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ABSTRACT

Three Essays on the Political Consequences of Geographic Boundaries in U.S.
Political Institutions

by

David Cottrell

Chair: Ken Kollman

Electoral and administrative boundaries make geographic space relevant to the United

States political system. I examine this relationship between geography and politics

in three parts. In the first part, I establish a theoretical link between partisan resi-

dential patterns and Congressional representation. Using a computational model to

simulate legislative elections in the presence of partisan segregation, I develop pre-

dictions about how partisan geography affects the vote-to-seats curve. As a result, I

show that when districts are drawn to be compact, contiguous, and equally appor-

tioned, Democratic clustering not only flattens the votes-to-seats curve but, when

Democrats cluster more than Republicans, the clustering tends to flatten the curve

asymmetrically, causing Democrats and Republicans to translate the same number

of votes into a different number of seats. In the second part, I provide empirical

evidence that the geographic distribution of partisan voters does, in fact, influence

partisan representation as predicted by the computational model. I do this in two

ways. I show that a randomly generated sample of potential Congressional districts

- drawn only with respect to the underlying geographic distribution of the popula-

x



tion - nearly replicates the partisanship of Congressional districts across a number of

states. And I show that increases in the urban/non-urban divisions in partisanship

correspond with a change in district-level partisanship that is consistent with the com-

putational model’s predictions. Lastly, in the third part, I analyze differences in the

implementation of federal health and safety policy that occur between the geographic

jurisdictions of federal and state regulators. I show that OSHA’s devolution of federal

regulatory authority to the states has not only resulted in a lack of responsiveness by

the states, but has also created geographic discontinuities between state and federal

jurisdictions. Therefore, whether it is through the residential patterns of partisans

across electoral districts, or the manipulation of the geographic shape of the districts

themselves, or the execution of policy between states and administrative jurisdictions,

I show that political boundaries influence representation and shape policy.
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CHAPTER I

Introduction

Geographically defined political boundaries play an important role in U.S. polit-

ical institutions. They divide the population into geographic jurisdictions such that

electoral and administrative processes are carried out separately between them. Be-

cause of this, the geographic location of individuals relative to the location of these

jurisdictions has political implications. As individuals relocate or as electoral and

administrative boundaries relocate around those individuals, there exists a potential

to shift elections, alter representation, and change the way in which one is affected

by legislation. Therefore, through these boundaries, location and geographic space

become relevant to our political system.

I examine this relationship between geography and politics in two contexts. In the

first context, I examine how geography influences U.S. Congressional representation

through the process of dividing spatially segregated partisans into geographically

contiguous, compact, and equally apportioned districts. I show how changes in the

spatial distribution of partisans can influence the way in which a party’s vote share

translates into seat share. Ultimately the analysis shows the myriad ways in which

partisan spatial patterns skews representation.

In the second context, I examine how an individual’s location across geographically

defined administrative districts affects how that individual is regulated by the federal
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government. Specifically, I show that business establishments subjected to the same

federal occupational safety and health standards are regulated differently depending

on the administrative district in which they are located. Therefore, an establishment’s

geographic location matters to how it is affected by federal regulation.

By exploring these two contexts, I provide insight into how geography shapes

the input and output of our political system. The geographic patterns of partisan

voters interact with geographically-defined electoral districts to influence electoral

representation (input). And geographically defined administrative districts create

geographic variation in the way regulatory policy is executed (output).

1.1 Partisan Geography and the Votes-Seats Curve

Of the following three chapters, the first two are dedicated to the first context

mentioned above. I examine the interaction between geography and Congressional

representation by analyzing how the geographic distribution of partisan voters affects

the votes-seats curve in Congress. While traditionally ignored in the study of Con-

gressional representation, geography potentially plays a major role in Congressional

elections. As is the case in any single-member district electoral system, representatives

in Congress are elected from separate geographic regions where votes are aggregated

by geographically-defined electoral districts. This means that the location of voter

preferences, ideologies, and partisanship across geographic space provide a potential

geographic explanation for how votes are distributed across the districts where they

are eventually aggregated and translated into legislative seats.

Although the votes-seats relationship has traditionally been explained as a func-

tion of gerrymandering, recent research has suggested that gerrymandering is limited

in its effect on representation in Congress (Abramowitz, Alexander and Gunning,

2006; McCarty, Poole and Rosenthal, 2009; Masket, Winburn and Wright, 2012; Chen

and Cottrell, 2015). Instead, scholars have shifted their focus to voter geography as

2



an alternative explanation for the ideological and partisan composition of Congress.

As Republicans and Democrats have increasingly segregated into geographically sep-

arate communities (Bishop, 2009; Nall, 2015), scholars have begun to observe how

these partisan spatial patterns are consequential for legislative elections.

