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Figure 5.34: Change of conductivity and pH of MB solution without PBS (left) and with PBS (right) over
plasma treatment time. (Note: the figure on the left is a copy of Figure 5.26, repeated here for

convenience).
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Figure 5.35: Effect of PBS on MB decomposition by air plasma jet.

. . Figure 5.37: Comparison of MB
Figure 5.36: MB with PBS solution with PBS (left vial, 5

solution before processing (left)
and after 5 minutes of
processing (right).

min processing) and without
(right vial, 5.5 min processing).

These results suggest that OH is one of the primary drivers of decomposition. However, it is

also possible for the salts of PBS to interact with the plasma-produced active species as well. It

should be noted that the name PBS does not refer to a set compound, but a host of buffer
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solutions that containing various sodium-salts. For this reason, to quantitatively assess the OH
production of the plasma, the extinction rate of OH™ by PBS must be determined first, which was
not done here. A quantitative method not performed in this dissertation research, but that would
be useful, is to repeat the experiment detailed above but with the amino acid, N-acetyl-L-cysteine
(abbreviated NAC). Unlike PBS, which can be made by a variety of “recipes,” NAC is has a set
definition, and therefore, one may use the established reaction rates between NAC and OH™ to
determine a OH™ generation rate by the plasma. At pH 7.0, the rate of reaction between NAC and
OH is 1.36 x10" (M s)' [378].

5.6.2 Halogenated Compounds
The effect of plasma treatment on halogenated organic compounds using the air plasma jet at
similar powers and applied voltages. Plasma treated samples of water with and without
contaminants were analyzed via gas chromatograph at the Water Research Laboratory in the
Environmental and Water Resource Engineering program of the Civil and Environmental
Engineering department at the University of Michigan.
The compounds that were investigated were:
1. Chloroform
2. 1,1,1-Trichloroethane
3. 1,1,2-Trichloroethane
4. Bromochloromethane

These compounds each are toxic to humans and animals and are difficult to remove from the
water system. Each compound was precisely diluted via volumetric flasks to produce various
concentrations (10 ppm, 1 ppm, 50 ppb, 15 ppb). These were analyzed via gas chromatograph
(see description of process in Chapter 3).

Results from the decomposition of 15 ppb bromochloromethane are given as an example of
plasma decomposition power of halogenated compounds. This concentration was chosen as it is
comparable to the concentrations of contaminants that are currently detected in drinking water in

the United States (refer to Figure 1.1 [22]).
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5.6.2.1 Results

Figure 5.38 illustrates the decomposition of bromochloromethane as a function of plasma

treatment time, and Table 5.3 outlines the change in concentration of bromochloromethane with

plasma treatment time.
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Figure 5.38: Bromochloromethane decomposition by plasma discharge. Legend insert indicates treatment time

by plasma discharge (blue, no treatment; red, 30 seconds, etc.).

For bromochloromethane, the plasma reduces the below the detection level of the system (>>

1 ppb) within 60 seconds of plasma treatment time. This result is encouraging to the future

development of a plasma water purification device.

Table 5.3: Concentration of bromochloromethane with plasma treatment. BDL = below detection level.

Starting Concentration during plasma treatment
Concentration | 30 s 60s 105s | 150s | 240 s
15 ppb ~4ppb | ~1ppb | BDL | BDL | BDL

5.6.2.2 Further Work/Additional Considerations

Special attention to the chemistry is absolutely essential to ensure accurate results. The

following is a list of suggested considerations for those who plan to take the study further,

primarily for those who do not have significant experience in chemical laboratories.
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1. Best practices. Performing chemistry at the concentrations dealt with here (10s of ppb)
demands careful analytical chemistry methods to ensure cross-contamination between
samples, contamination of the solvent or the like does not occur. Appropriate storage of
chemicals is important. This becomes an issue of paramount significance when the
concentrations of compounds decrease (1s of ppb, 100s of ppt (parts per trillion)) and
depending on the vapor pressure of the substance. It is possible to render samples
unusable merely through the evaporation and subsequent sorption of a particular
volatile compound.

2. Column chemistry. Attention to the column chemistry is necessary. For example, for the
column in the experiment described above, chloromethane could not be analyzed as it
coeludes with its typical GC solvent, methanol. A new column must be acquired to
analyze this contaminant.

3. Contaminant chemistry. Additional contaminants that would be very interesting to study
under plasma decomposition are persistent herbicides, especially atrazine, or organic
solvents, such as toluene. However, neither of these contaminants are reasonable
candidates for a gas chromatograph method due to the acidic proton of both substances,
which would appear too early in the chromatogram to be useful. These and similar

chemicals require a separate method for analysis, most likely an HPLC method.

5.6.3 Algae Pond Water

In addition to standards of halogenated compounds, wastewater from saltwater aquarium at
NASA Glenn Research Center was treated with an air plasma jet for 30 minutes. This experiment
gave a qualitative view of the processing power of the air plasma jet for in a real-world
application of plasma water purifying technology. The aquarium was a closed loop aquaponics
system in which plantstuffs grown for biofuel and fishes existed [379]. Biofouling of the water is
an issue in this system as the water becomes laden with fish waste. The water needs to be treated;
plasma treatment was investigated as a method of management.

The water was treated with an approximately 50 W room air plasma jet operating at 3.6 KV

o« at 1 kHz. A typical voltage and current waveform is seen in Figure 5.39.
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5.6.3.1 Results

The pH of the solution was monitored over the treatment time (see Figure 5.40). It was found
the solution moved from somewhat alkaline (starting pH of 9.18) to roughly neutral (after 30

minutes of processing, the solution had a pH of 7.86).
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Figure 5.39: Typical voltage and current for algae pond water plasma treatment.
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Figure 5.40: Algae processing pH curve.
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The decomposition of the algae pond water may be seen in Figure 5.41; plasma processing
was able to effect real change in both odor and color of the liquid. As the water is processed, the

chlorophyll is broken down and the liquid loses its bright green hue. The plasma begins cause

e

3 minutes 7 minutes

9 minutes 13 minutes 19 minutes 30 minutes

Figure 5.41: Plasma processing of algae water. Top, algae water with plasma at t = 10 seconds. Bottom eight
images: water at various points during the treatment.

precipitation of algae and other pond water particles, which begin to visibly collect around the

edge of the treatment beaker at the 7 minute mark. After 30 minutes of processing, the water has
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changed to an olive-green, a sign of the daughter products of the decomposition process. After
processing, when the algae is allowed to settle, a considerable amount of precipitate collects on
the bottom of the beaker, which is a promising sign for future plasma water purification efforts.
This is an excellent example of plasma treatment bringing its multifaceted reactive soup to a
problem system, as many toxic algal compounds that are typically responsible for wastewater
treatment difficulties have slow oxidation reaction rates with ozone due to their saturated ring
structures (see Figure 5.42 for sturctures of geosmin and 2-methylisoborneol, two common algal
products). In general, algal products react with ozone at approximately k,; (cm’ s™') < 1x10™,
while the reaction rate with hydroxyl radical is several orders of magnitude greater at
approximately k,, (cm’ s™) =1x10"' [380]. The OH production of the plasma as well as the

synergistic action of the other products contributes to the fast cleaning.

OH

O i

H

Figure 5.42: Algal products. Left, geosmin; right, 2-methylisoborneol.

5.7 Cytotoxicity

From a practical standpoint, on must access the toxicity of treated water. This is relevant for
both water purification and plasma medicine applications. Cytotoxicity — toxicity to cells— is
perhaps the most crucial of characteristics of plasma sterilization to understand, after basic
decomposition.

As mentioned previously, disinfection by-products (DBPs, e.g., chloroform) have been linked
with numerous cancers, as well as several reproductive and developmental defects, including
spontaneous abortion (i.e., miscarriage) and birth defects [23]. Merely inactivating or destroying
contaminants in drinking water is not enough; one must assess the post-treatment cytotoxicity of
the treated solution.

A fundamental cytotoxicity test was completed in collaboration with the Chemistry
Department at the University of Michigan. Dr. Yong-Eun Koo Lee’s group of the Kopelman

Laboratory applied air-processed plasma treated deionized water samples to a lab-standard line
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of melanoma cells. The aim of the test was simple: as cancer cells are more robust than healthy
cells, any adverse reaction of the cancer cells to the plasma treated water would be a strong

indication of plasma-treated water cytotoxicity.

5.7.1 Experimental Methods

The water samples were processed at NASA Glenn Research Center. The same experimental
apparatus (DBD plasma jet) previously described was used, though the power source was a
nanosecond repetitively pulsed power sources as opposed to the kilohertz sinusoidal power
supply that was used for all previous experiments that used the apparatus described. Although
the method of plasma processing was different from that of the experiments discussed earlier in
this chapter, the chemistry is very similar and is considered an appropriate analogue for this test.
More details into the nanosecond pulsed power plasma source are described by Foster et al. [96].

As mentioned, the deionized water was treated by a nanosecond repetitively pulsed DBD
atmospheric air plasma. The repetition rate was 9 kHz, and the deposited power was roughly 16
W. The solution of methylene blue treated was a 0.4 ppm concentration. The solution was treated
by plasma for 30 minutes, resulting in ~90% transmission. The discharge current and applied
voltage waveforms may be seen in Figure 5.43. The pH of the plasma treated water was

approximately 4.
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Figure 5.43: (a) Discharge current and (b) applied voltage of the nanosecond repetitively pulsed DBD plasma jet
[96].

5.7.1.1 Sample Preprocessing

The pH of some of the plasma treated water samples was adjusted the range of 7-8 pH using

sodium bicarbonate. This allowed for an assessment of cell sensitivity to water pH.
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5.7.1.2 MTT Assay

MTT (full name 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide) is a standard
laboratory method used to determine cell proliferation. Living cells will uptake the MTT dye and
during mitochondrial dehydrogenases (one of the steps in cell respiration), the soluble yellow

MTT is converted to an insoluble purple formazan (a dye — refer to Figure 5.44).

T \ Mltochondnal Reductase \
N*
O e

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (E, 2)-5-(4,5-dimethylthiazol-2-yl)-1,3-diphenylformazan
(MTT) (Formazan)

Figure 5.44: The reduction of MTT to formazan. This reaction only occurs in living cells, and is used to quantify
cell growth. From [381].

The survivability of the cells is then assessed based on absorption of the formazan.

5.7.2 Experimental Procedure
To quantify the cell survival post-plasma treated water application, the experimental
procedure given below was performed by Dr. Gwangseong Kim, research scientist in Dr. Koo

Lee’s group in the Department of Chemistry at the University of Michigan.

1. Sample solutions added to cells (MDA-MB-435 cell line of melanoma cells). Sample
solutions were diluted to 10 fold and 100 fold.

2. Cells were incubated for 1 hour.

3. Sample solutions removed and cells washed by fresh serum-free cell media.

4. Cells were treated by 0.5 mg/mL MTT reagent for 4 hours. During this period, healthy
cells generate purple colored crystal by reacting with MTT reagent while damaged cells
do not.

5. After 4 hours, the cell media were removed and switched with DMSO to solubilize the
purple crystal product.

6. The cells were gently rocked overnight.

7. The absorption at 550 nm was measured. Stronger absorption indicates larger percentage

of cell survival and vice versa.
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5.7.3 Results
The cells did not show the recognizable cytotoxicity by MTT assay, as seen in Figure 5.45.
Indeed, some of the cells experienced positive growth (e.g., an extra 3% cell growth was

observed with the cells given the 10x diluted water adjusted to pH 8).

Cancer Cell Response
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100
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60 - B 10x Dilution

= Lo
40 - 100x Dilution

Cell Survival (%)

20

pH 4 (Unmodified) pH 7 (Adjusted) pH 8 (Adjusted)

Figure 5.45: Results from cytotoxicity test. Overall, plasma treated water not cytotoxic to melanoma cells.

