier

channels and B dependence of µ and n.

4.3.1 Macroscopic Transport Equations

Let us consider a 2D disk of inner radius a and outer radius b, with total current

I flowing from a to b, as shown in Figure 4.4. The total current density ~ is related

to the electric field ~E by the conductivity tensor σ via Ohm’s Law: ~ = σ ~E. Because

the scenario has radial symmetry, and because ~E = Err̂, we can write ~ as:

~ = σxxErr̂ + σxyErφ̂ (4.2)

jr =
I

2πr
= σxxEr ⇒ Er =

I

2πrσxx

V =

b∫
a

~E · d~r =

b∫
a

I

2πrσxx
dr =

I

2πσxx
ln
b

a

R ≡ V

I
=

ln b/a
2πσxx

(4.3)
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Figure 4.4: Corbino geometry diagram. The shaded areas represent the perfectly
conducting current source and drain. The annulus between them is the
active region under study.

We can check that this gives the correct expression for power. Microscopically,

power is given by the rate of work done by the electric field on the charges ~E · ~, so

integrating this over the whole disk gives

P =

∫∫
~E · ~ rdrdφ = 2π

b∫
a

E2
rσxxrdr =

I2

2πσxx
ln
b

a
= I2R.

Thus, regardless of the microscopic details, we can use R or P as a direct measure

of σxx. However, none of these quantities depend directly on σxy; i. e., this measure-

ment geometry is not sensitive to the circular current jφ at all. This is a sensible

result because the electric field has no circular component, and the magnetic field

can do no work on the system. However, this does not preclude the influence of the

magnetic field and the circular current on σxx, as we will see.
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4.3.2 Microscopic Transport Equations

Macroscopic quantities express the boundary conditions of the system in terms of

experimental variables such as I, R, P , and V . These relationships do not depend on

the microscopic details of the system, but are connected to them via the microscopic

quantities ~E, ~, and σ. Let us now examine a single-carrier charge current in the

Drude model by introducing a drag force −~vm
τ

on single carriers, where ~v is the average

drift velocity of an average carrier, m is the effective carrier mass, and τ is the average

scattering time for the carriers. In a steady-state current, average acceleration of the

carrier is 0, so we have (for positive charges):

~a

m
= ~F = e( ~E + ~v × ~B)− ~vm

τ
= 0

so

µ( ~E + ~v × ~B) = ~v

where µ ≡ eτ
m

. Inserting ~E = Err̂ and ~B = Bz ẑ, we have from the two vector

components:

µ(Er + vφBz) = vr

−vrµBz = vφ

(Note that even if B 6= Bz ẑ, only the z component matters here because vz = 0 and

Fz does not affect the motion in the r–φ plane.) Solving for vr, we get

vr(1 + µ2B2
z ) = µEr ⇒ vr =

µ

1 + µ2B2
z

Er and vφ =
−Bzµ

2

1 + µ2B2
z

Er
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The microscopic current is now

~ ≡ ne~v =

 1

−µBz

 neµ

1 + µ2B2
z

Er (4.4)

Thus, from Equation 4.2,

σxx =
neµ

1 + µ2B2
z

σxy =
−neµ2Bz

1 + µ2B2
z

If we assume that n and µ do not change with respect to B, then the total resistance

from Equation 4.3 becomes

R =
ln b/a

2πneµ
(1 + µ2B2

z ),

µ can be determined by the quadratic out-of-plane magnetic-field dependence, and n

can be determined by the zero-field ( ~B = 0) value of R.

4.3.3 Multiple Carrier Channels

Now let us consider the scenario with multiple carrier channels with density ni,

scattering time τi, effective mass mi, and mobility µi ≡ eτi
mi

. Each channel has micro-

scopic current ~i = nie~vi, where ~vi is the drift velocity for each carrier type.

If the carrier channels do not interact microscopically, then the force analysis

from Section 4.3.2 can be applied to each channel individually. Specifically, ~E and ~B

can be treated as external variables, ~B being determined by the experimenter, and

~E = Er(r) being measured via V , as shown in Section 4.3.1. In any case, we wish

to relate individual carrier characteristics to the measured quantity σxx, which is still

related to ~E and the total current density ~ =
∑

i ~i by Ohm’s law ~ = σ ~E. From
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Equation 4.4, we have:

~i = nie~vi =

 1

−µiBz

 nieµi
1 + µ2

iB
2
z

Er

~ =
∑
i

 1

−µiBz

 nieµi
1 + µ2

iB
2
z

Er

Thus,

σxx =
∑
i

nieµi
1 + µ2

iB
2
z

,

σxy =
∑
i

−nieµ2
iBz

1 + µ2
iB

2
z

,

and the total resistance becomes

R =
ln b/a
2π

(∑
i

nieµi
1 + µ2

iB
2
z

)−1

. (4.5)

This result is nice, in that σxx is just the sum of “individual” carrier densities, as

though we were simply connecting two conducting circuits in parallel. Unfortunately,

this result is far less tractable than the single-carrier result, since the resistance no

longer has a simple quadratic form. However, if the mobilities of all the carriers are

identical, then the result would again become quadratic as

R =
ln b/a

2π(
∑

i ni)eµ
(1 + µ2B2

z ).

If we change the charge sign of a carrier, ji,r remains the same, but ji,φ will

reverse sign. Because R depends only on σxx, it is not sensitive to the charge sign.

However, an experiment that can measure the circular current, such as a magnetic

torque measurement, would reveal the change in the circular current direction. In the

case of ambipolar conduction (both positive and negative charge carriers present),
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the radial components of each charge current will add, while the circular components

will partially or completely cancel.

4.3.4 ~B-dependent n and µ

Suppose we now wish to consider the possibility that in some intrinsic way, the

carrier density and mobility of each carrier type depends on the magnetic field.

Let us first consider n( ~B). Because n( ~B) is a scalar quantity that does not depend

on the dynamics of individual charges, the relevant change is that ~i = nie~vi →

~i( ~B) = ni( ~B)e~vi. This change is easily incorporated into Equation 4.5 as:

R =
ln b/a
2π

(∑
i

ni( ~B)eµi
1 + µ2

iB
2
z

)−1

.

The relevant physical mechanisms for a changing carrier density can generally arise

from two places. If the change is due to the magnetic field’s influence on a 3D bulk

material, the carrier density will be independent of the field direction, and depend

only on ‖ ~B‖. If the change is due to the direct influence of the field on the 2D states

in question, the carrier density will depend on Bz.

Let us now consider µ( ~B). In this derivation, we have assumed that the scattering

time τi (and thus the mobility µi) is isotropic along the r and φ directions. If this is

the case, then replacing µi → µi( ~B) leads quite simply to

R =
ln b/a
2π

(∑
i

nieµi( ~B)

1 + µ2
i (
~B)B2

z

)−1

.

Like the carrier density, the scattering times can also generally vary with two types

of mechanisms: 3D ‖ ~B‖-dependent scattering and 2D Bz-dependent scattering.

Suppose we have a single-carrier system with field-angle-independent carrier den-

sity n( ~B) = n(‖ ~B‖). Let θ represent the angle between ~B and ẑ such that Bz =

‖ ~B‖ cos θ, as shown in Figure 4.4. Taking the ratio of R obtained at any arbitrary
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angle θ = θ0 and θ = 90◦ gives us

Rθ=θ0

Rθ=90◦
= 1 + µ2( ~B)‖ ~B‖2 cos2 θ0

from which we can determine µ( ~B). If the mobility is independent of θ0, the ratio

will have a cos2 θ0 dependence at constant field magnitude. If the mobility depends

on Bz, the ratio will depend on higher powers of cos θ0. Notice that in both cases,

the ratio does not depend on n(‖ ~B‖), allowing us to obtain µ( ~B). Furthermore, once

µ( ~B) is known, the angle- and field-dependence of n( ~B) can also be obtained from

R( ~B).

The situation is more complicated if n( ~B) depends on θ. It is reasonable to suggest

that n( ~B) can be expressed as an even polynomial in powers of cos θ0. The simplest

case is that of a constant term and a cos2 θ0 term, such that

R =
ln b/a
2π

1 + µ2( ~B)‖ ~B‖2 cos2 θ0

(n0 + n2 cos2 θ0)eµ( ~B)
.

Even for ~B-independent µ, this expression is becoming intractable, with dependencies

on ~B and θ0 that are difficult to separate. Unfortunately, this problem is compounded

when the scenario with multiple carrier types is considered.

4.4 Magnetoresistance Below 3 K

With the advantages of the Corbino disk geometry discussed above, it is a natural

choice for magnetotransport studies of SmB6. The initial motivation for the trans-

port study was to observe SdH oscillations characteristic of 2D electron systems. To

this end, Corbino disks were fabricated on single-crystal SmB6 pieces, and their re-

sistances were measured in magnetic fields up to 45 T. Both (001) and (011) crystal

surfaces were measured. In both cases, SdH oscillations were not observed, but angle-
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dependent negative MR was observed. There were also low-field hysteretic features

that bear resemblance to WAL, but unlike WAL, depend on the field sweep rate. The

experimental setup and results are presented in this section, and various mechanisms

for the observed phenomena are discussed, most notably the Kondo effect.

4.4.1 Experimental Methods

The single-crystal SmB6 samples used for this study were grown by the Al-flux

method. Typical pieces had 1− 2 mm × 600− 1000 µm surfaces and were thinned in

the (001) or (011) crystallographic direction to 300− 500 µm thicknesses by manual

polishing with coarse SiC grit or by automated lapping using Al2O3 slurry. The

surface of interest on each piece was polished with SiC abrasive pads (grit size P4000)

or 0.3 µm slurry. The Corbino disks were lithographically patterned with an inner

diameter of 300 µm and an outer diameter of 500 µm. The surfaces were ashed with

oxygen plasma, and 50/1500 Å Ti/Au contacts were evaporated onto the surface,

followed by lift-off of the active region. Wires were attached to the contacts using

Au or Al wirebonding, and the contacts were reinforced with silver paint for better

adhesion where needed. For most of the samples, two wires for each source and drain

were bonded so that the resistance of the wires could be neglected when performing

four-terminal measurements. The completed devices are shown in Figure 4.5. Contact

resistances were Ohmic both at 300 K and at 4 K.

The samples were characterized by alternating current (AC) resistance measure-

ments at high magnetic fields using standard lock-in techniques in multiple mag-

net systems at the National High Magnetic Field Laboratory (NHMFL). Angle-

dependent resistance measurements were performed in the NHMFL 35 T system us-

ing constant currents of 2 µA and 5 µA for the (011) and (001) surfaces, respectively.

Measurements at lower fields were taken in a 3He cryostat with an 8 T superconduct-

ing magnet and a 3He/4He dilution refrigerator with a 14 T superconducting magnet,
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Figure 4.5: Corbino disk images. (a) Patterning two disks on a (001) surface. The
darker regions have a layer of photoresist. (b) Sample shown in (a) af-
ter metallization and lift-off. The dark blue regions are exposed SmB6

regions, while the gold region is the Ti/Au layer. (c) A long SmB6 crys-
tal with two disks patterned on the (011) surface. The crystal is glued
to a Si wafer piece (gray), which is attached to the mount header with
photoresist (red). (d) A close-up of the sample shown in (c), showing the
disks’ details. Silver-colored blobs are silver paint used to reinforce the
wirebonds. (e) Another metalized disk fabricated on a (001) surface. (f)
EDX composite image of the disks shown in (a) and (b), showing the rela-
tive concentrations of Sm (green), Au (orange), Ag (magenta), Al (blue),
and C (red). (g) SEM image of the region shown in (f). (h) Two disks
fabricated on a floating-zone-growth crystal (glued to a Si substrate) and
wirebonded. The upper disk has an additional (failed) Au gate.
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both of which were run using a bipolar magnetic power supply for which the current

polarity switching occurs at B 6= 0 T. These resistance measurements were also taken

using standard lock-in techniques, and in some cases, a pre-amplifier and a bridge cir-

cuit were also used to achieve clearer signals. The time constant that determines the

low-pass filter bandwidth of the lock-in amplifier was set short enough (τ = 1 sec) so

that even at the fastest magnetic field sweep rates (32 mT/sec), the associated time

delay was not significant. The excitation current (I = 10−7 – 10−6 A) was sufficiently

small that the measured resistance did not depend on the current or frequency.

4.4.2 Measurements of Magnetoresistance at Large Magnetic Fields

Figures 4.6 (a) and (b) show MR traces obtained at 0.3 K for multiple field angles,

measured with respect to the surface normal, in the NHMFL 35 T system for the (011)

and (001) surfaces of SmB6, respectively. The most apparent feature for both surfaces

is the strong negative MR at all measured angles. The traces show no signs of SdH

oscillations for either surface up to 45 T, which is perhaps surprising in light of the

observation of dHvA oscillations at lower field values [96].

One of the most striking features of the traces is their angle dependence, which

is primarily a result of the perpendicular field dependence of σxx arising from the

Corbino disk geometry and included in the denominator of Equation 4.1. Taking the

ratio of traces for in-plane magnetic field and magnetic field with arbitrary angle θ

with respect to the surface normal eliminates n and gives

σ(B‖)

σ(B)
= 1 + µ2B2 cos2(θ), (4.6)

from which we can directly obtain µ. The ratio associated with each surface is plotted

for different magnetic fields as a function of angle in Figure 4.6 (c) and (d), and for

each angle as a function of magnetic field in Figure 4.6 (e) and (f). Both sets of
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Figure 4.6: Magnetoresistance traces at several angles for (a) the (011) surface and (b)
the (001) surface. Angle dependence of the ratio (points) of the resistance
with out-of-plane field (R) to the resistance with in-plane field (R‖) for
(c) the (011) surface and (d) the (001) surface at representative magnetic
fields, along with cos2 θ fits (lines). The ratio R/R‖ is plotted versus
magnetic field for (e) the (011) and (f) the (001) surfaces.
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ratios exhibit an apparent cos2 θ dependence, which is the expectation for a surface

conduction in the Corbino disk geometry (Equation 4.6), and the (011) ratios also

approximately exhibit the expected B2 dependence. Simple quadratic fits of the (011)

field-dependent curves in Figure 4.6 (e) yield a carrier mobility of 123 cm2/(V·s) and a

carrier density of 2.5×1013 cm−2. Both of these values are much lower than previously

reported values for Hall bar transport measurements [72, 77], which may suffer from

the problems discussed earlier. However, they are both more consistent with values

from ARPES measurements [29, 97, 98] and other Corbino disk experiments [99], and

the carrier density value is physically plausible with respect to the kF boundary. Such

a low mobility suggests that SdH oscillations will not be detectable below ∼1/µ =

81 T, which explains why they are not observed. Meanwhile, the (001) ratios do

not exhibit a simple B2 dependence, most likely due to the presence of multiple

carrier channels which may have different MRs. A two-carrier formulation (such as

that in Section 4.3.3), in which the channels have similar conductivities but very

different carrier mobilities, will yield a total σ(B‖)/σ(B) with a shape similar to the

data ratios in Figure 4.6 (f), but it will not quite fit the data without additional

MR-related contributions to each channel. However, the data does not sufficiently

constrain the parameters of such a multiple-carrier fit with MR. Thus, in the analysis

that follows, the focus will be limited to the (011) surface, except where noted.