In particular, recent research by Chen and Rodden (2013) has suggested that the

residential patterns of Democrats and Republicans in the United States contribute

to electoral bias in legislative elections. They argue that when boundary-makers

draw compact, contiguous, and equally apportioned districts in states like Florida,

where Democrats cluster in dense metropolitan areas like Miami, Jacksonville, Tampa,

and Orlando, the resulting districts will tend to produce a natural Republican seat

advantage. Therefore, Democratic votes will inefficiently cluster across the districts in

such a way that would convert a 50% vote share into fewer than 50% of the seats. As

a result, the authors conclude that Democratic clustering reduces the party’s electoral

success.

Yet, data availability limits them to a cross-state comparison of twenty states

in a single year at a hypothetical 50% vote share. Due to the limited number of

observations in their sample, they are unable to generalize this finding across the

whole range of potential splits in vote share among various types of Democratic

clustering. While they might observe that the outcome of a toss-up election in a

state like Florida produces a Republican-majority Congressional delegation, they are

unable to observe the counterfactual outcome in the state where a party wins more

than the marginal vote under an alternate partisan spatial patterns. Therefore, they

fall short of a full explanation for the relationship between partisan spatial patterns

and the votes-seats curve.

Developing this full explanation is important. While determining who wins the

majority of seats at the margins of a 50%-50% split in vote share is critical for ma-

joritarian political systems, expanding the focus of representation beyond the 50%

3



mark can answer questions about the extent to which non-marginal majorities and

minorities lose or gain legislative seats. This can be important to parties for a number

of reasons. For example, parties with strong support that seek to reduce the uncer-

tainty of winning marginal votes or seek to avoid the threat of an executive veto may

want to know how partisan spatial patterns affects their ability to achieve legislative

super-majorities. Therefore, the electoral effect of increasing vote share beyond the

margins is significant to partisan strategy and presents a major gap in the current

research.

Moreover, the spatial patterns of partisans, as conceived by Chen and Rod-

den, only vary along a single dimension where Democrats distribute from an un-

concentrated state to a concentrated state. However, this understanding of par-

tisan geography is, perhaps, an oversimplification. The geographic distribution of

Democrats can take on a variety of forms. For example, Democrats can concentrate

in a single metropolitan area where every Democrat lives next to every other Demo-

crat. Or they can concentrate into multiple metropolitan areas where some Democrats

live next to each other but also live far away from other clusters of Democrats. On the

other hand, Democratic concentration can be observed as a function of Republican

concentration. Therefore, Democrats can concentrate symmetrically with respect to

Republicans, where Republicans and Democrats segregate fully. Or Democrats can

concentrate asymmetrically with respect to Republicans, such that Democrats con-

centrate but Republicans do not.

1.1.1 Chapter 1

Ultimately, there is a need for a deeper explanation for how partisan spatial pat-

terns of various types affect the votes-seats curve in its entirety. Chapter 1 attempts

to develop this explanation through simulation. Since we lack the empirical data to

observe variation in spatial patterns as well as variation in the aggregate support for a

4



party across a particular state, it is difficult to develop an understanding about how,

precisely, partisan spatial patterns, with all of their complexities, influence the votes

seats curve. However, through simulation, one can observe a hypothetical state where

the underlying partisan spatial patterns as well as the aggregate partisan support can

be varied as desired. Therefore, the relationship between partisan geography and the

votes-seats curve can be given a theoretical foundation.

In Chapter 1, I do exactly this. By simulating congressional elections in a hy-

pothetical ten-district state, I vary the aggregate state partisanship and adjust the

manner and degree by which partisans cluster geographically using an agent-based

model of segregation. I then measure the outcome that would result from dividing

the hypothetical state into ten compact, contiguous and equally apportioned electoral

districts. These simulations produce electoral outcomes under symmetric and asym-

metric Democratic clustering at all degrees Democratic support, developing the full

effect of Democratic clustering on the entire vote-seats curve.

As a result, I show that both types of Democratic clustering leads to a flatter votes-

seats curve which has the effect of disadvantaging the majority party, whichever party

that may be. Therefore, Democratic clustering can be disadvantageous to Democrats,

as Chen and Rodden argue. But it can also be disadvantageous to Republicans. When

Republicans hold a majority support, for example, clustering has the effect of reducing

the party’s seat share and reducing the number of seats that it achieves given an

increase in vote share. This revises the findings by Chen and Rodden by developing

the conditions under which Democrats are either advantaged or disadvantaged by

spatial clustering.

Moreover, the model develop how differences in the type of Democratic cluster-

ing can change the effect that the clustering has on the votes-seats curve. When

Democrats cluster symmetrically with respect to Republicans, for example, the clus-

tering drastically flattens the votes-seats curve. But when Democrats cluster asym-
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metrically with respect to Republicans (where Democrats cluster more than Repub-

licans) the clustering flattens the curve more for pro-Democratic states than for pro-

Republican states. Such clustering produces partisan asymmetry in the votes-seats

curve.

The findings have important implications for Democratic representation. They

move our theoretical understanding of the relationship between votes and seats be-

yond the effect that Democratic clustering has on electoral bias. By developing the

geographic underpinnings of the entire votes-seats curve, the model produces a more

complex understanding of how partisan geography affects representation in the United

States. Not only does the effect of Democratic clustering change as a party increases

or decreases its vote share, but it also changes as parties alter the geographic distri-

bution of their vote.

