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CHAPTER I

Introduction

The year 1905 is often called Albert Einstein’s golden year. Those twelve months

saw him publish his Special Theory of Relativity, an explanation of the photoelectric

effect, and a treatise on Brownian motion. A decade later came the General Theory

of Relativity [1], revolutionizing gravitational physics and suggesting the existence of

gravitational waves. One century later, the Laser Interferometer Gravitational-wave

Observatory (LIGO) stands on the brink of the first direct detection of these elusive

signals.

Einstein himself was unsure if the waves predicted by his theory were detectable

at all; over forty years of debate passed before, at a conference in 1957, a solution was

presented by Felix Pirani [2]. Rather than focusing on the generation of gravitational

waves, Pirani [3] described the effect of a gravitational wave’s presence on a set of

freely-falling objects, and showed that they would experience genuine motions with

respect to one another [2]. Thus, gravitational waves were in principle detectable.

The first efforts to make such a detection were pioneered by Joseph Weber, who

was in attendance at the 1957 conference [2]. Starting in 1960, he monitored the

minute vibrations of massive aluminum cylinders, which came to be known as Weber

bars [4]. Passing gravitational waves, he hoped, would set the bars into oscilla-
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tion. Within the decade, Weber announced that his detectors were in fact detecting

coincident signals, which he thought likely to be of astronomical origin [5]. Unfor-

tunately, his results could not be replicated, and by the mid-1970s, the consensus

was that gravitational waves were too weak to be detected by Weber’s aluminum bar

instruments [6].

The hunt, however, was not over. As early as 1962, the use of laser interferometers

as gravitational wave directors had been proposed by Gertsenshtein and Pustovoit [2],

and in 1972 Rainer Weiss essentially laid down the blueprint for what would become

LIGO [7]. The interferometers were several orders of magnitude more sensitive than

the aluminum bar detectors, and could be made even more sensitive by increasing the

length of the arms. Hope within the gravitational wave community was renewed [6].

Gravitational-wave astronomy received another boost in 1975, when Hulse and

Taylor reported their discovery of PSR1913+16 in radio waves [8]. This binary pulsar

system followed a pattern of orbital decay precisely predicted by general relativity,

and has continued to do so for decades [9] as shown in Figure 1.1. Hulse and Taylor

received the 1993 Nobel for their discovery, and the gravitational wave community

received a very strong piece of indirect evidence for the existence of their sought-after

waves.

In 1989, a proposal to build two interferometric detectors with four-kilometer

arms was submitted to the National Science Foundation. LIGO was funded in 1991,

and two detectors were built within the decade; one in Hanford, Washington, and

the other in Livingston, Louisiana. The two detectors reached their initial design

sensitivities in 2005 [2]. This thesis centers on a search for continuous gravitational

waves from neutron stars in the nearby globular cluster NGC6544, using data from

these two detectors taken during LIGO’s sixth science run (S6), which ran from July
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Figure 1.1:
The orbital decay of the binary system PSR1913+16 has tracked general relativity’s
prediction since its discovery in 1975. This image is Figure 2 in [9].
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2009 to October 2010.

Chapter 2 will describe the formalism of Einstein’s General Relativity and the

emergence of gravitational waves from the theory and briefly describe the major

types of gravitational waveforms that LIGO scientists seek. Chapter 3 discusses how

an interferometric detector responds to gravitational waves, and gives an overview

of the specifications of the LIGO detectors. Chapter 4 describes in more detail

continuous gravitational waves, the target of this thesis. The astrophysical sources

and emission mechanisms of such waves are discussed, and the chapter concludes with

a description of the globular cluster NGC6544 and the reasons it was selected as the

target for this search. The fifth chapter describes a barycentric resampling technique

which provides large computational gains, allowing for a search of a deeper parameter

space with limited computational resources. Chapter 6 describes the methods and

setup for the search conducted, and Chapter 7 is dedicated to the results of the

search, including outlier followup and the setting of upper limits in the absence of a

signal.



CHAPTER II

Gravitational Waves

Detecting gravitational waves is the central aim of this work. This chapter will

describe gravitational waves and how they arise as a prediction of General Relativity.

It will also provide a brief catalog of different types of gravitational waves, with their

attendant characteristics, sources, and search techniques.

2.1 Waves in General Relativity

The spacetime interval ds is one of the central concepts of special relativity. The

spacetime interval between any two neighboring points is defined by [6]

(2.1) ds2 ≡ −c2dt2 + dx2 + dy2 + dz2

where c is the speed of light. In more general terms, Eqn. 2.1 can be written

(2.2) ds2 = ηµνdx
µdxν

where the Greek indices, ranging from 0 to 3, represent the spacetime coordinates t, x,

y, and z, and ηµν is the Minkowski metric, which is (in Cartesian spatial coordinates)

5
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(2.3) ηµν =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


The Minkowski metric represents the flat spacetime of special relativity, but gen-

eral relativity uses the more general metric gµν , which describes curved spacetime.

In particular, we can look to the case of a small perturbation to a flat spacetime, for

which we can use

(2.4) gµν = ηµν + hµν

Here, hµν is the metric perturbation away from a flat Minkowski space. It carries all

of the information about the space-time curvature–and therefore all the information

about the gravitation.

Gravitation is curvature in General Relativity–that is, objects “feeling” the force

of gravity are more correctly said to be feeling the curvature of space [10]. This idea

is expressed mathematically by the Einstein field equation:

(2.5) Gµν =
8πG

c4
Tµν

where Gµν is the Einstein curvature tensor, G the gravitational constant, and Tµν

the stress-energy tensor. The stress-energy tensor is a symmetric tensor of order two

which describes the “energy-like aspects of a system–energy density, pressure, stress,

and so forth” according to Carroll [11], whose derivation we will follow. At its most
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basic level, this equation is telling us that the curvature (Gµν) is described by the

sources of mass density (Tµν)–spacetime curvature arises from matter.

The Einstein curvature tensor is defined by the relation

(2.6) Gµν ≡ Rµν −
1

2
gµνR

where gµν is our aforementioned metric, Rµν is the Ricci tensor, and R is the Ricci

scalar. The Ricci scalar is defined by

(2.7) R ≡ gµνRµν

where gµν is the inverse of the metric gµν . In the case of the metric of Eq. 2.4, it is

given to first order by

(2.8) gµν = ηµν − hµν .

The Ricci tensor Rµν is derived from the Riemann tensor Rµ
νρσ; in particular

(2.9) Rµν = Rα
µαν

where the Riemann tensor itself is defined as

(2.10) Rµ
νρσ ≡ ∂ρΓ

µ
νσ − ∂σΓµνρ + ΓµαρΓ

α
νσ − ΓµασΓανρ.

Γρµν is the Christoffel connection. A connection is a correction added to the par-

tial derivative ∂µ to make the resulting operation covariant [11]. The Christoffel
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connection is the connection related to the metric gµν , and which corrects geodesic

paths [12]. It is defined as

(2.11) Γρµν ≡
1

2
gρσ(∂µgσν + ∂νgσµ − ∂σgµν).

Substituting the weak perturbation metric (Eq.( 2.4) into these equations gives,

to first order in hµν (and remembering that since hµν is a weak perturbation, we can

assume |hµν | � 1):

Γρµν =
1

2
(ηρσ − hρσ)[∂µ(ησν + hσν) + ∂ν(ησµ + hσµ)− ∂σ(ηµν + hµν)]

=
1

2
(ηρσ − hρσ)(∂µhσν + ∂νhσµ − ∂σhµν)

=
1

2
(∂µh

ρ
ν + ∂νh

ρ
µ − ∂ρhµν) + · · · ,(2.12)

Rµν = ∂αΓαµν − ∂νΓαµα + ΓαβαΓβµν − ΓαβνΓ
β
µα

=
1

2
∂α(∂µh

α
ν + ∂νh

α
µ − ∂αhµν)−

1

2
∂ν(∂µh

α
α + ∂αh

α
µ − ∂αhµα) + · · ·

=
1

2
(∂µ∂

αhνα + ∂ν∂
αhµα −�hµν − ∂µ∂νh) + · · · ,(2.13)

R =
1

2
(ηµν − hµν)(∂α∂µhαν + ∂α∂νhµα −�hµν − ∂µ∂νhαα)

= ∂ν∂αhνα −�h+ · · ·(2.14)

Here ∂αh
α
µ = ∂αhµα, � ≡ ∂α∂

α =
(
O2 − 1

c2
∂2

∂t2

)
(where O2 is the derivative with

respect to the spatial dimensions–
(
∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2

)
), h = ηµνhµν , and the · · · indi-

cate the neglected higher-order terms. (We will be evaluating every equation to first
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order in hµν ; although henceforth we will not include these dots, the neglected terms

exist.)

Substituting these last two equations into Eq.( 2.6) yields

(2.15) Gµν =
1

2
[∂µ∂

αhνα + ∂ν∂
αhµα −�(hµν − ηµνh)− ∂µ∂νh− ηµν∂ρ∂σhρσ].

It is useful here to define

(2.16) h̄µν ≡ hµν −
1

2
ηµνh

which has inversion

(2.17) hµν = h̄µν −
1

2
ηµν h̄.

Substituting Eq.( 2.17) into Eq.( 2.15) gives us a new form for the Einstein curvature

tensor:

Gµν =
1

2
[∂µ∂

α(h̄να −
1

2
ηναh̄) + ∂ν∂

α(h̄µα −
1

2
ηµαh̄)

−�(h̄µν −
1

2
ηµν h̄+ ηµν h̄) + ∂µ∂ν h̄− ηµν∂ρ∂σ(h̄ρσ −

1

2
ηρσh̄)]

=
1

2
[∂µ∂

αh̄να + ∂ν∂
αh̄µα −�h̄µν − ηµν∂ρ∂σh̄ρσ].(2.18)

We can make these equations especially clear by now selecting the transverse

traceless (“TT”) gauge, in which spacetime coordinates coincide with the world lines

of freely falling test masses [13]. This is done by setting

(2.19) ∂ν h̄µν = 0.
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Using this choice of coordinates, Einstein’s field equation becomes:

(2.20) Gµν = −1

2
�h̄µν =

8πG

c4
Tµν ,

or, equivalently,

(2.21) �h̄µν =

(
O2 − 1

c2

∂2

∂t2

)
h̄µν = −16πG

c4
Tµν

Lastly, we look to the weak-field limit–when we are far from sources of gravitation,

and can take the stress-energy tensor Tµν = 0. Einstein’s equation has become a

homogeneous wave equation [14]:

(2.22)

(
O2 − 1

c2

∂2

∂t2

)
hµν = 0

The elements of hµν then take the functional form h(2πft− k · x), which represents

a plane wave propagating in the direction k̂ ≡ k/ |k| with speed c (f = |k| /2πc).

These are gravitational waves, moving at the speed of light c.

Since hµν is transverse and traceless, a gravitational wave propagating in the ẑ

direction will have hµν of the form [6]

(2.23) hµν =



0 0 0 0

0 a b 0

0 b −a 0

0 0 0 0


It’s apparent that this metric can be written as the sum of two components:

h = aĥ+ + bĥ×. The components are
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(2.24) ĥ+ =



0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0


and

(2.25) ĥ× =



0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


These are the two orthogonal polarizations for gravitational waves, pronounced

“h plus” and “h cross.” The difference is best illustrated by the effect of a wave on

a ring of particles, as seen in Figure 2.1. A plus-polarized wave propagating along

the ẑ axis will simultaneously compress the ring in x̂ while stretching it in ŷ, and

then alternately stretches the ring in x̂ while compressing it in ŷ. A cross-polarized

wave propagating along the ẑ axis will act in a similar manner, but on axes rotated

by 45◦. The polarizations are invariant up to a sign change under a 90◦ rotation.

While electromagnetic radiation can be emitted by a variety of multipoles, grav-

itational waves are more restricted. Conservation of energy, conservation of linear

momentum, and conservation of angular momentum forbid, respectively, monopole,

dipole, and magnetic dipole radiation; gravitational radiation thus requires at least

a nonzero quadrupole moment [13].



12

Figure 2.1:
The effect of a gravitational wave traveling into the page (ẑ) on a ring of particles arrayed
in the x-y plane. The top row shows a plus polarized wave, which first compresses space
in x̂ while stretching it in ŷ, and then vice-versa. The bottom row illustrates a cross-
polarized wave, which has the same effect but rotated by 45◦ in the x-y plane.

2.2 Types of Gravitational Wave Sources

Gravitational waves come in a wide variety of categories and frequencies. Looking

ahead to Chapter 3, I will here divide them into those that fall within the operating

frequency range of ground-based interferometric detectors and those best accessible

through other techniques.

2.2.1 The LIGO Band

Current ground-based interferometric detectors such as the Laser Interferometer

Gravitational-wave Observatory (LIGO) are sensitive to gravitational waves over a

broad range of frequencies, between 10 Hz and several kHz [13]. Within this wide

band there are several different classes of signals to be sought after.

Compact binary coalescences (CBCs) are the most promising class of gravitational

wave signatures LIGO hopes to detect. These are generated when two extremely
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Figure 2.2:
The signature “chirp” gravitational-wave signal of a compact binary coalescence. [Im-
age: A. Stuver/LIGO]

massive objects (e.g., a pair of black holes or neutron stars, or a black hole-neutron

star pair) inspiral towards each other, losing angular momentum and energy via

gravitational radiation, before eventually colliding and merging to form a black hole.

They are characterized by a “chirp” signal, a sinusoid increasing in both frequency

and amplitude as the pair inspiral towards each other (see Figure 2.2); by a less-well-

understood merging phase; then finally by a strong emission of gravitational waves

known as “ringdown” as the combined object reaches its new stable state [15]. These

signals are transient, present in the LIGO band of frequencies for durations on the

order of minutes or seconds, depending on the masses of the inspiralling objects; at

an Earth-based detector, the waves have characteristic amplitude [10]

(2.26) h0 ' 2× 10−21

(
f

1 kHz

)(
r

10 Mpc

)−1(
m1

1.4M�

)(
m2

1.4M�

)(
M

2.8M�

)−1/3

where f is the gravitational wave frequency, r the distance to the source, m1 and

m2 the respective masses of each inspiralling object, and M the total mass of the

system.
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The inspiral and ringdown phases are very well modeled, and advances in numeri-

cal relativity have improved the understanding of the merger phase as well [16,17,18].