While the use of cancer cells to test cytotoxicity may appear uninteresting, as an industrial
application of plasma wastewater treatment would be more concerned with the toxicity to
healthy cells (such as human and animal populations), this experiment does provide an upper
threshold of toxicity. As cancerous cells are more difficult to kill than healthy cells, if the
plasma-treated wastewater (in this experiment it was a plasma-treated methylene blue solution) is
unable to damage these cells, at a minimum it identifies a metric of toxicity for more robust cells.
Additionally, as this study uses plasma-treated contaminated water, it gives an estimation into

the environmental risk posed by using a plasma-driven treatment.

5.7.4 Final Comments

While the above test demonstrated the general non-toxic qualities of the plasma treated water
to melanoma cells, careful consideration to toxicity should be given. Further work with
cancerous and non-cancerous, healthy cells, should be conducted. Insight into species control
and the like garnered from this chapter and the following should be taken into account while

developing the optimal plasma water purification device.
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Chapter 6:

The Steam Discharge®

6.1 Overview

In the previous chapter, an underwater dielectric barrier discharge was discussed. Various
feed gases (argon, helium, nitrogen, air, and mixtures of gases) and the resulting chemistries
were investigated. From an implementation perspective, the use of air as the feed gas for these
discharges is especially attractive as the engineering of the system becomes far simpler and more
cost effective when exotic materials, such as rare gases (e.g., helium, argon), are used to ignite
the plasma.

However, the drawback of air plasmas is the acidification of the liquid water through the
formation of reactive nitrogen species (RNS), such as nitrates, nitrites and peroxynitrites [382].
While creating acidic conditions is a desired effect in certain applications of atmospheric
pressure plasma discharges (e.g., antimicrobial treatment is most efficient at pH of 3-4 and lower
[383]), if the aim is to process contaminated water for reasonable reuse (by humans, agriculture
or industry), the low pH liquid is not an acceptable end product as the treated liquid must be
post-processed to raise the pH. For air-based non-thermal atmospheric plasmas, the primary
acidification of the water is thought to be primarily due to the formation of nitrogen and NO,-
based species (e.g., nitric acid, among others) [357]. It should be possible to eliminate this
acidification pathway by eliminating the nitrogen in the feedgas or using an inert gas as the
feedstock (though liquid water still contains trace amounts of dissolved air, which is a potential

source gas for acidification [384]). Regardless, if the goal is to create a commercially viable and

“The content presented in this chapter is based on the article published in Plasma Sources
Science and Technology, entitled “An investigation of an underwater steam plasma discharge as
alternative to air plasmas for water purification” by Sarah N. Gucker, John E. Foster, and Maria

C. Garcia [77].

157



economically feasible water sterilization system, rare gases such as argon and helium should be
avoided. In addition, the use of oxygen gas as the ionizing medium, while eliminating NO,
production and potentially boosting the production of other reactive species, such as ozone,
presents additional challenges including safety issues.

In this chapter, a special case of this underwater DBD was developed to combat this issue.
Here, instead of a feed gas pumped down the coaxial discharge tube (see Figure 3.7 and Figure
6.1), the treated water itself is the ionizing media. Water vapor becomes the discharge gas,
thereby circumventing the production of NO,. This operation mode, termed “steam discharge” or
“steam mode”, operates such that the treatment liquid becomes the ionized medium fueling the
plasma discharge. This no-airflow discharge mode was first noticed/examined by Foster et al.
[95] and has been spectroscopically investigated by Garcia et al. [385]. Numerous authors have
investigated plasma formation in self-generated steam pockets in saline solutions [386,69], but
this formation takes place in high conductivity solutions (e.g., roughly 1.3 S/m in [387]) unlike
the deionized water used in this work (10s of uS/cm). Work by Shih and Locke [112]
demonstrated the use of discharge in a steam bubble; however, their discharge was created in
boiling water — the steam pocket was not self-generated. In addition, self-generation of a steam

pocket within low conductivity water reduces the engineering factors of the system.

Figure 6.1: The steam discharge in operation.
This chapter examines the steam discharge, which is investigated as a means to introduce
advanced oxidation species into contaminated water for the purpose of water purification. Steam
discharge operation did not result in significant pH changes in the processing of water or

simulated wastewater, with the actual pH remaining between pH 6 to pH 7 during processing.
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Simulated wastewater was shown to continue to decompose significantly after steam treatment,
suggesting the presence of long-lived plasma produced radicals. During steam discharge
operation, nitrate production is limited, and nitrite production was found to be below detection
limits of available instrumentation (detection threshold roughly 0.2 mg/L). This discharge may
be run at a wide range of power depositions, from approximately 30 W to 300 W (the limit of the
power supply). Hydrogen peroxide production scales with increasing power, and is more
efficient at producing hydrogen peroxide than the rates of many plasma sources reported in the

literature thus far.
6.2 Experimental Approach

6.2.1 Baseline Studies: DI Water

For comparative purposes, the air and steam discharges were run at comparable discharge
voltage and input power settings (~5.5 kV, , and ~60 W, respectively) for 4 minutes in
deionized water. pH and conductivity measurements were made at regular intervals throughout
the treatment to obtain time-resolved evolution of these properties. Immediately after plasma
treatment, ion chromatography of the processed liquid was performed to analyze nitrate (NO;)
and nitrite (NO,) content. These species were chosen as they are precursors to nitric acid
formation as described in (6.1 through (6.5 below [357].

3NO, + H,0 —» 2H* + 2NO3 + NO

(6.1)

NO, + OH - HNO3
(6.2)
2NO,(g) - N,0,(g) + H,0(1) = HNO; (1) + HNO, (1)
(6.3)
NO,(g) + NO(g) —» N,05(g) + H,0(1) - 2HNO,(])
(6.4)
3HNO, (1) » HNO; + 2NO(g) + H,0(])
(6.5)
Optical emission spectroscopy of both air and steam discharges was performed to assess the

species production and various plasma properties. Hydrogen peroxide formation rates of the
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steam discharge were measured for various power depositions, and compared to published

plasma-derived hydrogen peroxide formation rates of other plasma devices.

6.2.2 Decomposition Studies: Simulated Wastewater

To study the decomposition capability of the steam discharge relative to that air feed source,
the sources were both operated in simulated wastewater. In this case, a solution of methylene
blue dye was used as a surrogate for textile mill wastewater commonly used in plasma
decomposition studies [371,372,274,373,388,73]. 1t is well established that the textile mill
industry is a major contributor to wastewater production and environmental pollution in general
[96.,389],. A 100 mL solution of 0.1 mM methylene blue dye with deionized water was used,
treated and analyzed via a spectrophotometer and mass spectroscopy. The starting pH of the
solution varied between 5.71 and 6.69, and conductivity of the solution varied between 13 and

100 pS/cm.

6.3  Results: Generation of Steam Bubble

The self-generation of the steam bubble was studied from several aspects. High-speed
photography provided visual confirmation of microbubble structures. Thermocouple studies
revealed the steam generation driven by electrode heating was unlikely. Finally, voltage, current
and photo detector and acoustic data describe the discharge from bubble formation to plasma

discharge.

6.3.1 Optical Assessment via High Speed Photography

To study the origin of the steam bubble, high-speed photography was used. As mentioned in
related studies [390], the formation of the steam bubble was studied with a Redlake Motion Pro
HS-4 camera. The repetition rate used was 200,000 fps, exposure of 1 usec. The physical area
imaged by the camera was an 8 x 148 pixel area, or approximately 0.24 x 4.5 mm around and

below the electrode (see Figure 6.2).
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Tip of
electrode

End of quartz
tube

Figure 6.2: Electrode set up with imaged area highlighted
(shielded electrode housing design).

Any change, other than slow bubble growth (i.e., bubbles forming on the electrode as in
Frame 6 of Figure 6.4, also shown in Figure 6.5), occurs during the image taken during the rising
edge of the voltage waveform, or on timescales shorter than 1 microsecond (the exposure time of
the camera), eliminating the prospect of time resolution, at least at early times. It is possible that
the rapidly increasing electric field at early times is sufficient to cause the localized heating
responsible for the steam bubble generation. Seen in Figure 6.3 below is one such progression of
images taken over the voltage cycle. The beginning of each voltage cycle of the first 19 applied
voltage cycles may be seen in Figure 6.4.

As can be seen in Figure 6.4, evidence of a lower density medium is apparent in frame 6.
This mass of presumably steam grows over the voltage cycle and is ejected into the liquid at the
start of the next voltage cycle. The growth rate of this nascent steam bubble, which grows
physically attached to the tip of the electrode, was measured to be approximately 0.33 m/s (see
Figure 6.5).
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Figure 6.3: From [385]. Early stages of bubble formation. Frames taken over a voltage cycle; (a), taken at -5 us
from the start of the voltage cycle; (b), 0 us; (c), 50 us; (d), 100 ps; (e), 150 ps; (f) 195 us; (g), 200 ps.
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Figure 6.4: Steam bubble formation. Shown t = 0 to t = 3600 psec. Voltage period = 200 psec.
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Figure 6.5: Growth of primordial steam pocket over 195 psec.

Near the electrode, bubbles and low-density masses continue to be produced. The index of
refraction changes associated with the darkened regions suggested local volume heating. At
frame 16, a single steam bubble approximately 65 microns in diameter is observed 1.2 mm from
the electrode tip. The following images show more bubbles appearing and moving in and out of
the frame, starting to form a matrix of bubbles that eventually coalesce into the large,

macroscopic bubbles that the discharge occupies.

6.3.2 Electrode Heating

To investigate the possibility of localized electrode heating of surrounding water, the
temperature of the powered electrode was monitored during bubble formation. A high-
temperature, ungrounded thermocouple was used to assess temperature of the electrode 10 mm
away from the end of the powered electrode. During bubble formation and initial plasma
formation, while subjected to high voltage for up to 3 seconds (the steam bubble had formed
within the first 0.05 seconds, e.g., see Figure 6.6), the temperature of the electrode did not
increase above 55 °C. Because of the high thermal conductivity of copper, it is expected that this
temperature should be representative of the temperature at the actual electrode tip. In this regard,
localized boiling driven by an electrode heating was ruled out as the mechanism for bubble

formation.

6.4 Development of the Steam Plasma Discharge

The time evolution of the steam discharge was assessed by measuring the discharge voltage,
charge transfer over a cycle using a sense capacitor, discharge current, photo diode response and
resultant power deposition inferred the Lissajous method. The first 0.1 seconds after the start of

application of voltage to the discharge applicator is shown in Figure 6.6. In that figure, V1 is the
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applied voltage; V2, the voltage across the capacitor; I, the discharge current; and PD, the
response from the photo diode. These first moments of the discharge suggest three distinct
operating regimes: the Bubble Formation regime, which starts in the given figure from the onset
of power application to approximately 0.03 seconds; the Transition regime which lasts from
approximately 0.03 seconds to 0.045 seconds; and the Discharge region, which is the region
from 0.045 seconds onward. While each region will be examined more fully in the proceeding
paragraphs, an overview of all three regions shown in Figure 6.6 is useful in parsing out each
operating regime.
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Figure 6.6: Voltage, current and photo diode response of the steam bubble plasma. Bubble formation (0 to ~0.03
seconds), transition to discharge (~0.03 to ~0.045 seconds), and plasma discharge (~0.045 seconds onward) may
be observed.

As seen in Figure 6.6, the amplitude of the applied voltage stays roughly constant during the
first portion of the Bubble Formation region, while the discharge current very slightly increases.
This corresponds to the discharge area (i.e., the growing steam bubble surface area) increasing
with current. When the bubble is fully formed, the Transition region begins (at roughly 0.035
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seconds). Here, the discharge current sinks as the applied voltage begins to climb. This is
expected as the system transitions into a spark. A discharge spike in the applied voltage is seen at
roughly 0.044 seconds, which is followed by a response from the current, voltage across the
capacitor, and photo diode. The remainder of the data (the Discharge region) gives a typical

response seen by underwater DBD-type discharges [97]
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Figure 6.7: Corresponding Lissajous figures for data in Figure 6.6. The different operating regimes are illustrated
with different colors.