1.1.2 Chapter 2

While the first Chapter develops theoretical expectations for the way in which

Democratic clustering affects the votes-seats curve, the second Chapter attempts to

validate these expectations with empirical support. Therefore, the goal of Chapter 2

is not only to provide an empirical foundation for the relationship between partisan

geography and the votes-seats curve, but it also intends to show that the actual geo-

graphic distribution of partisan voters does, in fact, influence partisan representation

in a way that is predicted by the computational model. The chapter uses real-world

data to convince the reader that the actual districts are constrained geographically in

such a way that makes the geographic distribution of partisans relevant to the votes-

seats curve. Therefore, the actual districts can be expected to produce a votes-seats

curve that responds to partisan geography in a way predicted by the model.

I give evidence of this in two ways. First, I repeat the same process used in the

simulations on actual data to show that this process replicates the results of real-
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world elections fairly well. This suggests that drawing compact, contiguous, and

equally apportioned districts around a spatial distribution of partisan votes is a good

estimate of how actual districts are drawn. Thus, there is evidence to believe that

the expectations generated by the model can be generalized to the actual districts.

Moreover, since the computer-generated districts use only the underlying geographic

distribution of the population to guide the districting process, the fact that they are

a fairly good predictor of the actual districts suggests that the actual districts are

designed as a function of geography as the model assumes.

Second, I show that increases in the urban/non-urban divisions in partisanship

from 1972 to 2004 correspond with a change in district-level partisanship. This implies

that the partisan vote aggregated at the district level is responsive to changes in

the underlying geographic distribution of voters. As the geographic distribution of

voters changes, so does the district-level distribution of voters. Hence, the geographic

concentration of partisans is influential to partisan representation at the district level.

Moreover, the change in district-level partisanship produced by partisan clustering

is asymmetric with respect to the parties. Therefore, consistent with the computa-

tional model’s predictions, an increase in the urban/non-urban differences in vote

share produces a distribution of partisanship across the districts that is consistent

with the computational model.

In sum, Chapter 2 provides empirical support that partisan geography is a strong

determinant of partisan representation in Congress. It suggests that, even in the

presence of gerrymandering, partisan geography matters to representation.
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1.2 Geographic Differences in Federal Regulation

1.2.1 Chapter 3

Chapter 3 explores a different way in which political boundaries make geogra-

phy relevant to politics. While Chapters 1 and 2 focused on the representational

implications of political boundaries, Chapter 3 focuses on the administrative impli-

cations of political boundaries. In particular, Chapter 3 explores how the use of

geographically-defined administrative jurisdictions creates geographic discontinuities

in the way federal law is implemented. Specifically, I observe how federal standards

issued by the Occupational Safety and Health Administration are implemented be-

tween geographically separate state and federal jurisdictions.

By doing so, I expand upon the bureaucratic delegation literature by analyzing

how OSHA’s devolution of authority to state governments potentially leads to a loss

of political control to the states. As the federal government gained responsibility

for maintaining health and safety standards with the passage of the OSH Act in

1970, states were given the opportunity to apply for permission to implement the

federal standards on their own. Within a few year, just under half of the states

were implementing OSHA standards using their own administration. The rest would

be covered by federal OSHA. While the states would be overseen by the federal

government so as to ensure that the state administration was “at least as effective”

as their federal counterparts, the nature of the principle-agent problem begs the

question as to whether the federal government has lost control.

This devolution sets up a unique case where federal and state administrators are

implementing the exact same federal laws in tandem but in separate jurisdictions.

This allows for a comparison between state and federal administrations in the im-

plementation of health and safety inspections. One can observe how the federal

government inspects an establishment on one side of a state border and can then
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observe how a state government inspects an establishment on just the other side of

the border. Systematic differences in the inspections might suggest that the way in

which establishments are inspected depends on the location of the establishment.

In my analysis, I do not find evidence that OSHA’s devolution of federal regulatory

authority to the states results in a loss of political control. In other words, the

stringency with which inspections are implemented does not appear to vary across

the state plans according to political variables. However, I do find that devolution

has resulted in a lack of responsiveness by the states. For example, as the Obama

administration called for greater stringency in inspections, state inspectors did not

respond to the call as vigorously as federal inspectors seemed to do so. Moreover,

the implementation of inspections at the state level was found to be less vigorous in

terms of penalty size than federal implementation of inspection penalties.

This difference is even observable when controlling for location. In an analysis of

geographically proximate construction sites on either side of the state-federal border,

the penalties were larger for federal agencies than for state agencies. As a result the

implementation of federal health and safety standards through separate state and

federal jurisdictions create geographic discontinuities in the way the standards are

enforced.

Therefore, whether it is through the residential patterns of partisans across elec-

toral districts, or the manipulation of the geographic shape of the districts themselves,

or the execution of policy between states and administrative jurisdictions, I show that

political boundaries influence representation and shape policy.

9



Bibliography

Abramowitz, Alan I, Brad Alexander and Matthew Gunning. 2006. “Incumbency,
redistricting, and the decline of competition in US House elections.” Journal of
Politics 68(1):75–88.