The MR, which is not explicitly included in Equations 4.1 or 4.6, is due to B

dependence of n, µ, or both. A more detailed analysis allows us to investigate the

relative contributions of n(B) and µ(B) to the MR. The coupling between the or-

bital motion of 2D surface electrons and the external magnetic field is expected to

show a cos2 θ dependence similar to that of Equations 4.1 and 4.6, and would not

affect σ(B‖). Meanwhile, other mechanisms (e. g., contributions from the Zeeman

splitting) are expected to be independent (or weakly dependent) on θ. Because most

of the θ dependence in the data comes from the Corbino disk geometry, and because
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Figure 4.7: Plot of the (011) surface carrier density (filled squares) and mobility (open
diamonds) obtained from angle-dependent fits of the data. Shaded areas
represent uncertainty in the parameters of the angle-dependent fits. These
are plotted together with best-fit curves for polynomial n(B) (blue) and
corresponding µ(B) (red) using the θ = 25◦ and θ = 85◦ data (solid lines),
and using the θ = 5◦ and θ = 85◦ data (dotted lines). The vertical log
scale allows direct comparison of the relative magnitudes of changes in n
and µ.

σ(B‖) exhibits large MR, we proceed with the assumption that n(B) and µ(B) are

independent of the field angle θ.1 The carrier densities and mobilities obtained from

cos2 θ fits at constant B (e. g., Figure 4.6 (c) and (d)) are plotted as a function of

magnetic field (symbols in Figure 4.7). The quality of the fits2 at large B supports

the assumption that n(B) and µ(B) are independent of θ, and n(B) and µ(B) can

be obtained with good precision. However, the fits (and the analytical form of Equa-

tions 4.1 and 4.6, solved for n(B) and µ(B)) are divergently sensitive to noise near

B = 0, so this method does not work well at low field values, which is evident in the

uncertainty of the values in Figure 4.7.

1A small θ-dependent contribution is expected to arise from the weakening of TI backscattering
suppression due to the magnetic field’s influence on the helical spin dispersion (see Section 2.3)
[58]. For SmB6, BTI ≈ 4.5 kT, based on the values for vF and kF reported by Li et al. [96] and a
generic g-factor of 2. For the field values measured here, B/BTI ≤ 0.01 (see Figure 2.1); this effect
is therefore negligible. A smaller g-factor would reduce the effect even further.

2See Appendix A.
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To overcome this, we assume that n(B) can be approximated using an even poly-

nomial in B. By treating the polynomial coefficients as fitting parameters, a best fit

for n(B) and µ(B) can be determined, constrained by two σ(B) traces at different

(arbitrary) θ. Details for the fitting procedure can be found in Appendix D. Solid

(dotted) lines in Figure 4.7 show the best fit for a 6th-order polynomial n(B) using the

θ = 85◦ trace and the θ = 25◦ (θ = 5◦) trace, along with the corresponding µ(B). Fits

at other angles change the relative magnitude of n(B) and µ(B) by <10%, suggesting

some small angle dependence of n(B) and µ(B) that is not sufficiently expressed in a

two-parameter model, but the qualitative dependence on B remains the same. Both

the θ-dependent fits and the B-dependent fits suggest that changes in carrier density

are primarily responsible for the MR of the (011) surface; i. e., the MR is a result

of large changes in the carrier density accompanied by small changes in the carrier

mobility.

For the (001) surface, a näıve application3 of single-carrier cos2 θ fits above ∼25 T

yields a constant mobility of 61 cm2/(V · s) and an increasing carrier density around

2 × 1014 cm−2. If such fits are believed, this suggests that the (001) surface’s MR is

also dominated by changes in carrier density. However, below ∼25 T, the fit residuals

start becoming much larger. Meanwhile, a polynomial best fit of n(B) fails to repro-

duce the B dependence of the data, giving credence to the notion that the analysis

is complicated by the presence of multiple carrier channels with different MRs4 or

another unknown θ-dependent effect.

3See Appendix A.
4Multiple channels giving rise to visible MR features at distinguishable magnetic field values is

an indication that the channels likely have carrier densities and mobilities that differ by orders of
magnitude, but have resistivities of the same order. In fact, this is a reasonable expectation in a
system that exhibits both large and small Fermi pockets, as has been observed on the (001) surface
of SmB6 both by ARPES and dHvA measurements. The large pocket, which is centered about the
X point and has a large carrier density, may suffer from short-range disorder scattering and have
a comparatively small mobility, as discussed later. Meanwhile, the small pocket, which is centered
around the Γ point and has a smaller carrier density, may be dominated by long-range impurity
scattering, which allows a much higher mobility.
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4.4.3 Hysteretic Magnetotransport at Small Magnetic Fields

We now focus specifically on low magnetic fields, for which the response of the

resistivity shows slow dynamical hysteretic behaviors. Specifically, the resistivity is

dependent on the history of the magnetic field and its sweep rate. For this study,

the magnetic field is swept slowly and continuously from −Bmax to +Bmax, where

Bmax indicates the range of interest. The resistivity is measured while sweeping, and

data is taken for sweeps in both directions at several sweep rates (dB/dt). Figure 4.8

shows typical resistivity traces of one of the Corbino disk samples at different sweep

rates. This dynamical hysteretic behavior was observed in most of the samples. Using

the arrows in the figure as a guide, the resistivity does not show any strong features

while sweeping the magnetic field from −6 T (−Bmax) to 0 T. However, as the sweep

continues from 0 to +6 T (+Bmax), a noticeable dip occurs. The resistivity first

decreases to some minimum value. Then, the resistivity starts to return to its former

path as the magnetic field continues to increase. When the sweep direction is reversed

and the field is swept from +6 T (+Bmax) to 0 T, this dip does not appear. However,

as the field continues from 0 to −6 T (−Bmax), the strong dip appears again. The two

strong dips appear symmetrically for each polarity of the magnetic field. When the

magnetic field sweep rate is increased, the magnitude of these dips becomes larger.

Typically, these dips appear at magnetic fields smaller than ±5 T. Hysteresis has

also been reported by other researchers [100] at similar magnetic fields, but there are

significant qualitative differences between those results and those of this study.

An additional hysteretic feature is observed in all of the samples studied at lower

magnetic field ranges (within ± 1 T). These features, shown in Figure 4.9, were sys-

tematically studied on two samples as described above at lower temperatures (down

to 60 mK) and extremely slow magnetic field sweep rates (down to 0.2 mT/s). The

features have two symmetric dips similar to those in Figure 4.8. The hysteretic fea-

tures are smaller, and the positions of the minima appear at a lower field range, but
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Figure 4.8: Response of the resistivity of the Corbino disk samples to the magnetic
field below 6 T at 0.3 K for different sweep rates. The numbers shown
next to each curve are the magnetic field sweep-rate magnitude in units
of mT/s. INSET: Image of a Corbino disk sample prepared on a polished
SmB6 surface.

the qualitative magnetic field response remains the same. Previously, WAL has been

reported [100, 101] within this range. However, the sweep-rate-dependent dynamic

dips that are observed in Figure 4.9 are not caused by WAL. For the WAL case,

the magnetic field only breaks the phase of the electrons traveling in a closed loop by

scattering off static impurities, and this phase does not depend on dB/dt. If one were

to hold the magnetic field sweep rate constant, the data do show some similarities to

WAL. As shown in Figure 4.10, when the magnitude of the dips (∆R) are converted

to the change in conductivity (∆σ), the sizes are on the order of typical WAL peak

magnitudes (∼0.1e2/h). The value of ∆σ increases as the temperature is lowered, as

is expected for WAL. However, WAL’s response to the magnetic field must be static.

Although the magnitude of the dips decreases at slower sweep rates, there is no sign

of the dip magnitude saturating (becoming non-dynamic). The magnitude of the dips

as a function of magnetic field sweep rate for both samples is shown in Figure 4.11.

Even at the slowest measurements (dB/dt = 5 × 10−5 T/s), which takes more than

5 hours to change B by 1 T, the magnitude of the dips continues to shrink. In
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Figure 4.9: Response of the resistivity of the Corbino disk samples to the magnetic
field below 1 T at 80 mK for different sweep rates. (a) (001) sample (b)
(011) sample.
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Figure 4.10: Magnitude of the dips (in conductivity) as a function of temperature at
a magnetic field sweep rate of 0.167 mT/s.
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addition to these considerations, angle-dependent magnetic field measurements also

indicate that this feature is not WAL. WAL is a function of the perpendicular mag-

netic field component [102]. As shown in Figure 4.12, however, the dips also appear

in parallel (in-plane) magnetic fields, and they widen very slowly compared to what

is expected from typical WAL as the field is rotated from the perpendicular to the

parallel direction [102].

Since the hysteretic features are not due to WAL, we must assume that if WAL

exists, it is buried under the hysteretic dips. For this to happen, since the WAL

features are static, they must be smaller than the smallest hysteretic dip size that

was observed (∼0.2e2/h in Figure 4.11). An estimation of the expected magnitude of

WAL is calculated to be [102, 103]

δσ =
α

2π

e2

h
ln
τφ
τp
,

where τφ is the phase coherence time, τp is the momentum relaxation time, and α is the

number of (identical) conduction channels. At the low temperature range measured

(1 K – 60 mK), τφ can be theoretically estimated [104, 105], ranging on the order of

0.1 – 1.0 ns. Calculating τp requires the unknown effective mass, m∗, in addition to

the mobility extracted from the high-field measurements (τp = m∗µ/e). If we use the

effective mass from dHvA and ARPES measurements [29, 96–98, 106–110], where the

effective mass is an order of magnitude smaller than the electron mass (m∗ ∼ 0.1me),

the WAL feature magnitude must be larger than the dip sizes of the hysteretic peaks

(δσ ∼ 0.7 – 0.89 × number of conduction channels), which is inconsistent with the

measurements. For the dip size to be on the order of 0.1e2/h or smaller, the effective

mass must be much larger than the electron mass (m∗ � me). In the following

section, a more plausible scenario is discussed, which can also explain the absence of

WAL as partly due to the presence of magnetic impurities.
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4.4.4 Discussion

4.4.4.1 Negative Magnetoresistance

Possible physical origins of the negative MR will now be discussed. Past measure-

ments at 4 K [73] have also observed strong negative MR. These researchers, assuming

they were measuring fully bulk properties, attributed the negative MR to closure of

the bulk gap ∆ and an increase in nbulk. Indeed, 4 K is very near the reported [72,

77] crossover temperature between surface-dominated and bulk-dominated conduc-

tion for similar flux-grown crystals. However, these data are taken a full order of

magnitude below the crossover temperature in a regime where the bulk is electrically

dead,5 and the conduction measured is purely due to the surface states (For a more

complete discussion of this, refer to Section 4.5). In this regime, the carrier density

of the bulk bands is not related to the surface conduction, and a change in activated

bulk transport with gap reduction is unable to explain the negative MR observed. It

is, however, possible that a change in the bulk structure could have some effect on

the surface states at the Fermi level (especially a change in the Dirac point relative to

EF), causing a change in the surface state carrier density. Because the fits of the data

indicate that n(B) is the dominant source of the negative MR, it seems reasonable to

attribute the negative MR to such a bulk-driven (θ-independent) picture. However,

our collaborator’s dHvA measurements [96] suggest that the carrier density does not

change significantly up to 45 T for any θ. This disagreement, along with the large

variations among reported [29, 96–98] values for n, µ, and kF (see Table 4.1), remains

to be resolved. Of course, it is difficult to compare values from the transport studies

and the ARPES studies, since the ARPES is performed in high vacuum, while the

transport samples are exposed to ambient air. Nevertheless, there does seem to be

some consistency among the ARPES-obtained X-pocket n (multiplied by a factor of

5Pollution from bulk conduction at even 0.01% does not arise in an activated transport model
until the bandgap is only 13% of its zero-field value, which happens at inaccessibly large magnetic
fields.
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Report Crystal n kF µ Reference
Surface (1013 cm−2) (nm−1) (cm2 · V−1 · s−1)

dHvA α 0 0 1 0.0716∗ 0.30 1100 [96]
dHvA β 0 1 1 0.705∗ 0.941 840 [96]
dHvA γ 0 0 1 0.928∗ 1.08 360 [96]

ARPES X 0 0 1 11.2† (4.11, 3.44) 13 [29]
ARPES X 0 0 1 9.14† (4.1, 2.8) - [108]
ARPES X 0 0 1 16.4† (5.56, 3.7) - [97]
ARPES X 0 0 1 9.57† ( - , 2.9) - [98]
ARPES X 0 0 1 8.69† (3.9, 2.8) - [107]
ARPES Γ 0 0 1 0.645† 0.9 - [108]
ARPES Γ 0 0 1 1.15† 1.2 - [97]
ARPES Γ 0 0 1 0.645† 0.9 - [98]

Corbino disk 0 0 1 20. - 133 [99]
Corbino disk 0 0 1 19.‡ - 61‡ [75]
Corbino disk 0 1 1 2.44 - 125 [75]
∗Estimated from the oscillation frequency for a single pocket, using the Onsager
relation f = ~

2πeA(EF).
†Estimated from kF for a single pocket using n =

kxky
4π .

‡These values are suspect, as discussed in Section 4.4.2.

Table 4.1: List of reported surface transport parameters.

2, since there are two X pockets in the BZ) and Corbino-disk-obtained n for the (001)

surface.

4.4.4.2 Kondo Scattering

If the B dependence of n is taken as a given, weaker features of the MR that

are apparent in µ(B) can be investigated. Motivated by the observation of magnetic

hysteresis at low fields (discussed in Section 4.4.3) [75], magnetic-impurity scattering

can be assessed as a likely contribution to the negative MR. The Corbino disks’ re-

sistances were measured as a function of temperature with B = 0 (Figure 4.13). On

both surfaces, as the temperature is reduced, a logarithmic increase of the resistance

is observed, the coefficient of which is far from the quantum conductance e2/h. This,

taken together with the low-field increase in µ(B), suggests a TI surface Kondo scat-
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Figure 4.13: Resistivity versus temperature for (a) the (011) surface and (b) the (001)
surface. The solid black line is data, the long-dashed red lines are log-
arithmic fits on a linear temperature background, and the short-dashed
green line is a logarithmic fit on a quadratic temperature background.

tering mechanism [111, 112]. There are likely significant magnetic impurities on the

SmB6 surface, based on recent X-ray magnetic circular dichroism and X-ray absorp-

tion spectra which show that Sm3+ with a net magnetic moment is dominant on the

surface [113]. In addition, Hard X-ray Photoelectron Spectroscopy (HAXPES) shows

a weak oxygen signal from a polished and then etched SmB6 sample [114]. These

results imply that Sm2O3 is formed when the surface of SmB6 is exposed to air at

ambient conditions [114]. The native Sm2O3 formed on the SmB6 surface is expected

to be disordered. Therefore, Kondo scattering from disordered Sm3+ moments is as-

sessed as a possible mechanism to explain both the temperature dependence and the

low-field enhancement of µ(B).