A search for CBCs typically begins with a matched-filter step, where known wave-

forms are used as templates. The output of the matched-template filter is thresh-

olded at a given signal-to-noise ratio (SNR), and events for which the SNR crosses

the threshold are considered triggers for followup. Triggers are initially generated

independently for each detector, then subjected to a coincidence requirement be-

tween detectors, and then further subjected to consistency tests [15]. If no signals

are found, upper limits can be set on the rate of CBCs per search volume. The latest

CBC searches, using data from the LIGO and VIRGO detectors, have set upper

limits of 3.3× 107 per cubic Megaparsec per year [19] for non-spinning binary black

hole mergers, 1.3 × 104 per cubic Megaparsec per year [20] for binary neutron star

mergers, and 3.1×105 per cubic Megaparsec per year [20] for black hole-neutron star

mergers.

Burst signals are short unmodeled “bursts” of gravitational radiation, typically

taken to be shorter than one second but with significant enough power to rise above

the background noise floor of the detector. Sources of these “bursts” can be asym-

metric core-collapse supernovae [21], or the ringdown portion of a CBC whose inspiral

and merger stages are outside the LIGO band. Gamma-ray bursts (GRBs) and soft

gamma repeaters (SGRs) can also be used as external triggers for burst searches [15].

Burst searches rely heavily on correlation and coincidence analyses between detectors,

since the detectors can undergo ”glitches,” caused by environmental noise sources and

instrumental artifacts, which mimic burst signals. Correlation need not be limited to

gravitational-wave detectors–some of the most recent burst searches have correlated

LIGO data with electromagnetic spectrum data from satellite observatories like Swift



15

and Fermi [22].

A stochastic background of gravitational waves could indicate the gravitational

radiation produced just after the Big-Bang, which persists since gravitational waves

interact weakly with matter [15]. Other cosmological sources could include phase

transitions in the early universe, topological defects formed during these transitions,

or cosmic strings; astrophysical sources can include the superposition of periodic

signals from supernovae, spinning neutron stars, and low-mass X-ray binaries [13].

Stochastic signals are much weaker than those previously discussed, and searches for

them involve integrations over long observation times and the use of environmental

monitoring data to identify sources of instrumental noise which may be correlated

across detectors. Recent stochastic searches have placed upper limits on ΩGW , the

energy density of the stochastic gravitational wave background, in four different

frequency bands spanning 41.5 to 1726 Hz, with a lowest value of 5.6× 10−6 for the

frequency range between 41.5 to 169.25 Hz [23].

The final category of sources in the LIGO band, and the one of most importance

to this work, are continuous-wave (CW) sources. Continuous gravitational waves

are expected to be emitted by spinning neutron stars, observed as pulsars with spin

frequencies between a few milli-Hz and about a kHz. Since an axisymmetric body

has no quadrupole moment, spinning neutron stars emitting gravitational waves

must have some axisymmetric asymmetry–a large “mountain” on their crust, or

some asymmetry due to accretion processes. This class of sources will be discussed

in detail in Chapter 4, and Chapters 6 and 7 will describe a search for gravitational

waves from such an object in a nearby globular cluster.
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2.2.2 Other techniques

Ground-based interferometry is only one technique for the detection of gravita-

tional waves. Gravitational waves can arrive in a wide range of frequencies, many

outside the LIGO frequency band described in the preceding section, which can be

pursued with a variety of methods [13].

Waves with frequencies below 10−13 Hz, corresponding to wavelengths roughly

the size of the universe, are expected to have been generated during the period of

inflation closely following the Big Bang. These waves can be detected through the

imprints they leave in the cosmic microwave background, like those searched for

(but ultimately not found) in the recent BICEP2 experiment [24]. Massive binary

black holes are expected to generate a background of waves between 10−9 and 10−7

Hz, which can be detected using time-of-arrival delays in the pulses of an array

of millisecond pulsars [25]. Finally, the space between 10−5 Hz and 1 Hz is the

domain of space-based interferometric detectors, such as the planned “evolved Laser

Interferometer Space Antenna” (eLISA) [26]. Astrophysical sources of such signals

include stellar-mass black hole and white dwarf binaries.



CHAPTER III

Detecting Gravitational Waves

3.1 Interferometry

An interferometer, broadly speaking, is a device which splits a beam of light

into two and then recombines it. There are several types, with different schemes for

splitting the light, altering its path length, and recombining the beams; we shall focus

on the interferometer made famous by Michelson and Morley [27] in their attempt to

measure the Earth’s movement against the then-supposed luminiferous ether. This

type is known, after its inventor, as a Michelson interferometer.

3.1.1 Michelson Interferometers

A Michelson interferometer has a source of coherent light, in most modern in-

stances a laser, which is incident on a beamsplitter. A beamsplitter is a partially

reflecting mirror, which allows some light to pass through it while reflecting the rest.

Such a mirror placed at a 45◦ angle to the incident beam, for example, will result

in two beams at right angles. These beam directions define the arms of the interfer-

ometer, and at the end of each is placed a fully reflecting mirror. Light reflected at

the beamsplitter will travel up and down one arm; light passing through the beam-

splitter will make a circuit of the other. The light beams, returning from the end

mirrors, are superposed at the beam splitter, and the resulting combined beam is

17
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Figure 3.1:
Schematic diagram of a Michelson interferometer. A coherent beam source is incident
on a beamsplitter, which reflects some light while allowing the rest to pass through.
Each “arm” of the interferometer is then reflected from a mirror and recombines at the
beamsplitter. The recombined beam moves to a detector.

directed towards a photodetector. A schematic of such an interferometer is provided

in Figure 3.1.

Michelson interferometers can be used as very precise length-sensing devices, be-

cause of the interference pattern produced when the two split beams recombine.

We’ll follow the analysis of Saulson [6], which itself is based on Haus [28].

If we take the input light (incident on the beam splitter) to be traveling in the

x-direction, then its electric field is given by

(3.1) Ein = E0e
i(2πft−kx)
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where E0 is the amplitude of the light, f the frequency, t the time coordinate, and

k the wavenumber k = 2π
λ

with λ the wavelength. Assuming a beamsplitter that

reflects half the light and transmits half the light, we can represent transmission

by the amplitude transmission coefficient t = i/
√

2 and reflection by the amplitude

reflection coefficient r = 1/
√

2, such that the field of the light which passes through

the beam splitter and continues in the x-direction has field

(3.2) Et = i(E0/
√

2)ei(2πft−kx)

while that which is reflected into the other arm has field

(3.3) Er = (E0/
√

2)ei(2πft−ky)

The reflection at each end mirrors multiplies each wave by −1, and upon returning

to the beamsplitter it is once again partly reflected and transmitted, with the same

coefficients. Thus the field of the recombined beam moving towards the detector is

(3.4)

Eout = (i/2)E0e
i(2πft−2kLx)+(i/2)E0e

i(2πft−2kLy) = iei(2πft−k(Lx+Ly))E0cos[k(Lx − Ly)]

where Lx and Ly are, respectively, the x̂- and ŷ-arm lengths. Light returning from

the mirrors which exits back towards the input source will have field

(3.5) Erefl = −iei(2πft−k(Lx+Ly))E0sin[k(Lx − Ly)]

The state of the light leaving the interferometer is thus determined by the differ-

ence in the arm lengths. When the lengths are equal, and the difference is zero, Erefl
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goes to zero, and light of amplitude E0 emerges towards the photodetector. On the

other hand, for a phase difference of π/2, it is Eout which goes to zero while light

of amplitude E0 is reflected back at the input. If we measure the power, which is

proportional to the square of the field, at the output detector, we will get

(3.6) Pout = Pincos
2[k(Lx − Ly)] = Pin(1 + cos[2(k(Lx − Ly))])

A Michelson interferometer thus acts as a transducer–translating differences in

light travel time into output optical power. Measuring the brightness of light at

the output will give us the travel time difference up to an integer number of optical

periods τ ≡ λ/c.

3.1.2 Detection of GWs by Interferometers

The trick to using a Michelson interferometer as a gravitational-wave detector lies

in making one key change to the experimental setup. Rather than fixing any of the

optics to any single rigid structure, each mirror acts as a freely-falling mass. This

way the optics will respond in a simple way to gravitational effects, especially when

described in the transverse traceless gauge discussed in the previous chapter. The

derivation here will once more follow [6].

Light travels at constant speed c in any inertial frame of reference. In the terms

of relativity, this means that a ray of light connects sets of points separated by a

spacetime interval ds equal to zero. Imagine, then, our Michelson interferometer

with its arms aligned along the x̂ and ŷ axes, as in the previous section. Then we

have

(3.7) ds2 = 0 = gµνdx
µdxν = (ηµν + hµν)dx

µdxν
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Remembering the metric matrices from the previous chapter, this gives

(3.8) ds2 = 0 = −c2dt2 + (1 + h11(2πft− k · x))dx2

along the x̂-axis, and a similar expression for the ŷ-axis, but with h22 in place of h11.

We can then find the light travel time from the beam splitter to the end of the x̂-arm

by taking the square root of 3.8 and integrating:

(3.9)

∫ τout

0

dt =
1

c

∫ L

0

√
1 + h11dx

Since we are working in the limit where h is a small perturbation of a flat spacetime,

we can assume |h11| � 1 and take a binomial expansion of the square root.

(3.10)

∫ τout

0

dt ≈ 1

c

∫ L

0

(1 +
1

2
h11(2πft− k · x))dx

Similarly, the return trip from the end of the x̂-arm to the beam splitter can be

expressed as

(3.11)

∫ τRT

τout

dt ≈ −1

c

∫ 0

L

(1 +
1

2
h11(2πft− k · x))dx

Combining the two gives the total round trip time τRT :

(3.12) τRT =
2L

c
+

1

2c
(

∫ L

0

h11(2πft− k · x)dx−
∫ 0

L

h11(2πft− k · x)dx)

For further simplicity, we’ll assume a plus-polarized gravitational wave propagating

along the ẑ axis, with amplitude h11 = h22 = h. Then k · x = 0. If we also assume
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that the gravitational wave has a frequency fgw such that τRT � 1/(2πfgw), then

the metric perturbation is approximately constant during any given round trip and

the perturbations to the light travel time in each arm will be equal and opposite.

This then gives a total travel time difference of

(3.13) ∆τ(t) = h(t)
2L

c

This travel time difference can be expressed in terms of phase by dividing by the

period of oscillation of the light (λ/2πc), such that

(3.14) ∆φ(t) = h(t)
2L

c

2πc

λ
=

4πL

λ
h(t)

Finally, note that since light travels at constant speed c, the travel time difference

over a path-length difference ∆L can also be expressed as 2∆L/c (where the factor

of two enters because light must travel twice the arm-length to complete one trip),

which combined with 3.13 gives

(3.15) h(t) =
∆L

L

Given Eqn.(3.15), it is apparent that one of the keys to detecting small gravita-

tional perturbations h(t) is to make L as long as feasibly possible. The brute-force

way to go about this is to create an interferometer with extremely long arms, but

there are also other ways to increase the path length L. These and other features of

the LIGO interferometers will be covered in the next section.
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3.2 The LIGO Detectors

The LIGO collaboration operates a pair of Michelson-interferometer gravitational

wave detectors. One is located in Hanford, Washington; the other in Livingston,

Louisiana. This section will cover some of the challenges that arise when operating

interferometric detectors, and some of the innovations that the LIGO detectors have

adopted in response.

3.2.1 Fabry-Perot Cavities

The LIGO interferometers have arms four kilometers in length, which for typical

values of h(t) correspond to ∆L of approximately 4×10−18 meters [29]. To eliminate

scattering of the laser beam by particulates, the interferometer arms are kept in

vacuum at 10−9 torr. Further, each arm is made a Fabry-Perot cavity by the insertion

of an input mirror on each arm (see Figure 3.2). A Fabry-Perot cavity consists of

two aligned mirrors facing each other such that light bounces back and forth between

them repeatedly. For cavity lengths L = nλ/2, where n is any integer, a Fabry-Perot

cavity is in resonance–that is, the relative phase of all of the beams bouncing back

and forth inside it is such that it transmits maximum power. This has the same effect

as trapping light inside the arm and forcing it to make many trips before returning

to the beam splitter; a Fabry-Perot cavity has an effective light “storage time” [6]

(3.16) τs =
L

c

F
π

where F is the finesse of the cavity. The finesse of a cavity is a measure of the

sharpness of its resonance, defined as the ratio between the width of a resonance

peak at half-power and the free spectral range ∆f = c/2L. The finesse is given by
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Figure 3.2:
Schematic diagram of the LIGO Fabry-Perot interferometer. Suspended input and
output test masses create a Fabry-Perot cavity in each arm. At top, a gravitational
wave is incident from the ẑ-direction.

(3.17) F =
π
√
r1r2

1− r1r2

where r1 and r2 are the amplitude reflectivities of the two mirrors which make up

the cavity. Further, a Fabry-Perot cavity of finesse F gives 2F/π times the phase

shift in response to a gravitational wave, as long as the time scale for gravitational

metric changes is long compared to FL/c. Finally, in a Fabry-Perot cavity all of the

many optical path lengths are superimposed spatially, as opposed to a folded design,

so the optics can remain small in size, making it easier to manufacture them with

the necessary optical properties. The LIGO interferometers lock their Fabry-Perot

cavities to resonance using the Pound-Drever-Hall technique [30], and in their sixth

science run used finesse F = 220 and storage time τs = 0.95 milliseconds [31].
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3.2.2 Primary noise sources

The LIGO interferometers’ noise curves are dominated by different sources at

different frequencies. At low frequencies (below 50 Hz), the dominant source of dis-

turbances is seismic–the motion of the ground coupling to the motion of the test

masses. This is countered by both active (servo controls) and passive (multi-stage

pendulums) seismic isolation systems on each of the test masses.1 At medium fre-

quencies (50 Hz - 200 Hz), the detectors are dominated by thermal noise. This is

the Brownian motion of particles striking the test masses–countered by using mate-

rials with high quality factor Q. To this end, LIGO uses test masses of fused silica.