Bishop, Bill. 2009. The big sort: Why the clustering of like-minded America is tearing
us apart. Houghton Mifflin Harcourt.

Chen, Jowei and David Cottrell. 2015. “Evaluating Partisan Gains From Congres-
sional Gerrymandering: Using Computer Simulations to Estimate the Effect of
Gerrymandering in the U.S. House.” Working Paper .

Chen, Jowei and Jonathan Rodden. 2013. “Unintentional gerrymandering: Political
geography and electoral bias in legislatures.” Quarterly Journal of Political Science
8(3):239–269.

Masket, Seth E, Jonathan Winburn and Gerald C Wright. 2012. “The gerrymanderers
are coming! Legislative redistricting won’t affect competition or polarization much,
no matter who does it.” PS: Political Science &amp; Politics 45(01):39–43.

McCarty, Nolan, Keith T Poole and Howard Rosenthal. 2009. “Does gerrymandering
cause polarization?” American Journal of Political Science 53(3):666–680.

Nall, Clayton. 2015. “The Political Consequences of Spatial Policies: How Interstate
Highways Facilitated Geographic Polarization.” The Journal of Politics 77(2):394–
406.

10



CHAPTER II

A Geographic Explanation for Partisan Representation:

How Residential Patterns of Partisans Shape Electoral Outcomes

Abstract

Partisan favor in the votes-seats relationship is often attributed to gerrymander-

ing, where parties improve their seat share by manipulating district boundaries in

order to bias the distribution of votes in their favor. However, recent research by

Chen and Rodden (2013), which builds on a thesis developed by Erikson (1972), pro-

vides support for the claim that such bias is less a function of gerrymandering than

it is a function of the underlying geographic distribution of partisan voters. They

find that the tendency for Democrats to cluster in dense urban areas - as we see in

states like Florida - gives Republicans a natural seat advantage in legislatures, even in

the presence of redistricting. Still, the link between partisan residential patterns and

the votes-to-seats relationship remains undeveloped, in part because we are unable to

observe the full spectrum of partisan votes at various levels of partisan clustering. In

this paper, however, I attempt to develop this link through simulations. By simulat-

ing congressional elections at all levels of partisanship, I can measure the hypothetical

electoral outcome that results from adjusting the degree to which partisans cluster ge-

ographically using an agent-based model of segregation. These simulations allow me

to observe the potential electoral effect of partisan clustering on the entire vote-seats

curve. As a result, I show that residential clustering of partisans tends to flatten

the votes-seats curve, making it disadvantageous to the majority party, whichever

party that may be. However, when Democrats cluster more than Republicans, the

disadvantage is greater for Democratic majorities than for Republican majorities.
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2.1 Introduction

Although Democrats won the majority of the vote in the 2012 House elections,

Republicans won the majority of the seats - a result that reveals the inherent discon-

nect between votes and seats in single member district electoral systems. The election

is a reminder that even in the most representative chamber of Congress, there is the

potential for unrepresentative electoral outcomes. Of course, with Democrats losing

a majority of the seats, many have claimed that the system is not only unrepresen-

tative, but also biased to favor Republicans. A common argument in explaining the

source of this bias is that it is due to gerrymandering. Republican-controlled state

legislatures manipulate district boundaries to more efficiently convert votes into seats

(Wang, 2012). However, while recent research has found the effect of gerrymandering

to be significant, its contribution to pro-Republican bias in districting plans is likely

marginal in the aggregate (Goedert, 2014; Chen and Cottrell, 2015).

Therefore, to account for the bias beyond that which we can attribute to ger-

rymandering, scholars have returned to an old thesis that suggests that Democrats

are the victims of a ‘natural” disadvantage that results from their geographic res-

idential patterns. With the industrial revolution drawing populations into dense

metropolitan areas and postwar suburbanization leading to residential sorting along

socio-economic and racial lines, there has been an increase in the geographic divi-

sion between Democrats and Republicans (Nall, 2015). This division is marked by a

pattern where Democrats have clustered into densely populated urban areas, while

Republicans have dispersed along peripheral suburban and rural communities (Rod-

den, 2010). As a result, Democratic voters tend to pack into urban districts producing

a suboptimal distribution of Democratic votes, which allows Republicans to win more

seats per vote than they would have in the absence of such clustering. And even as

redistricting corrects for the shifts in the underlying population through reapportion-

ing the districts, this geographic bias seems to persist. This is a phenomenon that
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Erikson (1972) noticed years ago when he suggested that pro-Republican bias was

an unintended “accident” of geography. Even in the face of gerrymandering, as the

thesis goes, the Democratic tendency to reside in dense urban areas has the effect of

reducing the Democrats’ share of the legislative seats.