The logarithmic T dependence of the electron scattering rate observed can be fit

using the following formula [112], developed for a 3D TI system with dilute magnetic

impurities:

1

τ̄
∝ 3 + Jρ ln

T

TK

, (4.7)

where J is the coupling constant, ρ is the density of states at EF, T is the temper-

ature, and TK is the Kondo temperature calculated using the renormalization group

approach. Here, τ̄ represents the scattering-angle-averaged scattering time, since the
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spin–momentum locking of the TI surface states causes τ to depend on the scattering

angle. For the SmB6 surface, J might represent the coupling due to hybridization

between the magnetic moments of the surface states and the paramagnetic Sm2O3 f

states. The Kondo scattering produces negative MR according to the formula [111,

112],6

1

µ
=

1

µd

+
1

µM

(
3 + Jρ ln

T

TK

)
cos2

(π
2
M(B)

)
, (4.8)

where µM is the coefficient of the contribution from Kondo scattering, µd is the

mobility from disorder scattering alone, and M(B), for which the relationship to B

can be exactly calculated at low temperatures [111], is the normalized magnetization

of the impurities. Motivated by the experimental signatures of Kondo scattering, we

now apply this theory to SmB6, even though the surface magnetic moments from the

Sm2O3 might not be in the dilute limit. At zero magnetic field (B, M = 0), the

logarithmic fits shown in Figure 4.13, which include a linear background resistance

of unknown origin, provide a way to experimentally determine µd and µM. The

dependence on magnetic field (B, M 6= 0), which arises from the suppression of spin-

flip scattering due to Zeeman splitting, can then be predicted as a function of T and

TK. Using the values from the logarithmic fits and for the value of n(B = 0), computed

values for µ(B) for several different Kondo temperatures are plotted alongside the fit

of the experimental µ(B) for comparison, in Figure 4.14. The low-field increase in

µ(B) fits quite well with Kondo scattering for TK = 40 K; however, this is only

an estimate, since other effects such as short-range scattering (discussed below) can

also influence µ(B). Note that if one were to ignore the evidence for B-dependent

n and instead attribute the MR solely to changes in µ(B), such a näıve fit would

yield a much larger negative MR than can be explained by Kondo scattering alone

6The reader is cautioned that this formulation may be quantitatively different from the 2D Kondo
scattering description appropriate for surface magnetic impurities. However, the qualitative behavior
will be the same, which is sufficient here because we take the magnitudes of µ, µd, and µM as fitting
parameters in the subsequent analysis.
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Figure 4.14: Fitted mobility alongside several mobility projections of the Kondo effect
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(refer to Appendix B for an example calculation). The theoretical prediction and the

experimental curve agree only by combining the Kondo effect together with the B

dependence of the carrier density.

We now consider a qualitative picture in which an oxide layer with dense mag-

netic impurities can still lead to Kondo scattering behavior. Such a Kondo lattice is

formed by conduction carriers from the SmB6 surface interacting with a disordered

dense array of localized moments from the Sm2O3. If we first consider an ordered

Kondo lattice, as the temperature is lowered from high temperatures, the resistiv-

ity rises logarithmically as the magnetic ordering becomes quenched by Kondo cloud

formation, where the spin scattering between the localized f electron and the d con-

duction electron inside the cloud increases. As the temperature is lowered further,

the resistivity drops, since the effect of coherence between the lattice sites (Bloch’s

theorem) dominates, and the magnetic moment becomes quenched [115]. However,

if the Kondo lattice system is disordered, a remnant magnetic moment is expected

to exist in the system, and this downturn due to coherence can be averted. This

remnant magnetic moment is expected to produce effective Kondo scattering, and

the logarithmic increase of resistivity can still remain. Indeed, there are examples
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of heavy fermion systems that show suppression of the downturn when even a small

doping amount is introduced (i. e., small disorder) [116, 117].

The downturn of µ(B) at higher magnetic fields is not a feature of Kondo scatter-

ing, but is qualitatively consistent with short-range disorder-scattering mechanisms.

It has long been known [118] that in the high-carrier-density limit (in which the

SmB6 surface states live), the mobility is partially determined by short-range disorder-

scattering mechanisms (e. g., surface-roughness scattering) and scales inversely with

the carrier density; i. e., µ ∝ n−α, where α is determined by the particular scatter-

ing mechanism(s). This behavior has been observed in several semiconductor het-

erostructures [119]. In SmB6, as n(B) increases with increasing B, the short-range

scattering time (and thus µ) decreases with B. Typical values for α between 1
2

and

2 are consistent with the data. However, a precise determination of α from the data

is problematic, because n(B) only varies by 15% over the fields measured, and the

dynamic range for determining a power-law relation is too small. This further com-

plicates the determination of TK, since the contribution to the mobility from the

short-range scattering can compensate the contribution from the Kondo effect. (For

example, for α = 1
2
, a TK of 30 K would give a better fit in Figure 4.14.) Nevertheless,

this effect, together with the Kondo scattering, gives a picture that is qualitatively

consistent with the µ(B) extracted from the fits, where the low-field negative MR is

due mostly to Kondo scattering, and the high-field negative MR is due mainly to an

enhancement in n(B), which then causes a much weaker diminution of µ(B) via an

increase in short-range scattering.

4.4.4.3 Weak Anti-localization

One likely reason that WAL is absent or too small to detect in these measure-

ments is the existence of magnetic (Kondo) impurity scattering, a scenario which is

consistent with the results for the temperature dependence and magnetic-field depen-
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dence of the resistivity. Magnetic-impurity scattering plays a role in the quantum

correction of conductivity, since it alters the dephasing of electrons. Here, there are

two possible effects that can reduce the magnitude of the hysteretic dips. For non-TI

two-dimensional electron gases (2DEGs), it is well-known that introducing a small

number of magnetic impurities can even switch the signs of the dips of the quan-

tum correction to conductivity [120]. For a topological insulator surface, there is

an additional effect that results in a smaller feature size. By introducing magnetic

impurities, the energy bandgap at the Dirac point opens, and this bandgap opening

induces a crossover from WAL to WL [121]. These considerations, which are entirely

expected in a system with magnetic impurities, fall outside the scope of the usual

Hikami-Larkin-Nagoaka formulation [102] used to analyze WL and WAL.

Also, the magnetic field range appropriate for a quantum correction to conduc-

tivity on the SmB6 surface might not occupy the typical range for such corrections.

Ordinarily for disordered thin metals and other known TI surfaces [122, 123], the

magnetic field range of interest for WAL or WL is 0.1 – 1 T. Theoretically, this

range can be estimated by the characteristic field Bφ = (h/e)/8πl2φ without magnetic

impurity scattering. Since even a small amount of magnetic impurities can lower the

phase coherence length by orders of magnitude [124, 125], the characteristic field can

be much larger than 1 T. In future studies, a wider range of magnetic fields may need

to be considered for WAL and WL.

4.4.4.4 Origin of the Dynamical Magnetotransport Feature

Let us now address the physical origin of the hysteretic features seen at low field

values. Because SmB6 exhibits no magnetic ordering at low temperatures, a magnetic

hysteresis is likely to be extrinsic to the material, arising from the surface oxide (which

may vary significantly across the samples) or some other material used to mount the

samples in the cryosystems, and which is proximal to the samples. All the samples
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measured exhibited the very-low-field (∼0.05 T) peaks in multiple cryostats, but only

some exhibited the higher-field (0.5 – 2 T) peaks.

The following extrinsic mechanisms can be ruled out:

� Joule heating – This mechanism can be detected by changing the current

through the sample by an order of magnitude; no such change in the hysteretic

behavior was observed during the experiments. Furthermore, the Joule heating

power of the sample is orders of magnitude smaller than the cooling power of

the cryogenic system.

� Inductive heating – Induced eddy currents depend on the magnetic field

sweep rate, but are independent of the sweep direction. Since inductive heating

is constant over the course of a fixed-rate sweep, the resistivity change of the

sample due to inductive heating can only be monotonic and non-reproducible

over several sweep cycles. However, the data have two non-monotonic dips which

are reproducible at a constant sweep rate and temperature. Also, the magnitude

of inductive heating at 0.3 K is orders of magnitude smaller than the cooling

power of the cryostat. Additionally, the temperature fluctuations recorded by

the thermometer are not large enough to indicate a global temperature change

in the system.

� Power supply switching – If a unipolar power supply is used for the super-

conducting magnet, it can cause a dip in resistivity when it switches circuits

at zero magnetic field. For this reason, a bipolar magnetic power supply, for

which the switching event (B 6= 0 T) was identified, was used, and the dips

were confirmed to be independent of this event.

One possible extrinsic source of the hysteretic behavior could be the magne-

tocaloric effect. In this scenario, the increase in magnetic field coerces the magnetic

moments in a magnetic material to align with the field, which reduces the magnetic
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entropy of the system. This process is adiabatic in the cryostat, leading to an increase

in temperature. When the magnetic field is then reduced toward zero, the magnetic

entropy can increase, leading to a decrease in the sample temperature. Such varia-

tions in the sample temperature would change the resistance according to Figure 4.13.

Indeed, for most of the samples, the decrease in resistance as the field is increased

would be consistent with a temporary increase in temperature. As the magnetization

becomes saturated at higher fields, this warming effect would gradually disappear,

allowing the cryosystem to cool the sample over a timescale of several seconds, con-

sistent with the data, and allowing the resistance to return to its original value. If

the source of the magnetization is located very near the sample, it may be sufficiently

thermally isolated from the thermometer and the cooling power of the system to

influence the sample temperature without influencing the thermometer.

The magnetic material that would be responsible for this effect is entirely unclear.

SmB6 itself does not exhibit magnetic ordering at low temperatures. The electronic

leads to the samples include a number of possible superconducting materials, but

these typically exhibit the inverse magnetocaloric effect, which has the wrong sign to

explain the data, and they typically have critical temperatures well within or below

the temperature ranges in which this effect is observed. There are also occasionally

spasmodic, non-reproducible spikes in the data and an offset in the resistance that

depends on sweep direction to fields as high as 8 T, well above the critical field for

most superconductors. However, it is not likely that the magnetocaloric effect is

responsible for these sporadic features.

Another possibility is that this hysteretic magnetotransport behavior with long

time scales is related to the disordered Kondo lattice system formed by disordered

Sm2O3 on the SmB6 surface. In addition to the picture introduced in Section 4.4.4.2,

the disordered Kondo lattice may also be a glassy system [126, 127]. Previously-

studied disordered-Kondo-lattice models that are glassy assume that Ruderman-
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Kittel-Kasuya-Yosida (RKKY) interaction strengths are randomly distributed. Here,

there is the possibility that random superexchange interactions due to the varying

angle of the Sm–O–Sm bonds may play a role similar to that of random RKKY in-

teractions. The measured resistivity response to the low magnetic field may be a

manifestation of the magnetization property of a glassy system. In a spin-glass sys-

tem, the relaxation time of the magnetization can be extremely long [128]. Therefore,

when an external magnetic field is applied, the magnetization depends on the mag-

netic field sweep rate, even when the sweep rate is very slow. In addition, the total

magnetization of a spin-glass system exhibits a hysteresis loop, so the area of the hys-

teresis loop depends on the magnetic field sweep rate. Theoretically, the hysteresis

area becomes larger at faster sweep rates and at lower temperatures [129]. In a sce-

nario where the resistivity decreases when the magnetization decreases, the magnetic

field history, sweeping direction, sweep rate, and temperature dependence of the data

are all consistent with the magnetization of the glassy features explained above.

This glassy-magnetic-ordering scenario, along with the absence of WAL, is incon-

sistent with previous reports [100, 101]. Both of these previous studies reported

observing WAL, and Nakajima et al. [100] additionally reported on sweep-rate-

independent hysteresis as evidence of chiral edge channels from ferromagnetic do-

mains. One possible explanation for this difference is that the surface magnetic or-

dering of our samples is quite different from that of the samples in those experiments,

due to variations in the disorder of the native oxide after different sample preparation

procedures, such as polishing and lithography. According to the disordered-Kondo-

lattice model, the magnetic phase can change between spin glass and ferromagnetic

ordering, depending on the degree of disorder [127]. Further systematic studies of sur-

face preparation are needed to reconcile these differing findings. In addition, transport

measurements performed in high vacuum on cleaved surfaces, on which there is pre-

sumably no oxide layer, would also be extremely powerful for the full characterization
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of the surface states.

4.4.5 Summary and Outlook

Transport measurements of individual crystallographic surfaces of SmB6 using

Corbino disk structures have been performed. Both (001) and (011) surfaces display

strong negative MR. The (011) surface exhibits a carrier density and mobility at val-

ues which are significantly lower than previously reported from transport methods,

but which are more consistent with ARPES data. For both (001) and (011) surfaces,

the temperature dependence suggests Kondo scattering from magnetic surface impu-

rities. Fits of the angular dependence of the data suggest that the negative MR is

primarily due to an increase in carrier density, especially at high fields, but with some

additional contribution from the suppression of Kondo scattering.

All of the samples revealed a dip of resistivity which depended on the magnetic

field sweep rate. Although these features become smaller in magnitude at slower

sweep rates, the magnitude is still clearly visible at the slowest measurements. These

features are most likely due to an extrinsic magnetic effect such as the magnetocaloric

effect or magnetic-impurity scattering due to the presence of the naturally formed

Sm2O3 layer, which might exhibit a glassy magnetic ordering. In either case, the

behavior of the dip is inconsistent with WAL, and to the extent permitted by the dip

at the slowest sweep rates, WAL is not observed. This lack of WAL could also be

attributed to the effect of the magnetic surface impurities.

A TI with no bulk contribution can potentially be an ideal building block for

realizing Majorana fermions and spintronics devices [40, 41, 130]. If the Sm2O3 is the

leading magnetic impurity on the surface, the impurities, in principle, can be avoided

using oxygen-free fabrication conditions. In this case, the surface of SmB6 may be a

strong candidate for this building block. Growing a heterostructure or a cap layer on

top of the SmB6 surface may be a possible solution for preventing the native Sm2O3
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formation on the SmB6 surface.

4.5 Bandgap Closure at High Magnetic Fields

4.5.1 Introduction

In the previous section, the focus has been on measurements below the crossover

temperature. We now turn our attention to the behavior of the MR across the

crossover temperature. The transport in this regime has both surface and bulk con-

tributions, the latter of which is determined by activated transport across the bulk

gap. The opening of this bandgap has been the subject of numerous studies [29, 32,

73] as researchers seek to understand the mechanism responsible for gap formation

due to strong correlation interactions.

As mentioned in Chapter I, two distinct experimental values of the bandgap have

been reported. Spectroscopic measurements, especially Photoemission Spectroscopy

(PES), report an (optical) bandgap that opens around 40 K and widens to between 14

and 25 meV at temperatures below 10 K. One ARPES study [29] reports a detailed

temperature evolution in which the conduction band shifts down across the Fermi

energy as the temperature is raised above 50 K. Meanwhile, transport measurements

[2, 16, 34, 72] yield a tiny bandgap between 2 and 4 meV at temperatures between

5 and 20 K. Possible explanations for the difference between these values include an

indirect-bandgap scenario or the presence of in-gap states pinning the Fermi energy a

few meV below the conduction band [34]. Although ARPES has revealed the presence

of in-gap states, the energy resolution in these experiments is not sufficient to discern

the nature of these states within such a tiny gap. If they are surface states however,

they cannot account for the pinning of the Fermi level in bulk crystals or provide

carriers for the thermally activated bulk transport.

One regime that is inaccessible to ARPES studies is that of high magnetic fields.
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Understanding how the bandgap evolves with magnetic field can give insight to the

mechanism driving the gap formation in the first place. The historical benchmark

transport study of SmB6 by Cooley et al. [73] observed strong negative MR at 4 K in

a pulsed field up to 60 T. In an explosive-flux measurement in the same study up to

142 T, the resistance reaches 1.5% of its zero-field value around 86 T, after which the

sample shows strong quadratic positive MR. These researchers, unaware of the onset

of surface-dominated conduction at this temperature, attributed the negative MR

and its minimum to the closure of the bulk bandgap around 86 T. More recently, a

systematic temperature-dependent MR study [131] also reached a similar conclusion.

Unfortunately, this study does not provide much detail or explanation on the MR

below 5 K, which we now know to be dominated by surface conduction.

Motivated by this knowledge and a desire to separate the bulk MR behavior from

the surface MR behavior observed [75], we conducted temperature-dependent trans-

port measurements up to 60 T from 1.4 K to 4.0 K. The temperature dependence

provides a quantitative measure of the transport bandgap’s dependence on the mag-

netic field, while clearly distinguishing it from the behavior of the surface states.

According to these measurements, the strong negative MR observed by Cooley et al.

is indeed due to the closure of the bulk transport bandgap, and is distinct from

the smaller negative MR displayed by the surface states at even lower temperatures

(<2 K), as reported by older [132] and more recent studies [75, 100, 101].