The power dissipated throughout all three regimes is shown in Figure 6.7 and concisely
demonstrates the system shifting from a primarily of liquid conduction and dissipation (the
Bubble Formation region, approximately 50 W when the power supply is first turned on) to the
plasma discharge regime, where the side slope of the figure are indicative of the capacitance of
the dielectric (steam layer and water in this case). (The Discharge region is approximately 60 W
when the discharge is fully ignited). The rotation of the parallelogram implies an increase in
capacitance; indeed, the average capacitance as derived from the Lissajous figure for the Bubble
Formation region is approximately 2.5x10"° F, while the average capacitance from the Discharge

region is approximately 6.0x10"° F.
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6.4.1 Bubble Formation

The first 0.03 seconds of discharge correspond to the early formation of the steam pocket.
This phase may be observed in Figure 6.8, which depicts the first 0.001 seconds of discharge.
The discharge current is seen to precede the applied voltage, as expected. The phase shift
between the discharge current and the applied voltage is 28.3° (I leading V1), and between the
applied voltage and the voltage across the capacitor is 78.2° (V1 leading V2). Here, the photo
diode response, which is in phase with the applied voltage, is assumed to be pickup noise. The
power deposition during the stage as determined via the Lissajous method was approximately 60
W, which is enough to vaporize approximately 26.9 mg of water per second. This vaporization is
believed to fuel the microbubbles at the surface of the electrode and throughout the liquid as seen
in Figure 6.4 (frame 6). The Lissajous figure characteristic of this phase may be seen in the top
portion of Figure 6.12. In this phase the figure is an ellipse, signifying conduction throughout the
cycle. This is observed in conventional DBD discharges operated at high frequency or low
pressure. In these cases, the plasma does not decay before a new cycle begins. Charging and
discharge effects are not pronounced in this case. In this present case, conductive fluid plays the

role of the plasma.
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Figure 6.10: The Discharge region.

—— V1 (Volt)
——— V2 (Volt)
— 1 (Amp)
——PD(a.u.)
3000 -
Loo 46000 ro2o|
2000 1 ﬁ {‘ ,\N- 0.15
- | Y I
Lo.o | i i i I H Fo10| o,
1000 12000+ \ ‘ /: “‘ ’| ) ) - 0.05
0.0 0 ] 0 ‘\ \‘ YN \w “ F \“ I \ [ L
: E -} J HIIUT ' N J \\‘ f-o.00-00
1 ‘ i “ | l M 005
2000 WA AN N LE AT LK | \ -
0.0 1000- ‘ ‘ ‘ N ‘ / | ‘ | i } }__0_1000
o 36000 - [o2d
3000 - . .
0.042 0.043 0.044 0.045
Time (sec)
Figure 6.9: The Transition region.
—— Voltage (V) .
—— Current (A) Microbubble
—— Photodiode (Arb. U.) events
. —— Hydrophone (Arb. U 0.08. 0008
0477 0961 4 006
Ta000 0.04
024 I 0.004
2000 -| M I'\ ‘ .m' * W 0.02
0.0 0_‘” & ‘ ﬂ A ‘ “ uq" ‘ M 0'0070002
T ol
-0.2 42000 - | | » X 0.04
(Wi bl 4 L H i d‘} i 1 -0.002
1 by g
04 44000 M f I WT m \ 0.06
.08 0004
36000
-0.6- ; ; ; ; I -0.10- -0.006
01580  0.1582  0.1584  0.1586  0.1588  0.1590
Time (sec
Figure 6.11: Discharge region. Here, the hydrophone is

in sync with the photodiode's microspike responses to

167

the plasma strikes.



891

1.44

0.72

Q (uC)

0.00

-0.72

1.92

0.96

Q (uC)

0.00

-0.96

1.4

0.0

Q (uC)

Figure 6.12: Corresponding power deposition from the Transition region. Average
power for each of the three regions shown above are 71 W (top), 75 W (middle), and

-5000

0

——— 042 to .043 sec|

V1 (Volt)

84 W (bottom).

5000

Q (uC)

T T T T T

I I 1 I
-3000 -2000 -1000 0 1000
V1 (Volt)

I I
2000 3000

Figure 6.13: Corresponding Lissajous figure from the Discharge region, appr
60 W.



6.4.2 Transition Region — First Light

The transition between the macro-sized steam bubble and actual plasma formation can be
inferred from Figure 6.9. A drop in applied voltage is observed around 0.0434 seconds. This
voltage drop is immediately followed by a current spike. Only after the drop in voltage does the
photo diode respond, suggesting the breakdown.

The power deposition of the Transition region may be seen in the Lissajous figures in Figure
6.12. Power dissipated increases from approximately 71 W to 84 W as the system switches from
bubble formation mode to breakdown. As mentioned previously, the ellipse shaped Lissajous
figures are associated with dissipation in the liquid leading to bubble formation. Formation of the
vapor barrier and plasma gives rise to a parallelogram shaped. In principal, one Lissajous figure
should pass from ellipse to line to parallelogram. The line would indicate full vapor coverage and
thus complete isolation of the electrode from the liquid. Absence of the line Lissajous figure
suggests that perhaps the electrode is not completely isolated from the liquid; that is, either
certain portion of the electrode remain in contact with liquid or a rapidly developing discharge

(e.g. corona) may form when coverage is sufficiently high.

6.4.3 Discharge Region

The section of data seen in Figure 6.10 and Figure 6.13 corresponds to 0.08 to 0.081 seconds
after power was first applied to the electrode, well into the Discharge region of the data. These
waveforms are characteristic of the steam discharge while in operation [391]. The power
deposition of this region is roughly constant at approximately 60 W (Figure 6.13); overall, the
steam discharge is fairly stable in individual regions of operation, with all changes in power
associated with changes in operating mode. The fact that the Lissajous figure in Figure 6.13 is
not exactly rectangular, but rather rounded, suggests that that vapor bubble coverage is not
complete or steady and therefore over a cycle, the discharge current is associated with liquid

conduction current as well as plasma current.

6.5 Acoustic Signal of the Steam Discharge
The premise of the discharge formation in low conductivity water is vapor formation at the
electrode. Bubbles formed locally at the electrode contain super-heated vapor and thus cool

rapidly and collapse.
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The acoustic signature associated with bubble formation and collapse (e.g., [392,393]) gives
a great deal of insight into the bubble formation process as well as subsequent bubble “tearing”
and cavitation once the discharge starts. The acoustic signature for bubble and discharge
formation was measured using a miniature-hydrophone. The evolution of the discharge with
inclusion of the hydrophone response is shown in Figure 6.11.

Pressure pulses or spikes in the hydrophone signal occur with each spike from the photo
diode, suggesting a link between plasma generation and the fluid dynamical effects driving
sound generation. Possible sources of the acoustic signature include gas heating associated with
steamer formation resulting in bubble formation and collapse as seen in [392,393]. Further

analysis of signature is left to future work.

6.6 Summary

The measurements outlined previously suggest the generation of the steam pocket in
deionized water is to be primarily due to electric field-driven processes, such as ion drag, that
occur on time scales faster than 1 microsecond. This is opposed to mechanisms such as thermal-
driven processes. The formation of the steam bubble is unique in that it is formed in low
conductivity water (as opposed to saline solutions, e.g., [244]) and at low frequencies (i.e., not

akin to microwave in water as in [394]).
6.7 Results: Baseline Tests with Deionized Water

6.7.1 pH

To access the effect of the steam plasma on water pH with that of an air driven plasma, the
discharge tube was operated with air as the feed gas in deionized water for four minutes by the
air mode. Deionized water was similarly processed with the steam discharge (no input air) for
four minutes as well for similar applied voltages (~5.5 kV , ;) and input powers (~60 W).
During treatment, water samples were extracted periodically to access the time variation in the
liquid water’s pH. The time resolved variation in the pH is shown in Figure 6.14.

The pH of the water treated with air as the feed gas exhibited the expected drop-off in pH
with time. After four minutes of processing, the pH of the water treated by the air discharge was

approximately 3.1. This acidification behavior has been reported on extensively [270,69,395].
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The pH of the water treated in steam mode, however, did not vary appreciably; after four minutes
of processing at similar power levels, the steam discharge left the treated deionized water at a pH
of 6.2. These observations support acidification theories that suggest the importance of nitrogen-
based species (specifically, nitric (HNO3) and nitrous (HNO?2) acids) on the acidification of
liquids exposed to an air plasma (e.g., [382,383]).

—a— Steam
8- —o— Air

T T T T T T T T T T 1
0 50 100 150 200 250
Time (sec)

Figure 6.14: Discharges in DI water. Typical pH as a function of time for air (red) and steam (black) discharges.

Though the pH does not change appreciable with steam plasma treatment, it should be
pointed out that the baseline value after treatment is weakly dependent on input power. At low
input powers ~50 W, small reduction in pH (i.e., 6.2 to as low as 6.05) is typically observed in
the pH while at higher powers ~250 W, the pH stays closer to neutral (pH 6.85 — 6.95). This
effect is not well understood though it may be tied to dissolved nitrogen content in the water.
Because the local water temperature is higher at the higher powers, then locally, the
concentration of gaseous nitrogen is lower thus translating into lower acidification. In addition,
the purity of the water and amount of dissolved gaseous species are also assumed to have a role
in the final pH (e.g., formation of weak acids such as carbonic acid, H,COj;, from dissolved
ambient CO,).

In general, the self-ionization of water becomes important when the concentration of protons
(H") is less than 3x107, which roughly corresponds to pH values of 6.5 and greater. The
dissociation of water is given as

H,0 (1) = H*(aq) + OH™ (aq).

(6.6)
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As free protons do not exist in water, above may also be written as
2H,0 () = H;0%(aq) + OH™ (aq).
(6.7)
At 25 °C, the water dissociation constant, K, is 1.01 x 10™"* where K, = [H,O*][OH] [240].
As the pH of the water treated with the steam plasma consistently falls in the range of pH 6
to 7, one should be mindful of the autoionization of water, as it can be a significant factor in the
pH dynamics of the system. Analysis of possible formation of weak acids and detailed

investigation into the pH chemistry is left to future work.

6.7.2 Conductivity

Conductivity is a measure of the capacity of the water sample under test to conduct

electricity. The finite conductivity is in large part due to the presence of molecules that have
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Figure 6.15: Discharges in DI water. Typical conductivity as a function of time for air (red) and steam (black)
discharges.

ionized in the water, such as the disassociation of salts or acids. The conductivity of the treated
water — regardless of treatment via steam or air plasma-— increased with processing time.

This result is somewhat surprising at first blush, as conductivity can be significantly linked to
pH due to the sensitivity of conductivity measurements on the concentration of hydrogen and are
usually assumed to be a result of acidification [357]. The result suggests that electrolytic
processes at the electrode may be to blame. For example, the dissolution of metal into the liquid
would result in a measurable conductivity change. This can occur with copper electrodes [69].
Here the mechanism involves the formation of carbonic acid owing to the presence of residual

oxygen and carbon dioxide in the water. The carbonic acid can remove the oxide layer exposing
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ionic copper, which would then dissolve into the liquid, thereby increasing the conductivity. It is
entirely possible that the observed changes for both discharges is due to this electrode ion
dissolution effect.

Alternatively, the increased conductivity may be due to the chemistry of the steam discharge.
The mobility of H' in water is the highest of any ion (36.25 x 10 cm® (s V)'), which gives
protons the highest impact on conductivity measurements (with the hydroxide ion, OH", coming
in second at 20.62 x 10™* cm?® (s V), or 57% proton mobility) [265]. This results in hydronium,
H,0", having a higher mobility than molecules of comparable size [357]. Therefore, the increase
in conductivity, regardless of discharge method, may be due to the significant fraction of
hydronium formed in the treated liquid. For the steam discharge, the increasing conductivity with
level pH reinforces the idea that complex acid-base equilibrium chemistry is occurring (i.e., the
production of some weak acid is occurring to keep the pH between 6 and 7 but the mobility of
the acidic protons increases conductivity measurements).