This thesis has gained a lot of attention given the recent findings by Chen and

Rodden (2013). By redrawing the district maps of state legislatures using a computer

to remove intentional gerrymandering, the authors show that as long as districts are

designed according to neutral rules - that they are compact, contiguous, and equally

apportioned - an increase in the concentration of Democratic voters will naturally

lead to an election outcome favoring Republicans. Specifically, Chen and Rodden

conclude that in states where “Democrats are inefficiently concentrated in large cities

and smaller industrial agglomerations...they can expect to win fewer than 50% of the

seats when they win 50% of the votes” (239). Therefore, Democrats can expect to be

disadvantaged by geography so long as there is a 50-50 split in the vote.

However, while geographic clustering might reduce Democratic seat share at a

hypothetical 50% vote share, it is unclear how such clustering impacts Democrats at

alternative shares of the two-party vote. Not only are we unable to observe electoral

outcomes under the full spectrum of the potential two-party vote, we are also unable

to observe each of those outcomes under various degrees of clustering. It is simply

difficult to say whether a party was advantaged by partisan geography because we

simply do not know what the counterfactual would look like under other degrees

and types of clustering. Therefore, I investigate how the geographic clustering of

partisans affects electoral outcomes in hypothetical situations where Democrats and

Republicans split the vote across all margins of victory.

In this paper, I develop hypotheses for how partisan clustering affects representa-

tion. By simulating Congressional elections in a hypothetical ten-district state, I am

able to isolate the effect of partisan geography on the votes-seats relationship across
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the full spectrum of the partisan vote. Using a simple agent-based model of segrega-

tion, I approximate real-world partisan residential patterns by adjusting the degree to

which Democrats and Republicans cluster. I then use a districting algorithm to ran-

domly assign these voters to compact, contiguous, and equally apportioned districts,

where they are then translated into seats.

As a result, I show how the residential clustering of Democratic voters affects

the votes-seats curve. I find that Democratic clustering does not always disadvan-

tage Democrats. Instead, in states where they hold a certain minority of the vote,

Democrats can improve their seat share through clustering. While it is common to

suggest that Democrats have lost seats due to geography - and there is no doubt that

they have - the party has also won seats due to geography. In states where Republi-

cans hold more than a marginal majority of the vote, clustering can have the effect

of creating a Democratic district where one might not otherwise have existed. In

which case, Republicans are disadvantaged by dense urban areas that create strong

Democratic districts. However, in states where Democrats hold the majority of the

vote, clustering has the opposite effect. Instead, the clustering of Democratic voters

reduces the number Democratic seats that would have been won under a less clustered

environment.

In either case, geographic clustering flattens the votes-seats curve, making it

harder for both parties to convert additional votes into additional seats. And as

the votes-seats curve flattens, minority parties will gain seats as the majority party

loses seats. Therefore, the majority party - be it Democrat or Republican - is disad-

vantaged by Democratic clustering while the minority party is advantaged. However,

if the clustering is asymmetric - where Democrats cluster more than Republicans -

then the votes-seats curve will bend asymmetrically. As a result, the Democratic

majority will lose more seats from the clustering of partisans than the a Republican

majority.
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2.2 How Votes Translate into Seats: Review of the Votes-

Seats curve

Scholars of U.S. electoral systems have long been interested in how a party’s aggre-

gate vote share in legislative elections translates into its seat share in the legislature.

Unlike proportional rule systems where a party’s seat share is approximately equal

to its vote share, the votes-seats relationship in single-member district systems is

not necessarily proportional, nor is it necessarily linear. In fact, to early observers

of elections in both Great Britain and the United States the relationship appeared

exponential in nature. Some even went so far as to suggest that the ratio of seats was

determined by simply cubing the ratio of votes (Kendall and Stuart, 1950; March,

1957). Today, we understand that the true relationship between votes and seats is

more complex. A party’s aggregate seat share is not just a function of its vote share,

but it is also a function of how its votes are distributed across the many districts.

This phenomenon is interesting to political scientists because it means that a party

need not change its aggregate vote share in order to change its seat share. Instead, a

simple redistribution of its votes is often sufficient to drastically change the number

of seats it wins in the legislature. For example, take the vote-seats relationship of

a hypothetical ten-district legislature where the districts are equally apportioned. A

party with just over 30% of the vote has the potential to win a majority of the seats.

And a party with 50% of the vote can win as many as 100% or as few 10% of the

seats, depending on how those votes are allocated across the districts.

Figure 2.1 displays this phenomenon. It gives the range of potential outcomes

for an election in an equally apportioned ten-district legislature with a sufficiently

large number of voters. Any votes-seats combination can be reached between the two

stair-step lines. Which combination depends only on how those votes are distributed.

Therefore, in determining the votes-seats relationship, it can be as important to
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Figure 2.1: The figure above displays the upper and lower bounds for the potential
outcomes on the votes-seats curve in a hypothetical ten district legislature where
the population is sufficiently large and the districts are equally apportioned. The
figure conveys the point that there exists a distribution of the two-party vote across
the districts that can produce any number of seats between the stair-step lines. For
example, a party with just over 50% of the two-party vote can win as many as 100%
or as few 10% of the seats, depending on how those votes are allocated across the
districts.

explain the variation of a party’s votes across the districts as it is to explain its vote

in the aggregate.