At high frequencies the dominant source of error is shot noise–the counting error

in the number of photons arriving at the output detector. Shot noise is inversely

proportional to the input power, so it can be mitigated by increasing laser power,

and LIGO makes use of a 1064 nm Nd:YAG laser operating at 10 Watts [29]. In-

creased laser power brings its own problems, however. Increased radiation pressure

noise–movement induced in the test masses by the photons impacting them–can be

compensated for by using heavier optics; LIGO mirrors weigh more than 10 kilo-

grams. The heightened laser power also leads to thermal heating of the mirrors from

photon absorption–despite having reflectivities of 99.997% [15]. This is compensated

for with the aptly named Thermal Compensation System [32], which ensures the

optics are heated to compensate distortions.

3.2.3 S6 noise sources

The search for gravitational waves described in Chapters 6 and 7 was performed

in data taken during LIGO’s sixth science run (S6), which spanned July 7, 2009

1Although installed at both sites now, during the sixth science run only the Livingston observatory had active
isolation.
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Figure 3.3:
The noise curve for the LIGO detectors during S6. The green curve represents the
Livingston (L1) detector; the red curve the Hanford (H1) detector. Included are the
noise curves from the three dominant noise sources: seismic, thermal, and shot. Image
credit: Macleod and Smith, 2013 [33].

to October 20, 2010. The LIGO noise curve as it existed during S6 is displayed in

Figure 3.3, where strain sensitivity is plotted against frequency on logarithmic axes.

As can be seen from the figure, seismic noise is the main contributor at low

frequencies, thermal noise at medium frequencies, and shot noise at high frequencies,

as described in the preceding. At lower frequencies, there is also a discrepancy

between the seismic noise curve and the LIGO sensitivity curve. This discrepancy

is likely explained by what is known as Barkhausen noise [34]. The test masses

are driven by electromagnetic actuator coils, and the low frequency currents applied

to the magnets in those coils are upconverted into broadband actuation force noise

below approximately 80 Hz [35]. This extra noise source will be mitigated in the next
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generation (see next section) of detectors [31] by a quadruple-pendulum suspension

system and electrostatic (as opposed to magnetic) actuation [36].

Also visible in the figure are several prominent noise lines: large disturbances at

relatively well-defined stationary frequencies, which are very relevant for continuous-

wave gravitational wave searches (described in Chapter 4) like the one we undertook

(Chapters 6 and 7). Immediately apparent are the large disturbances at 60 Hz

and its harmonics. These are due to the AC current supplied at 60 Hz by the

U.S. power mains [37]. While large, these disturbances are relatively narrow in

frequency; the search for the Crab pulsar was only moderately affected in LIGO’s

fifth [38] and sixth [39] science runs, when that pulsar’s expected gravitational wave

frequency was 59.77 Hz and 59.44 Hz, respectively. The large, broader disturbances

between 330 Hz and 350 Hz and related harmonics are the detector’s violin modes,

the resonance frequencies for the suspended test masses; also visible near 400 Hz

are a pair of calibration lines (one at each detector) used to measure interferometer

response. Additionally, the sixth science run was plagued by a comb of 2-Hz and

16-Hz harmonics at both detectors; the specific mechanism causing these was never

proven but they were known to be instrumental artifacts [37].

3.2.4 Advanced LIGO and the worldwide detector network

LIGO has recently completed an upgrade of all major components of its two

detectors, which should result eventually in an order of magnitude increase in sensi-

tivity [40]. Upgrades include fused silica suspensions welded to the fused silica optics,

which combine with the aforementioned upgraded seismic isolation systems to hold

LIGO optics in place to within 10−14 meters; an upgrade from 10-kg to 40-kg test

masses to reduce radiation pressure noise; and an increase in laser power to 180 W.

In addition, LIGO uses its multiple detectors to resolve the sky location of incom-
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ing gravitational wave signals, and this capability too is receiving a boost as more

interferometric detectors come online. The French-Italian VIRGO collaboration op-

erates a 3-km detector in Northern Italy, which is also in the process of receiving

upgrades [41], and a smaller 600-m interferometer in Hannover, Germany is pioneer-

ing quantum squeezing techniques [42]. Work is also under way on an underground,

cryo-cooled interferometer in Japan [43], and plans are in place to install a 4-km

LIGO detector, originally intended for Hanford, in India [44].



CHAPTER IV

CW GWs: Astrophysical Sources and Target Selection

Continuous-wave (CW) gravitational waves, described briefly at the end of Chap-

ter 2, are long-lived quasi-monochromatic gravitational wave signals. They are char-

acterized by a frequency f and its evolution (ḟ , f̈ , etc.), their amplitude h, their

polarization angle ψ and inclination angle ι, and a phase Ψ. CWs are expected to be

weak, but long-lived, so that long stretches of observation time (days, months, years)

can be integrated to search for them. The first section of this chapter will describe

likely sources of these CW waves; the following section will discuss some common

theorized mechanisms for their emission. The chapter will close by bringing these

criteria together to explain the target selection for the search for gravitational waves

described in Chapters 6 and 7.

4.1 Astrophysical Sources

Neutron stars are prime sources of gravitational waves. Chapter 2 discussed their

roles as members of a compact binary coalescence, the target of a different branch

of gravitational wave searches. Neutron stars in binary systems are also an area of

ongoing development in gravitational wave searches–the pioneering TwoSpect [45]

pipeline was only one method among several that recently took part in a mock data

challenge [46] with simulated data from the Scorpius X-1 binary. This work focuses

29
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on gravitational waves emitted by isolated spinning neutron stars.

4.1.1 Neutron stars

A neutron star is a compact object, roughly 10 kilometers in radius and 1.4M�

in mass [47]. These objects are the neutron cores of former stars, left after the

stellar envelope is blown off in a supernova explosion [48]. Their existence was

first postulated by Landau [49]; Baade and Zwicky first suggested their supernova

origin [50]. Likely made nearly entirely of neutrons, these stars are supported against

gravity by degeneracy pressure.

Since neutron stars are cold (i.e., they do not produce luminosity via fusion), in the

simplest Newtonian case their structure can be expressed through three equations.

The mass equation, which relates density to mass; the momentum equation, which

expresses the hydrostatic equilibrium; and the potential equation, which describes

the gravitational potential [47]. We can think of the star as a series of infinitesimaly

thin shells of thickness dr at a radius r. Each shell will have mass dm given by its

density ρ:

(4.1) dm = 4πr2ρdr.

Then the mass can be expressed as function of radius:

(4.2)
dm(r)

dr
= 4πr2ρ(r),

or

(4.3)
dm(r)

dr
=

4πr2ε(r)

c2
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where we have substituted the mass energy density ε = ρc2. The total mass can then

be found by integrating from the center to the stellar radius R, where R is defined

as the location where the pressure vanishes.

(4.4) M =

∫ R

0

dm

dr
dr =

4π

c2

∫ R

0

ε(r)r2dr

The hydrostatic equilibrium condition is that gravity must balance pressure. Con-

sidering again our infinitesimal shells, the change in pressure P across a shell bounded

by the radii r and r + dr is

(4.5) P (r)− P (r + dr) = −dP
dr
dr,

where the negative sign appears because the pressure decreases outward (recall that

it vanishes at the stellar radius R). Pressure is force per area, and the gravitational

force is determined by the enclosed mass, so we have

(4.6) fgrav =
Gm(r)

r2
dm =

Gm(r)

r2

4πr2ε

c2
dr

where G is the gravitational constant. The surface area of a spherical shell is 4πr2;

balancing the pressure change with the gravitational force per area we have

(4.7)
dP

dr
= −Gm(r)

r2c2
ε.

Lastly, the radial change of the gravitational potential φ is given by

(4.8)
dφ

dr
=
Gm(r)

r2
= −c

2

ε

dP

dr
.
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The generalization of these equations to the General Relativistic case are called

the Tolman-Oppenheimer-Volkoff equations [51], and they can be written as a form

that corresponds to the preceding Newtonian equations with correction factors [47].

(4.9)
dm

dr
=

4πr2ε

c2

(4.10)
dP

dr
= −Gm(r)ε

c2r2

(
1 +

P

ε

)[
1 +

4πr3P

m(r)c2

] [
1− 2Gm(r)

c2r

]−1

(4.11)
dφ

dr
= −c

2

ε

dP

dr

(
1 +

P

ε

)−1

The mass equation is unchanged; the first two correction terms on Eq.( 4.10) (as

well as the correction factor on Eq.( 4.11)) arise due to special relativistic effects.

The last correction factor on Eq.( 4.10) is due to General Relativity and as such

can be used as a criterion for whether General Relativity is important, much like

the Lorentz factor γ in special relativity. In particular, General Relativity will be

unimportant provided that the condition

(4.12)
2GM

c2R
� 1

holds. By dimensional analysis, we can see that the quantity 2GM/c2 must have

units of length; it is in fact the Schwarzschild radius. Thus Eq.( 4.12) can be seen

as the ratio of an object’s Schwarzschild radius and its actual physical radius; if this

ratio is small, General Relativity is unimportant. For example, this ratio for our Sun

is ≈ 4× 10−6 [47].
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A neutron star is thought to be composed of several layers. The surface of a

neutron star has densities less than 106 g/cm3 and contributes a negligible amount

of mass to the star. It can be subdivided into an atmosphere, which shapes the

spectra emitted by neutron stars, and an envelope, just below the atmosphere and

important for thermal and transport properties. The surface is also a layer where

extremely high magnetic fields are sometimes found. A relatively solid outer crust,

one to two kilometers thick, covers the neutron superfluid core of the neutron star,

which holds 99% of the neutron star’s mass [47].

The crust is of particular interest to us, since it is here that a bump or “mountain”

might arise and produce gravitational wave emission (see 4.2). Here we follow the

model of Lattimer and Prakash [52]. The crust is 1-2 kilometers thick, and is usually

separated into an outer and an inner crust. It is comprised of nuclei arranged into

configurations of lowest energy, with density ρ increasing radially inward. In the

outer crust, at relatively low (ρ < 109kg · m−3) densities, the dominant nucleus is

thought to be iron (56Fe); as density increases, matter becomes ionized and the nuclei

are embedded in a nearly uniform background of electrons [47]. The nuclei become

more and more neutron rich; they may contain nucleon numbers of up to several

hundred and arrange in crystalline lattices. At what is known as the neutron drip

density, ρdrip = 4 × 1014kg · m−3, the neutrons begin to “drip” out of the nuclei,

immersing them in a sea of background neutrons [47]. The nuclear lattices change

with increasing density from spherical shells to flat slabs of nuclei to voids embedded

in nuclear matter to, when the density is so high that nucleons touch, a uniform

nuclear fluid. At a density of 1017kg · m−3, the nuclei cease to exist and matter

consists of a homogeneous neutron-proton fluid; this point defines the boundary of

the outer core [47].
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4.1.2 Pulsars

Some neutron stars emit electromagnetic radiation along the axes of their mag-

netic fields. If these neutron stars are spinning (and their dipole is misaligned with

respect to their spin axis) then from the Earth this beamed radiation will appear as

a pulse of radiation each time it sweeps across us, with a frequency equal to the ro-

tational frequency of the star. This class of neutron stars, first observed in 1967 [53],

are thus called pulsars.

Pulsars can be either isolated or in binary systems, as is true for the broader

class of neutron stars to which they belong. “Supernova remnant associations” are

pulsars associated with known supernova remnants, indicating a possibility that we

may know which supernovae birthed them; “rotating radio transients” is the label

given to pulsars which have a high degree of pulse-to-pulse variability, making them

difficult to detect with Fourier techniques.

Figure 4.1 also groups the pulsar population into three subcategories [15]. In the

upper right of the plot are the magnetars, pulsars with extremely high magnetic

fields, greater than 1014 Gauss. The large bulk of the pulsar distribution is clustered

roughly around a one-second period. They are no older than a few million years

and have magnetic fields between 1011 and 1013 Gauss. In the lower left, with much

smaller rotation periods, are the so-called millisecond pulsars (MSPs). This class of

pulsar is thought to be much older, and are called “recycled” pulsars–their rotation

period has slowed and then been spun back up, almost certainly by accretion from a

companion star. There are isolated MSPs, for which it is possible the companion has

been destroyed by the MSP [55] or kicked from binary orbit by the MSP’s supernova.

MSPs are of interest to us, since their rotation frequencies overlap with the frequency

band of greatest sensitivity for LIGO.
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Figure 4.1:
A period-period derivative plot showing the distribution of known pulsars. The plot
shows isolated pulsars as dots, binary pulsars as circles/ellipses, magnetars as filled
squares, rotating radio transients as open squares, and supernova remnant associations
as filled stars. Also shown are lines of constant characteristic age (in years) and magnetic
field strength (in Gauss). Plot taken from [54].



36

4.2 Emission mechanisms

There are several different mechanisms whereby a spinning neutron star can emit

CW gravitational waves. We established in Chapter 2 that gravitational waves are

quadrupolar and thus require some non-axisymmetric feature; this can be produced

in the form of some non-axisymmetric mass distribution (a “mountain” or bump

in the crust of a neutron star) or non-axisymmetric oscillations in the neutron star

itself. This section will review these mechanisms and the gravitational wave strain

each can be expected to produce.