The formation of hydronium under electron impact (may be gas or liquid phase) is due to the
electron impact on water, which quickly generates hydronium [265].

H,0 + e -» H,0" + 2e
(6.8)
H,0" + H,0 —» H;0* + OH
(6.9)

The formation of H;O" can also form hydroxyl radicals, OH (see (6.9)). This highly reactive

species (with oxidation potential of 2.80 V) is plays a key role via advanced oxidation in

sterilization [396] and decomposition [397] processes.

6.7.3 Nitrate and Nitrite Concentrations

Nitrate and nitrite concentrations in both air plasma and steam plasma-treated water samples
were measured. These samples were extracted after four minutes of plasma treatment. In the air
plasma treated water solution, the concentration of nitrates and nitrites formed in solution was
found to be around 100 ppm and 10 ppm, respectively, or ten times the EPA limit for each
species for drinking water [276]. The water treated with discharge operating in steam mode,
however, was found to have less than 0.5 ppm of nitrate and no nitrite was detected. Without

injected gas, the absence of appreciable amounts of nitrogen does not give rise to the production
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of NOx species. Indeed, the solubility of nitrogen in water near room temperature is half that of
oxygen [240]. This result supports the notion that the pH drop in air discharges in liquid water is

most likely due to nitrogen-based acids, especially nitric acid.

Table 6.1: Nitrate and nitrite production [73]. Copyright 2015 The Japan Society of Applied Physics.

Average Nitrate Average Nitrite
Concentration (ppm) | Concentration (ppm)

Untreated DI water 0.00 0.00

DI water treate‘d via air 99 63 10.92

discharge, 4 minutes

DI water treated via steam 045 0.00 (undetected)

discharge, 4 minutes
The absence of NOx species in steam plasma treated water is desirable for peroxide

production. It is well known that nitrites quickly react with H,O, in acidic solutions, and can
suppress H,O, generation, decomposing via [309]
NO; + H,0, + H* - NO3 + H,0 + H*.
(6.10)
The very low concentrations of nitrites and nitrates produced in solution in steam plasma
treatments as seen in Table 6.1 suggests that this mechanism is not expected to play a role in
reducing peroxide production. It should be noted that the water was not degassed, and the limited

quantities of nitrate and nitrite are due to the dissolved gases within the liquid itself.

6.7.4 Optical Emission Spectroscopy: Steam vs. Air Discharge

Optical emission spectra were acquired from both the steam and the air fed discharge-The air
spectra are dominated by nitrogen emission (Figure 6.16) while the steam plasma emission
spectra were found to consist primarily of OH and hydrogen peaks (Figure 6.17).

The results from the air discharge are as expected from a water-air discharge. Depending on
the operating conditions, important species such as the hydrogen beta (486.1 nm), hydrogen
alpha (656.3 nm), and the oxygen triplet (777 nm) may be easily observed and will vary in
intensity.

Conversely, the results from the steam discharge (see Figure 6.17) confirm the speculation of

a primarily water vapor-based plasma. Here, the only species visible are those of water, the

174



L} I L} I T I T I T
N 2nd pos
20 |- 337.1 nm
1 5 b N22nd pos
357.6 nm
;.\ 10 N @nd pos)
— 2
© 353.67nm
~ N+21sl neg
- EN P / 391.44 nm
315.9/nm
5 N 2°d
2
375.5)hm, 380.5 nm
N, (2nd pos)
i 399.84, 405.94 nm
/ N, N second order
¥a21.81 "mi§5.1a, 470.92 nm 'l'iu -~ O1(777.4) nm)
O Lol _A/L A
' I '} I 'l I 'l I 1
300 400 500 600 700 800
A (nm)
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Figure 6.17: Optical emission of steam discharge in deionized water. No nitrogen emission is visible.
Copper and sodium lines are emission from the electrode and quartz housing.
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electrode material (copper), and the quartz electrode housing material (sodium). For water
species, only the first two lines of the Balmer series (H, and Hg) and the OH(A-X) band appear.
From these species, the electron density and gas temperature were estimated (see discussion

below).

6.7.4.1 Electron Density
The electron density of the discharge (i.e., during the third phase) was determined through
the Stark broadening of both the H, and Hg lines. The relation between Stark broadening and

electron density is given as [318]

n 0.68116
1023m_3)
(6.11)

Mgparie = 4.8 nmx (

The total contributions on the broadening of the Hg line (including instrumental broadening)

were assessed using the following calculations of van der Waals ((6.12) and Doppler ((6.13)

broadening [318]:

4.10
AlvdW = an

gas

(6.12)

Adp = 3.48x1074T2 nm.

gas

(6.13)
In addition to (6.11 above, the electron density may also be determined from tabulated
calculated electron densities for many Stark broadening linewidths [319]. Using both, the

electron density was calculated to be approximately 1021m =3 [385].

6.7.4.2 Gas Temperature

Pre-2010, OH(A-X) was heavily used to determine the gas temperature of water-plasma
systems, as it was assumed that rotational population of OH(A) is thermalized into an
equilibrium. However, Bruggeman et al. [398] demonstrated the electronic quenching of OH(A)
due to water can have a significant impact on the gas temperature measurement, as the

distribution becomes non-Boltzmann. Other authors have demonstrated the non-equilibrium of
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the excited OH molecule [399]. For this reason, the OH(A-X) method of determining gas
temperature is best avoided and other methods are preferable [400].

However, determining gas temperature for the steam discharge is more difficult. Here, the
spectrum clearly shows only the OH(A) band, H,, H., and a few copper lines. No other species is
observed, not even oxygen. The copper lines are not broadened enough to determine a gas
temperature measurement.

In an attempt to gain a more accurate gas temperature measurement, nitrogen gas (<< 7.9
sccm) was leaked into the discharge to determine the gas temperature via optical emission
spectroscopy of the second positive system of N,. The gas was leaked into the discharge tube
after the steam bubble and discharge were initiated. However, even at such small flow rates (no
gas bubbles that could be observed by the human eye were formed), the discharge was strongly
affected. The plasma quickly heated the water to boiling within a few minutes; the steam
discharge on its own would take many tens of minutes to heat the water to a boil. As such a
noticeable difference occurred even with a minute quantity of N,, this method of temperature
determination was abandoned.

One possible method of determining the gas temperature of the steam discharge is two-color
OH-planar laser induced fluorescence (OH-PLIF) (e.g., [400]). Those engaging in further study
of the steam discharge system should utilize this method.

Here, the gas temperature was found through simulating thermal distribution of the OH(A-X)
band via LIFBASE spectroscopy software [323], and comparing theoretical results to
experimentally observed lines. The gas temperature was found to be approximately 2800 K
[385]. A detailed investigation into the emission spectroscopy of the steam discharge plasma into
deionized water may be found elsewhere [385].

At the measured gas temperatures (~2800 K), thermal dissociation of water producing OH
and H starts to become significant (H,0 + H,0 - OH + H + H,0; k(TgaS = 2800 K) ~
10718 — 107 1%cm3s~? [401]). Computational models by Bruggeman and Schram [402] suggest
production of OH by thermal dissociation becomes comparable to electron dissociation at gas
temperatures of 3000 K and greater, though for electron temperatures of 1-2 eV, many authors

given the reaction rate of electron dissociation of water a several orders of magnitude above
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thermal dissociation (where H,0 + e~ > OH(X) + H+ e ; k(T, =1—2¢eV) = 10712 —
1071%m3s~1 [402.403]).

6.7.4.3 Ozone Production in Steam Discharge

Ozone is not expected to be produced in appreciable levels in the steam discharge. This is in
contrast to studies such as [404], which use microwave excitation to form superheated bubbles in
which the plasma is ignited. As optical emission spectroscopy of the system does not show any
detectable oxygen lines (Figure 20), if it assumed ozone is primarily formed through [405]

0+0,+M->03+M,
(6.14)

ozone production is severely restricted. Ona and Oda [406] observed in a pulsed corona
discharge in humid-air an increase in water vapor by 2.4% reduced ozone production by ~6.
Indeed, models of DC corona discharges in 100% relative humidity air found ozone suppression
by OH [407]:

O3 + OH —» HO, + 0,
(6.15)

This leads to more OH by HO, recombination [408]:

HO, + HO, - H,0, + O,
(6.16)

It is important to note that Foster et al. [95] observed weak O I lines (at 777 nm) during the
initial observation of the steam discharge. While not observed in these studies, oxygen atoms
will combine with ozone and water molecules, further preventing ozone production [409]:

0+03->0,+0,
(6.17)
0+ H,0 —» OH + OH
(6.18)

Because of this chemical interaction and similar observations (e.g., [410]), strengthened with
the fact that the ionizing medium of the discharge itself is water vapor, ozone production of any
significance is not expected in this discharge. Ozone generation was not measured in either

discharge.

178



6.7.5 Hydrogen Peroxide Production

As discussed previously, optical emission spectra suggests the steam discharge generates of
OH, H,, Hg, and electrode material (see Figure 6.17). Therefore, it is assumed the steam
discharge decomposes contaminants primarily through OH species and hydrogen peroxide, and
any reactive daughter products. Nearly exclusive production of OH and H,O, makes the steam
discharge ideal for oxidation and sterilization applications.

The discharge was operated at various power levels in 50 mL of deionized water (starting pH
=6.9 £ 0.1, conductivity = 8 £ 1 uS/cm). The formation rate of hydrogen peroxide was found to
increase with deposited power, as seen in Figure 6.18. These generation rates of hydrogen
peroxide are comparable to rates reported in the literature and may be substantially larger to
other plasma sources reported in literature. Figure 6.18 below gives an overview of several

different sources and the reported hydrogen peroxide formation rates.
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Figure 6.18: Hydrogen peroxide production in various plasma sources [177]. Steam, this paper; Air [411,412,413];
Argon [413,414]; Arc in solution [415,416,417,418]; Electrolysis [419]; Helium [413]; Oxygen [413,420]; Carbon

dioxide [421].
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6.8 Computational Verification: GlobalKIN Model in Comparison to Experimental

Findings

The production of liquid species was computationally predicted via GlobalKIN. Here, the
steam discharge in liquid water was modeled as a 1 cm diameter water vapor pocket surrounded
by a 0.5 mm layer of water. The plasma was modeled as a spherical shell that occurred within the
outer most 50 um of the sphere. Nitrogen and oxygen liquid-phase species were included to
study the effect of naturally occurring dissolved air in the water. As discussed in Chapter 3, the
power density was calculated from voltage and current waveforms taken from the experiments
that the simulation results would be compared. The simulation was run to 0.1 seconds of

processing time; an example of such results may be seen in Figure 6.19.

6.8.1 Results

Comparison of experimentally measured versus computationally predicted hydrogen peroxide
generation rates for steam discharges at various power levels may be seen in Table 6.2.
Comparison of experiment and computation nitrate and nitrite generation rates for air and water

discharges may be seen in Table 6.3.

Table 6.2: Hydrogen peroxide generation rates; experimental observation versus computational prediction.

Steam H,0, Generation Rate (mg/h)
Discharge Experiment Computation
Power (W) | Measured | Normalized Predicted Normalized
81.6 2173 0.395 71.7 0.376
307.8 284.2 0.516 107 4 0.563
3493 550.7 1 190.6 1

computational prediction.

Table 6.3: Nitrate and nitrite generation rates in air and steam discharges; experimental observation versus

NO; Generation Rate (mg/h) NO, Generation Rate (mg/h)
Experimentally | Computationally | Experimentally | Computationally
Measured Predicted Measured Predicted
Air, 80 W 150 224 15 1.43E-03
Steam, 80 W 0.68 45 not detected 1.60E-07

Currently, the model predicts hydrogen peroxide generation rates of approximately one third
the experimentally measured rate. However, as the computationally derived generation rates

approximately scale with power with the experimentally derived generation rates (refer to the
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normalized values given in Table 6.2), it is assumed there are minor edits necessary to the code.
As carbon-based species (e.g., COx) are not included in the liquid-phase reactions, it is assumed
discrepancies are at least partially due to those missing kinetics and reactions [324].