2.2.1 Partisan Districting

What, then, explains the variation of a party’s vote across districts? One common

explanation is that it is the result of districting. In the United States, districting is

simply the process of dividing the land among the districts and assigning the voters to

the district in which they reside. Therefore, the composition of a district is dependent
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on how the district is located among the voters. One need only to change the district’s

location to alter its composition. And by changing the location of the district relative

to the location of partisan voters, one could potentially redistribute partisans across

the districts in a way that could change the votes-seats curve. As a result, those who

control the districting process are able to potentially control the partisan results of a

legislative election.

As one might expect, this is particularly troubling for democratic representation

in the United States. With state governments in control of the districting process,

there is always the potential for partisan influence on district design. For this reason,

parties have long been accused of using the districting process to bias legislative

elections in their favor.1 And, of course, this suspicion continues to this day.2

Yet, in an effort to move beyond the suspicion, political scientists have made a

number of attempts to precisely identify gerrymandering and to measure exactly how

and to what extent it affects representation. It was Tufte (1973) who began the prac-

tice of using variation in the bias and responsiveness of the votes-seats curve (where

“bias” is the deviation from the 50%-50% intercept and “responsiveness” is the slope

of the curve) as a way to measure how gerrymandering influenced representation.3

Scholars have since refined these measurements of bias and responsiveness (King and

Browning, 1987; Campagna and Grofman, 1990; Gelman and King, 1994) and have

analyzed its variation at both the national and state level, drawing mixed conclusions

with respect to its effect. While some scholars have found that partisan gerryman-

1The term “Gerrymander” itself was coined in 1812 when Elbridge Gerry was famously accused
of advantaging Republicans through the approval of a salamander-like district in Massachusetts.

2For example, Florida’s Supreme Court is currently adjudicating claims that the Republicans
intentionally gerrymandered districts in the state legislature.

3Tufte measured the curve’s deviation from the 50%-50% intercept, which he referred to as the
curve’s bias, and he measured its slope, which he referred to as the curve’s responsiveness, and
he suggested that the bias and the declining responsiveness of the curve are partly the effect of
gerrymandering. To be precise, he defined an unbiased votes-seats curve as one where 50% of the
two-party vote would win 50% of the seats. Bias would occur when more or less than 50% of the
vote is is needed for a party to win 50% of the seats. He also defined responsiveness to refer to how
seat share responds to a change in vote share. Therefore, it is a measurement of the change in seat
share for a unit change in vote share.
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dering leads to significant shifts in the votes-seats curve (Abramowitz, 1983; Squire,

1985; Erikson, 1972; Niemi and Winsky, 1992; Born, 1985) others have found that

gerrymandering is not very influential at all (Ferejohn, 1977; Glazer, Grofman and

Robbins, 1987; Squire, 1985; Abramowitz, Alexander and Gunning, 2006). However,

to the extent that gerrymandering does play a role in determining the votes-seats

curve, recent research has established that the effect is at least conditional on in-

stitutional constraints (Gelman and King, 1994; McDonald, 2004; Campagna and

Grofman, 1990) Nonetheless, it remains difficult to isolate the effect of gerrymander-

ing on state and federal elections.

2.2.2 Non-partisan Districting: Geographic Explanations

Part of the difficultly in isolating the effect of gerrymandering is being able to

attribute bias and responsiveness to partisan motivated gerrymandering. This is es-

pecially the case when the same bias and responsiveness in the votes-seats curve can

result from non-political forces. For example, scholars noticed that prior to 1966

the votes-seats curve exhibited substantial Republican bias in the division of seats

in Congress that seemed to run counter to the Democratic state legislatures. (Tufte,

1973). However, this bias was independent of intentional gerrymandering and instead

likely arose from a combination of malapportionment and an increasing partisan di-

vide between rural and urban voters (Erikson, 1972; Cox and Katz, 2002). Since the

courts had not yet interpreted the Constitution as requiring states to apportion their

districts according to roughly equal populations, district populations varied consid-

erably in size. States rarely redrew their district boundaries to account for shifts in

the population and, as a result, urbanization packed a disproportionate number of

voters into urban districts. This effectively diluted the urban vote. And because these

voters were largely Democrat, the diluted Democratic vote put them at a natural dis-

advantage in terms of legislative seats. Therefore, the source of the pro-Republican
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bias was not gerrymandering, but instead it was a combination of urbanization, geo-

graphic polarization, and a general failure for districts to correct for over-population.

Republicans simply gained an edge through the natural migrations of the underlying

population.

However, some of this edge vanished after 1965, when Westberry vs. Sanders (376,

U.S. 1) required states to apportion their districts equally with respect to population.

Coined as the “reapportionment revolution,” the next half of the decade would see

numerous revisions to district boundaries in order to correct for the imbalance in

population. This reapportionment naturally reduced the dilution of the Democratic

vote that was caused by overcrowded urban districts. And since most of the unified

state legislatures and courts responsible for drawing districts at the time were under

the control of Democrats, the Democrats took advantage of the opportunity to draw

pro-Democratic bias into their plans (Cox and Katz, 2002). Yet even in the face of

reapportionment and pro-Democratic gerrymandering, political scientists still recog-

nized that the geographic concentration of Democrats remained a disadvantageous

force against the Democratic party (Erikson, 1972).