4.5.2 Experimental Methods

For this experiment, resistance measurements were performed on a Corbino disk

fabricated as described in Section 4.4.1 using the aluminum oxide (Al2O3) slurry

and wedge wirebonding. The Corbino disk’s resistance was measured in one of the

NHMFL’s 65 T short pulse magnets using a standard resistance bridge for R versus

T and high-frequency AC lock-in techniques for R versus B. The short duration of
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the magnetic pulse requires lock-in oscillator frequencies in the range of 200 kHz (the

data acquisition rate is about 100 times faster), which leads to a significant amount of

capacitance in the measured signal. Some degree of capacitance is tolerable, since the

phase information is captured by the lock-in; however, this is the limiting constraint

for the maximum oscillator frequency. A detailed transmission line analysis used

for converting the measured signal to the actual sample resistance is included in

Appendix C.

The sample was immersed in liquid 4He at various pressures to obtain stable

temperatures between approximately 1.5 and 4 K. At each temperature, a series

of magnetic field pulses with incrementally larger maximum fields (and thus larger

dB/dt) was used to obtain traces of resistance versus field, and to verify that dB/dt

effects (such as heating and inductive pickup) were not significant, as can be seen in

Figure 4.15. The timing and duration of each pulse is approximately the same, so

the peak field value is proportional to dB/dt for each shot. In Figure 4.15, each shot

shows a decrease in the resistance as the field increases, while the resistance increases

as the field decreases. This is in contrast to heating effects, which depend only on the

amplitude of dB/dt, not its direction. However, the hysteresis in the traces can be

attributed to heating. Because the pulse is not symmetric in time, dB/dt is largest

at the onset of the pulse; thus, the strongest heating occurs during the beginning of

the sweep up, resulting in a small reduction in the resistance during this time. This

reduction is proportional to dB/dt for each pulse, becoming successively larger as

the peak field is increased. In contrast, the down-sweep after the peak field value is

characterized by a small dB/dt (less heating) and longer duration (more time for the

system to cool the sample surface). In Figure 4.15, the down-traces for all the pulses

overlap, which indicates that the heating is not a significant factor during the down-

sweeps. The down-traces obtained from the 60 T pulses are shown in Figure 4.17 (a).

Additional data was taken using pulses up to 95 T at 1.4 K in the NHMFL’s
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Figure 4.15: Magnetoresistance at 4 K for several magnetic pulse amplitudes.

100 T pulsed magnet using the same cryo-insert (Figure 4.16); this trace faithfully

reproduces the 60 T trace at 1.54 K. The time profile of the magnetic field in this

magnet is much more symmetric. It consists of a (relatively) slow ramping of the

outer magnet up to fields around 40 T, at which point a charged capacitor bank is

discharged across a magnet insert similar to the 65 T magnet, achieving total fields

up to 100 T. After the inner magnet has discharged the bank, the outer magnet

is ramped back down. In the data shown in Figure 4.16, the heating effects are

not as significant, presumably due to the flat R-versus-T profile at 1.4 K; however,

mechanical noise introduced by the strong dB/dt when the magnet insert fires at

40 T is especially apparent in the up-trace. For analysis, the down-trace is again

superior. This data, together with the 60 T trace at 3.96 K, is plotted as normalized

magnetoresistance with Cooley et al.’s data in Figure 4.17 (b).

4.5.3 Discussion

A few features of the data are immediately apparent. As the temperature is

reduced, the zero-field value increases, then plateaus, as has been observed in virtually

every DC resistance measurement of SmB6. The trace taken at 3.96 K is a reasonably
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temperatures. The onset of the bulk conduction can be seen at 80 T.
The capacitor bank discharge occurs around 40 T.

faithful reproduction of the data taken by Cooley et al. at 4 K using the NHMFL

65 T pulsed magnet (Figure 4.17 (b)) [73]. At lower temperatures, the “shoulder”

associated with the crossover shifts to higher field values. At 1.54 K (Figure 4.17 (a)),

no shoulder is discernible up to 60 T. In fact, at 1.39 K (Figure 4.17 (b)), the shoulder

does not begin to appear until about 90 T. The traces taken at 2.51 K and below

(Figure 4.17 (a)) all lie together at low fields, and branch away from the lowest

temperature trace at sequentially higher fields as the temperature is reduced. This

indicates that the surface state is largely independent of temperature at this scale,

and that its behavior is mostly independent of the bulk transport behavior over

these temperatures. This picture is not so clear from prior MR reports [73, 131,

132], especially since those MR traces are plotted in a normalized fashion. The data

reported here around 1.5 K differ slightly across multiple samples and from previous

data taken at the same temperatures [75, 132], perhaps due to the Corbino disk

geometry and variations in surface quality. Still, in all the reports considered here,

the surface state MR is very small (up to 15%) compared to the 4 K bulk MR. Finally,
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the author notes that the 1.39 K trace up to 95 T does not show any signs of SdH

oscillations, though this is not surprising, considering the surface mobilities reported

for similar samples [75, 99].

The data in Figure 4.17 (a) is replotted as resistance versus temperature in Fig-

ure 4.18 by taking slices of the data at selected magnetic fields. This format visualizes

the evolution of the resistance rise and plateau with the magnetic field strength. The

crossover shoulder moves to lower temperatures as the magnetic field is increased.

The temperature dependence can be used to estimate the size of the bulk trans-

port gap at various magnetic fields. The total resistance is modeled as the parallel

combination of the surface resistance and an activated bulk resistance:

R(B, T ) =

(
1

Rs(B)
+

1

R0(B)
e

∆(B)
kBT

)−1

where Rs(B) is the surface resistance taken from the trace at 1.54 K, and R0(B)

and ∆(B) (the bandgap) are fitting parameters. The contribution from the surface

resistance is subtracted off, and the remaining bulk contribution

Rb(B, T ) =

(
1

R(B, T )
− 1

Rs(B)

)−1

is plotted as an Arrhenius plot. Linear fits of this plot for each magnetic field value,

weighted by the relative contribution of the bulk portion to the total resistance ∂ ln(Rb)
∂R

,

provide an activation energy with uncertainty estimated by the (weighted) fit resid-

uals. Figure 4.19 shows the best-fit activation energy versus magnetic field, with the

uncertainty of ∆(B) indicated by the gray error bars. The inset depicts an example

fit at 29 T, plotted with the raw resistance and the calculated bulk resistance with

error bars. The bandgap closes with the magnetic field to about 50% of its zero-field

value at 58 T. Although there is not temperature-dependent data at higher fields, the

onset of the crossover shoulder around 90 T at 1.39 K suggests that the closure con-
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Figure 4.17: Magnetoresistance across the crossover temperature range. (a) Traces
of the Corbino disk two-terminal resistance as a function of magnetic
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plotted together with Cooley et al.’s data. Cooley et al.’s data is denoted
by asterisks in the legend.
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Figure 4.18: Plots of the Corbino disk two-terminal resistance versus temperature for
select values of the magnetic field.

tinues to be approximately linear, reaching roughly 10 K at 93 T. Extrapolating the

value of the gap closure is speculative at best, but such a linear trend suggests that

the gap closes around 120 T. This data has some qualitative agreement with prior

reports [133] of field-induced gap closure. In any case, the finite resistance of the

93 T trace at 1.39 K alone is sufficient to reveal that the minimum at 86 T of Cooley

et al.’s 4 K flux compression data does not correspond to a fully closed gap. The

present measurements at this temperature are not at large enough fields to observe

the positive MR in Cooley et al.’s data above 86 T.

The gap seems to close in a nonlinear fashion, in qualitative agreement with

Cooley et al.’s data. Arguments for this qualitative behavior have been speculated

elsewhere [73, 131], but no descriptive models have been suggested. The identification

by ARPES [29] of the X point of the conduction band as the band edge responsible for

the small transport bandgap in this temperature range implies that the conduction

band edge is driven toward the Fermi energy (or vice versa) under the influence of

the magnetic field. Two mechanisms may be involved—Zeeman splitting of the Sm3+

state and a second-order Zeeman shift of the Sm2+ state. Alongside the activation

energy plotted in Figure 4.19, the simulated behavior of the extracted activation
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Figure 4.19: Calculated transport activation energy as a function of magnetic field.
Error bars correspond to fit residuals. Theoretical fits are also plotted for
the Zeeman second-order shift, Zeeman splitting, and shift + splitting
(blue dotted, green dash-dotted, and red dashed, respectively). INSET:
Example weighted fit (blue line) at 29 T of the calculated bulk resis-
tance data (black dots with error bars) on an Arrhenius plot. The raw
resistance is also plotted (green squares) for reference.

energy is plotted for Zeeman splitting (Z) with a Landé g-factor of 0.6 [134–136],

for a second-order Zeeman shift (Q) of 1.0 Hz/G2 [137], and for the combination of

these two effects (Q + Z), which might be expected for the quasiparticle transition

between Sm2+ and Sm3+ states. The data does not fit any of these models particularly

well, especially the combined model which predicts the full closure of the gap around

74 T. These models assume, however, that the Fermi energy itself does not shift

with magnetic field, which is a possibility suggested by the MR measurements of a

shift in the surface states’ carrier densities in Section 4.4.2 [75]. Also, there may

be an additional second-order Zeeman shift associated with the Sm3+ state, which

unfortunately cannot be extracted from the linear splitting at the low fields used so

far to determine g. Meanwhile, the relation of the gap closure to that observed with

increasing pressure [32] is unknown; however, there is no sign in existing MR data of

a sudden collapse of the bandgap, as is reported for pressures around 50 kbar.
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4.5.4 Summary and Outlook

In this section, the temperature-dependent MR in the crossover regime has been

studied, and the behavior of the transport gap has been extracted for magnetic fields

up to 60 T. The results are qualitatively consistent with prior studies of the gap closure

and high-B transport, but provide a more detailed evolution of the gap closure with

magnetic field. This may be useful in unraveling the mystery of the nature of the

transport gap, with respect to the whole electronic structure, and the mechanisms

responsible for it. The MR associated with the reduction of the gap is physically

distinct from the negative MR of the surface states discussed in Section 4.4, though

transport measurements at the crossover temperature can be influenced by both.

Additionally, measurements were taken at 1.4 K up to 95 T, but these show no

signs of SdH oscillations. Achieving higher-field measurements of the surface states is

constrained by two factors. Firstly, the gap reduction makes it increasingly difficult

to measure the surface states without bulk conduction as the magnetic field is raised;

evading this requires measurements at lower temperatures, but a hard limit is imposed

by the field value of the gap closure. Secondly, there are significant technological

challenges to achieving higher field values and the lower temperatures required for

these types of measurements. Very small samples are needed to fit inside a double-

walled 3He cryostat for sub-Kelvin temperatures, and the cooling power of liquid 3He

may not be sufficient against the increasingly large eddy-current heating at higher

and higher dB/dt. The current state-of-the-art multi-shot magnet technology is also

limited to just above 100 T and becomes prohibitively expensive to operate. For

these reasons, any future observations of SdH oscillations must come from surfaces

with improved carrier mobility.
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CHAPTER V

SmB6 Surface Morphology

5.1 Introduction

TIs have the singular distinction of being electronic insulators while harboring

metallic, conductive surfaces. In ordinary materials, defects such as cracks and defor-

mations impede electrical conduction, making the material more electrically resistive.

Peculiarly, 3D TIs should become better conductors when they are cracked because

the cracks themselves, which act as conductive topological surfaces, provide addi-

tional paths for the electrical current. Significantly, for a TI material, any surface

or extended defect [138] harbors such conduction. In this chapter (available as a

preprint elsewhere [139]), it is shown that small subsurface cracks formed within

SmB6 via systematic scratching or sanding result in such an increase in the electrical

conduction. In fact, the results indicate that such conduction can be the dominant

transport. SmB6 is in a unique position among TIs to exhibit this effect because its

single-crystals are thick enough to harbor cracks, and because it remarkably does not

appear to suffer from conduction through bulk impurities [72, 77]. This is in contrast

to the known weakly correlated TIs, which are grown as ultra-thin films in an effort

to minimize bulk impurity conduction. The results of this study not only strengthen

the building case [29, 72, 77, 96–98, 110, 140–142] for SmB6’s topological nature, but

are relevant to all TIs with cracks, including TI films with grain boundaries.
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These results also have serious implications for researchers working on surface

transport studies of SmB6 [72, 75, 77, 99–101, 143, 144]. In fact, this work was

motivated by some of the puzzling results of such studies. For example, several

transport studies, including the one in Section 4.2 [72], obtained carrier densities

beyond the limit of 5.85 × 1014 cm−2 imposed on a single-band 2D system by the

BZ size calculated for the lattice constant of SmB6 [1]. Reinterpretation of some

historical transport studies [16, 32] in a 2D context also results in carrier densities

which exceed this kF limit.

As discussed in Section 4.3, this discrepancy is due in part to measurement dif-

ficulties unique to 3D TI bulk crystals, notably the possibility of conduction along

unprepared side surfaces of a thinned sample with polished top and bottom surfaces.

This problem was evaded using a Corbino disk geometry [75], which is sensitive only

to conduction along a single prepared surface. The polished surfaces on which the

disks were fabricated yielded conductivities that were an order of magnitude smaller

than indicated by a conventional Hall bar sample. While the corresponding carrier

densities in our and others’ [99] Corbino disks were thereby rendered more physically

reasonable, the surprising trend that was observed across our samples was that better

polishing counterintuitively acted to diminish the surface conductivity. This result is

not completely new; this trend had been observed in “pre-TI” transport [34], though

the trend evaded understanding at the time. More recently, a similar trend has been

observed on ion-damaged surfaces, for which the conductivity increases linearly with

the depth of ion damage [145].

The motivating hypothesis for the current study is that the increase in conduc-

tivity with lower surface quality is due to cracks along the surface of the material.

Surface roughening alone is not necessarily expected to change the 2D “sheet” carrier

density (though it might decrease the carrier mobility), but any additional surfaces

due to cracks along the visible top surface would contribute to the measured conduc-
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tivity, as is the case with any 3D TI with no bulk conduction. Because such cracks

would reside below the surface, they would not ordinarily be visible, but they would

contribute to the total transport as an apparent increase in the sheet carrier density

and as a corresponding reduction of the measured Hall coefficient.

5.2 Scratch Experiment

To test the hypothesis of increased conductivity due to cracks near the surface, the

low-temperature resistance plateau was studied over a series of measurements on two

Corbino disks fabricated on a single surface of SmB6, shown in Figure 5.1 (a). The

sample used in this study was the same sample used for (011) MR measurements in

Chapter IV. The Corbino disks’ resistances were measured in a variable-temperature

cryostat between 1.5 K and 4 K using standard lock-in techniques with an AC cur-

rent of 5 µA at a frequency of 17.72 Hz. After the temperature dependence of the

resistances was obtained, the Corbino disks were brought to room temperature, and

one was scratched between the inner and outer contacts in a radial direction using

a diamond-tip scriber (Figure 5.1 (b)). The disks were cooled and measured again,

warmed and scratched a second time (Figure 5.1 (c)), then cooled and measured a fi-

nal time. The additional silver paint surrounding the disk in Figure 5.1 (c) was added

to ensure electrical continuity with the outer Ti/Au contact pad. SEM images taken

after the second scratch are shown in Figure 5.1 (d – f). Resistance curves obtained

after each scratch are plotted together for both Corbino disks in Figure 5.1 (g).