4.2.1 Non-axisymmetric mass

One way to introduce non-axisymmetry is to imagine a bump or mountain on the

crust of the spinning neutron star. The gravitational wave flux emitted by a spinning

neutron star is [15]

(4.13) Lgrav =
G

5c5
〈
...
I µν

...
I
µν〉

where the brackets indicate a time average, Iµν is the moment of inertia tensor,

G is the gravitational constant, and c is the speed of light. Imagine a spinning

neutron star with a non-axisymmetric bump, rotating about the z-axis with angular

frequency ω, and an observer located at an inclination angle ι with respect to the

z-axis. The second derivative of the moment of inertia tensor of a rotating neutron

star is then given by [56]
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(4.14)

Ïµν =



0 0 0 0

0 −16π2f 2(Ixx − Iyy) cos(4πωt) −32π2f 2(Ixx − Iyy) sin(4πωt) 0

0 −32π2f 2(Ixx − Iyy) sin(4πωt) 16π2f 2(Ixx − Iyy) cos(4πωt) 0

0 0 0 0


.

Combining Eq.( 4.13) and Eq.( 4.14), we have

(4.15) Lgrav =
32G

5c5
ω6(Ixx − Iyy)2 =

32G

5c5
ω6I2

zz

(
Ixx − Iyy
Izz

)2

.

We can see that there will be no associated gravitational wave emission without non-

axisymmetry–if we have Ixx = Iyy, then Lgrav = 0. We can define a measure of this

non-axisymmetry, called the ellipticity ε:

(4.16) ε ≡ Ixx − Iyy
Izz

.

Then Eq.( 4.15) becomes

(4.17) Lgrav =
32G

5c5
ω6I2

zzε
2.

The gravitational waves will actually be emitted at frequency f = 2
(
ω
2π

)
. The

quadrupolar nature of the waves makes them symmetric with respect to 180◦ rota-

tions, and the neutron star is nearly transparent to gravitational waves. Thus for

every rotation of the neutron star the gravitational waves will have swept past twice.

The gravitational wave strain hµν of these waves is given by [14]
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(4.18) hµν =
2G

c4d
Ïµν ,

where d is the distance to the neutron star. Putting together equations 4.14, 4.16,

and 4.18, gives

(4.19)
32π2ω2εIzz

d



0 0 0 0

0 − cos(4πωt)(1 + cos2(ι)) −2 sin(4πωt) cos(ι) 0

0 −2 sin(4πωt) cos(ι) cos(4πωt)(1 + cos2(ι)) 0

0 0 0 0


,

recalling that ι is the inclination angle between the observer and the z-axis. For the

optimum case where cos(ι) = 1, and using f = 2
(
ω
2π

)
, the gravitational waves will

have amplitude

(4.20) h0 =
4π2G

c4

Izzf
2

d
ε.

The maximum ellipticity εmax is dependent on the star’s magnetic field, compo-

sition, and structure, which are characterized in part by its breaking strain σ. The

relationship between the two is [10]

(4.21)

εmax ≈ 3.4× 10−7
( σ

0.01

)( MNS

1.4M�

)2.2(
R

10km

)4.26 [
1 + 0.7

(
MNS

1.4M�

)(
10km

R

)]−1

where MNS is the mass of the neutron star and R its radius. Thus, for a maximum

ellipticity of ≈ 2× 10−6, the gravitational wave strain will follow [10]

(4.22) h0 ≤ 2× 10−24

(
ε

2× 10−6

)(
Izz

1038kg ·m2

)(
f

1kHz

)2(
r

1kpc

)−1
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4.2.2 Oscillations

Rapidly spinning neutron stars can support what are known as r-mode oscilla-

tions [57]. R-mode instabilities can be generated in a fluid star if the mode of oscilla-

tion is counter-rotating in the star’s rotation frame, but rotates in the same sense as

the star when seen by a distant observer. This occurs if the counter-rotation rate of

the mode is lower than the rotation rate of the star. For example, consider as before

a neutron star rotating with frequency ω. In the co-rotating frame, an r-mode oscil-

lation is moving at −ω/3. Seen from a non-rotating reference frame, this oscillation

is moving at 2ω/3 in the direction of the rotation. Any gravitational waves emitted

by this star would then carry away positive angular momentum, imparting negative

angular momentum to the star. In the co-rotating frame, this negative momentum

helps the instability to grow. This can lead to relatively long-lived r-mode oscilla-

tions, generating relatively stable gravitational waves [15]; the Coriolis force due to

the star’s rotation acts as a restoring force [58] and they are eventually damped by

viscosity. The maximum amplitude of such oscillations is dependent on a neutron

star’s equation of state and the mechanisms by which it spins down; estimates are

based on spin-down for isolated neutron stars, and x-ray flux for neutron stars in

binary systems [10]. For low viscosity, saturation amplitudes can be large, leading

to very rapid spindown, but for high viscosity, the spindown could be slow and well

suited to the time scales of our search [59]. The most recent estimates range from a

maximum as large as 0.14 for binary systems to as small as 5.1 × 10−6 for isolated

neutron stars [60].

The frequency of gravitational waves from r-mode oscillations is related to the

star’s angular velocity ω via spherical harmonics. The frequency f of r-mode gravi-

tational waves is given to lowest order by [15]
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(4.23) f =
Ω

2π
=

(l + 2)(l − 1)ω

2π(l + 1)
,

so, for example, for the l = 2 harmonic, f = 2ω/3π = 4
3
frot, where frot is the rota-

tional frequency of the star. Higher order corrections depend on the star’s equation

of state and are highly dependent on the relativistic factor M/R, where M is a star’s

mass and R its radius [61].

4.2.3 Accretion

Some pulsars in binary systems will accrete matter from their companions. A pul-

sar’s strong magnetic field can guide accreting matter to “hot spots” on the pulsar’s

surface, which can lead to crustal deformations–the bumps and mountains discussed

earlier. In particular, accretion can maintain these in equilibrium against gravita-

tionally driven annealing, leading to sustained gravitational waves [62]. For binary

neutron stars it is also possible that the spin-up caused by accretion is balanced by a

spin-down due to angular momentum carried away in emitted gravitational waves–

this is known as the torque-balance limit [63]. The x-ray luminosity of a neutron

star is a proxy for its accretion rate, so the gravitational wave amplitude from this

torque-balance limit can be estimated from [10]

(4.24) h0 ≈ 5× 10−27

(
300Hz

frot

)1/2(
FX

10−8erg · cm−2 · s−1

)1/2

.

where frot is again the spin frequency of the neutron star and FX is the x-ray flux

at the Earth. Assuming a torque-balance limit, the gravitational wave strain at the

Earth for Scorpius X-1, the brightest known source of x-rays in the sky, is [64]
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(4.25) h0 ≈ 3× 10−26

(
fGW

540Hz

)−1/2

.

where fGW is the gravitational wave frequency, generally taken to be twice the start’s

rotation frequency.

In this way accretion is very welcome for CW gravitational waves, since it both

breaks axisymmetries, producing non-zero quadrupole moments, and spins pulsars

up, keeping their gravitational wave emissions in LIGO’s most sensitive frequency

band.

4.3 Target selection

This section will describe the criteria used to identify interesting targets for a CW

gravitational wave search, and then describe the globular cluster NGC6544, which

was selected for the search described in Chapters 6 and 7, in terms of these criteria.

4.3.1 Criteria

Multipole radiation in general induces a power law for spindown [47]:

(4.26) ω̇ = −Kωn

where K is a proportionality constant and the exponent n is known as the braking

index and n = 2m+ 1, where m = 1 indicates a dipole and m = 2 for a quadrupole.

Thus n = 3 for a star emitting purely electromagnetic dipole radiation and n = 5 for

a star emitting purely gravitational radiation. Differentiating Eq.( 4.26) results in

(4.27) ω̈ = −Knωn−1ω̇.
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Multiplying both sides by ω then gives

(4.28) ωω̈ = −Knωnω̇ = nω̇2

and so

(4.29) n =
ωω̈

ω̇2
.

The braking index n is thus a relation between the star’s rotation frequency and

its derivatives [15]. Assuming the braking index is stable (not time-dependent), we

can also relate it to the age of the neutron star. Let t0 = 0 be the time of the neutron

star’s birth, at which time it was spinning at some frequency ω0. Then, integrating

Eq.( 4.26) from 0 to the present time t (with spin frequency ω), we have

(4.30) t =
1

K(n− 1)

(
1

ωn−1
− 1

ωn−1
0

)
.

But we know from Eq.( 4.26) that K = −ω̇/ωn, and making that substitution into

Eq.( 4.30) gives

(4.31) t = − 1

n− 1

(ω
ω̇

)[
1−

(
ω

ω0

)n−1
]
.

Now assume that the neutron star has been spinning down for a long time, such that

ω0 � ω, and the term in square brackets can be neglected. This t is then called the

characteristic neutron star age τ :

(4.32) τ = − 1

n− 1

(ω
ω̇

)
.



43

This ratio relation also holds for the gravitational wave frequency f ∝ frot (where

frot = ω/2π). The energy that a spinning neutron star is radiating away puts a

bound on the flux in gravitational waves it can emit. Recall from earlier that we

had, for the gravitational wave flux,

(4.33) Lgw =
32G

5c5
I2
zzε

2(πf)6 ≤ −
(
dE

dt

)
rot

= − d

dt

(
π2Izzf

2

2

)
.

Solving for the ellipticity ε gives

(4.34) ε ≤

√
5c5

32π4GIzz

−ḟ
f 5

which becomes, when we substitute in our age relation Eq.( 4.32),

(4.35) ε ≤

√
5c5

32π4GIzz(n− 1)τf 4
.

We can then substitute this new age-based ε into Eq.( 4.20) to get an age-based limit

on the strain amplitude h0.

(4.36) hage ≤
1

d

√
5GIzz

2c3τ(n− 1)

Note that this limit does not depend on the frequency. So from this limit we can

see that, even without knowing what frequencies we might search over, we should

attempt to select young sources (small τ) that are close to the Earth (small d) to

increase the strain amplitude of any potential signals.
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4.3.2 NGC6544

This brings us to the target selected for the gravitational wave search which will

be described fully in Chapters 6 and 7: the globular cluster NGC6544. The first

question that must be asked is: why globular clusters?

The answer lies in the second parameter we can adjust–the characteristic age

τ . This may seem counterintuitive, since globular clusters are known to be home to

older, not younger, stars. However, the key here again is something touched on earlier

in this chapter: the mechanisms which create the sources of gravitational waves.

What might first induce an r-mode oscillation? Create a non-axisymmetric feature

on a neutron star’s crust? The driver, as discussed earlier, is accretion. Globular

clusters have incredibly high stellar densities–luminosity density is a good proxy

for neutron star density, and core-collapsed globular clusters can reach 106L�/pc
3,

and those surveyed by the Hubble Space Telescope have returned values as high as

108 [65]. With such high stellar densities, the probability that a neutron star has

been recently perturbed–either by debris, or by another neutron star–goes up. If we

imagine an event that spins up a neutron star, such as accretion or a collision, we

can see that by the assumptions that went into Eq.( 4.32) such an event effectively

“resets” the neutron star’s characteristic age. In this sense, globular clusters can

host “young” stars.

Once we have settled on core-collapsed globular clusters, we’ll want the closest

ones possible, since the age-based limit on amplitude is proportional to 1/d. The

closest of all is NGC6397, a mere 2.0 kpc away, but the next-best is NGC6544 at 2.7

kpc. NGC6544 has one advantage over NGC6397, however: its sky location. The

next chapter will discuss the doppler modulation of the frequency of a signal due to

the detector’s motion, i.e., the Earth’s rotation about its axis and its revolution about
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the sun. The Earth’s rotation will smear out a prospective signal over a range of

frequencies, and corrections must be applied to counter these Doppler effects. By the

same token, these corrections will smear out signals which travel with the detector,

such as the instrumental noise lines discussed in Chapter 3. The Doppler corrections

will be largest for a target at low latitude, and the larger the corrections needed the

larger the deleterious effect on instrumental noise lines will be. For this reason we

favor a target at low latitude. NGC6544 is at close to −25◦, where as NGC6397 is

closer to −54◦. For this reason we choose NGC6544, shown in Figure 4.2, as the

target of our search for gravitational waves.
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Figure 4.2:
A Hubble image of the globular cluster NGC6544, the target of our search for gravita-
tional waves.



CHAPTER V

Barycentric Resampling

Searches for continuous-wave (CW) gravitational-wave sources can be extremely

computationally intensive. This chapter will introduce barycentric resampling, an

algorithm used to greatly reduce the computational cost of such a search. The first

section will discuss Doppler modulation and its effect on computational cost–the

issue barycentric resampling resolves. Next follows a description of the signal model

used in our search, and the final section will focus on the barycentric resampling

method itself and the computational gains it accomplishes.

5.1 Doppler modulation

As discussed in the previous chapter, CW signals are quasi-monochromatic in

nature–they are characterized most importantly by some nominal frequency f with

very small time derivatives. The LIGO detectors, however, are not stationary with

respect to a given source of CW waves. Located on the Earth’s surface, they are

affected diurnally and semi-diurnally by the planet’s rotation on its axis, and to a

much larger degree, annually by the planet’s orbital motion about the Sun. Thus a

signal from an astrophysical source, upon arrival at the detector, will have undergone

Doppler modulation of its apparent frequency in the detector reference frame:

47
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(5.1) fDet = f0

(
1 +

~v · r̂
c

)
.

Here fDet is the frequency at the detector, f0 is the source frequency, ~v is the detector

velocity, r̂ the unit vector pointing towards the source, and c the speed of light, since

gravitational waves travel at this speed like their electromagnetic counterparts. This

modulation requires correction in reconstructing the parameters of the gravitational

wave signal arriving from the source.