This link between the residential patterns of Democrats and pro-Republican bias

is still recognized today (McDonald, 2009, 2010; Erikson, 2002; Jacobson, 2003). Yet

the link between the geographic clustering of Democrats and the entire votes-seats

curve has not yet been thoroughly examined. While Chen and Rodden (2013) are

the first to rigorously show that in a hypothetical situation where the partisan vote

is split 50-50, urbanization tends to distribute votes across districts in such a way

that produces a Republican seat advantage. However, they are also unable to make

claims about how such clustering impacts representation across the entire votes-seats

curve and not just under a 50-50 split of the vote. This is because they are limited in

their ability to make inferences about the effect of geographic clustering at any other

partisan share of the two-party vote. There simply aren’t enough election results
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in their data to make strong enough claims about the rest of the curve. However,

by simulating elections one can begin to draw inferences about how the underlying

geography of partisan voters influences the full votes-seats relationship.

In the next section, I attempt to do just this. I design a model of a hypothetical

legislative election where individual voters - either Democrat or Republican - are ar-

ranged across two-dimensional space in a particular residential pattern. They are then

assigned to randomly drawn, equally apportioned, roughly compact and contiguous

districts where their votes are then aggregated and translated into seats. The model

repeats this process for every potential partisan split of the vote while varying the

geographic patterns of the voters. By manipulating the degree to which Democrats

and Republicans cluster geographically, I am able to fully assess the electoral effect of

geographic sorting. My findings suggests that Democratic clustering is damaging to

Democrats only when they hold voting majorities. Otherwise, contrary to the impli-

cations of Chen and Rodden’s theory, clustering can lead to advantageous outcomes

for the Democratic party.

2.3 Simulating Elections

In this section, I develop a computational model of a legislative elections where

I am able to vary the residential patterns of partisan voters. To model partisan

residential patterns I simply leverage an agent-based model of segregation. Since the

objective is to study the effect of various degrees of clustering on electoral outcomes,

I require a model that allows me to manipulate the spatial distributions of partisan

voters where Democrats and Republicans can locate across geographic space in a

manner that ranges from uniform to clustered. And, moreover, I require the model

to be able cluster Democrats asymmetrically with respect to Republicans in order to

approximate the real-world residential patterns we see in the United States.

To do this, I employ Shelling’s agent-based model of racial segregation (Schelling,
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1971; Chen, 2012). Originally, this model was intended to explain the widely observed

residential segregation of whites and blacks. Schelling uses it to show that relatively

low degrees of intolerance toward living next to others of a difference race can trans-

form an unsegregated neighborhood into a segregated one. While Schelling’s interest

in this agent-based model was to explain racial segregation with micro-motivations,

my interest in this model is primarily that it starts with an unsegregated population

and ends with a segregated one, where - until convergence - each iteration is slightly

more segregated than the previous iteration. By simply swapping whites and blacks

with Democrats and Republicans, the model becomes one of partisan clustering.

Moreover, since there is a random component to the way partisans are initially

distributed and there is a random component to the way partisans distribute at each

iteration, the model allows for multiple geographic distributions to emerge. Therefore,

by running the segregation model repeatedly, I can produce a randomly sampled

set of clustered partisan environments that are distinct from their initial uniform

distribution. Then to observe how this clustering translates into electoral results,

I simply devise a districting algorithm that assigns the voters to a set of compact

and contiguous districts of equal size. Then I aggregate the votes in each district by

counting the ratio of Democrats to Republicans and assigning district seats to the

party that wins the majority of the vote in the district. This gives me the partisan

seat share that results from the hypothetical legislative election, which can then be

compared against the partisan vote share of the population. After repeating the

“election” with different types of clustering and at different splits of the two-party

vote, I can begin to make inferences about the vote-seats curve at different levels of

partisan clustering.

It is important to note that the purpose of the model is not necessarily to capture

the real-world residential motivations of partisans. The goal is to achieve a partisan
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segregated outcome that abstractly reflects real-world segregation.4 By randomly

moving from a uniform outcome to a segregated outcome, I am able to loosely generate

expectations about the effect of clustering across a spatial grid.

2.3.1 Designing the Spatial Patterns

The segregation model begins with 6,400 voters distributed uniformly across a 100

X 100 unit grid. The voters, therefore, occupy 64% of the units on the grid while 36%

of the units are left as empty space. Once the voters have been uniformly distributed,

each is randomly assigned to a party from an allotment of partisanship that has been

predetermined. For example, Figure 2.2 displays the initial stage of a model where

the aggregate partisan split between Republicans and Democrats is 50%-50%. At

the initial stage, where partisanship is uniformly distributed, the grid will be then

subdivided into a set of 10 districts of approximately equal size, each containing 640

voters.5 The votes of each district is aggregated and the number of Democratic seats

are recorded.