When modeling nitrate and nitrite production in air and steam discharges, a stronger deviation
occurs. For nitrate production, GlobalKIN is not a accurate predictor for the steam discharge (off
by two orders of magnitude). For nitrite production, GlobalKIN is even worse for the air
discharge, off by five orders of magnitude. Interestingly, GlobalKIN appears to correctly predict
the steam discharge’s near-zero nitrite production. It is strongly suspected that the lack of carbon

and carbon-based may play a significant role in correctly predicting liquid-phase chemistry.

6.9  Results: Sterilization Efficacy of Steam Discharge to Treat Methylene Blue Dye

To study the decomposition efficiency of the steam discharge, the discharge was configured
to decompose a wastewater simulant. The wastewater simulated contained 0.1 mM of methylene
blue dye, an organic dye. This dye has been used in the past to study plasma decomposition
efficiency of organic contaminants [53,96,397,371]).

Discharge operating conditions were varied for each source (i.e., air and steam discharges).
The steam discharge was operated (a) similar and (b) greater than the operating power of the air
discharge. The various discharges were operated until (a), similar levels of degradation were
achieved (as inferred from spectrophotometric absorbance measurements), and (b), for various

time scales.

6.9.1 Decomposition Rates and Power Levels

The percentage of methylene blue decomposed by all methods was determined
spectrophotometrically, using the reduction in absorbance of a methylene blue absorbance line
(609 nm) to track decomposition. Steam discharge treatment of the MB solution was performed
at two different relative power levels and compared to an air discharge treatment (see Table 6.4).

Preliminary results give the maximum energy efficiency to achieve 50% dye destruction (i.e.,
the G, value) measured by the steam plasma is around 0.16 ¢ kWh™'. This is in comparison to
the air discharge, which can achieve Gy, efficiencies of over 5 g kWh''. This difference of an

order of magnitude is recognized in the decomposition parameters. For comparable operating
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Table 6.4: Decomposition efficacy of air and steam discharge on MB solution.

D tod Treat . Initial/Final MB % G,, Value
cpostte _featmen Concentration . (g kWh™)
Power (W) Time (mm:ss) Reduction
(uM)
Air 75 4:30 156/3.68 97.6 52
Steam 76 33:42 92.5/5.45 94.6 0.15
Steam 117 15:00 92.5/18.05 82.0 0.16
Steam 200 5:00 114/42.0 633 0.16

powers (air and steam at approximately 75 W), the steam discharge required roughly 7.5 times
longer processing time to achieve similar reduction levels (~34 minutes versus ~15 minutes).
Increasing the steam discharge power (to 117 W and 200 W) only increases the Gy, value of the
process slightly to 0.16. It is expected that the air discharge is a more efficient decomposition
driver as it has a greater number of reactive species that contribute to the decomposition ability
of the air discharge, e.g., such as RNS; this is reflected in the G4, value. However, the steam
discharge is still attractive the pH levels are kept roughly neutral. Additionally, G5, values of
0.16 g kWh'' are similar or an order of magnitude larger than other plasma discharges, such as
glow discharge electrolysis and diaphragm discharges [50]. In addition, as the reduction in
pollutant is an initially rapid process, using the steam discharge as a pretreatment to initiate
pollutant decomposition and not as the sole driver of decomposition would decrease the energy
cost while retaining specific decomposition chemistry.

Finally, it should be noted that these concentrations were determined spectrophotometrically,
and are not necessarily an indication of complete destruction of the methylene blue dye molecule
(see [96] for discussion). Molecular analysis is important, especially with the use of dyes, as
merely relying on physical change (e.g., the color disappearing) is only an indication of possible
decomposition thanks to the production of secondary products. Mass spectra of the methylene
blue dye solutions, treated by both air and steam discharges, were analyzed using the
electrospray mass spectrometer. As with similar experiments [96], the results of mass
spectroscopy show numerous intermediaries that are formed during the violent decomposition.
Many of these peaks are unidentifiable, with m/z values that most likely correspond to fragments

of the dye, such as pieces of benzene rings.
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6.9.2 pH

The changes of pH over time for the treatment of the methylene blue (MB) dye solution by
both the steam and air discharges for both power levels mimicked the results seen with treatment
of plain deionized water (see Figure 6.14). When processed with the air discharge, the MB
solution pH drops off exponentially (see Figure 6.20). The solution treated with the steam
discharge, on the other hand, did not experience a drop in pH, but instead stayed relatively
neutral and unchanged throughout processing time (see Figure 6.20). From a plasma water
purification perspective, this result suggests that the steam discharge has the ability to breakdown
contaminants without creating highly acidic solutions or decomposition intermediates. It also
suggests that the final pH of the processed solution is more dependent on the feed gas used in the

discharge and not on the contaminant being treated.
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Figure 6.20: pH as a function of time for air (red) and steam (black) discharges in MB solution.

6.9.3 Conductivity
As previously seen with plain DI water, the conductively of the MB solution rose with

treatment time regardless of discharge type (see Figure 6.21). Again, the rise in conductivity can
be a function of the increase in hydronium in the system (see the previous section for
discussion). Furthermore, with the addition of a contaminant, as the foreign molecule is
destroyed and broken into secondary pieces and further mineralized, the charged fragments add
to the overall conductivity. The results from the HPLC mass spectroscopy (see following

section) do show a multitude of peaks corresponding with fragmentation of the mother molecule.
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Figure 6.21: Conductivity as a function of time for air (red) and steam (black) discharges in MB solution.
6.9.4 Continued destruction post-treatment
Solutions treated with the steam discharge continue to decompose after the liquid has been
subjected to the discharge. 100 mL of 0.115mM of Methylene Blue dye solution was processed
for 5 minutes by the steam discharge. The decomposition curve of this treatment may be seen in
Figure 6.22, where 63% reduction in dye concentration (as determined via spectrophotometer)

was achieved after 300 seconds of processing via steam discharge at approximately 200 W.
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Figure 6.22: Methylene blue concentration reduction over processing time.

After steam plasma treatment, the solution was sealed from the ambient environment and left
to age. After 14 days, the aged liquid was found to have a MB concentration of 6.2x10° mM.

This corresponds to a further reduction in MB concentration over the 14-day period of over 85%,
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and the total reduction of MB concentration by steam discharge and aging was over 94% (from
0.11 mM to 6.2x10” mM).

This continued decomposition is assumed to be due to the produced hydrogen peroxide.
Immediately after the 5 minutes of steam discharge treatment, the solution contained more than
3% hydrogen peroxide. After the 14-day aging period, the solution contained no detectable
hydrogen peroxide.

Figure 6.23: The effect of aging on steam-treated MB solutions. Left,
solution after 5 minutes of steam treatment. Right, solution after 5
minutes of steam treatment and 14 days of aging.

6.9.5 Molecular Analysis

To determine the final decomposition results of the two discharges, mass spectroscopy was
performed on before- and after-treatment samples. Molecular analysis is important, especially
with the use of dyes, as merely relying on physical change (e.g., the color disappearing) is only
an indication of possible decomposition thanks to the production of secondary products [96].
Mass spectra of the methylene blue dye solutions, treated by both air and steam discharges, were
analyzed using the electrospray mass spectrometer. As with similar experiments [96], the results
of mass spectroscopy show numerous intermediaries that are formed during the violent
decomposition. Many of these peaks are unidentifiable, with m/z values that most likely
correspond to fragments of the dye, such as pieces of benzene rings.

Figure 6.24 is the ESI-MS profile of an untreated MB solution; here, the intense peak of MB
at m/z = 284 is clearly seen. Figure 6.25 and Figure 6.26 are the ESI-MS profiles of the MB
solution after treatment; Figure 6.25 is after treatment with the air discharge and Figure 6.26 is

after steam discharge treatment.
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Figure 6.25: Air discharge, 17.62 minutes processing time at 80 W.
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Figure 6.26: Steam discharge, 33.78 minutes processing time at 76 W.

Table 6.5: Comparison of results of methylene blue reduction by different diagnostics (HPLC and

spectrophotometer).
Reduction in MB Molecule (%)
Results from Results from Percent Error (%)
HPLC Spectrophotometer
Air: 95.5 Air: 90.9 4.8
Steam: 78.5 Steam: 94.3 20.1

The mass spectroscopy results give a quantitative look at the treatment of the methylene blue
dye by air versus steam discharge. Based on the HPLC results given above, the air treatment
reduced the Methylene Blue molecule by approximately 95.5% in 17.62 minutes, whereas the
steam treatment reduced the MB molecule by approximately 78.5% in 33.78 minutes. This is in
contrast to the results given by the spectrophotometer, of 90.9% by air and 94.3% by steam. The
spectrophotometer gives a large amount of error for the steam treatment sample (over 20% off),
which is an excellent example of the need for molecular analysis of the daughter decomposition
products as opposed to a simple spectrophotometer diagnostic technique.

The fragmentation of the methylene blue dye molecule differs between discharge method,
which is expected as different decomposition chemistries are occurring between the two

discharge modes. The exception is the peak at 155.154 m/z, present in both discharges.
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6.10 Conclusion

The development of an underwater DBD plasma jet that self-generates a gas bubble of water
vapor has been described and studied. This so-called steam discharge is of great interest
especially to plasma-based water purification applications, as the system does not require an
external feed gas to produce the discharge, which simplifies the operation. In addition, strong
decomposition power is retained while the acidity of the liquid is not significantly increased as in
other plasma sources (e.g., air fed discharges). This relatively non-acidic pH is also observed
during the decomposition of methylene blue dye, suggesting that the pH of the liquid is more
strongly dependent on the feed gas used and not the dye by-products. Energy efficiency of the
steam discharge on removing methylene blue dye is measured at approximately 0.16 g kWh™.
Optical emission spectroscopy and hydrogen peroxide measurements suggest the primary source
of oxidative strength was derived from OH. Chemical analysis of treated samples indicated that
the discharge produces copious amounts of hydrogen peroxide. These rates matched or exceeded
plasma generated rates reported on in the literature to date. The lack of observed oxygen
emission lines suggests ozone is not formed in substantial amounts and does not contribute to the
decomposition power of the discharge. The steam plasma discharge can be used as a test bed
standard for plasma in liquid studies where it is desired to minimize the variety of plasma-
produced active species so that chemical pathways can be accurately elucidated. In addition, one
strong potential application of the steam discharge is as a post-treatment in an industrial setting
with hot wastewater; a heated wastewater would remove much of the energy requirement as well

as speed the dissolution of hydrogen peroxide, increasing decomposition power.
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Chapter 7:

The Two Dimensional Bubble

7.1  Introduction

Perhaps some of the most important questions pertaining to plasma chemistry dynamics that
must be answered are those concerning the interface region of the system, namely, how does the
reactivity from a local discharge transfer to the bulk liquid? The discharges described in Chapters
5 and 6 are essentially point sources, and yet they have the capacity to breakdown contaminants
in significant volume in only a few minutes. The interface region, that is, the reaction region
between the gas/plasma region and the bulk liquid (see Figure 7.1), is responsible for not only
energy transport from the plasma to the liquid (may be an important heat sink for the system
[64]), but radical species production as well. Unlocking the physics and chemistry of this region
will bridge the knowledge gap for several important processes, including the relationship

between gas-phase and liquid-phase plasma chemistry.

PLASMA GAS PHASE CHEMISTRY
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Figure 7.1: The interface region. Various species, (suggested) transport pathways depicted. Adapted from [64].
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Up until very recently, this region has proved significantly difficult to study experimentally
due to the inconvenience of the system properties: not only does the three-dimensionality of a
bubble or gas slug present a convoluted view of the interface (i.e., the optical path length is not
constant but varies depending on position), but the fact that it is surrounded by water compounds
the problems. Water strongly absorbs in the UV [355], and many of the optical emission
signatures of interest to plasma diagnostics require UV and near-UV access (e.g., the OH(A-X)
system begins around 306 nm).