The plateau below 3 K, which corresponds to the resistance of the surface, de-

creases substantially after each successive scratch. Meanwhile, the second unscratched

Corbino disk nearby on the same surface exhibits no change in each successive mea-

surement. A portion of the outer disk contact near the scratch was accidentally

removed during the scratching, as seen in Figure 5.1 (b). Nevertheless, the resistance

decrease in the Corbino disk is opposite the change expected due to this damage, but
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Figure 5.1: Scratched Corbino disk measurements. (a – c) Optical images of the two
Corbino disks before scratching and after each scratch. The scratches are
indicated with magenta arrows. (d – f) SEM images of the second scratch
shown in (c) at increasing magnification. (g) Resistance versus tempera-
ture curves of both disks before scratching and after each scratch. Thick
solid lines indicate the scratched disk, while thin dotted lines indicate the
unscratched (control) disk.
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is consistent with the hypothesis that additional surface cracks could contribute to

the total conduction. The magnitude of the change is also much larger than what

is expected due to surface roughening, given that the scratched area is only a very

small portion of the entire disk; such a large change suggests the presence of additional

unseen conduction paths below the visible surface.

Motivated by this result, ion-beam milling was performed on the scratched Corbino

disk surface to reveal cross sections of the scratch profile. Indeed, subsurface cracks

are apparent below scratched portions of the disk, as shown in Figure 5.2 (a – f). For

example, the groove shown in Figure 5.2 (a) is about 3 µm wide and less than 0.5 µm

deep, but harbors subsurface cracks several µm long in the transverse direction and

up to 100 nm wide. Cracks shown in Figure 5.2 (e) are visible both on and below the

surface. Because the bulk transport behavior is unchanged by the scratches, and be-

cause the increased surface area due to surface roughening is not sufficient to explain

the magnitude of the change in resistance observed, the natural conclusion is that

these cracks must be responsible for the additional conduction. Whether these cracks

are oxidized when exposed to ambient air, as occurs for the outer surfaces [113, 114],

is presently unknown; nevertheless, it is expected that the transport properties of the

cracks can be very different from those of the outer surface.

Subsurface cracks were also observed on a separate SmB6 crystal prepared by

rough-polishing (P1200 grit, which produces ∼1 µm surface roughness), as shown in

Figure 5.2 (g – h). The cracks visible in Figure 5.2 (h) are up to 1 µm long in the

transverse or vertical direction, though they are much narrower than those seen in

Figure 5.2 (b) and (d), approaching the focal resolution limit of the SEM. Although

cracks produced at finer polishing levels are below the resolution of the SEM images,

it is not unreasonable to hypothesize their existence and contribution to the total

surface conduction. Such cracks are expected to form whenever the maximum contact

stress, which actually does occur a few µm below the surface [146], exceeds the tensile
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strength of the material.

5.3 Implications of Subsurface Cracks

The most important implication of this observation is that any transport study

on surface conductors such as 3D TIs with an insulating bulk must account for the

possibility of cracks such as these, especially since such cracks may have different

transport parameter values than the outer surface. In particular, this result provides a

way to account for the reduced conductivity in SmB6 as surface quality is improved, as

well as the extraordinarily high apparent conductivity and unphysically large carrier

density (small Hall coefficient) in the Hall bar measurements. This situation might

be exacerbated if such cracks make electrical contact with hidden Al inclusions in

flux-grown samples that would otherwise be insulated from the surface transport.

However, the complications presented by the possibility of cracks extends also to

crystals grown via the floating-zone melting process.

This result also has ramifications for pressure-dependent studies, during which

the samples are known to fracture [91]. In this scenario, the conductance of the

sample will increase if the sample fractures under pressure, which would lead to a

lowering of the plateau value in both resistivity and Hall measurements. It is not

clear whether this is a significant effect in previous pressure studies of SmB6 [32],

especially since the shift in transport values appears to happen smoothly, rather than

discontinuously, as might be expected from fracturing, and since Cooley et al.’s data

is similar to subsequent pressure-dependent studies [147, 148].

It is possible that the transport parameters reported in Chapter IV and elsewhere

[75] are also affected by subsurface conduction. Since current might flow along cracks

that are not orthogonal with the z direction, it is possible that the estimates of the

mobility based on the cos θ fits are too low, resulting in an overestimation of the

carrier density. The latter is also likely due to the real conductive surface area being
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larger than the “ideal” area used in the Corbino disk calculations.

Finally, a big-picture observation from this result is that the increased conductance

is evidence for the topological nature of SmB6. Indeed, 3D TIs are the only known

class of material that demand metallic surface conduction. It follows naturally that

an increase in conductance resulting from the additional surfaces provided by sur-

face roughening and surface/subsurface cracks points to the existence of such special

metallic surfaces, whose origin is the topology of the 3D bulk material. Although sur-

face conduction via other exotic mechanisms cannot technically be completely ruled

out, the TI nature of SmB6 is the most probable and logical origin of this effect.
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CHAPTER VI

Summary and Outlook

6.1 Introduction

In this chapter, Section 6.2 provides a summary of the work presented in this the-

sis, Section 6.3 provides a listing of other types of work done on SmB6, and Section 6.4

provides an evaluation of the current problems most relevant to SmB6 transport prop-

erties, including an outlook for device engineering. Section 6.5 discusses some possible

directions for future transport work on SmB6.

6.2 Summary of the Thesis Work

In this work, SmB6 has been studied in the context of TI theory, primarily via

transport measurements. In Chapter I, the puzzle regarding the physical origin of the

resistivity plateau at temperatures below around 4 K was presented. The metallic

nature and the magnitude of the resistivity plateau defied explanation by known

bulk conduction mechanisms, including impurity conduction (which, in SmB6, would

typically violate the Mott impurity limit), and intrinsic bulk conduction (which would

violate the unitarity scattering limit in SmB6). Some experiments showed that the

value of the plateau depended on surface treatments, but it was difficult to explain

the robustness of the plateau against all attempts to remove it. The plateau was also
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linked to bulk stoichiometry, so the mystery was how a feature intrinsically dependent

on the bulk could also be a robust surface effect. A theoretical explanation [70]

for the plateau was then discussed in Chapter II, in which the plateau arises from

surface conduction due to topologically protected surface states characteristic of time-

reversal-invariant TIs. This scenario nicely accounts for the robustness of the surface

states and their connection with the bulk, while still allowing for variations in the

resistivity with surface quality.

In Chapter III, the plateau was shown to be due entirely to surface conduction,

with a fully insulating bulk at temperatures below the shoulder of the plateau. This

was accomplished by using a novel contact geometry with contacts in the middle of the

flat faces of a thinned piece of single-crystal SmB6. Variations in the measured four-

terminal resistance across different current/voltage contact configurations revealed

a dramatic change in the current path from bulk-dominated to surface-dominated

conduction as the temperature was lowered into the range of the plateau. The size of

the shift indicates that below this crossover temperature, the bulk conduction becomes

a negligible portion of the transport. This result was also confirmed independently

by other researchers using a wedge-shaped sample [77]. It is remarkable in that SmB6

was the first known 3D TI to have a fully insulating bulk, which is an important

property for transport studies of or device engineering involving TI surface states.

The MR of SmB6 was studied in Chapter IV. A number of concerns regarding the

transport geometry of non-local measurements on TI surface states were addressed by

utilizing a Corbino disk structure fabricated on single surfaces of SmB6. The samples

studied exhibited negative MR in the surface states. Angle-dependent measurements

up to 35 T yielded surface mobilities around 120 cm2/(V · s) and carrier densities

around 1014 cm−2. They also revealed that the MR was primarily due to changes in

the carrier density of the surface, but were accompanied by smaller changes in the

carrier mobility that are consistent with Kondo scattering. At lower fields, a dynamic
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hysteretic behavior that depends on the field sweep rate and the temperature can

be seen in two distinct field regimes. All of the samples studied exhibit a hysteretic

dip in the resistivity below 0.1 T, while some exhibit an additional dip that extends

up to several T. The origin of these dips is unknown, but extrinsic effects such as

a glassy spin texture of Sm2O3 on the surface or the magnetocaloric effect from an

unidentified source are likely responsible.

The MR of the bulk conduction near the crossover temperature was also addressed

using measurements from the NHMFL pulsed magnet facility up to 60 T. These

measurements show a very strong negative MR consistent with previous studies [73],

but also detail the evolution of the negative MR across the entire crossover range from

a bulk MR to a distinct surface MR independent of the bulk MR. The temperature

dependence of the bulk MR allows the activation energy (transport bandgap) of the

bulk carriers to be extracted as a function of the magnetic field, and reveals a closure of

the gap between the Fermi energy and the conduction band. The closure is stronger

than that expected from the Zeeman splitting of the Sm3+ state or the Zeeman

shift of the Sm2+ state, but weaker than the two combined. Meanwhile, the surface

conduction, which was probed up to 92 T in the NHMFL pulsed 100 T magnet, shows

no hints of SdH oscillations.

In Chapter V, an additional geometric complication for transport measurements

was addressed. In any robust surface conductor, current should flow not only on the

exterior crystal surface, but also along interior surfaces and channels resulting from

cracks and other crystal dislocations. Mechanically abrasive surface treatments such

as polishing [34] or ion damaging [145] lead to higher conductances in SmB6. An

experiment in which a Corbino disk structure is scratched also reveals a dramatic

increase in conductance. Ion-milled cross sections of the scratched region reveal sub-

surface cracks, which not only provide additional “surfaces” for the current to flow,

but may also vary in quality from the exterior surface. Similar cracks were found
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below a rough-polished surface, indicating that this additional conduction may be

present on any surface treated using such abrasive techniques.

6.3 Summary of other work on SmB6

SmB6 has been the subject of too many studies to list each one, but include

Mössbauer spectroscopy [4–6]; transport [2, 9, 11, 16, 32–34, 72, 73, 75, 77, 99–

101, 131–133, 139, 143, 144, 149, 150], dHvA [96, 151], and magnetic susceptibil-

ity measurements [2, 152]; nuclear magnetic resonance (NMR) [152–161], electron

paramagnetic resonance [27, 162, 163], and electron spin resonance [28, 164, 165];

point-contact tunneling spectroscopy [20, 21, 166, 167] and STS [140, 168, 169]; PES

[170–172], ARPES [29, 36–39, 97, 98, 106–109, 173], SARPES [110], and X-ray ab-

sorption spectroscopy [174] (including HAXPES [113, 114]); X-ray scattering [1] and

neutron scattering [1, 142]; optical spectroscopy [11, 19, 35, 175]; high-pressure mea-

surements [32, 147–149, 159, 160, 176, 177]; surface ion-scattering [178], ion-damage

[145], and radiation-damage [20] studies; and mechanical studies [3]. Some studies

have made use of intentional rare-earth dopants [141, 156, 161, 179] or vacancies

[12] for comparison. Many of these experiments have been discussed in more de-

tail in Chapter I, particularly the Mössbauer spectroscopy, pre-2010 transport, and

early high-pressure transport. As discussed in Section 4.5.1, the results from a large

number of the spectroscopy studies can be consistently encapsulated by positing the

existence of a ∼15 – 20 meV gap that arises from hybridized f and d states, along

with a ∼15 – 20 meV activation energy between EF and the conduction band edge,

the latter of which is corroborated by the transport studies. The pre-2010 transport

studies themselves share a large number of consistent features, but the behavior of

the resistivity below 5 K has to be reanalyzed, reinterpreted, or perhaps performed

again with surface conduction in mind, as discussed in Sections 4.2 and 5.3.

Since 2011, the majority of studies have been focused on understanding the SmB6
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surface state(s). This has been done primarily by means of transport and dHvA

measurements, and of ARPES and STS, largely due to their sensitivity to the surface

properties of materials. The conclusions drawn from these studies answer some of the

questions surrounding the surface states (e. g., their 2D nature), but give disparate

or even contradictory results regarding basic properties of these states (e. g., effective

mass, topological nature, etc.). These studies and the issues that arise from them are

discussed in Section 6.4.

6.4 Current Issues

Although the TKI theory for SmB6 and the verification that the plateau was

fully due to surface states resolved the most outstanding mystery surrounding SmB6

before 2010, these breakthroughs have led to a number of additional puzzles that

must be solved before basic properties of the system can be understood. One of the

key experimental questions that has not been resolved is the topological nature of

SmB6 and the fundamental origin of its surface states.

As discussed in Section 2.2, the topological nature of conventional semiconduct-

ing TI systems has been confirmed primarily with ARPES. In these systems, a band

inversion can be calculated from a single-particle theory and compared to the band

structure measured by ARPES. The surface states are also directly observed by

ARPES, which clearly shows the surfaces’ Dirac-like structure. Additional measure-

ments using spin-resolved techniques (SARPES) reveal the helical spin structure of

the surface Dirac cones. These measurements, taken together with the observation

of SdH oscillations of the 2D surface states, are sufficient evidence for the topologi-

cal nature of these materials. Unfortunately, the dispersive structure of some of the

in-gap states seen in SmB6 has been very difficult to observe via ARPES (and espe-

cially SARPES) because the bandgap is so tiny. Large electron pockets have been

measured at the X point by many studies, and the kz dependence of these pockets
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confirms their 2D surface nature [29, 97, 98, 107, 173]. However, some studies claim

to see a Dirac-like dispersion at the Γ point, indicative of the TI surface state [97,

98, 107], while others claim to see parabolic dispersion with Rashba splitting at the

Γ point [173], which excludes a topological origin for the surface states. One study

attempts to resolve the spin structure indirectly using circular dichroism [98]; the

data shows chirality of the orbital angular momentum of the in-gap states, suggest-

ing (but not confirming) a helical spin structure. Another SARPES study claims to

observe a spin-polarized signal originating from the helical spin dispersion [110]. The

limited resolution of ARPES and the disagreement among the studies conducted so

far regarding the Γ point has presented a need for alternative methods for confirming

the topological nature of SmB6. Meanwhile, other crystallographic surfaces, such as

the (011) and (111) families, have yet to be studied.

Another way of probing the nature of the Fermi surface is through dHvA mea-

surements. In one 2014 study [96], quantum oscillations were measured from 5 to

45 T. Several oscillation frequencies were observed, corresponding to multiple car-

rier pockets. The angle dependence of these frequencies indicated that they were 2D

pockets, with two aligned with the (001) surface family (presumably associated with

the X and Γ points), and one aligned with the (011) surface family. A Landau index

plot of the oscillation maxima and minima indicate a Dirac-like structure with no

spin-degeneracy—a TI surface state. While this makes a strong case for the topolog-

ical nature of SmB6, the mystery remains how the oscillation signal is so clear, but

completely absent in transport measurements (SdH oscillations) up to at least 92 T.

Conversely, the absence of the SdH signal is not surprising, given the carrier mobility

values of 0.012 T−1; the question is then, how can these surfaces yield such a clean

dHvA signal? One might speculate about the existence of inclusion surfaces, which

are isolated from the exterior surface and may be much cleaner with higher mobilities.

However, the situation became more complicated by a more recent dHvA study [151],
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which observed oscillation frequencies with a bulk-like angular dependence (but not

2D surface pockets). This suggests the presence of bulk carriers, but paradoxically,

transport measurements indicate a bulk insulator with surface conduction. How bulk

Fermi-surface electrons can yield quantum oscillations while not contributing to non-

local transport is not understood. How these two disparate dHvA measurements and

the transport measurements can be reconciled is still a mystery, and may require

appealing to more exotic models of the electronic structure.

Surface-transport measurements themselves are also somewhat dissimilar, which

makes a consistent picture of the surface states difficult to realize. There is some

variation in the MR reported across various samples. Some reports [100, 101] claim

to observe WAL (expected in a TI surface state), while others [75] (including the

present work) exclude it; limits on the WAL amplitude of the latter constrain the

carrier effective mass to several times the bare electron mass, in contrast to the light

mass extracted from dHvA measurements [96]. There has been some consensus on the

carrier mobilities and densities, which are also consistent with values obtained from

ARPES (though quite different from those obtained from dHvA oscillations), and

no transport measurement has yet observed SdH oscillations. The low-field behavior

of the MR shows a wide range of variation among the available reports, including

ferromagnetic domain ordering [100], glassy spin ordering (present work) [75], and

Kondo scattering (present work) [75].