A straightforward approach is to eliminate the earth’s motion through a shift of

reference frame to the solar system barycenter (SSB) frame. This is accomplished

by shifting from detector time t to solar system barycenter time tb, which is shifted

by tm: the time needed for a gravitational wavefront to travel from the detector to

the solar system barycenter. The new time coordinate is thus

(5.2) tb = t+ tm = t+
n̂0 · ~rd(t)

c
,

where n̂0 is the unit vector pointing to the source in the SSB frame, and ~rd(t) is

the detector’s time-dependent position in the same SSB frame. The phase of a

gravitational wave signal in this frame is given by [66]

(5.3) Ψ(t) = ϕ0 + 2π
s∑

k=0

f
(k)
0

tk+1

(k + 1)!
+

2π

c
n̂0 · ~rd(t)

s∑
k=0

f
(k)
0

tk

k!

where ϕ0 is the initial phase at t = 0, f
(k)
0 is the kth derivative of the frequency f ,

and s is the highest order of the expansion. The third term on the right-hand side

of Eq.( 5.3) is the correction in the phase due to the detector’s motion with respect

to the source, and this correction has a dependence on the frequency of the signal.
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Therein arises the large computational cost of a conventional barycentering method.

In general, we will have from our detector some time series of data x(t). To search

for CW signals of some characteristic frequency f , it will be expedient to take a

Fourier transform and perform our analysis in the frequency domain. In a directed

search, like the one described in Chapters 6 and 7, we search at a single sky location

but over a broad range of frequencies. But the Fourier transform of an SSB-shifted

signal will look like

(5.4) x̃(f) =

∫ ∞
−∞

x(t)eiψ(f,ḟk,t)dt

where the exponential term represents the frequency-dependent phase correction.

This correction must then be calculated for every set of frequencies and frequency

derivatives searched; this task quickly grows monumentally computationally expen-

sive as the length of the time series increases. Barycentric resampling is the method

we will use to overcome this computational limitation. Before turning to its detailed

implementation, we will review the signal model for CW gravitational waves detected

by LIGO interferometers.

5.2 The LIGO signal model

The gravitational wave strain detected at a LIGO interferometer can be written

as [66]

(5.5) h(t) = F+(t)h+(t) + F×(t)h×(t)

where t is the time in the detector frame, h+(t) and h×(t) are the respective strain

amplitudes of the plus-polarized and cross-polarized components of the incoming
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gravitational wave, and F+ and F×(t) are the respective plus- and cross-polarized

beam-pattern functions of the interferometric detector, given by

(5.6) F+(t) = sin(ζ)[a(t) cos(2ψ) + b(t) sin(2ψ)]

(5.7) F×(t) = sin(ζ)[b(t) cos(2ψ)− a(t) sin(2ψ)]

where ζ is the angle between the two detector arms (90◦ at both LIGO detectors),

ψ is the polarization angle of the wave, and the detector response functions a(t) and

b(t) are functions of source position (most often expressed in terms of right ascension

α and declination δ), as well as detector position and orientation. Their full forms

are given in [66].

These signals are likely to be buried among statistical noise, such that the time-

series x(t) measured at a given detector will be of the form

(5.8) x(t) = n(t) + h(t)

where n(t) represents the noise and h(t) the (possibly-present) signal. In the ideal

case where the noise is stationary and Gaussian, we can define a likelihood function

Λ which we maximize over the parameters of the signal. For our signal the log-

likelihood function ln(Λ) is given by [66]

(5.9) ln(Λ) = (x|h)− 1

2
(h|h),

where the inner product is defined by
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(5.10) (x|y) ≡ 4 ∗ R
[∫ ∞

0

x̃(f)ỹ∗(f)

Sh(f)
df

]
.

Here R indicates the real part, x̃ indicates the Fourier transform and ∗ the complex

conjugate, and Sh(f) is the one-sided spectral density of the detector noise at the

frequency f . In the approximation of stationary noise, Sh(f) will be constant over

an observation time T0. Introducing the scalar product

(5.11) (x||y) ≡ 2

T0

∫ T0/2

−T0/2

x(t)y(t)dt,

the log-likelihood function becomes approximately

(5.12) ln(Λ) ∼=
T0

Sh(f)

[
(x||h)− 1

2
(h||h)

]
.

Maximizing this log-likelihood function over the extrinsic and unknown signal

parameters results in the F -statistic, which is defined by [66]

(5.13) F =
4

Sh(f)T0

B |Fa|2 + A |Fb|2 − 2CR(FaF
∗
b )

D
.

Using the scalar product of Eq.( 5.11) and the a(t) and b(t) of Eq.( 5.6), A = (a||a),

B = (b||b), C = (a||b), and D = A ·B − C2. Fa and Fb are integrals defined by

(5.14) Fa(f) ≡
∫ T0/2

−T0/2

a(t)x(t)eiΦs(t)dt

(5.15) Fb(f) ≡
∫ T0/2

−T0/2

b(t)x(t)eiΦs(t)dt



52

Here x(t) is again the time-series of data from our detector, and Φs(t) is the (k =

1, ..., s) terms of Eq.( 5.3)–that is, the portion of the phase correction due to the

frequency derivatives, defined in the next section. In the following section we will

see how this separation can help reduce computational cost.

5.3 The barycentric resampling method

Our earlier expression for the gravitational wave phase (Eq.( 5.3)) can be split

up into three parts: the initial phase ϕ0, the k = 0 terms of its two sums, and the

remainder. Recall that our time shift to the solar system barycenter had

(5.16) tm =
n̂0 · ~rd(t)

c

and it is clear that for k = 0, Eq.( 5.3) becomes

Ψ(t)(0) = ϕ0 + 2πf
(0)
0

t1

1!
+

2π

c
n̂0 · ~rd(t)f (0)

0

t0

0!

= ϕ0 + 2πft+ 2π
n̂0 · ~rd(t)

c
f

= ϕ0 + 2πf(t+ tm).(5.17)

Then we can define the remaining summation terms as

(5.18) Φs(t) = 2π
s∑

k=1

f
(k)
0

tk+1

(k + 1)!
+

2π

c
n̂0 · ~rd(t)

s∑
k=1

f
(k)
0

tk

k!
.

This is the Φs that appears in Eqs.( 5.14) and ( 5.15). We can now make the

barycentric time-shift substitution (Eq.( 5.2)) into those two integrals. Taking the

derivative with respect to t on both sides of the substitution gives
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(5.19)
dtb
dt

= 1 +
dtm
dt

,

but we know from Eq.( 5.16) that

(5.20)
dtm
dt

=
n̂0 · vd(t)

c
,

where vd(t) is the detector’s velocity in the SSB frame–and dtm/dt is therefore the

Doppler shift of the source with respect to the detector in the SSB frame. The

maximum Doppler shift experienced by an Earth-bound detector is of order 10−4,

which is to say dtm/dt� 1, and therefore, by Eq.( 5.19), dtb ≈ dt. This means that

Eqs.( 5.14) and ( 5.15) now become [15]

(5.21) Fa(f) =

∫ T0/2

−T0/2

a(tb)x(tb)e
−2πiftbeiΦs(tb)dtb

(5.22) Fb(f) =

∫ T0/2

−T0/2

b(tb)x(tb)e
−2πiftbeiΦs(tb)dtb

These are simply the Fourier transforms of the data stream x(t) and the detector

response, multiplied by a phase eiΦs(tb) which is independent of the nominal frequency,

but dependent on its derivatives. This calculation can be performed much more

computationally efficiently by fast FFT routines.

Processing a large frequency band at once may still be computationally infeasible,

but we can also make use of heterodyning to split a target band into many smaller

sub-bands, which can be analyzed in parallel on a distributed computing cluster.

Take the Fourier transform of our time-series x(t):
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(5.23) x̃(f) =

∫ ∞
−∞

x(t)e−2πiftdt

Then the Fourier transform of a complex time-series xh(t) = x(t)e−2πifht is

x̃h(f) =

∫ ∞
−∞

x(t)e−2πifhte−2πiftdt

=

∫ ∞
−∞

x(t)e−2πi(f+fh)tdt

= x̃(f + fh).(5.24)

By multiplying x(t) by e−2πifht we effectively shift all the frequencies in x(t) by fh.

The computational load can also be lightened by downsampling the data. In its

simplest form, this consists of using only every jth data point in order to downsample

the time series by a factor of j. This will, however, change the Nyquist frequency

of our time series, so care must be taken to avoid aliasing effects. This can be done

by applying a low-pass filter with a sharp fall-off around the new Nyquist frequency,

which will be

(5.25) fnewNy =
f oldNy
j
.

The new time-series will have a sampling time ∆t = 1/(2fnewNy ). Consider, then, Fa(f)

for such a downsampled, heterodyned time-series (Fb(f) is completely analogous):

(5.26) Fa(f + fh) =

∫ T0/2

−T0/2

a(t)x(t)e−2πi(f+fh)(t+tm)e−iΦs(t)dt.

Lurking within the first exponent is our complex time-series xh(t):
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(5.27) x(t)e−2πi(f+fh)(t+tm) = xh(t)e
−2πifhtme−2πif(t+tm)

We can get the integral back to its original form by then making the further substi-

tution z(t) = xh(t)e
−2πifhtm . Now Eq.( 5.26) has become

(5.28) Fa(f + fh) =

∫ T0/2

−T0/2

a(t)z(t)e−2πif(t+tm)e−iΦs(t)dt

and we can now readily make the switch to barycenter time tb.

(5.29) Fa(f + fh) =

∫ T0/2

−T0/2

a(tb)z(tb)e
−2πif(tb)e−iΦs(tb)dtb

In practice, our time-series will be discrete rather than continuous. The expression

for a time series with N points is

(5.30) Fa(f + fh) =
N∑
k=1

a(tkb )z(tkb )e
−2πiftkb e−iΦs(t

k
b )∆tb

where tkb is the kth point in the time-series as measured in the SSB frame, and

∆tb = tk+1
b − tkb .

Thus, beginning with a time-series of data z(tk), linear in the detector frame,

which is irregularly sampled in the solar system barycenter frame, we use tkb = tk+tm

to calculate T k(tkb ), the set of detector times corresponding to a time-series linear in

the solar system barycenter frame. Interpolating using our known time-series, we can

calculate z(T k(tkb ), which corresponds to the z(tkb ) in Eq.( 5.30). The a(tk) and b(tk)

are dealt with analogously, and the phase correction eiΦs(t
k
b ) can be calculated from

its definition in Eq.( 5.18). The factor of n̂0 · ~rd(t) in Eq.( 5.18) is already encoded

in the time shift:
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(5.31) n̂0 · ~rd(t) = tm · c = (tkb − T k(tkb )) · c.

A completely analogous method will produce Fb(f+fh), and then from these two, the

F -statistic can be calculated (for more details of the implementation, consult [67]).

Figure 5.1 shows a comparison of the 2F values calculated for a given signal

under the standard Doppler demodulation (“LALDemod”) and the new resampling

method. It shows good agreement between the two methods, both in the presence

of a signal (high 2F) and in its absence (low 2F). Another test of the resampling

method was the recovery of hardware injections from S6.

A hardware injection is a fake signal inserted into LIGO data by physically moving

the optics of the interferometer to simulate the arrival of a gravitational wave. It

is defined in opposition to a software injection (see Chapter 6), which is a fake

signal added to the data in post-processing. Ten pulsar-like hardware injections

were inserted during the S6 science run, with varying parameters. The resampling

code was used to search for a subset of these in the full S6 data alongside the standard

search code. The results of one such search are shown in Figure 5.2. There is very

good agreement between the results of the two methods.

How much faster is the resampling method? Assuming we have N data points,

and NSFT SFTs (an SFT (Short Fourier Transform) is a half-hour chunk of detector

data, the standard data format used in LIGO CW searches), the number of operations

required for computation is roughly 30·NSFT ·N [15]. Resampling, on the other hand,

needs approximately 30 operations to reach Fa(t) and Fb(t). A Fourier transform is

of order N lnN , so for the same number of data points and SFTs the total number

of operations is (30 + lnN) ·N . The ratio is then, to first order,
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Figure 5.1:
A comparison of 2F values calculated versus spindown ḟ . The red circles are the
values calculated using the standard Doppler demodulation code and the blue exes are
the values calculated using the new resampling code. There are multiple values per ḟ
because multiple frequency bins were searched over, but the plot does not display this
third dimension.
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Figure 5.2:
A comparison of 2F values versus frequency. The blue curve represents the results
calculated by the standard Doppler demodulation code; the green curve shows the
results of the resampling code. The signal under examination was a hardware injection
at frequency f = 52.80832 Hz.
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(5.32)
NStandard
TOT

NResamp
TOT

≈ NSFT

lnN
.

Thus we would expect resampling to be much quicker for long observation times.

Figure 5.3 bears this out, showing the results of timing tests run using resampling and

the standard demodulation technique described in the first section, over observation

times ranging from 30 hours to 217 hours, which is comparable to the observation

times of the search described in Chapters 6 and 7. The results are given in seconds per

template per SFT. A template is a given combination of source frequency, frequency

derivatives, and source sky location, which picks out a location in the parameter

space of the search (see Chapter 6). For a time duration close to that of the search

described in Chapters 6-7, the resampling method is more than an order of magnitude

faster.
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Figure 5.3:
This plot compares the speed of the resampling and standard demodulation approaches
on a quarter-hertz frequency band with varying observation times. The results are in
seconds per template per SFT. A large observation time allows resampling to be much
more computationally efficient.



CHAPTER VI

Search: Setup and Methods

This chapter and the chapter that follows discuss a search, carried out in data

from LIGO’s sixth science run (S6), for continuous-wave (CW) gravitational radiation

from the nearby globular cluster NGC6544, which was introduced in Chapter 4. This

chapter will describe the setup of the search and the methods used to execute it. We

will describe an iterative method for arriving at a parameter space to search over,

starting from an age-based limit on the expected strain of gravitational wave signals,

and then describe our methods for selecting which stretches of data to use in the

search. The final section will discuss our methods for conducting the search, finding

and dealing with outliers, and setting upper limits on gravitational wave strength in

the absence of a signal.