To compensate for the issues surrounding a three dimensional system, a two dimensional
system was developed (see Figure 3.15) [422]. Here, the bubble is flattened between two glass
plates, allowing direct optical integration of the various regions. The gas bubble is then ignited
with a pulsed plasma discharge. This set up allows for experimental investigation into the
boundary layer.

This chapter discusses the development and demonstration of a novel diagnostic device — the
Two Dimensional Bubble — that provides unmatched access to the gas-water interface. Plasma

discharge in liquid water and pH studies via chemical probes are presented.
7.2  Experimental Methods

7.2.1 Device Construction

A more detailed diagram of the 2D bubble device is given in Figure 7.2. The plates used are
quartz, allowing for optical access to the UVA (400-315 nm) and UVB (315-280 nm)
wavelength regions. In the preliminary design, a syringe was positioned underneath the center of
the quartz plate. This syringe allowed for the creation of the air bubble through insertion of gas
into the liquid pool, and acted as the powered electrode as it was biased with a high voltage
pulser. In the preliminary design of the device, copper strips on either side of the powered
electrode were used as the ground electrode. The liquid was sealed between the two quartz

electrodes via rubber O-ring gasket.
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Figure 7.2: One design iteration of the of the two-dimensional bubble diagnostic.

The device may be operated with a variety of power sources, including nanosecond pulsed

power and continuous wave (kHz frequencies). A typical operating voltage and current trace for

CW operation may be seen in Figure 7.3. The waveforms are a typical of a dielectric barrier

discharge with a negative dc offset; Figure 7.3 corresponds to an operating frequency of 26 kHz.

In Figure 7.4 illustrates a typical Lissajous figure from the device in operation at 26 kHz. The

calculated power consumption is approximately 2 W.
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Figure 7.3: Voltage and current waveform of the two dimensional bubble in operation.
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Lissajous Figure
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Figure 7.4: Lissajous figure of the device in operation; corresponds to approximately 2 W.

7.2.2 Chemical Probe

Methyl orange, a common colorimetric dye used in titrations, was used for preliminary tests
on the cell. Here, methyl orange was used to detect pH change and to illustrate the convection of
thermal processes in the treated liquid. When in solution, methyl orange changes color
depending on the pH of the liquid, appearing yellow for pH of approximately 4.4 and higher, and
red for pH 3.1 and lower. The crossover point for methyl orange (i.e., when it is equilibrium) is

approximately pH 3.7, and the liquid will appear orange.
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Figure 7.5: Methyl orange in its "yellow form". Image from [423].
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Figure 7.6: One possible arrangement of methyl orange in an acidic liquid (its "red form"). Image from [423].
Similar studies with methyl orange and atmospheric plasmas were conducted by Oehmigen et
al. [424].
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7.3  Preliminary Results

7.3.1 Methylene Blue [422]

Preliminary tests in the cell were conducted with methylene blue dye. The device was
operated for approximately 10 minutes at 2W at 26 kHz. The results of the test may be observed
in Figure 7.7 and Figure 7.8.

Figure 7.7: Decomposition of methylene blue [422].
Figure 7.8: Methylene blue dye before (left) and

after (right) 10 minutes of treatment in the two
dimensional bubble cell [422].

7.3.2 Methyl Orange

As methyl orange detects the presence of acidic protons, the presence of red liquid is also a
good analogy of how plasma-produced species most likely transport throughout the liquid. A
series of time-resolved images may be seen in Figure 7.9. The power supply was increased until
plasma ignited.

What is first noticed is the change of color in Figure 7.9.b (at 19 seconds), but no plasma is
visible. This color change is in the region of the bubble closest to the electrode. The fact that no
plasma is visible and yet noticeable chemical change is still occurring suggests the presence of a
dark plasma. The change of the quantity of red liquid between Figure 7.9.b and Figure 7.9.c is
not significant.

The plasma does not visually ignite until Figure 7.9.d, at 28 seconds. Now the methyl orange
solution experiences color change all around the bubble perimeter, though it is most strongly

present at the zones of the bubble directly interacting with the plasma, as expected.
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Figure 7.9: Time-resolved images of plasma interaction with methyl orange solution. (a), t = 0; (b), At = 19 sec;
(c), At = 27 sec; (d), At = 28 sec; (e), At = 29 sec; (e.1.), zoomed in view of (e); (f),At = 56 sec.

Much of the color seen in later times, such as Figure 7.9.e, is primarily due to the diffusion of
the reacted liquid from the plasma-on-boundary section of the bubble, however there is color
change originating from all parts of the bubble boundary, strong evidence of the transport of gas-
phase plasma-produced species from the local plasma region to other regions of the bubble.

Mixing gradients may be clearly seen in Figure 7.9.d, e and f.

7.4 Summary

After development is completed, the two-dimensional bubble diagnostic will be a significant
tool in understanding the interface region of bubbles. This tool will substantially reduce
complexities associated with probing a three-dimensional sphere.

In addition to the optical-based diagnostics, other chemical diagnostics (i.e., titrations)
similar to the performed methyl orange experiment are possible. Two examples of possible
future experiments include the use of chlorophyll to detect NO, gas (as seen in [425]), or an
additional colorimetric method, such as a sulfanilic acid and N-(1-naphthyl)-ethylene diamine
hydrochloride reaction, in which a clear liquid turns magenta upon detection of nitrite ions

(NO,), as in [424].
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Chapter 8:

Conclusion

The increasing demand on natural resources makes the requirement for adequate water
security greater with each passing year. As the world becomes more industrial, the demand for
freshwater increases, which has real effects on human ecology and the general environment.
Plasma processing of contaminated liquids enables decomposition of pollutants of varying
compositions and chemistries. This work has demonstrated the decomposition of many pollutants
from a variety of chemical compositions, with the time-resolved analysis of the decomposition
process. A new, steam discharge method has been developed, which address many of the
unwanted effects of the air discharge method. The steam discharge has the potential to be a
strong contributor to the field of plasma-based water purification; one strong potential
application of the steam discharge is as a post-treatment in an industrial setting with hot
wastewater. A heated wastewater would remove much of the energy requirement as well as
speed the dissolution of hydrogen peroxide, increasing decomposition power.

One may trace the use of plasmas in liquids for water purification to the end of the 19"
century, though careful and controlled investigation did not begin until 1987. Still today, the
field remains fairly undeveloped. This dissertation research has contributed to the understanding
on several fronts namely understanding breakdown characteristics and chemical species
production. Breakdown scaling for single air bubbles in liquid water has been measured,
however this relation should be assessed in the light of the potential bubble charging
phenomenon evidence. Bubble breakdown scaling and the effect of bubble charging on the
breakdown voltage have significant impact on the implementation of this technology on a real-

world device; the evidence of such phenomena have been first recorded in this work.
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8.1 Summary of Dissertation Research

This dissertation research has presented a multifaceted investigation into the physics and
chemistry of gas bubbles in liquids subjected to electrical discharges and the resulting
phenomenon, all through the lens of developing advanced water purification technology.
Through this work, the production of plasma in bubbles unattached and attached to the powered
electrode has been analyzed with the goal of identifying knobs at which to control plasma
production, and by extension, controlling plasma-driven chemistry.

Plasma production in isolated bubbles was studied and various characteristics and
dependencies of the discharges were observed and detailed. Gas bubbles close to the electrode
could be ignited with plasma remotely (i.e., no visible discharge connecting electrode and
bubble), whereas bubbles far from the electrode typically ignited via liquid streamer that reached
the bubble and subsequently ignited a glow-like discharge within the bubble. Isolated bubbles
were also investigated to determine if a breakdown voltage scaling law exists. Current data
suggests a Paschen-like relation between breakdown voltage and the product of bubble pressure
and diameter (the effective pd).

Plasma production in bubbles attached to the electrode took two forms. The first form was
similar to the isolated bubbles in that small, ~mm diameter bubbles touching the electrode were
ignited with plasma. These bubbles, along with the isolated bubbles, were investigated to
determine any existing breakdown voltage scaling. With the isolated bubbles, a Paschen-like
curve is created.

The second form of bubbles attached to the electrode were bulk gas bubbles, gas slugs
produced through bubbling gas into the treatment liquid or through self-generation of steam
pockets. Spectroscopic techniques were used to study the properties of discharges in these
bubbles in detail, investigating aspects such as the asymmetric quality of emission with changing
voltage polarity and the effect of system properties, such as feed gas and electrode material.
Electrical properties of the system were investigated. The resulting chemistry, including time-
resolved breakdown by-products, contaminant decomposition, and cytotoxicity studies were all

performed.
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8.2  Future Work and Design Suggestions for a Functioning Plasma Reactor

8.2.1 Breakdown Mechanisms

The experiments discussed in Chapter 4 should be continued, with efforts focused on 1,
continued investigation into the proposed bubble charging mechanism; 2, probing the breakdown
curve as low as possible; and 3, further study on inducing streamer hopping in bubble ensembles.
Keeping the experimental conditions (e.g., water qualities) consistent, especially dissolved
oxygen and conductivity, should be a priority during these efforts. Bubble charging and the
effect on breakdown should be further explored experimentally but also through computational
models. Assessment of breakdown mechanisms with planar electrodes should be continued.
Various power sources (especially pulsed with higher max voltage, lower voltages with longer

pulse widths) should be investigated.

8.2.2 Computer Simulation Work

Much of this work would benefit from computational investigation. A few suggested areas
that would contribute to a clearer understanding include modeling the formation of the steam
bubble, a more complete model of the chemical output of the air and steam discharges, and the
bubble charging mechanism. Experimentally, this work has outlined how the steam bubble
forms, but the why still needs to be addressed. Modeling the steam bubble formation would give
great insight into the formation mechanisms and the underlying physics. This work has also
begun the modeling of the chemical output of the steam and air plasmas, however with the

exclusion of carbon-based species (e.g., CO,) dissolved in the liquid.

8.2.3 Plasma Reactor Development

The experiments discussed in Chapters 5 and 6 examine different qualities and factors of
various discharges with the end goal of developing a functional plasma-based water treatment
device. The following are a few comments pertaining to the development of a functioning

plasma reactor.
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8.2.3.1 Gas Type
The steam discharge appears to be the most promising as far as the chemistry and equipment
requirements are concerned. However, more work is required to determine if desired plasma

properties are superior through the use of a non-steam or non-air gas.

8.2.3.2 Electrode Design
Electrode design should be investigated thoroughly, especially multiple applicators. Cross-

talk that appears in multi-jet plasma arrays needs to be understood [181].

8.2.3.3 Electrode Material
Investigations into electrode material would be useful, due to the synergistic characteristics

of various materials with processing.

8.2.3.4 Chemical Analysis

Continued chemical analysis and cytotoxicity studies are paramount. Investigations into
controlling daughter products should be carried out. Cytotoxicity studies using non-cancerous,
healthy cells should be conducted. Human consumption of the water is strongly discouraged until

adequate study has been conducted.

8.3  Final Comments

The success of plasma-based water purification relies on not just smart physics but also on a
thorough understanding of the chemistry driven by plasma discharges. This is most strongly
apparent in the need for toxicology studies. Many investigators are quick to point to dye
degradation experiments and discuss contaminant removal simply because the liquid is clear, or
the mass peak of the contaminant is gone, or the like (e.g., [426,427]). While complete
mineralization is possible, steps must be taken to ensure the daughter products are not toxic.

Additionally, establishing universal metrics for the plasma in liquids community with
application foci is strongly suggested. The field of plasmas in liquids (n.b., plasma medicine
included in this category) can tend toward the Edisonian in methodology; while empirical
observations and data are obviously important, determining what standards and metrics for
experiments and devices will elevate the field from exploratory investigations to established

science.
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Plasma discharges for water purification is most certainly a viable technology that should —
must — be explored and implemented. It is possible that inadequate attention to the chemical side
(of processing and post-processing) will result in the premature and unnecessary death of plasma
water purification, either from the physicists abandoning the endeavor due to lack of chemical
knowledge (e.g., insufficient knowledge of what questions to ask) or the chemists who can’t
make headway due to serious deficiencies in the electromagnetic (and related) sciences.