A number of the factors that may play a role in these variations, which have been

discussed in Chapters IV and V, include current flowing on multiple sample surfaces,

surface and subsurface cracks, variations in surface treatments such as polishing and

etching, and notably the presence of Sm2O3 on samples exposed to air. Variations

in the surface morphology and the density of surface magnetic impurities have been

largely uncontrolled, and may account for the wide range of behaviors exhibited by the

material. Variations in crystal-growth methods, types of impurities, and stoichiom-
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etry may also contribute to the disparity of the observed behaviors. A number of

proposed types of trivial surface states have been proposed in place of, or in addition

to, the topological state, including polarity-driven states [109] ((001)-family surfaces

only) and inversion-layer states [173] originating from band bending or surface recon-

struction. However, the delicate surface chemistry required to support these types of

states is not likely preserved where Sm2O3 is present and where the morphology may

be quite poor. Thus, a priori, there is no reason to expect measurements done on

cleaved surfaces in ultra-high vacuum to correspond to measurements done on sam-

ples prepared in ambient conditions. A more systematic method of sample growth

and preparation will be necessary both for understanding the nature of the surface

state(s) and for device fabrication.

Another problem arises when one attempts to associate the bulk transport gap

with features seen in spectroscopic measurements. The bulk transport gap is inferred

from the activated behavior of R versus T measurements, and is typically associated

with the activation energy between EF and the conduction band. However, the spec-

troscopic evidence for this picture is not clear; there are two issues at this point. First,

multiple studies [29, 106] show the conduction band minimum around 9 meV above

EF (at 25 K), rather than the 3 meV above EF seen by transport. Denlinger et al. [29]

argue that theoretical predictions of the band dispersion around the X point might

allow for it to dip to 3.5 meV away from the X point at the lowest temperatures;

however, direct observation of this has not been possible at the relevant energy scale

and temperature. Second, even if the 3.5 meV conduction band minimum is taken

as a given, what is responsible for the pinning of EF so close to the conduction band

minimum? Such pinning so far from the middle of the gap is nearly impossible with-

out the presence of some bulk in-gap states or impurity states. The valence band

maximum, located at a BZ point that Denlinger et al. call “H,” is around 14 meV

below EF. However, the bulk in-gap donor states required to pin EF so far from the
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middle of the gap are not observed in ARPES, and there is some disagreement about

their presence in optical data [35, 175]. Meanwhile, in-gap surface states cannot pin

EF, and they simply cannot contribute enough electrons to the activated behavior.

An additional issue concerning the bandgap arises when comparing transport data

with NMR data. In contrast to the behavior of the transport gap described in Sec-

tion 4.5, NMR [158] indicates in-gap magnetic states (absent in ARPES) ∼30 K below

the conduction band edge at zero magnetic field, but which shift up into the conduc-

tion band under a field of only 14 T, leaving the field-independent hybridization gap

to determine the low-temperature dynamics of the system. If these states are respon-

sible for the pinning of EF, the single-particle picture for transport measurements

should instead exhibit a collapse of the thermal activation energy under similar field

values. This suggests that the physics of the EF pinning and any associated in-gap

states is determined rather by exotic many-particle interactions. A similar conclusion

was reached by researchers comparing La-doped and undoped SmB6 [161], based on

the low-temperature magnetic field dependence of each.

While SmB6 appears to be a ripe test bed for exotic many-body interactions within

or without the context of TIs, the outlook for device engineering is challenged by a

significant number of obstacles. First, although the bulk becomes truly insulating

below 2.5 – 3 K, any device interfacing with the surface states will need to operate at

these low temperatures. Second, the morphology of the surface is not suited to device

fabrication. Bulk crystals do not cleave well in any direction. Although patches of

single termination planes in the (001) family can be found in such a cleave, they are

not large enough for fabricated structures [168, 169]. Pristine patches of (011) and

(111) surfaces have not been achieved. Efforts in thin-film synthesis have achieved

resistivity behavior similar to the bulk crystals, but the crystal quality is still quite

poor [144]. Third, the formation of Sm2O3 magnetic impurities can disrupt the spin

behavior of the TI surface electrons via spin-flip scattering; this is a challenge that
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will need to be addressed with engineering controls such as in-situ device fabrication,

surface passivation, or preparation in inert environments.

6.5 Future Transport Studies

From a transport perspective, it is desirable to achieve geometrically-controlled

experiments on pristine SmB6 surfaces. As discussed in Section 6.4, the majority of

transport studies are done on surfaces which harbor Sm2O3 on the surface. Performing

experiments on oxide-free surfaces is important for minimizing spin-flip scattering and

achieving spin currents with higher mobilities. There are at least three approaches

that can be taken to mitigate the formation of Sm2O3:

1. In-situ device measurement would eliminate all chances for exposure to oxygen.

For bulk-growth crystals, this involves cleaving and measuring the crystal in the

same vacuum system. For film-grown crystals, the growth and measurements

would be performed in the same system. In both cases, fabrication of contacts

for a particular measurement geometry would also need to be accomplished in

situ. One possibility would be a four-contact probe with contacts spaced very

close together, provided the working surface of the sample is much larger than

the contact spacing. Another possibility is to evaporate a Corbino disk structure

using a shadow mask, using probe contacts for electrical access. Of course,

the entire structure would need to fit within the magnet bore for magnetic

field measurements. Both of these methods would be subject to morphological

problems arising from cleaving or the growth quality of the thin-film crystals.

2. Preparation in an inert environment could also prevent the formation of Sm2O3.

This has the promise of greater flexibility in surface preparation, since the pro-

cedures can be performed at ambient pressure. For example, chemical etching

or surface polishing could be performed in a glove box with a dry nitrogen or
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noble gas environment. In principle, this would allow for better surface uni-

formity than can be achieved in vacuum systems, although it is unlikely that

mechanical preparation would yield surfaces free from morphological defects

such as cracks or dislocations. A way to transfer the samples to vacuum sys-

tems such as evaporators for device patterning or cryogenic magnet systems for

measurements would need to be constructed in order to accomplish this.

3. The difficulties associated with transferring a sample among different vacuum

systems might be relieved if the surface can be passivated, e. g., with Al2O3.

A significant challenge here would be designing electrical contacts that are able

to access the passivated surface.

Transport measurements may also provide the evidence needed to confirm the

helical spin structure of the surface states. The direct detection of spin currents

via transport measurements would be compelling evidence for the topological nature

of SmB6. Detection of a spin current with the use of metal ferromagnetic tunnel-

barrier potentiometers has been employed in spin–orbit-induced spin-current systems

[180], and the ideas have been extended to spin detection in TI systems [57]. Such

measurements have already been performed on the known TI Bi2Se3 [56]. In this

experiment, a slab of Bi2Se3 was prepared with metal ferromagnetic tunnel-barrier

contacts fabricated on top of the slab. When current is passed along the slab (using

ordinary contacts), the spin–momentum locking results in a spin current with spin

oriented in-plane, perpendicular to the current direction. The voltage on the ferro-

magnetic tunnel-barrier contacts is then determined by the projection of the spin on

the ferromagnet’s magnetization axis. This provides a way for the spin current to

be distinguished from ordinary charge current by independently changing the current

direction and the magnetization of the ferromagnetic elements. Specifically, the spin

contribution to the voltage should flip sign when the current direction is reversed, and

should follow the hysteresis loop of the ferromagnet as its magnetization is reversed.
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Additionally, if the ferromagnetic elements are magnetized parallel to the charge cur-

rent (perpendicular to the expected spin projection), the spin contribution to the

voltage should be zero. The direction of the voltage also distinguishes the topological

spin configuration from that of a Rashba-splitting effect.

It is reasonable to expect this method to work on SmB6 because the surface states

are easily accessible, and because there is no bulk contribution as there is in Bi2Se3.

The biggest technical challenge will likely be the successful fabrication of the thin

tunnel barrier (a few nm) on a clean, flat portion of SmB6, especially one unpolluted

by native oxides. Efforts to produce a similar thin Al2O3 barrier for gated Corbino

structures on polished surfaces have so far been unsuccessful. Nevertheless, if this

challenge can be overcome without significant pollution from magnetic oxides, it is

the author’s opinion that this measurement could settle the debate over the nature

of the SmB6 surface states.

106



APPENDICES

107



APPENDIX A

Analysis of the (001) Surface Conductivity

As discussed in Section 4.4.2, the angle-dependent MR of the (001) surface states

at 0.3 K and below ∼25 T does not exhibit the cos2 θ behavior expected from the

Corbino disk geometry. Figure A.1 (a – c) shows the (001) MR as a function of θ for

constant magnetic field at 5, 12, and 25 T, respectively. At 5 T, the amplitude of the

cosine fit is small compared to the variance in the data; thus, the uncertainty in the

fitting parameters is dominated by noise, a problem which becomes worse as B2 → 0.

At ∼25 T and above, the cos2 θ fit is quite good (the residuals are quite small), and

the uncertainty in the fitting parameters is very small. However, at 12 T, the data

deviates somewhat from the cos2 θ fit, suggesting that some other angle-dependent

mechanism is influencing the conductivity. This behavior is seen from ∼7 T to ∼25 T

in the (001) surface only. The cos2 θ fits are very good for all field values for the (011)

surface, except near where B2 → 0, as expected. Figure A.1 (d – f) shows the cos2 θ

fits for the (011) surface at the same B values for comparison.

A summary of the fits for n(B) and µ(B) for the (001) surface are shown in Fig-

ure A.2. The distinct regimes of behavior discussed are evident in the plot. Above

∼25 T, µ(B) is relatively constant, and has a fit uncertainty (shaded region in Fig-

ure A.2) comparable to that of the (011) surface. In this regime, n(B) also increases,
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Figure A.1: Cosine fits (solid curves) of angle-dependent magnetoresistance data (red
squares) at magnetic fields of 5, 12, and 25 T, respectively, for the (001)
surface (a – c) and the (011) surface (d – f).

Figure A.2: (001) surface carrier density (filled squares) and mobility (open dia-
monds) obtained from angle-dependent fits of the data. Shaded areas
represent uncertainty in the parameters of the angle-dependent fits. The
vertical log scale allows direct comparison of the relative magnitudes of
changes in n and µ, and is proportional to Figure 4.7 in Section 4.4.2.
The reader is warned that these values are not reliable, as discussed in
the text.
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similarly to the (011) surface carrier density. Below ∼25 T, the calculated values for

n(B) and µ(B) change dramatically, and the residuals of the fits (and the correspond-

ing fit uncertainties) become quite large. Below ∼7 T, the fits become completely

unreliable, as indicated by the diverging uncertainties in n(B) and µ(B).

It is likely that the (001) surface has at least two carrier types, but this possibility

does not really answer why the middle regime differs a bit from both the cos2 θ

behavior and the B2 behavior while the high-field regime follows both behaviors quite

well. If the effect responsible for this difference is limited to below ∼25 T, then the

values and trends obtained for n(B) and µ(B) above ∼25 T may still be useful. In

any case, there is no way to distinguish single carrier conduction from multi-carrier

conduction with carriers of similar mobilities, either on the (001) surface or the (011)

surface.
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APPENDIX B

Kondo Scattering as the Origin of the

Magnetoresistance

The logarithmic increase in the surface resistivity as temperature drops is an

indication for Kondo scattering due to magnetic impurities near the surface of the

crystal. This is the most likely origin of the logarithmic increase, since the logarithmic

coefficient is not near e2/h, as would be expected for quantum interference effects.

This was initially investigated as a candidate for negative MR, since a magnetic

field suppresses the formation of Kondo singlets, thereby reducing the scattering

rate due to magnetic impurities. However, the maximum reduction of the scattering

rate corresponds to zero contribution from the Kondo mechanism—turning Kondo

scattering off. The contribution of Kondo scattering to the increase in resistivity at

0.3 K can be estimated from the difference between the actual resistivity and the

background resistivity. If the magnetic field “turns off” the Kondo scattering, the

resistivity should drop to the background level. However, the magnetic field reduces

the resistivity well beyond this limit. This is easily seen in Figure B.1, which shows the

MR data alongside simulations of the Kondo scattering predicted by the temperature

dependence. The Kondo temperature TK is an adjustable parameter, so plots for

two values are given, which respectively under- and over-estimate the low-field MR.
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Figure B.1: Simulated magnetoresistance of the (011) surface due to Kondo scattering
alone, based on the values obtained from the logarithmic temperature
dependence. Simulations for Kondo temperatures of 20 K (red dash-
dot curve) and 40 K (blue dotted curve) are shown alongside the actual
magnetoresistance obtained from measurements (solid black curve).

However, neither value correctly captures the high-field MR observed—the magnitude

of the effect at high field is smaller than the magnitude of the observed MR. Thus,

the Kondo scattering mechanism alone cannot explain the magnitude of the MR

observed.
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APPENDIX C

Pulsed-Field Measurement Details

The data taken in pulsed magnetic fields at the NHMFL in Los Alamos were

taken at 274.5 kHz due to the short 30 ms duration of the pulse. Consequently,

the contribution to the signal from lead capacitance in the experimental setup is

not negligible. The AC excitation current was generated as a digitally synthesized

voltage at MHz frequencies, which is then applied across a bias resistor and stepped

up using a transformer with a 1:10 winding ratio. A 10 Ω resistor embedded in

the transformer permits the direct measurement of the excitation current applied

to the sample cables. The cables to the probe were shielded Twinax. The probe

leads were twisted-pair phosphor bronze with a one-way resistance of ∼24 Ω and a

conductor-to-conductor capacitance between ∼250 – 350 pF. A second pair of twisted-

pair leads used to measure the sample voltage were connected to a Twinax cable and

fed to a preamplifier. The output of both this preamplifier and the voltage across

the 10 Ω resistor were each amplified by model SR560 preamplifiers with band-pass

filters between 10 kH and 1 MHz (6 db/oct), then digitized by an in-house NHMFL

lock-in amplifier at a data acquisition rate of ∼20 MHz. The total circuit is depicted

in Figure C.1. The output of the lock-in amplifiers was digitally smoothed with a

simulated Butterworth filter.
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Figure C.1: Schematic diagram of the circuit used to measure resistance during the
high-field magnetic pulses.
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Figure C.2: Schematic diagram of the effective circuit used to model the influence of
the signal cable impedance.

To model the contribution of the lead impedance, transmission line analysis is used

to relate currents and voltages on each end of the leads in terms of the characteristic

impedance and propagation constant of the lead wire. For this particular situation,

the inductance and conductor-to-conductor leakage is negligible, so we can use a

model that contains only conductor-to-conductor capacitance and in-line resistance.

In addition, the Twinax lines have negligible in-line resistance, so their contribution

to the circuit can be modeled as capacitors. This model is depicted in the schematic

in Figure C.2.

For a single transmission line circuit, the voltage and current along any point at

distance z measured from the load end can be expressed as

V (z) = IL (ZL cosh(γz) + Z0 sinh(γz)) (C.1)
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I(z) =
IL

Z0

(ZL sinh(γz) + Z0 cosh(γz)) , (C.2)

where IL is the load current, ZL is the load impedance, Z0 =
√
R/iωC is the char-

acteristic impedance of the transmission line, and γ =
√
iωRC is the propagation

constant of the transmission line (R and C are defined per unit length here). The

effective input impedance of the transmission line at z looking toward the load end

is given by [181]

Z(z) = Z0
ZL + Z0 tanh(γz)

Z0 + ZL tanh(γz)
.

In the model presented in Figure C.2, there are two transmission lines. It is helpful

to define the effective input impedance of the second line as seen by the sample,

Zeq ≡
Vs

Ieq

.