6.1 Parameter Space

The parameter space of a CW search refers to the range of parameters that the

search will cover, such as sky locations, frequencies and their derivatives, and the

so-called “nuisance parameters” (the inclination angle ι, polarization angle ψ, and

initial phase φ0). Each combination of these parameters produces a template for a

gravitational-wave signal, and the data is then searched for a signal matching the

template.

61
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There are three broad classes of CW searches that are carried out within LIGO–

targeted searches, all-sky searches, and directed searches. A targeted search is an

effort to detect gravitational waves from a known source–for example, the Crab [38]

or Vela [68] pulsars. In these searches the frequencies of the gravitational-wave sig-

nals are assumed to be twice the known rotational frequencies of the stars, which

have known sky locations; in some cases, informed priors can be placed on the nui-

sance parameters as well. An all-sky search is in some sense the opposite. It assumes

little, searching over a wide range in frequencies f and spindowns ḟ , and, as its name

would suggest, surveys the entire sky as well. These searches are very computation-

ally expensive and have been performed in LIGO data using the Einstein@Home

distributed computing method [69,70], as well as the PowerFlux search pipeline [71]

for isolated neutron stars and the TwoSpect method [72] for stars in binary systems.

Between these two extremes sit the directed searches. A directed search has a well-

defined target, for example the galactic center [73] or Cassiopeia A [74], and so is

concentrated on a single sky location. However, the frequency and other character-

istics of the gravitational-wave signal are unknown, and the search is conducted over

as wide an array of frequency and its derivatives as is computationally feasible and

astrophysically motivated, while the F -statistic described in Chapter 5 marginalizes

over the “nuisance parameters.” It is to this last category that our search belongs.

These searches are computationally limited. We would prefer to search over as

wide a frequency parameter space as possible, but must make compromises based

on the computational resources we can expect such a search to use. This search was

run on the LDAS-CIT distributed computing cluster at the California Institute of

Technology, and because of competition for computing resources, we chose to limit

ourselves to 1000 CPU-months.
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We began from the age-based limit on the gravitational wave strain h0 introduced

in Section 4.3:

(6.1) hage ≤
1

d

√
5GIzz

2c3τ(n− 1)
,

where d is the distance to the target, Izz is the moment of inertia, τ is the (assumed)

neutron star age, and n the braking index defined in Chapter 4. We use a distance

to NGC6544 of 2.7 kpc, and the canonical moment of inertia 1038 kg ·m2, derived

from the mass (1.4M�) and radius (10 km) for neutron stars given in Chapter 4. For

choosing a search band, we assume a neutron star age of 300 years and a braking

index n = 5, reflecting pure quadrupolar gravitational wave emission. This limit on

the gravitational wave strain is then superimposed on the LIGO sensitivity curve

for the S6 run, adjusted for an initial assumed observation time of two weeks, as

shown in Figure 6.1. The LIGO sensitivity curve is given by using the noise power

spectral density (PSD) harmonically averaged over all of S6 data for both LIGO

interferometers. A running median with a 16-Hz window was further applied to

smooth the curve.

The intersection of the age-based limit and the sensitivity curve gives us a fre-

quency band over which we can expect LIGO sensitivity to beat the age-based limit

for n = 5. From this frequency band, we then derive search bounds on the spindown

ḟ and second spindown f̈ , as well. Recall from Chapter 4 the relation between the

braking index n and the characteristic age of the neutron star, τ :

(6.2) τ = − 1

n− 1

(
f

ḟ

)
.

We can rearrange Eq.( 6.2) to give a bound on the spindown:
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Figure 6.1:
The result of our iterative process to arrive at a parameter space. The age-based limit
on h0 is the green horizontal line; the blue curve represents the upper limit of LIGO
sensitivity for S6, and has been smoothed with a running median. The left text box
lists the initial assumptions; the right text box the final parameter space and coherence
time (observation time).

(6.3) − ḟ =
f

(n− 1)τ
.

We do not know the frequency evolution of the target, so we take a conservative

approach [15], covering both the pure magnetic dipole (n = 3) and gravitar (n = 5)

cases, and look at all braking indices in the range 2 ≤ n ≤ 7. This then establishes

the range in spindown:

(6.4)
f

τ
≤ −ḟ ≤ f

6τ
.

Similarly, from the definition n = f · f̈/ḟ 2, and the same bounds on n, we can

establish the range in second spindown to be
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(6.5)
2ḟ 2

f
≤ f̈ ≤ 7ḟ 2

f
.

To cover this parameter space with templates efficiently, we introduce the mis-

match parameter m. The mismatch m represents the relative loss in our detection

statistic (the F -statistic) due to an offset ∆P in our template parameters from the

true parameters of the signal. For our search, we take m = 0.2, meaning that we

place templates such that, in the worst case, the closest template to the true signal

will recover an F -statistic value that is 80% of the F -statistic that would be recov-

ered by a template placed precisely on the true signal parameters. It is, in a sense,

a measure of the maximum amount by which we are willing to be wrong in order to

save computational cost.

Using this relative loss in signal strength due to an offset in signal parameters as an

invariant “distance” measure, we can introduce a metric g over the parameter space.

The metric’s general form is complicated, taking into account all of a candidate

signal’s parameters, and detailed in [75]; in our case we can use a simplified metric

since our directed search reduces our parameter space to frequency f and its time

derivatives fk, where k represents the kth derivative. In this case we will need only

the metric components gff , gffk , and gfjfk , where j and k are indices which run

from 0 to the highest frequency derivative considered (in our case, 2). The resolution

for each parameter is determined by the shift in that parameter required in order

to shift the signal by one frequency bin [15]. The resolution scales as 1
Tk+1 for the

kth derivative of frequency. These metric components, calculated using the method

of [75], are then [15]:
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(6.6) gff =
(πT )2

3
,

(6.7) gffk =
(2π)2T k+2f

k!(k + 2)(k + 3)
,

and

(6.8) gfjfk =
(2πf)2T j+k+2

j!k!(j + 2)(k + 2)(j + k + 3)
.

where f is the frequency and T the observation time. The spacing between frequency

templates, however, will be fixed due to our use of a Fast Fourier Transform algorithm

in calculating the F -statistic for multiple frequency templates. This means we cannot

use the cross-diagonal terms (Eq.( 6.7)) and the frequency parameter is projected

out. In this projected metric, the template spacings are [15]:

(6.9) df = 2

√
m

gff
,

(6.10) dḟ = 2

√
m

γḟ ḟ
,

and

(6.11) df̈ = 2

√
m

γf̈ f̈
,

where m is the mismatch, and γαβ =
(
gαβ − gfαgfβ

gff

)
. Substituting our values for the

metric components, we then have for our template spacings [15]



67

(6.12) df =
2
√

3m

π

1

T
,

(6.13) dḟ =
12
√

5m

π

1

T 2
,

and

(6.14) df̈ =
20
√

7m

π

1

T 3
.

for a given observation time T .

We can then divide our known parameter ranges by the corresponding template

spacings to obtain the total number of templates in terms of observation time. For

example, for frequency we have

(6.15)
∆f

df
=

(∆f) · πT
2
√

3m
,

with similarly derived results for spindown and second spindown. We know our

selected value for m, and from the timing tests discussed in Chapter 5 we already

know our computational speed in seconds per template, so we can convert the total

number of templates into a computation time, in terms of observation time T . We

can then solve for the observation time T which satisfies our initial restraint (1000

CPU-months) on computing time. We then take this observation time T , make it our

new initial estimate, and iterate the entire procedure again. As seen in Figure 6.1,

after seven iterations this procedure converged to a roughly 583-Hz band (the actual

search spanned from 92.5 Hz to 675 Hz) and an approximately 9.2-day observation

time. The next step, then, was to find the best 9.2 days of data to use.1

1Note that restricting ourselves to the best nine-day observation time would change the sensitivity spectrum from
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6.2 Data Selection

The search was carried out on data from LIGO’s sixth science run (S6), which

spanned July 7, 2009 to October 20, 2010; the data used was taken from LIGO’s

Hanford (H1) and Livingston (L1) detectors. Two different methods were used to

determine which data would be searched, producing two different roughly nine-day

streches; both were searched, allowing for the cross-referencing of search results be-

tween them.

The first method was to look for the most sensitive data from S6. This was done

by taking nine week-long data samples from each detector spaced roughly 55 days

apart, giving nine evenly spaced weeks throughout duration of S6. The data samples

used are shown in Table 6.1. We chose four representative frequencies (100 Hz, 200

Hz, 400 Hz, 600 Hz) and generated strain noise power spectral densities (PSDs) in 1

Hz bands about these frequencies, using 0.01-Hz binning. The sensitivity hsens was

then taken to be

(6.16) hjsens =

 1√
(1/100) ∗

∑100
i=0(Sih(fi))

−1


j

where Sih(f) represents the PSD value of the ith bin, at frequency fi, and the index j

runs from 1 through 4 and represents the four representative frequencies. The results

are plotted in Figure 6.2; for all four frequencies the sensitivity improves with time.

Based on this plot, the final weeks of S6 yielded the most sensitive data, and the

data stretch chosen with this method was October 11-20, 2010 (GPS 970840605 –

971621841).

This method, however, does not take into account an important consideration:

the full S6 sensitivity curve used in this step; for practical reasons we do not reiterate the entire procedure after
obtaining this best data stretch.
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S6 sampling times
Label GPS Start GPS End Dates (UTC)

Week 1 931053000 931657800 Jul 8-15, 2009
Week 2 936053000 936657800 Sep 3-10, 2009
Week 3 941053000 941657800 Oct 31-Nov 7, 2009
Week 4 946053000 946657800 Dec 28, 2009-Jan 4, 2010
Week 5 951053000 951657800 Feb 24-Mar 3, 2010
Week 6 956053000 956657800 Apr 23-30, 2010
Week 7 961053000 961657800 Jun 20-27, 2010
Week 8 966053000 966657800 Aug 17-24, 2010
Week 9 971053000 971657800 Oct 14-21, 2010

Table 6.1:
This table shows the weeks sampled to find the most sensitive S6 data. Times are given
both in GPS and UTC calendar dates.

Figure 6.2:
The comparative sensitivity at different points during S6. Each representative frequency
is plotted with a different color. The final weeks of the science run are the most sensitive.
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the detector livetime, i.e., the amount of data available from these nine days. The

detectors are not always taking data, so despite an observation time of 217 hours,

this data stretch produced only 202 half-hour SFTs (101 hours of data) at H1 and

172 half-hour SFTs (86 hours of data) at L1. An alternate method, which does

account for livetime, is to maximize the figure of merit

(6.17)
∑
k,f

1

Sh(f)

where Sh(f) represents the strain noise power spectral density at frequency f in

the kth SFT, and the sum is taken across all frequencies f in the search band and

all k SFTs in a given 9.2-day observation time. This method favored a different

data stretch: July 24–August 2, 2010 (GPS 964007133 – 964803598). This data

stretch had slightly worse sensitivity than the first, but produced 368 H1 SFTs (184

hours of data) and 274 L1 SFTs (137 hours of data). Both data sets were searched

independently.

6.3 Methods

The search was carried out with the program ComputeFStatistic v2, a program

used to calculate the multi-detector F -statistic [76]. Use of the useResamp=TRUE flag

variable enabled use of the barycentric resampling routine described in Chapter 5.

6.3.1 Search

The frequency band was broken up into 56 10-Hz bands, each containing 100

0.1-Hz subbands, as well as one 7.5-Hz band (75 subbands) and one 15-Hz band

(150 subbands) to accommodate the boundaries. For each band an appropriate

configuration file was used to create a directed acyclic graph (DAG) file with the
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appropriate number of jobs (each job represents one 0.1-Hz subband) covering the

desired frequency band with spindown and second spindown bands calculated using

Eqs.( 6.4) and ( 6.5). Each job is an instance of ComputeFStatistic v2, searching

over the designated parameter space, the selected SFTs, and returning three files.

The output file is a list of all templates with a joint detector 2F (2FJ) value ≥ 45,

a threshold chosen to allow collection of templates from each band while preventing

the output files from growing large enough to jeopardize the available disk space on

the cluster. Each template is identified by a row in the output file with nine column

entries, representing respectively the frequency f , right ascension α, declination δ,

spindown ḟ , second spindown f̈ , third spindown
...
f (set to zero by default for all cases;

we did not search over third spindown), joint detector 2F -value 2FJ , H1 detector

2F -value 2FH, and L1 detector 2F -value 2FL. The histogram file is a histogram

of all 2FJ values returned, with no threshold applied. It can be used to provide

a sanity check that the data follows a chi-squared distribution as expected [66, 76].

Finally, the “Loudest” file is a record of the template from each job (sky location

and frequency variables) which produced the highest 2FJ value; it also contains the

2F values (both joint and individual) returned by that template.

6.3.2 Outliers

Results from a test band at 200.0 Hz, as well as a Mock Data Challenge (see

Chapter 7 for more details on both), were used to establish a threshold value of 2FJ

as well as a smaller threshold on the individual detector 2F values. The templates

from the output files were subjected to these thresholds, as well as the veto condition

that the 2FJ value must be larger than both of the individual detector 2F values;

violation of this condition is caused by large 2F values in one detector which are

completely unsubstantiated in the other, and is a very good indicator of instrumental
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noise lines as opposed to astrophysical sources.

From each output file, the loudest template, if any existed, that passed these

thresholds and vetoes was added to a list of outliers. These outliers were then tested

using time shifts and extended looks. In a time shift, the outliers from each data

stretch (October and July-August) were evolved forwards or backwards in time, as

appropriate, and searched for in the opposite data stretch, under the assumption

that a true astrophysical signal should be present in both data sets since CW signals

are implicitly long-lived. A set of 1000 software injections (fake signals with random

frequency and nuisance variables generated with Makefakedata v4, injected into

detector data, and then searched for with ComputeFStatistic v2) underwent the

same treatment to provide a baseline threshold for signal detection.