Success can only come from a serious multidisciplinary effort from both the chemical and
physics communities. Depending on the application, biochemical expertise is also essential to

ensure environmental health.
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Appendix

Reactions used in GlobalKIN simulations. Rate coefficients may be found elsewhere

[184,185,186].

1. E+N2>N2V+E 34. E+ 02>02V+E

2. E+N2>N2V+E 35.E+02>02V+E

3. E+N2>N2V+E 36.E+02>02*+E

4. E+N2>N2V+E 37.E+02>02*+E

5. E+N2>N2V+E 3. E+02>0+0+E

6. E+N2>N2V+E 39.E+02>0+0+E

7. E+N2>N2V+E 40.E+02>02*+E

8. E+N2>N2V+E 41.E+02>02*+E

9. E+N2>N2*+E 42. E+02>02++E+E
10. E+ N2>N2*+E 43.E+02>0+0++E+E
11. E+ N2>N2*+E 44, E+02+02>02-+02
12. E+ N2 > N2*** + E 45.E+ 02 +N2>02-+N2
13. E+ N2*** > N2 + E 46. E+02V>0+0-

14. E+ N2> N2**+ E 47. E+02V>02+E

15. E+ N2**>N2 + E 48. E+ 02V >02*+E
16.E+ N2>N+N+E 49. E+02V>02*+E
17.E+N2>N2++E+E 50,E+02V>0+0+E
18. E+ N2V>N2 +E 51. E+02V>0+0*+E
19. E+ N2V > N2*+ E 52.E+02V>02++E+E
20. E+ N2V>N2++E+E 53.E+02V>0*+0*+E
21. E+ N2¥*>N2V+E 54.E+02V>0++0+E+E
22.E+ N2*¥*>N2+E 55.E+02*>02*+E

23. E+N2*>N2++E+E 56.E+02*>0-+0

24. E+ N2+ >N*+ N 57.E+02*>02+E
25.E+N>N*+E 58.E+02*>0+0+E
26E+ N>N*+E 59.E+02*>0+0+E
27.E+N>N++E+E 60. E+02*>02++E+E
28.E+N*>N+E 61.E+02*>0+0++E+E
29.E+N*>N++E+E 62. E+02*+02>02-+02
30.,E+02>02+E 63. E+02*+ N2 >02-+ N2
31.LE+02>0-+0 64. E+03>0-+02
32.E+02>02V+E 65.E+03>02-+0
33.E+02>02V+E 66.E+0>0+E
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67.E+0>0*+E 110. E+ N3+>N+ N2

68.E+0>0*+E 111. E+NO2+>NO+0
69.E+0>0++E+E 112. E+ NO2+ > NO + O*
70. E + O+ > O* 113. E+ H2NO+>H20 +N
71.E+E+0+>0*+E 114. E+ NO+>N*+0
72.E+0*>0*+E 115. E+C+>C
73.E+0*>0+E 116. E+ NH3+>NH2 +H
74.E+0*>0++E+E 117. E+ NH4+>NH3 + H
75.E+02+>0+0 118. E+ H30+>H20+H
76.E+02+>0*+0 119. E+ H30+*H20 > H + H20 + H20
77.E+H2>H2++E+E 120. E+ H20+>0H+H
78.E+H2>H+H+E 121. E+ H20+>0+H+H
79. E+ H2+>H + H 122. E+ H20+>0 + H2
80. E + H20 > H- + OH 123. E+ NO+>N + O*
81. E+ H20 > H20++E+ E 124. E + N4+ > N2 + N2
82. E+ H20>H+OH +E 125. E+NO2 >NO2-
83.E+H20>H+OH+E 126. N2* + N2* > N2* + N2
84. E+H20+>0H +H 127. N2*+ N2 >N2 + N2
85. E+H20+>0+H+H 128. N2*¥** + N2 > N2* + N2
86. E+ H20+>0 + H2 129. N2*¥* + N2* > N4+ + E
87.E+C0O2>CO2V+E 130. N2*¥* + N2** > N4+ + E
88. E+C0O2>CO2V+E 131. N2*¥* + N2*** > N4+ + E
89. E+ C0O2>CO2V+E 132. N2** > N2
90. E+ C0O2>CO2V+E 133. N2** > N2*
91. E+ CO2>CO2V+E 134, N2*** > N2*
92. E+C0O2>CO2V+E 135. N2*+ NO > NO + N2
93. E+C0O2>CO2V+E 136. N2*+02>0+ 0+ N2
94. E+C0O2>CO2V+E 137. N2*+ 02> 02+ N2
95. E+ C0O2>CO + 0O- 138. N2*+ N20>N2+N2+0
96.E+CO02>CO+0+E 139. N2* + N20 > N2 + N20
97.E+CO2>CO+0+E 140. N2*+ NO2 >NO + 0 + N2
98. E+(C02>C02++E+E 141. N2* + CO2>N2 + CO2
99. E+CO2V>CO2+E 142. N2*+CO>N2+CO
100.E+CO2+>C0O0+0 143. N2*+H2 > N2 + H2
101.E+CO>COV +E 144. +02+M>03+M
102.E+CO>C+0+E 145. H+OH+M >H20 + M
103.E+CO>CO++E+E 146. N205 > NO2 + NO3
104.E+CO>CO++E+E 147. NO+ 02+ NO>NO2 +NO2
105.E+CO>CO++E+E 148. NO + HO2 > NO2 + OH
106.E+CO>CO++E+E 149.N*+ N2 >N + N2
107. E+CO>CO++E+E 150.NO+ 0 + 02> N02 + 02
108. E+ COV>CO+E 151.N*+ 02>NO0+0
109. E+CO+>C+0 152.NO + OH + M > HNO2 + M
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153.N*+ NO>N2+0
154.NO+H+M>HNO +M
155.N* + N20 > NO + N2
156.NO + NO3 > NO2 + NO2
157.HO2 + NO + M > HNO3 + M
158.HO2 + NO > 02 + HNO
159.N* + NO2 >N20+ 0
160.NO + 03 >NO2 + 02
161.N* + NO2 > NO + NO
162.NO+N>N2+0
163.H+02+M>HO02+ M
164.H+H+M>H2+M
165.H + NO2 > OH + NO
166.H + HO2 > OH + OH
167.H+ 03 >0H + 02
168.H + HNO > H2 + NO
169.H + HNO > OH + NH
170.H+ HNO > O + NH2
171.N+NO2>N20+0
172.N+NO2 >NO + NO
173.N+N+M>N2+M
174.N+OH>NO+H
175.N+ OH >0 + NH
176.0* + N2 >0 + N2

177 N+0+M>NO+M
178.0*+02>0+02
179.N+02>NO+0
180.N + 03 >NO + 02
181.N + H20 > NH + OH
182.N+H2>NH+H
183.0* + H20 > 0 + H20
184.0* + H20 > OH + OH
185.+ HO2 > OH + 02
186.+ 03 >02 + 02

187.+ NO2 + M >NO3 + M
188.0H+ CO>C02+H
189.NO3 + NO3>NO2 + NO2 + 02
190.0H + OH >0 + H20
191.N205 + H20 > HNO3 + HNO3
192.NH + NO >N20 + H
193.0H + NO2 + N2 > HNO3 + N2
194.NH + 02 >HNO + O
195.0H + HNO3 > NO3 + H20
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196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.

OH + HNO > H20 + NO

OH + HO2 > H20 + 02

H20+ + H20 > H30+ + OH
OH + HNO2 >NO2 + H20
H20+ + 02 > 02+ + H20

OH + 03 >H02 + 02

N3+ + 02 >NO++ N20

OH + N20 > HNO + NO

N3+ + 02 >NO02+ + N2

HO2 + NO2 + N2 > HO2NO2 + N2
N3+ + NO>NO+ + N + N2
HO2 +03>0H + 02 + 02
N3+ + NO2 > NO+ + NO + N2
NO2 + 03 >NO03 +02

N3+ + NO2>NO2++ N + N2
N3+ + N20 > NO+ + N2 + N2
+NO2>NO +02
+NO3>02 +NO02

N3+ + NO2->N + N2 + NO2
+OH>H+02
O++N2>NO++N
O0++C02>C02++0

OH+ OH + 02 >H202 + 02
0O+ +NO>NO++0

OH + H202 > H20 + HO2
0++02>02++0

H+ HO2 >H2 + 02

0O+ +NO2>NO02++0
HO2NO2 + 02 > HO2 + NO2 + 02
0+ + NO2->0+NO2

02+ +NO>NO++ 02

02+ +NO2>NO0O2++ 02
02+ + NO2->02 +NO02
H30+ + H20 > H30+*H20
H30+*H20 +M > H30+ + H20+M
NO2+ + NO > NO+ + NO2
NO2+ + NO2->NO2 + NO2
CO2+ + NO > NO+ + CO2
NO2+ + NO3->NO2 + NO3
CO2++02>02++C02
CO2++0>0++C02
CO2++0>02++CO
CO2++CO>CO0O2 + CO+



239.
240.
241.
242,
243.
244,
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.

274.
275.
276.
277.
278.
279.
280.
281.

CO+ +C02>C0O2++CO
CO++02>02++CO
CO++0>0++CO

N2+ + NO > NO+ + N2

N3+ + H20 > H2NO+ + N2

N2+ + NO2 > NO2+ + N2

N2+ +NO2 > NO+ + N20
H2NO+ + NO2->H20 + N + NO2
H2NO+ + NO3->H20 + N + NO3
NO2- + HNO3 > NO3- + HNO2
N2+ + NO2->N2 + NO2

NO2- + NO2 > NO3-+ NO

N2+ + NO3->N2 + NO3

NO2- + N20 > NO3- + N2

NO2- + N205 > NO3- + NO2 + NO2

NO2-+ 03 >N03-+02
NO3-+NO > NO2-+ NO2
NO+ + NO2->NO + NO2
NO+ + NO3->NO + NO3
02-+NO2 >N02-+02
0-+02>02-+0
0-+0>02+E
0-+CO>CO2+E
02-+0>E+03
02-+0>0-+02
02-+02*>E+02+02
02-+N2+>N2+02
N*+ NH3 > NH + NH2
OH + NH3 > NH2 + H20
O* + NH3 > NH2 + OH
NH2 + NO > N2 + H20
NH2 + NO2 >N20 + H20
NH3 + 0 > OH + NH2
NHZ+H+M>NH3 +M
NH2 + H> NH + H2
N++ 02>NO++0

02+ + NH3 > NH3+ + 02
N++02>02++N
NH3+ + NH3 > NH4+ + NH2
N++ 02> 0++ NO
H30+ + NH3 > NH4+ + H20
N+ + NO>NO+ + N

N+ + NH3 > NH3+ + N

282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294,
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.