Because the load seen by the second transmission line is just the impedance of capac-

itor 2 (ZC2 = − i
ωC2

), Zeq can be expressed in terms of this and the transmission line

characteristics as [181]

Zeq = Z2
ZC2 + Z2 tanh(γ2l2)

Z2 + ZC2 tanh(γ2l2)
.

Now, the effective load seen by the first transmission line can be expressed in

terms of Zeq and the sample resistance Rs as

ZL =
RsZeq

Rs + Zeq

.

The input voltage and current Vi and Ii of the first transmission line can be expressed,

using Equations C.1 and C.2, as

Vi = V (z = l1) = IL (ZL cosh(γ1l1) + Z1 sinh(γ1l1))

115



Ii = I(z = l1) =
IL

Z1

(ZL sinh(γ1l1) + Z1 cosh(γ1l1)) .

Ig is directly measured, and is given by Ig = Ii + IC1 = Ii + Vi

ZC1
, where ZC1 is the

impedance of capacitor 1, equal to − i
ωC1

. The measured current then simplifies to

Ig = Vs

(
(

1

ZL

+
1

ZC1

) cosh(γ1l1) + (
1

Z1

+
Z1

ZC1ZL

) sinh(γ1l1)

)
, (C.3)

which expresses the measured current Ig in terms of the voltage at the sample Vs.

Meanwhile, Equation C.1 can also be used to express the voltage across the sample

Vs in terms of the measured voltage at the amplifier VA,

Vs = V (z = l2) = IA (ZC2 cosh(γ2l2) + Z2 sinh(γ2l2)) ,

which, since IA = VA

ZC2
, simplifies to

Vs = VA

(
cosh(γ2l2) +

Z2

ZC2

sinh(γ2l2)

)
. (C.4)

The quantity VA/Ig can be defined as a measured impedance ZM, which, by combining

Equations C.3 and C.4, can be expressed in terms of the capacitor impedances, the

transmission line characteristic impedances, the sample impedance, and the trans-

mission line lengths and propagation constants as

ZM =

[(
cosh(γ2l2) +

Z2

ZC2

sinh(γ2l2)

)
×
(

(
1

ZL

+
1

ZC1

) cosh(γ1l1) + (
1

Z1

+
Z1

ZC1ZL

) sinh(γ1l1)

)]−1

.

Because the Twinax cables have roughly the same length and physical character-

istics, we can simplify this expression by substituting ZC1 = ZC2 = ZC. Also, since

the twisted pair are the same length with similar transmission characteristics, we can
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take Z1 = Z2 = Z0, γ1 = γ2 = γ, and l1 = l2 = l. ZM then simplifies to

ZM =
RsZ0Z

2
C

ZC cosh(γl) + Z0 sinh(γl) [Z0(2Rs + ZC) cosh(γl) + (Z2
0 + 2RsZC) sinh(γl)]

.

Solving for the sample resistance Rs,

Rs =
−Z0ZM (ZC cosh(γl) + Z0 sinh(γl))2

−Z0Z2
C + 2Z0ZCZM cosh(2γl) + Z2

0ZM sinh(2γl) + Z2
CZM sinh(2γl)

.

ZM undergoes a small attenuation and phase rotation eiθ−x at the amplifiers,

so this must be included in the data analysis. Measurements of the four-terminal

impedances (at zero field) both at the data acquisition frequency of 274.5 kHz and

the DC limit permit a best fit of the parameters ZC, x, and θ to be obtained. Such a fit

gives a small attenuation (x = 0.0435) and phase rotation (θ = −5°), with a Twinax

capacitance around 381 pF, a value comparable to the twisted pair capacitance. The

conversion from ZM to Rs is not very sensitive to uncertainty in the capacitances

and attenuation, so long as they together provide a best-fit conversion between the

274.5 kHz data and the DC-limit data.
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APPENDIX D

Carrier Density Fitting Source Code

In order to evaluate the B dependence of the carrier density n and mobility µ, the

following algorithm was employed:

1. Calculate a rough average of B-independent µ from the angle dependence of

the data.

2. Calculate a 6th-order even polynomial fit of n(B) using the value of µ and the

raw conductivity of the perpendicular field data:

nfit(B) =
6∑
i=0

niB
i

3. Treating the four coefficients of the polynomial fit nfit as a 4-space vector,

~n =

(
n0 n2 n4 n6

)
,

take a step in every direction in the 4-space.

4. For each new value of ~n (including the original position), calculate µ(B) from

the parallel field data and the polynomial nfit(B) represented by ~n.
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Coefficient 5◦ and 85◦ 25◦ and 85◦

n0 2.59709× 1017 2.43638× 1017

n2 −4.55092× 1012 2.16432× 1013

n4 4.15697× 1010 1.21876× 1010

n6 −1.11826× 107 6.76019× 105

Table D.1: List of fitting parameters for n(B).

5. Use the calculated µ(B) and nfit(B) to calculate the expected behavior of the

perpendicular field data.

6. Compare the calculated perpendicular field data to the experimental perpen-

dicular field data and calculate a residual.

7. Select the value of ~n that resulted in the smallest residual. If the residual at

the original ~n is smallest, then reduce the step size and iterate back to step 3.

Otherwise, set the nfit(B) polynomial coefficients to the ~n value that resulted

in the smallest residual, keep the same step size, and iterate back to step 3.

This algorithm performs a 4-space search for the polynomial coefficients of nfit(B)

that gives the best fit for both parallel and perpendicular field data. Starting from a

given 4-space coordinate represented by ~n, it checks nearby coordinates a given step

size away for a better fit, moving to values that produce a better fit. If the current

value is the best fit, the step size is reduced. This can be done an arbitrary number

of times until the local minimum of the residual in 4-space is found to arbitrary

precision. It uses two data sets as input, which is enough to fully constrain both

n(B) and µ(B). Because multiple angles of magnetic field data are available, these

parameters were calculated for at least two different sets of data from different field

angles. The resulting parameters are close, but do not agree completely, suggesting

the presence of some subtle angle dependence of n(B) and µ(B).
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The best coefficients for two sets of angles are summarized in Table D.1. The fit

and search algorithm was implemented in Wolfram Mathematica using the code that

follows. The raw dataset for each magnetic field angle used was input as a 2D array

composed of a 1D list of magnetic fields and a 1D list of corresponding conductivities.

The output generated represents µ(B) and the fitting parameters of nfit(B).

The following code defines some constants and imports the data:

e =1.60217657*10ˆ−19;Dropnum=1;

DataPar=Import [ ” Sept24 Corbino MC P a r a l l e l . dat” ] ;

DataPerp=Import [ ” Sept24 Corbino MC Perp . dat” ] ;

Data24=Import [ ” Sept24 Corbino MC 24 degree s . dat” ] ;

This code is for the 5◦ and 85◦ data sets.

i t e r a t i o n s =10; dimension =3;Mins={}; CenterTracks ={};Φ=1.475;

Θ=0.07854;

n={2.597089956169586 ‘*ˆ17 ,−4.550921031660455 ‘*ˆ12 ,

4 .156968817399798 ‘*ˆ10 ,−1.1182585923241468 ‘*ˆ7} ;

Centers=n ; Ranges

={2.2208241576417218 ‘*ˆ11 ,2 .9141614497713125 ‘*ˆ8 ,

291416 .1449771313 ‘ ,169 .3508780843028 ‘}10000 ;

While [ i t e r a t i o n s >0,

end=0;

While [ end==0,

cube=Table [ 0 ,{ i , 0 , dimension −1} ,{ j , 0 , dimension −1} ,{k , 0 ,

dimension −1} ,{ l , 0 , dimension −1} ] ;

For [ n [ [ 1 ] ] = Centers [ [ 1 ] ] −Ranges [ [ 1 ] ] ; i =1,n [ [1 ] ]<= Centers [ [ 1 ] ] +

Ranges [ [ 1 ] ] , i ++;n [ [ 1 ] ] = n [ [ 1 ] ] + Ranges [ [ 1 ] ] ,

For [ n [ [ 2 ] ] = Centers [ [ 2 ] ] −Ranges [ [ 2 ] ] ; j =1,n [ [2 ] ]<= Centers [ [ 2 ] ] +

Ranges [ [ 2 ] ] , j++;n [ [ 2 ] ] = n [ [ 2 ] ] + Ranges [ [ 2 ] ] ,
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For [ n [ [ 3 ] ] = Centers [ [ 3 ] ] −Ranges [ [ 3 ] ] ; k=1,n [ [3 ] ]<= Centers [ [ 3 ] ] +

Ranges [ [ 3 ] ] , k++;n [ [ 3 ] ] = n [ [ 3 ] ] + Ranges [ [ 3 ] ] ,

For [ n [ [ 4 ] ] = Centers [ [ 4 ] ] −Ranges [ [ 4 ] ] ; l =1,n [ [4 ] ]<= Centers [ [ 4 ] ] +

Ranges [ [ 4 ] ] , l ++;n [ [ 4 ] ] = n [ [ 4 ] ] + Ranges [ [ 4 ] ] ,

µ={First [# ] , ( e n .{1 , First [#]ˆ2 , First [#]ˆ4 , First [#]ˆ6}−Sqrt [ ( e

n .{1 , First [#]ˆ2 , First [#]ˆ4 , First [#]ˆ6}) ˆ2−(2 Last [#] First

[#]Cos [ Φ ] ) ˆ 2 ] ) /(2 Last [#] First [#]ˆ2 Cos [ Φ ] ˆ 2 )}&/@ Drop [

DataPar , Dropnum ] ;

r e s i d u a l =(((n [ [ 1 ] ] + n [ [ 2 ] ] First [#]ˆ2+n [ [ 3 ] ] First [#]ˆ4+n [ [ 4 ] ]

First [#]ˆ6) e Last [#] ) /(1+Last [#]ˆ2 First [#]ˆ2 Cos [ Θ ] ˆ 2 )&/@

µ)−(Last [#]&/@Drop [ DataPerp , Dropnum ] ) ;

cube [ [ i , j , k , l ] ]= Total[#ˆ2&/ @res idua l ] ; ] ] ] ] ;

I f [ Centers==(Flatten [ Position [ cube ,Min [ cube ] ] ] −2 ) Ranges+

Centers , end =1] ;

Centers=(Flatten [ Position [ cube ,Min [ cube ] ] ] −2 ) Ranges+Centers ;

CenterTracks=Append [ CenterTracks , Centers ] ;

Mins = Append [ Mins , Position [ cube ,Min [ cube ] ] ] ; ] ;

Ranges=Ranges /3 ; i t e r a t i o n s −−;];

n=Centers ;µ={First [# ] , ( e n .{1 , First [#]ˆ2 , First [#]ˆ4 , First

[#]ˆ6}−Sqrt [ ( e n .{1 , First [#]ˆ2 , First [#]ˆ4 , First [#]ˆ6})

ˆ2−(2 Last [#] First [#]Cos [ Φ ] ) ˆ 2 ] ) /(2 Last [#] First [#]ˆ2 Cos [

Φ ] ˆ 2 )}&/@ Drop [ DataPar , Dropnum ] ;

Export [ ”UPerp . dat” ,µ ] ;

This code is for the 25◦ and 85◦ data sets. It is identical to the previous code,

except for the inputs and corresponding input variable names.

i t e r a t i o n s =10; dimension =3;Mins={}; CenterTracks ={};Φ=1.475;

Θ=0.427606;
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n={2.4363755361042518 ‘*ˆ17 ,2 .1643219699754734 ‘*ˆ13 ,

1 .218763277833064 ‘*ˆ10 ,676019 .3831669716 ‘} ;

Centers=n ; Ranges

={2.2208241576417218 ‘*ˆ11 ,2 .9141614497713125 ‘*ˆ8 ,

291416 .1449771313 ‘ ,169 .3508780843028 ‘}10000 ;

While [ i t e r a t i o n s >0,

end=0;

While [ end==0,

cube=Table [ 0 ,{ i , 0 , dimension −1} ,{ j , 0 , dimension −1} ,{k , 0 ,

dimension −1} ,{ l , 0 , dimension −1} ] ;

For [ n [ [ 1 ] ] = Centers [ [ 1 ] ] −Ranges [ [ 1 ] ] ; i =1,n [ [1 ] ]<= Centers [ [ 1 ] ] +

Ranges [ [ 1 ] ] , i ++;n [ [ 1 ] ] = n [ [ 1 ] ] + Ranges [ [ 1 ] ] ,

For [ n [ [ 2 ] ] = Centers [ [ 2 ] ] −Ranges [ [ 2 ] ] ; j =1,n [ [2 ] ]<= Centers [ [ 2 ] ] +

Ranges [ [ 2 ] ] , j++;n [ [ 2 ] ] = n [ [ 2 ] ] + Ranges [ [ 2 ] ] ,

For [ n [ [ 3 ] ] = Centers [ [ 3 ] ] −Ranges [ [ 3 ] ] ; k=1,n [ [3 ] ]<= Centers [ [ 3 ] ] +

Ranges [ [ 3 ] ] , k++;n [ [ 3 ] ] = n [ [ 3 ] ] + Ranges [ [ 3 ] ] ,

For [ n [ [ 4 ] ] = Centers [ [ 4 ] ] −Ranges [ [ 4 ] ] ; l =1,n [ [4 ] ]<= Centers [ [ 4 ] ] +

Ranges [ [ 4 ] ] , l ++;n [ [ 4 ] ] = n [ [ 4 ] ] + Ranges [ [ 4 ] ] ,

µ={First [# ] , ( e n .{1 , First [#]ˆ2 , First [#]ˆ4 , First [#]ˆ6}−Sqrt [ ( e

n .{1 , First [#]ˆ2 , First [#]ˆ4 , First [#]ˆ6}) ˆ2−(2 Last [#] First

[#]Cos [ Φ ] ) ˆ 2 ] ) /(2 Last [#] First [#]ˆ2 Cos [ Φ ] ˆ 2 )}&/@ Drop [

DataPar , Dropnum ] ;

r e s i d u a l =(((n [ [ 1 ] ] + n [ [ 2 ] ] First [#]ˆ2+n [ [ 3 ] ] First [#]ˆ4+n [ [ 4 ] ]

First [#]ˆ6) e Last [#] ) /(1+Last [#]ˆ2 First [#]ˆ2 Cos [ Θ ] ˆ 2 )&/@

µ)−(Last [#]&/@Drop [ Data24 , Dropnum ] ) ;

cube [ [ i , j , k , l ] ]= Total[#ˆ2&/ @res idua l ] ; ] ] ] ] ;
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I f [ Centers==(Flatten [ Position [ cube ,Min [ cube ] ] ] −2 ) Ranges+

Centers , end =1] ;

Centers=(Flatten [ Position [ cube ,Min [ cube ] ] ] −2 ) Ranges+Centers ;

CenterTracks=Append [ CenterTracks , Centers ] ;

Mins = Append [ Mins , Position [ cube ,Min [ cube ] ] ] ; ] ;

Ranges=Ranges /3 ; i t e r a t i o n s −−;];

n=Centers ;µ={First [# ] , ( e n .{1 , First [#]ˆ2 , First [#]ˆ4 , First

[#]ˆ6}−Sqrt [ ( e n .{1 , First [#]ˆ2 , First [#]ˆ4 , First [#]ˆ6})

ˆ2−(2 Last [#] First [#]Cos [ Φ ] ) ˆ 2 ] ) /(2 Last [#] First [#]ˆ2 Cos [

Φ ] ˆ 2 )}&/@ Drop [ DataPar , Dropnum ] ;

Export [ ”U24 . dat” ,µ ] ;
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APPENDIX E

CS4-10V Magnet Sweeper Program

To simplify the operation of the superconducting magnet, this LabView VI pro-

gram interfaces with the Cryomagnetics, Inc. CS4-10V Magnet Power Supply and

uses this interface to sweep the magnet current between two user-specified values at a

user-specified sweep rate repeatedly and continuously until stopped by the user. The

program provides updated information about the magnet-current value, its sweep sta-

tus, the number of elapsed sweep cycles, and any errors that arise with the interface

or from the supply.