In an extended look, each outlier was searched for in an expanded 20-day coherence

time encompassing the original nine-day coherence time; the same assumption of

signal continuity would predict a signal to roughly double in strength for a rough

doubling of coherence time. These cases as well were tested with software injections

to determine a threshold. In all cases, the searches were conducted over a parameter

space envelope obtained by starting at the outlier frequency parameters (f, ḟ , f̈)± 2

bins, and evolving those ranges backwards or forwards in time using the extremum

values of the next derivative (e.g., f evolved at maximum ḟ , ḟ evolved at maximum

f̈ to achieve the widest envelope possible. Figure 6.3 shows the envelopes contrasted

with the uncertainty curves for the frequency parameters, given by

(6.18) f(t)± 1

2
∆ḟ · t,

where ∆ḟ is equal to half the bin width of a spindown bin in the initial search, t is

the time, and f(t) is the frequency at time t, and by
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(6.19) ḟ(t)± 1

6
∆f̈ · t,

where ∆f̈ is half the bin width of a second spindown bin in the initial search. For

frequency, the envelope is so conservative compared to the uncertainty curves that the

highly magnified Figure 6.4 is provided to better illustrate the uncertainty curves.

Assuming (as we do) a neutron star age of 300 years and a worst-case (for our

parameter space) braking index n=2, the change in f̈ over a three-month lookback

window (the difference between our October and July data sets) would be 2.17 ×

10−21Hz/s2. Our five-bin window (original bin ± two bins) covers 1.58×10−16Hz/s2;

it covers the uncertainty region easily.

Outliers detected with 2FJ greater than the threshold established by the software

injections were labeled candidates and received manual followup. The tests were not

cumulative; an outlier needed only to survive one, not all of them, to be considered

a candidate. The candidates and their followup are discussed in Chapter 7.

6.3.3 Upper Limits

The highest 2F value in each 0.1-Hz subband, recorded in that job’s “Loudest” file,

is used by lalapps ComputeFStatAnalyticMonteCarloUpperLimit, a semi-analytic

program detailed in [13], in conjunction with the analyzed SFTs, to make a semi-

analytic estimate of the 95% upper limit for that subband. A test 1-Hz band was

chosen at 200.0 Hz, and 1000 software injections were performed in each 0.1-Hz sub-

band, each given a signal strain equal to the semi-analytic estimate for the respective

subband. An injection was considered detected if the search for the injection returned

a 2F value greater than that in the subband’s “Loudest” file. For a 95% strain upper

limit, we would expect 95% of signals generated at that signal strain to be detected;
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(a)

(b)

Figure 6.3:
The envelopes (black lines) show the outer edges of the parameter space searched by a
lookback search; the red lines show the uncertainty curves for the parameter in question;
the blue line shows the time evolution of the parameter assuming no uncertainty. The
top plot is for frequency, the bottom for spindown; both correspond to the first outlier
from the October data set. It is clear from the plots that the envelopes searched will
have the signal within them if it persists in time.
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Figure 6.4:
This is the frequency plot of Fig. 6.3, zoomed in far enough to make the frequency
evolution curve distinguishable from the uncertainty curves. The black lines on either
edge of the plot are the boundaries of the search envelope.

a test in Gaussian noise validated ≈ 97% detection of injections, confirming that

the semianalytic program returns a conservative 95% upper limit as claimed in [13].

Table 6.2 shows, however, the validation rate of each subband, and we see that in

real detector data this validation does not quite hold. The semi-analytic estimates

could not be taken at face value, and instead had to be refined through a program

of software injections.

Every ten 0.1-Hz subbands are combined into one 1-Hz upper-limit band. The

highest upper limit estimate (ULE) of the ten is taken to be the ULE for the 1-Hz

band. In each upper limit band, eight sets of 125 injections each are made, with

strength varying from 0.80 · hnom to 1.20 · hnom, in increments of 0.05 · hnom, where

hnom is the nominal predicted upper limit estimate. The injections are managed by

a Python version of the Perl script used in [74], and considered recovered if they

return a 2F value greater than that found in their 0.1-Hz subband’s “Loudest” file
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Software Injections
Band (Hz) Validation Rate (%)
200.0-200.1 93.0
200.1-200.2 94.8
200.2-200.3 94.8
200.3-200.4 95.8
200.4-200.5 95.5
200.5-200.6 93.2
200.6-200.7 92.6
200.7-200.8 94.3
200.8-200.9 94.9
200.9-201.0 96.6

Table 6.2:
This table shows the results of 1,000 software injections performed in each 0.1Hz
sub-band of a test band between 200.0Hz and 201.0Hz. An injection was consid-
ered validated if it returned a 2F value greater than the 2F value returned from its
subband by the original search. All injections had strain h0 equal to the 95% up-
per limit estimate derived for their respective subband by the semianalytic program
lalapps ComputeFStatAnalyticMonteCarloUpperLimit and randomly generated fre-
quency and nuisance parameters.

from the original search. After a veto check to ensure that we are not seeing a false

positive from the outlier which originally established the loudest 2F in the search, the

detection efficiency (injections recovered/total injections) is calculated for each set

of 125 injections. These eight points are then plotted on a detection efficiency curve

and fitted using a two-parameter sigmoid fit. The 95% upper limit can then be read

off from the point where the curve crosses 95% detection efficiency; Figure 6.5 shows

such a plot for a sample band. The results of this procedure and the significance of

the upper limits obtained are discussed in the next chapter.
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Figure 6.5:
A plot demonstrating the upper limit validation technique for a sample band. The
x-axis is in units of hnom, the ULE for this upper-limit band; the eight points represent
detection efficiencies for eight sets of 125 software injections. These eight points are
then fit to a sigmoid curve (in blue); the 95% upper limit can then be read off from the
point where the curve crosses 95% detection efficiency.



CHAPTER VII

Search: Results and Discussion

Results from this chapter are preliminary and have not yet been fully reviewed by

the LIGO Scientific Collaboration.

This chapter presents the results of the search for gravitational waves described in

the preceding chapter. The first section establishes the candidate selection criteria

used for the search, through use of a test frequency band and a Mock Data Chal-

lenge (MDC). The second section then describes the use of this detection statistic

to identify outliers on which to perform manual follow-up. The chapter concludes

by reviewing the upper limits on gravitational-wave strain placed in the absence of

a signal.

The analysis described here is expected to be the first published search for grav-

itational waves to employ the barycentric resampling method of [67], described in

Chapter 5, which led to large gains in computational efficiency. The technique was

first used in a search [15] for gravitational waves from the Calvera object [77], but the

search was abandoned after pulsations were detected [78] from Calvera that placed

it well outside the frequency band of sufficient LIGO sensitivity.

The search used approximately 900 000 core-hours to search approximately 4×1014

templates. (By comparison, the search for Cassiopeia A [74] used 420 000 core-hours

78
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to search 7 × 1012 templates.) The gains in speed from resampling were put to use

to search roughly 57 times the number of templates in slightly more than twice the

computing time. A direct scaling approach would estimate that the search of [74]

could have been completed in 15 750 core hours, for a rough ×27 computational

speedup.

7.1 Detection Statistic

As described in the previous chapter, the primary outputs of the search jobs were

lists of outliers–candidate templates with 2F values passing a set of thresholds and

vetoes. These thresholds and vetoes collectively represent our candidate selection

criteria.

The detection statistic used in the search was a combination of thresholds on each

template’s joint multidetector [76] 2F value and individual detector [66] 2F values,

as well as the veto condition that a template’s joint 2F value should be larger than

its individual detector 2F values. The thresholds used were determined from a Mock

Data Challenge and a test frequency band.

7.1.1 Mock Data Challenge

The Mock Data Challenge (MDC) consisted of a set of 1577 artificial CW signals

injected into a set of real detector data from S6, which were then searched for using

our resampled F-Statistic algorithm. The search was performed over a set of 707

SFTs generated for the Mock Data Challenge at CIT, for GPS times covering July

24 to August 3, 2010, which was identified by the same figure of merit described in

the preceding chapter as the best ten days of S6 data. The injections were open–their

frequency and nuisance parameters were known, so that searches could be relatively

narrowly targeted. Searches were performed in a frequency range of ±0.5 Hz from
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the target frequency, split into ten 0.1-Hz sub-bands with a slight random dither

applied so that the signal was randomly placed in the central 20% of the band.

The split into 0.1-Hz subbands combined with the knowledge that the true signal

would be in the central 20% of the band meant that the injections would be located

somewhere in the central two subbands. The subbands more than 0.2 Hz from the

center, i.e., the first and last three subbands of each frequency band, were defined

to be at the periphery of the searched frequency band and used for background

estimation. A survey of the loudest joint multidetector 2F value reported for each

of these background subbands for a subset of the injections between 200 Hz and 240

Hz (used in a pilot run) gave a mean loudest joint multidetector 2F value of ≈ 55 for

subbands well away from injections. Given this background level, a multidetector

threshold of 2FJ = 60 was chosen for candidate selection. A separate individual

detector threshold of 2F = 20, derived from a test frequency band (see next section),

was also applied. Candidates also had to pass the condition that the multidetector

2F value be greater than the individual detector values to avoid being vetoed as

instrumental artifacts, as explained in Chapter 6. Finally, candidates were subject

to a veto if they fell outside of the central 20% of the searched frequency band and

had frequencies within 1/16 Hz of either N.25 Hz or N.75 Hz, where N is an integer,

to protect against blind injections which were also known to populate this data set.

Detection efficiencies (number of injections detected/total number of injections)

were plotted against several measures of injection strength. Figures 7.1, 7.2, and 7.3

show these plots. The first figure shows a plot of detection efficiency versus the

measure h0 ·
√
Tcoh/Sh(f), where h0 is the strain amplitude of the injection, Tcoh

is an observation time of 10 days, chosen as a representative observation time for

these kinds of searches, and Sh(f) is the power spectral noise density at the injection
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frequency. This quantity thus measures the efficiency of a search versus the source

strain strength of the injections, adjusted for typical observation times and real noise

levels. The second graph shows detection efficiency versus another figure of merit:

(7.1) hpc =
√
h2

+ + h2
× ·
√
Tcoh/Sh(f),

which incorporates the inclination angle ι through the relations

(7.2) h+ =
1

2
h0(1 + cos2 ι)

and

(7.3) h× = h0 cos ι.

The figure of merit of Eq.( 7.1) better measures the actual detected strength of an

injected signal, making use of the quadrature sum of the strain amplitude for each

polarization. Taking the inclination angle into account provides a more representative

relationship between the injected strain amplitude and the gravitational-wave signal

perceived by the detector, since a high inclination angle can weaken (or in the case of

Eq.( 7.3), eliminate) the strain amplitude for a given polarization. The third graph

shows detection efficiency versus the sensitivity depth
√
Sh(f)/h0, a measure of the

ratio of background noise to signal strength. In all three cases the error bars are

given assuming a binomial error ∆ε:

(7.4) ∆ε =

√
ε(1− ε)
Nbin
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Figure 7.1:
One measure of detection efficiency from the Mock Data Challenge. Detection effi-
ciency ε is plotted with binomial error against the strain amplitude h0, normalized to
background power spectral density Sh(f) and a ten-day observation time Tcoh.

where ε is the detection efficiency Ndet/Nbin (number detected per bin/total number

of injections per bin).

The MDC established a baseline threshold for joint-detector 2F values. We also

desired to set a threshold on the individual detector 2F values to protect against

large noise fluctuations, and for this purpose, we conducted software injections in a

test band.

7.1.2 Test Band

For this more detailed study, a frequency band between 200 Hz and 201 Hz was

chosen; a band that sits in the “bucket”–the frequency band of maximum sensitivity

for the LIGO detectors in their sixth science run (S6) configuration. The test band

was split into 10 0.1-Hz subbands, and in addition to the one thousand software

injections performed in each subband as described in Section 6.3, sets of one thousand
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Figure 7.2:
One measure of detection efficiency from the Mock Data Challenge. Detection efficiency
ε is plotted with binomial error against the quadrature sum of polarization strain ampli-
tudes h+ and h×, normalized to background power spectral density Sh(f) and a ten-day
observation time Tcoh.

Figure 7.3:
One measure of detection efficiency from the Mock Data Challenge. Detection efficiency
ε is plotted with binomial error against sensitivity depth

√
Sh(f)/h0, where h0 is strain

amplitude and Sh(f) is the background power spectral density.
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injections were performed in the subband between 200.0 Hz and 200.1 Hz at differing

signal strengths to produce a detection efficiency curve like those from the MDC.

Specifically, injections were performed at 100%, 80%, 60%, 40%, and 20% of the

strain strength h0 estimated for that subband by the semi-analytic program described

in the previous chapter.

For each different signal strength, a range of individual detector 2F thresholds

were placed on the results. The maximum threshold was set at 2F = 45 because

this was the minimum joint 2F threshold placed on the output files; any higher

threshold would eliminate all outliers (since our veto condition removed outliers

with greater individual 2F values than the joint value). The minimum threshold

was set empirically at 2F = 20; outliers with joint 2F greater than 45 were generally

unaffected by thresholds set any lower. The individual detector threshold was meant

to ensure a candidate signal was required to be present in both detectors; because

of the differing orientations of each detector, however, it is possible for a signal

to appear weaker in one detector than another [66]–one must be mindful of the

false dismissal rate. The results of these sets of software injections are presented

in Table 7.1 and plotted in Figure 7.4. An injection was considered detected if the

loudest template that passed the individual detector threshold requirement reported

a multidetector 2F greater than that of the loudest outlier in that subband reported

by the search. Each entry in the table represents the fraction of the 1000 injections

that were detected. An individual detector threshold of 2F = 20 for each detector

was chosen; this value was high enough to veto noise fluctuations but maintained a

low false dismissal rate.
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Efficiency vs. Trial for different single detector 2F thresholds
Strength No threshold 2F = 20 2F = 25 2F = 30 2F = 35 2F = 40 2F = 45

100% 94.8% 93.1% 88.4% 81.3% 73.0% 65.5% 59.3%
80% 78.1% 76.1% 72.5% 63.8% 56.0% 49.6% 44.3%
60% 52.1% 50.4% 46.0% 38.0% 30.9% 23.1% 17.1%
40% 19.2% 17.6% 14.0% 8.0% 3.5% 0.9% 0.3%
20% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 7.1:
This table shows the results of sets of 1000 software injections. The first column gives
the strength (as a percentage of the semi-analytic 95% upper limit estimate h0) of the
injected signals; the remaining columns give the percentage of injections (from a set
of 1000) detected for a given individual detector 2F threshold. Injections passing the
individual detector threshold for all detectors and reporting a multidetector 2F greater
than that reported for their subband by the search were considered detected.