317.
318.
319.
320.
321.
322.
323.
324.
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N3+ + NH3 > NH3+ + N + N2
N2+ + 02> 02+ + N2

N2+ + NH3 > NH3+ + N2

N4+ + NO > NO+ + N2 + N2
N4+ + NO2 > NO2+ + N2 + N2
NH3+ + NO3-> NH3 + NO3
N4+ + NO2 > NO+ + N20 + N2
N4+ + 02 >02++ N2 + N2
NH2 + O > NH + OH

NH2 + 0>HNO +H
HO2NO2 + N2 > HO2 + NO2 + N2
OH + NO2 + 02 > HNO3 + 02
OH + H2 >H20 + H

O0*+ H20>H2 + 02
O*+H2>0H+H

+ H202 > OH + HO2
+H2>0H+H

H+ HO2>H20+0
+02+N2>02+0+N2

HO2 + HO2 + M >H202 + 02+ M
+NO + N2>NO2 + N2

NO2 + NO3 + M >N205+M
N+ + H20 > H20+ + N

N4+ + NO2->NO2 + N2 + N2
N4+ + NO3->NO3 + N2 + N2
N4+ + 02->N2 + N2+ 02
H20+ + NO2-> H20 + NO2
H20+ + NO3-> H20 + NO3
H20+ + 02->H20 + 02

H30+ + NO2->H20 + H+ NO2
H30+ + NO3->H20 + H+ NO3
H30+ + 02->H20+H + 02
02+ +NO3->02+NO03

02+ +02->02+02

N3+ + NO3->N2+ N + NO3
N3+ +02->N2+N+02
NO+ + 02->NO + 02
NO2+ + 02->NO02 + 02
0+ +NO3->0+NO03
0++02->0+02

N+ + 02->N+02

N+ + NO2->N + NO2
N+ + NO3->N + NO3



325. H30+*H20 + NO2->H + H20 + 365. H- + N2+ >H + N2

H20 + NO2 366. 0-+N2+>0+ N2
326. H30+*H20 + NO3->H + H20 + 367. O-+H2+>0+H2

H20 + NO3 368. 02-+H2+>02 +H2
327. H30+*H20 + 02->H + H20 + 369. H-+ H2+>H + H2

H20 + 02 370. H- + H20+ > H + H20
328. CO2+ +NO2->C02 + NO2 371. 0-+ H20+> 0+ H20
329. CO2+ +NO3->C02 + NO3 372. H- + H30+ > H2 + H20
330. CO2++02->C02+02 373. 0- + H30+ > 0OH + H20
331. CO++02->CO0+02 374. H-+02++M>H02+M
332. H2NO+ + 02->H20+ N + 02 375. 0-+02+>0+02
333. NH3+ + NO2-> NH3 + NO2 376. H- + N3+ > NH + N2
334. NH3+ + 02->NH3 + 02 377. 0-+ N3+>NO + N2
335. NH4+ + NO2->NH3 + H + NO2 378. H-+ NO++M>HNO+ M
336. NH4+ + NO3->NH3 + H + NO3 379. 0-+NO+>NO+0
337. NH4+ + 02->NH3 + H + 02 380. H- + NO2+ + M > HNO2 + M
338. +H+M>0H+M 381. 0-+NO2+>N02+0
339. H+ H202 >H20 + OH 382. H-+0++M>0H+M
340. OH+CO>H+CO2 383. 0-+0++M>02+M
341. NO2 + NO2 + M >N204 + M 384. H-+ N+ +M>NH + M
342. N204 + M >NO2 + NO2 + M 385. O-+N++M>NO+M
343. NH2 + H2 > NH3 + H 386. H-+ N4+ >H + N2 + N2
344. NH3 + H> NH2 + H2 387. O-+N4+>0+ N2+ N2
345. OH + NO3 > HO2 + NO2 388. H- + H30+*H20 > H2 + H20 +
346. HO2 + NO3>0H + NO2 + 02 H20
347. HO2 + NO3 > HNO3 + 02 389. 0- + H30+*H20 > OH + H20 +
348. H+ H202 > HO2 + H2 H20
349. HNO3 + NO > HNO2 + NO2 390. H- + CO2+>H + C0O2
350. H2 + 02 >H + HO2 391. 0-+C0O2+>0+C02
351. H+02>0H+O0 392. 0-+CO+>0+CO
352. OH+M>0+H+M 393. H- + H2NO+ > H2 + HNO
353. OH+02>0+HO2 394. O- + H2NO+ > OH + HNO
354, OH+H>0+H2 395. H- + NH3+ > H + NH3
355. HO2+M>H+02+M 396. 0- + NH3+ > 0 + NH3
356. HO2 + H2 > H202 + H 397. H- + NH4+ > H2 + NH3
357. H202 + 02 >HO2 + HO2 398. O- + NH4+ > OH + NH3
358. H20 + H>H2 + OH 399. OH + NO2 + H20 > HNO3 + H20
359. H20 + 0> OH + OH 400. C++H->C+H
360. CO2+H>CO +OH 401. C++NO2->C+NO2
361. CO02+0>CO0+02 402. C++0->C+0
362. CO+02>C02+0 403. C++NO3->C+NO3
363. CO+0+M>C0O2+M 404. C++02->C+02
364. CO +HO2>0H +C02 405. N2+ + H20 > H20+ + N2
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406. +OH+M>H02+M 449, 03+M>02+0+M

407. 0*+03>02+0+0 450. NO2 + NO2>NO + NO + 02
408. 0*+NO>02+N 451. NO2 + NO2 >NO + NO3
4009. NH + NO > N2 + OH 452. N2+ +N2+M>N4++M
410. N3 + NO >N20 + N2 453. N2+ + N2>N3++N

411. NH2 + 0 >H2 + NO 454, N4+ +M>N2++N2+M
412. OH + NO2 >HO02 + NO 455. N++N2+M>N3++M
413. NO3 + NO2 >NO + NO2 + 02 456. 0*+ CO>CO02

414. 0*+ NO2>02+NO 457. 0*+CO>CO0+0

415. 0*+ N20>NO + NO 458. 0*+03>02+02

416. NO2 +03>02+02+NO 459. 0*+C02>02+CO

417. + N3 >NO + N2 460. 0*+C02>0+CO02

418. + HNO > OH + NO 461. 0*+02*>0+02

4109. HNO + 02 > NO + HO2 462. 0*+0>0+0

420. HNO + H2 > NH + H20 463. 02*+02>02+02

421. +0+M>02+M 464. 02*+02>0+03

422. CN+0>CO+N 465. 02*+ C02>02 +CO2

423. CN+N>N2+C 466. 02*+03>02+02+0
424. CN+NO>N2+CO 467. CO2V+M>C02+M

425. CN+02>NCO+0 468. CO2+M>C0O2V+M

426. CN + CO2 >NCO + CO 469. COV+M>CO+M

427. NCO+0>NO+CO 470. CO+M>COV+M

428. NCO + 02 >NO + CO2 471. 02V+M>02+M

429. NCO+NO>CO+N2+0 472. 02+M>02V+M

430. NCO + NO > CO2 + N2 473. N2V + N2> N2+ N2

431. NCO + NO>N20 +CO 474. N2+M>N2V+M

432. CO +NO2>C02+NO 475. N2V+N>N+ N2

433. CO+03>02+C02 476. N2V +02>02+ N2

434. C+CO+M>C20+M 477. N2V+0>0+N2

435. C20+0>CO+CO 478. N2V + H20 > H20 + N2
436. C20+02>C02+CO 479. CO2+N>CO+NO

437. C20+N>CO +CN 480. HO2 + NO2 > HNO2 + 02
438. C+N+M>CN+M 481. + HNO2 > NO2 + OH

439. C+NO>CN+O0 482. 02*+N2>02+N2

440. C+N3>CN+N2 483. 02*+M>02+M

441. C+02>CO0+0 484. H20_L >H20+_L+E_L
4432, NO+M>N+0+M 485. H20 L>OH L+HL

443, N2+M>N+N+M 486. E_L+H20_L >H20EL_L
444, 02+M>0+0+M 487. N2+ L+ H20 L >H20+ L+ N2 L
445, CO2+M>CO+0+M 488. N4+ L+ H20 L >H20+ L+ N2 L
446. NO2+M>NO+0+M + N2 L

447, NO3+M>NO+02+M 489. 02+ L+H20 L>H20+ L+02_L
448. N20+ M>NO+N+M 490. NO+_L+ H20_L >H20+_L +
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NO_L

491. H+_L+ H20_L >H30+_L

492. H30+*H20_L + H20_L > H30+_L
+ H20_L + H20_L

493. N2** L+ H20_ L>OH_L+H_L +
N2_L

494, H20EL_L + H20_L > H_L + OHL-
_L+H20_L

495. H20EL_L + H20+_L>H_L +
OH L +H20_L

496. H20EL L+H L>H2 L+ OHL- L

497. H20EL_L+O0_L>0O-_L+H20_L

498. H20EL_L +02_L>02- L+
H20_L

499, H20EL_L + OH_L > OHL-_L +
H20_L

500. H20EL_L + H202_L > OH_L +
OHL- L+ H20_L

501. H20EL_L + O-_L > OHL-_L +
OHL-_L

502. H20EL_L + HO2L-_L > OHL-_L +
OHL-_L + OH_L

503. H20EL_L + H20EL_L > H2_L +
OHL- L + OHL-_L

504. H20+_L + H20_L > H30+_L +
OH_L

505. H30+ L+ OHL- L>HL+OHL+
H20_L

506. H30+ L+0-L>0HL+H20 L

507. H30+_L+ 02-_L>HO2_L +
H20_L

508. OH_L + OH_L > H202_L

509. OH_L+H_L>H20_L

510. OHL+H2L>HL+H20 L

511. OHL+HO2L>02L+H20L

512. OH_L + H202_L > HO2_L +
H20_L

513. OH_L + OHL-_L>O-_L + H20_L

514. OH_L + O-_L >HO2L-_L

515. OH L+ 02-L>02L+OHL-L

516. OH_L + HO2L-_L > HO2_L + OHL-

L

517. H_L+H20_L>H2_L+OH_L

518. HL+HL>H2L

519. H_L + OHL-_L > H20EL_L

520. H_L+HO2_L>H202_L

521. HL+H202 L>0H L+ H20_L

522. H2_L+H202_L>H_L+OH_L +
H20_L

523. O L+H20 L>0HL+OHL

524, O_L+02_L>03_1L

525. O02_L+H_L>HO2_L

526. O- L+H20 L>O0OHL-L+O0OHL

527. O-L+H2L>HL+OHL-L

528. 0-_L+02_L>03L-_L

529. O- L+H202_L>02-L+H20_L

530. O-_L+ HO2L-_L > 02-_L + OHL-
_L

531. HO2 L +H20 L>H30+ L +02-
_L

532. OH_L + NO2-_L > OHL-_L +
NO2_L

533. H L+NO2-L>NO_L+OHL- L

534. O-_L+NO2-_L+H20_L>NO2_L +
OHL-_L + OHL-_L

535. 02-_L+NO_L>NO3-_L

536. HNO2_L + H20_L > H30+_L +
NO2-_L

537. HNO3_L + H20_L > H30+_L +
NO3-_L

538. NO2_L+ NO2_L+ H20_L +
H20 L>H30+ L+ NO3-L+HNO2L

539. NO2 L+NO2_L+H20_L+H20_L+
H20_L>H30+_L+NO3- L+H30+_L+NO2-
_L

540. H30+_L + NO2-_L>H_L+ NO2_L
+ H20_L

541. H30+_L + NO3-_L > HNO3_L +
H20_L

542. NO_L+NO_L+02_L>NO2_L+
NO2_L

543. NO_L + NO2_L + H20_L >
HNO2 L + HNO2_L

544, NO3_L + H20_L > HNO3_L +
OH_L

545. NO_L + HO2_L > HNO3_L



546. NO2Z2_L +H_L>HNO2Z_L

547. OH_L + NO_L > HNOZ2_L

548. OH_L + NO2_L > HNO3_L

549. OH_L + HNO3_L > NO3_L +
H20_L

550. H_L + HNO2_L > NO_L + H20_L

551. O2_L+NO_L+NO_L>NO2_L+
NO2_L

552. N203_L + H20_L > HNOZ2_L +
HNO2_L

553. N204_L + H20_L > HNOZ2_L +
HNO3_L

554. N205_L + H20_L > HNO3_L +

HNO3_L
555. N205_L + H20_L > ONOOH_L +
ONOOH_L

208

556. NO_L + HOZ_L > ONOOH_L
557. NO2Z2_L + OH_L > ONOOH_L
558. ONOOH_L + H20_L > H30+_L +

ONOOL-_L

559. ONOOH_L + H20_L > H30+_L +
NO3-_L

560. H202_L + NO2-_L > ONOOL-_L +
H20_L

561. NO_L + 02-_L > ONOOL-_L

562. 02* L+ H20_L>02_L+H20_L

563. N2*_ L+ H20_L>N2_L+ H20_L

564. H20_L + N2* L>OH_L+ N2_L +
H_L

565. 03_.L>02Z2_L+0_L

566. HO2NO2_L > HNOZ_L + O2_L

567. HO2NO2_L >HOZ_L + NO2_L
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