The basic features of the program can be seen in the user interface in Figure E.1.

Before the program is run, the user must specify the interface address of the power

supply in the “CS-4 Address” field, the lower and upper current limits in the “Lower

Limit” and “Upper Limit” fields, respectively, the limit tolerance in the “Limit Tol-

erance” field, and the sweep rate in the “Sweep Rate (Range 1)” field. When the user

then starts the program, the “Lower Limit,” “Upper Limit,” and “Limit Tolerance”

fields are disabled from further input. Any invalid values that lie outside the power

supply’s capabilities are coerced to within the allowed range, and the limit values are

reported in the fields next to the corresponding input fields. To change these values,

the program must be stopped by the user with the “Stop” button, which re-enables
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Figure E.1: CS4-10V Sweeper Program user interface.

the input fields, begins sweeping the current to zero, and stops the program. The

“Limit Tolerance” is useful for faster sweep direction switching. The CS4-10V gradu-

ally slows the sweep as it approaches a set limit. This program will switch the sweep

direction when the current reported by the CS4-10V is within the Limit Tolerance of

the set limit, thus avoiding the careful, gradual process of reaching the limit.

Status indicators are located on the right side of the panel. The “Message” box re-

ports any error messages that occur. The “Current Sweep Status” will read “SWEEP

UP,” “SWEEP DOWN,” or “SWEEP ZERO FAST,” depending on the current di-

rection or whether the program has been stopped. The “Current (Amps)” field will

provide the continuously updated value of the current. This is also displayed graphi-

cally on the status bar, whose limits are automatically set according to the user-set

current limits at the start of the program. The number of sweep cycles that have

elapsed are reported in the “Cycles” field.

The implementation is contained entirely in the back panel of the VI (no custom

sub-VI’s are used), which is shown in Figure E.2. Because of the large graphical

format of the code, sections of it are depicted in Figures E.5 – E.12. Additionally, a
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Figure E.2: Sweeper Program back panel

flowchart summarizes the operation of the program in Figures E.3 – E.4. The major

sections of the code can be divided into the following sections:

� User interface initialization – This thread, depicted at the upper left of

Figure E.3, disables the relevant inputs on the front panel and unlatches the

“Stop” button. A second thread, depicted at the upper right of Figure E.3,

coerces the input values to allowed values, generates a warning if a value is

coerced, displays the limits on the front panel, and sets the status bar range to

span the two limits.

� CS4-10V initialization – This thread, depicted at the upper center of Fig-

ure E.3, opens a Virtual Instrument Software Architecture (VISA) interface

with the CS4-10V and queries its identity. It generates an error code if the

instrument times out or is not a CS4-10V power supply. If there is an error,

the Main program loop is skipped and the program closes.

� CS4-10V configuration – This section, summarized at the lower right of

Figure E.3, programs the CS4-10V. It first sets the CS4-10V to “Remote” mode

and the limit units to Amps, then programs the sweep rate and the limit values.

The current implementation also queries the CS4-10V to verify the values were
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correctly set, but these are reported to hidden indicators on the front panel,

and not used later. If the instrument is in “Local” mode, an error is generated

and the program is stopped.

� Main program loop (case machine) – The main program is set up as a

case machine with five cases. One case switches the sweep direction up, while

another case then monitors the current until it reaches the Upper Limit. A third

case then switches the sweep direction down, and the fourth case monitors the

current until it reaches the Lower Limit. A fifth case is triggered by the Check

Stop Button Routine, sets the CS4-10V to sweep to zero, and terminates the

case machine loop. Every case executes basic error detection and updates the

indicators on the front panel. The basic flow of the case machine is summarized

in Figure E.4.

� Check Stop Button Routine – This process, depicted in the lower left of

Figure E.3, continuously monitors the “Stop” button and any error conditions.

When one of these are triggered, it signals the Main loop (case machine) to

execute the ending case.

� Program closing – This section, summarized at the bottom of Figure E.4,

returns the CS4-10V to “Local” mode, closes the VISA interface, and re-enables

the front panel controls, displaying any final error messages.

The initialization procedures can be seen in Figure E.5. The user interface initial-

ization, located within a sequence structure, disables the front-panel inputs, clears

the message box, and sets the “Stop” button to False. These are executed within

the sequence structure before the Main program loop or Check Stop Button Routine

begin. This order is enforced by an artificial data dependency of these two loops on

the sequence structure. This ensures that the local “Stop” variable within the Check
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Figure E.5: Initialization routines

Stop Button routine is not set early before the program has a chance to ensure the

“Stop” button is set to False.

The ranges of the Upper and Lower Limit inputs are restricted to allowed values

in the control properties. Additionally, the Lower Limit is coerced to be at least 1

Amp below the Upper Limit. If this coercion occurs, the warning shown in the case

structure in Figure E.6 is output both to the message box and as a popup window.

The True case is empty. Each limit is used to program the respective limits of the

status bar. The difference of the two limits is divided by 4, and this value is used

to program the scale on the status bar so that it displays five numeric values. The

Limit Tolerance is also coerced to a value between 0 Amps and a quarter of the full

range. If this coercion occurs, the warning shown in the case structure in Figure E.7

is appended to the message box and generates a popup window. The True case is

empty. Finally, the Limit Tolerance is added to the Lower Limit and subtracted from

the Upper Limit, and these are input to the Main loop as reference values to trigger

the change in sweep direction.
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Figure E.6: Coercion warning for minimum range

Figure E.7: Coercion warning for Limit Tolerance
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The CS4-10V initialization uses the user-input VISA address to open a VISA

session and configure it for the RS-232 port as required by the CS4-10V. A *RST

reset and *IDN? identification query are sent to the instrument. The read buffer must

be cleared once before the query response can be read. The return string is searched

for “Cryomagnetics,CS4” to verify that the instrument is indeed a CS4-10V. If this is

not found, or if any of the read/write commands generates an error, the Main loop is

skipped (the “Error” case is empty), and the program proceeds directly to the VISA

close routines after the Main loop.

Once all the preceding steps are complete, the instrument setup can start (Fig-

ure E.8). The “Remote” command, “Unit” command, and “Sweep Rate” command

(concatenated with a string version of the Sweep Rate input value) are sent as a

single string; the read buffer is then read to clear it. A second concatenated string

of commands programs, then queries both the Lower Limit and the Upper Limit.

The read buffer is again cleared, then read yet again. The output string from the

CS4-10V is split into the Upper and Lower Limits, and these are displayed on the

front panel to the user. If the CS4-10V string contains the warning “Blocked,” the

case structure above the Main loop in Figure E.9 will append an error message to the

message box and trigger the local “Stop” variable to signal the Main loop to stop.

This is necessary, since a command that is blocked by the CS4-10V “Local” mode

will not generate an interface error; this must be checked explicitly.

The “Case” portion of the Main loop is seen in context in Figure E.9. The case

machine is initialized to the “Sweep Up” case. Each case determines the following

case via a feedback node on the loop. The contents of each case are depicted in

Figure E.10. Each iteration of the loop (each case) is constrained to execute at most

once per 100 ms.

The “Sweep Up” case begins by sending the “SWEEP UP” command to the CS4-

10V, then reads the read buffer, placing the output to the local “Current Sweep
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Figure E.8: Instrument setup routine
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Figure E.9: Main program loop (left side)
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Figure E.10: Case machine cases
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Status” variable. The output is also provided as a case structure output for error

checking. The “Check Up” case is selected as the next case, and a False Boolean is

provided for the loop stop routine.

The “Check Up” case queries the CS4-10V for the current value, clears the read

buffer (this string is fed to the case structure output), and reads the response. The

numeric value is extracted from the output string, converted to numeric representa-

tion, and compared to the Upper Limit (− tolerance). If the Upper Limit has been

reached, the “Sweep Down” case is tentatively selected. Otherwise, the “Check Up”

case is tentatively selected. The local “Stop” variable is then checked. If the Stop

condition is True, then the “Sweep Zero” case is selected. Otherwise, the tentative

“Sweep Down” or “Check Up” case is selected. Thus, the “Check Up” case will run

continuously until either the Upper Limit is reached by the CS4-10V (in which case

the “Sweep Down” case will execute next) or the Stop condition is True (in which

case the “Sweep Zero” case will execute). A False Boolean is provided for the loop

stop routine.

The “Sweep Down” and “Check Down” cases are almost identical to their “Up”

counterparts, except that the “SWEEP DOWN” command is used and the current

is compared to the Lower Limit (+ tolerance). However, the “Sweep Down” case

contains one subtle difference. A numeric variable passed by a reference node is used

to keep track of the number of sweep cycles. When, and only when, this case is

executed, the sweep cycle number is incremented by one.

The “Sweep Zero” case is similar to the “Sweep Up” case, but it sends the com-

mand “SWEEP ZERO FAST” instead. A True Boolean is supplied to the loop stop

routine to end the Main loop. The “Sweep Zero” case is selected as the next case,

but the program will not execute the next case.

After each case is executed, the following occurs (Figure E.11): The number

of elapsed cycles is updated, and the current value outputs (the numeric indicator
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Figure E.11: Main program loop (right side)

and the status bar) are updated. The responses from the CS4-10V are checked for

the term “Blocked,” and warning messages are generated exactly as described in the

instrument setup routine, using identical code. Finally, if either the VISA error status

or the local “Stop” variable are True, the Main loop is terminated.

Once the Main loop has ended, a final “LOCAL” command is sent to the CS4-

10V to re-enable the instrument’s front-panel controls, and the read buffer is cleared.

In Figure E.12, the VISA session is then closed, and any VISA errors are appended

to the message box. Artificial data dependency is used to begin execution of the

sequence structure after the Main loop ends. This sequence structure re-enables the

controls on the VI front panel. The artificial data dependency is also used to ensure
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Figure E.12: Program-closing routine

that the VISA error messages are appended to the message box text as it appeared

when the Main loop closed.

The Check Stop Button routine runs in parallel with the case machine, once the

artificial data dependency on the initialization routines is satisfied. The loop, shown

in Figure E.13, executes once every 100 ms, and simply monitors the status of the

“Stop” button. If the “Stop” button is latched by the user, the case structure sets

the local “Stop” variable to True (the False case is empty). The loop will terminate

upon this condition, or if the local “Stop” variable is True (due to a generated error).
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Figure E.13: Check Stop Button routine
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dans les Métaux”, Advances in Physics 17, 281 (1968), eprint: http://dx.
doi.org/10.1080/00018736800101306.

[15] N. F. Mott, “Rare-earth compounds with mixed valencies”, Philosophical Mag-
azine 30, 403 (1974).

[16] J. W. Allen, B. Batlogg, and P. Wachter, “Large Low-Temperature Hall Effect
and Resistivity in Mixed-Valent SmB6”, Phys. Rev. B 20, 4807 (1979).

[17] J. Friedel, “Metallic alloys”, English, Il Nuovo Cimento 7, 287 (1958).

[18] T. Kasuya, “A Mechanism for the Metal Insulator Transition and Various
Properties in Samarium Compounds”, J. Phys. Colloques 37, C4 (1976).

[19] G. Travaglini and P. Wachter, “Intermediate-valent SmB6 and the hybridiza-
tion model: An optical study”, Phys. Rev. B 29, 893 (1984).

[20] B. Batlogg, P. H. Schmidt, and J. M. Rowell, “Evidence for a small energy gap
in SmB6”, in Valence fluctuations in solids, edited by L. M. Falicov, W. Hanke,
and M. B. Maple (North-Holland, Amsterdam, 1981), p. 267.

[21] I. Frankowski and P. Wachter, “Point-contact spectroscopy on SmB6, TmSe,
LaB6 and LaSe”, Solid State Commun. 41, 577 (1982).

[22] P. W. Anderson, in Valence fluctuations in solids, edited by L. M. Falicov, W.
Hanke, and M. B. Maple (North-Holland, Amsterdam, 1981), p. 451.

[23] N. F. Mott, in Valence instabilities, edited by P. Wachter and H. Boppart
(North-Holland, Amsterdam, 1982), p. 402.

[24] R. M. Martin and J. W. Allen, “Theory of mixed valence: Metals or small gap
insulators (invited)”, Journal of Applied Physics 50, 7561 (1979).

[25] R. M. Martin and J. W. Allen, in Valence fluctuations in solids, edited by L.
M. Falicov, W. Hanke, and M. B. Maple (North-Holland, Amsterdam, 1981),
p. 85.

[26] G. Aeppli and Z. Fisk, Comments Cond. Mat. Phys. 16, 155 (1992).

[27] T. S. Al’tshuler, V. N. Mironov, G. G. Khaliullin, and D. I. Khomskii, “Obser-
vation of the temperature dependence of the energy gap in SmB6 by the EPR
method”, Pis’ma Zh. Eksp. Teor. Fiz. 40, 28 (1984).

[28] T. S. Al’tshuler, G. G. Khaliullin, and D. I. Khomskii, “Investigation of the
energy gap in SmB6 by the ESR method”, Zh. Eksp. Teor. Fiz. 90, 2104 (1986).

[29] J. D. Denlinger, J. W. Allen, J.-S. Kang, K. Sun, B.-I. Min, D.-J. Kim, and
Z. Fisk, Temperature Dependence of Linked Gap and Surface State Evolu-
tion in the Mixed Valent Topological Insulator SmB6, 2013, arXiv:1312.6637
[cond-mat.str-el].

[30] N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974),
p. 27.

142



[31] T. Kasuya, K. Takegahara, T. Fujita, T. Tanaka, and E. Bannai, “Valence
Fluctuating State in SmB6”, J. Phys. Colloques 40, C5 (1979).

[32] J. C. Cooley, M. C. Aronson, Z. Fisk, and P. C. Canfield, “SmB6: Kondo
Insulator or Exotic Metal?”, Phys. Rev. Lett. 74, 1629 (1995).

[33] A. Kebede, M. C. Aronson, C. M. Buford, P. C. Canfield, J. H. Cho, B. R.
Coles, J. C. Cooley, J. Y. Coulter, Z. Fisk, J. D. Goettee, W. L. Hults, A.
Lacerda, T. D. McLendon, P. Tiwari, and J. L. Smith, “Studies of the correlated
electron system SmB6”, Physica B: Condensed Matter 223–224, Proceedings
of the International Conference on Strongly Correlated Electron Systems, 256
(1996).

[34] K. Flachbart, S. Gabáni, E. Konovalova, Y. Paderno, and V. Pavĺık, “Ground
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R. Lengsdorf, M. M. Abd-Elmeguid, and J. Flouquet, “High-Pressure Ground
State of SmB6: Electronic Conduction and Long Range Magnetic Order”, Phys.
Rev. Lett. 94, 166401 (2005).

[178] M. Aono, R. Nishitani, T. Tanaka, E. Bannai, and S. Kawai, “Azimuthal
anisotropy in low-energy ion scattering from SmB6 (001)”, Solid State Com-
mun. 28, 409 (1978).

[179] APS March Meeting 2014, Vol. 59, 1, Abstract B42.00015, http://meetings.aps.
org/link/BAPS.2014.MAR.B42.15, The American Physical Society (Denver,
Colorado, Mar. 2014).

[180] R. H. Silsbee, “Spin-orbit induced coupling of charge current and spin polar-
ization”, Journal of Physics: Condensed Matter 16, R179 (2004).

[181] D. K. Cheng, Field and Wave Electromagnetics (Addison-Wesley Publishing
Company, Inc., Reading, MA, 1983), p. 392.

154