Figure 7.4:
The results of Table 7.1 plotted as detection efficiency curves. Each individual detector
2F threshold is signified by a different color marker.
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7.2 Outlier Followup

Templates with 2F values that met or exceeded the thresholds, and passed the

vetoes, set up by the detection statistic were deemed outliers. This produced a list

of 155 outliers from the July-August data stretch and a list of 168 outliers from the

October data set. These outliers were subjected to the followup procedures described

in the previous chapter–searched for in the opposite data stretch and in extended

observation times in their original data stretch. These tests were not cumulative–

an outlier need pass only one to be considered a “candidate” and passed to the

next stage of followup. Even so, the combined 323 outliers produced only seven

candidates, listed in Table 7.2.

These candidates were subject to manual followup. They were compared to strain

histograms of run-averaged (i.e., over all of S6) spectra from each detector, to identify

instrumental noise lines which could be responsible. Figure 7.5 shows one such strain

histogram, which clearly shows a loud instrumental line in the Hanford (H1) detector

(red) overlapping the outlier signal (blue) of the fourth candidate from Table 7.2. In

five of the seven cases, the strain histograms gave clear evidence of an instrumental

noise line responsible for the candidate, and in these cases records of prior detector

characterization studies were consulted to provide explanations for the noise artifacts.

In those cases the artifact is listed in Table 7.2 as well.

Two of the candidates (Outliers 79 and 131 from the October data set) were not

clearly associated with known instrumental artifacts or noise lines. These were given

another round of follow up, with a look-back and extended look (as described in

the previous chapter) performed in June data. June was selected for being the far-

thest removed (in the time domain) available data of comparable sensitivity. Large
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Figure 7.5:
A run-averaged strain histogram for Outlier 77 (see Table 7.2). The red line shows
a loud instrumental noise line in the Hanford detector overlapping the outlier signal,
which is blue. The green line is the run-averaged spectrum of the Livingston (L1)
detector, overlapping the Livingston outlier signal (magenta).
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July-August Data
Outlier Search f (Hz) Outlier f (Hz) Search 2FJ Followup 2FJ Artifact, if any

27 192.4907 192.4956 612.969 300.712 Hardware Injection
74 392.2232 392.2315 189.903 173.787 Clock noise
77 394.0231 394.0307 228.268 197.300 Digital line

October data
27 192.4195 192.4313 875.575 484.254 Hardware Injection
79 403.6424 403.8612 114.626 61.331 —–
85 417.0394 417.1384 60.309 176.200 H1 Output Mode

Cleaner Line
131 575.9658 576.5057 61.943 53.805 —–

Table 7.2:
This table lists the seven candidates which passed the first round of outlier followup. The
columns give, respectively: the outlier’s identifying number; the frequency of the outlier
in the search; the frequency of the outlier in the followup data set in which it appeared;
the 2F value of the outlier in the search; the 2F value of the outlier in the followup
data set in which it appeared; the explanation, if any, provided by comparison with
run-averaged strain histograms in conjunction with detector characterization records.

time separation leads to very different Doppler corrections needed to reconstruct an

astrophysical source, corrections unlikely to reinforce an instrumental or environ-

mental artifact. (The ideal interval is six months, which will give equal and opposite

Doppler corrections, but April data was too insensitive compared to October data

to be of comparable use.) Both outliers failed to pass the 2F thresholds established

by software injections in any of their June tests.

The search for Cassiopeia A [13] showed that the loudest 2F value expected in

the absence of signal depends on the number of templates searched; in that case,

for N = 6.2 × 1012 statistically independent templates1, the largest expected 2F

value was most likely to lie in the range 62 ≤ 2F ≤ 75. Furthermore, the range

shifts upward with increasing N ; an increase in N by two orders of magnitude led

to an increase by roughly ten in the loudest expected 2F value. As mentioned at

the beginning of this chapter, our search used roughly two orders of magnitude more

templates than the Cassiopeia A search, so our range of loudest expected 2F would

indeed be shifted upward. The 2F values associated with Outliers 79 and 131 were

1The NT templates used in our searches are not perfectly independent, but can be represented by N statistically
independent templates where N = 0.88NT . See section 8.7 of [13].
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2FJ = 61.3 and 2FJ = 61.9, respectively. The outliers’ failure to pass the June tests

and their marginal 2F values led us to dismiss them as noise fluctuations.

Thus no gravitational wave signals were detected by our search. In the absence of

a detection, we can set upper limits on the possible strength of gravitational waves

in our data.

7.3 Upper Limit Validation

Upper limits were set for each 1-Hz band, using the procedure described in the

previous chapter. A small number of bands had outliers so large that the semi-

analytic method failed to converge to an estimate for h0. Upper limits were therefore

not set for these bands. For approximately 3% of the 1-Hz bands (41 of 583) in the

October data set, the 95% upper limit had to be determined by extrapolating beyond

their eight points, indicating that the initial semi-analytic estimate was significantly

wrong (i.e., the true 95% upper limit did not lie between 80% and 120% of the

initial 95% upper limit estimate). A further three bands set a 95% upper limit with

uncertainty greater than 0.05 · hnom, where hnom is the initial semi-analytic estimate

for h0. For these 44 bands, the procedure was rerun with the extrapolated 95% upper

limit as the new initial estimate around which the eight points were constructed. The

same was done for 62 bands (59 extrapolated, three with large uncertainty) in the

July-August data.

Figure 7.6 shows the semi-analytic upper limit estimates (ULEs) over the full band

for the July-August data set; which was the more sensitive of the two because of its

much greater livetime (642 SFTs vs. 374 SFTs for the October data set). The blue

curve represents the expected sensitivity of the search for this data set, computed

from the power spectral density at each frequency; there is good agreement with the
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Figure 7.6:
Upper limit estimates (red circles) compared to the sensitivity of the detector (blue
curve) and the initial age-based limit on h0 of Chapter 6 (green line).

ULEs. The green line represents the age-based limit derived in the previous chapter

when first considering parameter space. Its intersection with the ULEs at either

end of the plot is a confirmation that we correctly estimated the frequency band to

search over. Everywhere the upper limits lie below the green curve, we have beaten

the age-based spin-down limit for our source.

Figure 7.7 is a similar plot converting the upper limits on h0 to upper limits

on ellipticity (introduced in Section 4.2). The green curve represents the age-based

limit on ellipticity, as calculated from Eq.(4.35) using the same assumptions (braking

index n = 5, age τ = 300 years) used in the parameter space calculations. We beat

the age-based limit for our source everywhere the upper limits lie below the green

curve.

Figure 7.8 is a histogram of the final 95% upper limits as a fraction of the semi-

analytic ULEs. The distribution has a mean of 0.934, with standard deviation 0.061
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Figure 7.7:
Upper limit estimates (red circles) compared to the initial age-based limit on ellipticity
ε as calculated in Chapter 4 (green line).

(6.5%). The slight bias towards towards lower values is an expected consequence

of our methodology, which systematically overestimates the upper limit by always

using the largest per-0.1 Hz ULE for the combined 1-Hz upper limit bands.

It should be noted that this figure has had certain anomalous 1-Hz bands removed.

21 bands contained at least one, and sometimes as many as two, 0.1-Hz bands where

no ULE was set because of outliers so large that the semi-analytic method failed

to converge. This caused highly disturbed bands to go unaccounted for–loudest

2F values were too low, creating an artificially low ULE for the 1-Hz band and an

artificially high ratio when injections were made in the disturbed band. A further six

bands had the opposite problem–they were contaminated by very large disturbances

that were not large enough to cause the semi-analytic method to fail to converge, and

as a result one 0.1-Hz band received a ULE much higher than its nine companions.

This resulted in a ULE that was too high for the 1-Hz band, and artificially high
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Figure 7.8:
Histogram of true 95% upper limits as a fraction of inital semi-analytic upper limit
estimates. The bias towards small ratios shows our upper limit estimates tend to be
conservative, positing upper limits that are higher than the true value.

recovery rates pushed the 95% upper limit artificially low. Four of these six bands

were disturbed by 60-Hz harmonics; the other two owed their disturbances to the

violin modes of the detector. No upper limit was set in any of the above excluded

bands, which in total represent less than 5% of the frequency band.

This search placed the first explicit upper limits on continuous gravitational wave

strength from the nearby globular cluster NGC6544, and was indeed the first directed

search for any globular clusters. The lowest upper limits were h0 = 6.7 × 10−25 for

the 1-Hz band starting at 173.0 Hz for the October data set, and h0 = 6.0 × 10−25

for the 1-Hz band starting at 170 Hz for July-August data. These are comparable

to the upper limits of 7× 10−25 at 150 Hz obtained by the Cassiopeia A search [74];

the semi-coherent Galactic Center search [73] obtained 90% (as opposed to our 95%)

confidence upper limits of 3.3×10−25 for frequencies near 150 Hz, but did not search

over the second frequency derivative. A recent search over nine supernova remnants,



93

done without resampling, [79] set upper limits as low as 3.7×10−25 for the supernova

remnant G93.3+6.9, but used a coherence time of over 23 days (and a frequency band

of only 264 Hz). The same search set a comparable 95% upper limit of 6.4×10−25 for

the supernova remnant G1.9+0.3, which has a sky position with comparable average

sensitivity to that of NGC6544; that search used a comparable 9.1 days of data, but

was limited to a 146 Hz search band, compared to our 583 Hz. Our search was carried

out at substantially less computational cost because of barycentric resampling, and

could thus search over a much larger parameter space.

The best upper limit on ellipticity, established using the July-August data set, was

ε = 8.5× 10−6, for the 1-Hz band starting at 670 Hz. This is comparable to the best

upper limit (4× 10−5) obtained by the Cassiopeia A search [13]; the Galactic Center

search [73] set an upper limit of ε = 8.7 × 10−6, albeit when assuming a moment

of inertia three times the fiducial value (1038kg · m2) that we used. The supernova

remnant search [79] set a comparable upper limit on ellipticity at 7.6× 10−5 for the

supernova remnant G1.9+0.3.

Although too high for the maximum ellipticities for conventional neutron star

models (see Section 4.2), there exist more exotic models for which this limit is in the

range of interest: solid strange quark stars can support ellipticies up to 10−4, and

hybrid quark-baryon or meson-condensate stars might sustain up to 10−5 [80]. The

search would have been capable of detecting a maximally deformed star described

by these models; however, since we did not make a detection of a gravitational

wave signal, we cannot make any statements about the equations of state of possible

neutron stars in NGC6544. Their ellipticities could always simply be lower than the

theoretical maxima.



CHAPTER VIII

Conclusion

This thesis presented the results of a search for continuous-wave (CW) gravi-

tational waves from the globular cluster NGC6544 in data from the Hanford and

Livingston detectors taken during LIGO’s sixth science run (S6). We have derived

gravitational waves from Einstein’s equations, and the four families of LIGO searches

were discussed. We described the LIGO interferometers, their response to gravita-

tional waves, their fundamental sources of noise, and the steps taken to mitigate those

sources in the next-generation Advanced LIGO detectors. We described in particular

detail continuous-wave gravitational waves, the subject of our search: the composi-

tion of neutron stars, their likeliest astrophysical source; their emission mechanisms;

the reasons globular cluster NGC6544 is an attractive target in a search for them.

We explained the barycentric resampling method, and demonstrated its close to an

order of magnitude computational speedup over standard demodulation techniques.

Lastly, we described the search: the selection of data and the parameter space to

be searched; methods for following up candidate events and setting and validating

upper limits in the absence of a signal; and, finally, its results.

All candidate outliers were shown to be inconsistent with an astrophysical signal

and/or due to instrumental artifacts, and no detection of gravitational waves could
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be claimed. Upper limits were set in 1-Hz bands spanning the search frequency band

between 92.5 Hz and 675 Hz. The lowest upper limit was h0 = 6.0×10−25 for the 1-Hz

band starting at 170 Hz, and the lowest upper limit on ellipticity was ε = 8.5×10−6 for

the 1-Hz band starting at 670 Hz, both in the data set spanning July 24 to August

3, 2010. These were comparable to other recent LIGO searches for gravitational

waves from the youngest neutron star Cassiopeia A, the Galactic Center, and nine

supernova remnants, but carried out at significantly less computational cost. The

limits on ellipticity were too high for conventional neutron star models but in the

range of maxima from more exotic equations of state; however without a detection

we can make no statement about neutron star model favorability since ellipticities

could simply be below the theoretical maxima.

As I write, the final preparations are being made for the first observing runs

with the next-generation Advanced LIGO detectors. The extension of barycentric

resampling to other targets of directed searches promises to lower computational costs

across the board and allow for searches for more targets with the same resources,

ushering in an era of quick and computationally cheap directed searches for CW

gravitational waves in LIGO. The program developed here will be integral to those

extensions. The use of semi-coherent methods, combining the results of multiple

coherent observation times for greater sensitivity, will enable those searches to reach

even greater sensitivities. Combined with the order of magnitude increase in the base

sensitivity of the LIGO detectors in the Advanced Era, gravitational-wave astronomy

is rapidly approaching a time when detections could go from a long-awaited holy grail

to a relatively routine event. This is a very exciting time to be hunting.
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