Then Schelling’s segregation algorithm is initiated. The way the algorithm works

is that the voters are asked whether they are satisfied with their current location.

Voters are determined to be satisfied if they are in a neighborhood with voters that

share their partisanship. For this model, voters are satisfied if more than 14 of their

24 nearest neighbors are of the same party. If they are unsatisfied, they are moved to

a randomly chosen blank space. This is repeated for all voters until every unsatisfied

voter has been relocated. Once all relocations are made, the algorithm begins a new

4 Just as we should be skeptical that Schelling’s tipping model completely captures the micro-
motives that lead to the kind of racial segregation that we see today (Bruch and Mare, 2006), we
should definitely be skeptical that it captures the micro-motives behind partisan segregation. I only
use the model to achieve a segregated outcome, so I am able to remain agnostic to the micro-motives
that lead to it. However, future iterations of this model may refine the micro-motives so that they
better map onto real-world motivations such that real-world forms of clustering are subsequently
generated.

5Of course, an average Congressional district contains more than a thousand times this number.
However, computation is made easier with fewer voters.
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Figure 2.2: A random uniform distribution of the 6,400 “voters”, which is used as the
initiation step of the segregation model. Partisanship is randomly assigned to each
voter given the predetermined ratio of Democrats to Republicans. For example, the
figure above displays a 50-50 split in vote share between the two parties.

iteration where voter satisfaction is queried and unsatisfied voters are once again

relocated. I repeat this step ten times, regardless of convergence.

The effect of this process is that partisans segregate into geographic communities.

Therefore, Democrats and Republicans have relocated to be nearer to each other.

In this case, since Democrats and Republicans are given the same motivations, they

separate from each other at equal rates. And as a result, their clustering tends to

be symmetric. Figure 2.3 displays four examples of the distribution of partisans that

result from running the segregation model at a 50-50 split of the aggregate partisan

vote.

While the Schelling model accomplishes the goal of geographically concentrating

Democratic voters, it also has the effect of concentrating Republican voters. There-
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Figure 2.3: Four Examples of Symmetric Partisan Clustering where Democrats hold
50% of the Vote

fore, the segregation it creates is symmetric in nature. An argument could be made

that this type of segregation is what we see with suburbanization in the United

States. As urban centers become more homogeneously Democrat, the peripheries of

these centers become more homogeneously Republican. One can easily see this ef-

fect in San Antonio or Houston, where Democrats and Republicans segregate almost

equally along the suburban and urban divide. Such partisan sorting may lead to the

type of symmetry that we see in Figure 2.3.

However, the more common argument is that the geographic concentration of

partisans in the United States is often asymmetric. Democrats concentrate in urban

centers while Republicans spread thinly across suburban, exurban, and rural commu-
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Figure 2.4: Four Examples of Asymmetric Partisan Clustering where Democrats hold
50% of the Vote

nities. Therefore, to capture this effect, I make a simple modification to the Schelling

model. Instead of relocating any voter that is unsatisfied with their location, I only

relocate Democrats. In other words, Republicans remain at their initial location while

Democrats gravitate toward one another. I allow the model to run for ten iterations,

regardless of whether each Democrat is satisfied. As a result, Democrats tend to settle

in clusters while a thinly distributed Republican party holds the periphery. Figure

2.4 displays four examples of the distributions generated by the model at a 50-50 split

of the aggregate partisan vote.

I generate 30 of these grids at every percentage of the two-party vote from 30%

to 70% Democrat. And I do this for each of the three partisan distributions that
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I mentioned above - uniform, symmetric, and asymmetric. These grids will act as

the underlying geographic distribution of partisan voters over which the hypothetical

elections will be held. However, the next challenge is assigning voters to districts in

order to transform their votes into seats.

2.3.2 Designing the Districts

Since the objective of this hypothetical election is to observe how the spatial

patterns of partisans impacts real-world elections, it is important to assign voters

to equally assigned districts in a way that approximates the real-world districting

process. For example, one important component of U.S. legislative elections is that

districts are mapped to their own unique geographic location. Voters are then assigned

to the district according to whether they reside in that location. Because districts are

designed to be contiguous, no two districts will share the same geographic location

and no geographic location will be without a district.

In addition to contiguity, districts tend to be designed to be relatively compact.

This simply means that districts cover voters who live near each other rather than

voters who are distant from each other. Although this is not an official constraint,

it is a principle that is generally followed. It is the reason why a voter in Southern

California will likely never share a district with a voter in Northern California. Rather,

districts are drawn to contain voters that share the same proximate location. This is

a pattern that can be observed across the states. Voters will be more likely to share

a district with another voter if that voter is in their “neighborhood.”

In order to estimate the likely partisan outcome that would result from the hy-

pothetical ten-district elections generated by the segregation models, I would need to

measure the outcomes of all potential voter-district assignments. However, determin-

ing the distribution of all potential assignments is a complex problem. Since there

are innumerable ways to partition the voters on the grid into ten compact, contiguous
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and equally apportioned districts, I will instead have to randomly sample from the

distribution of potential districts.

To do this, I leverage an algorithm that randomly searches the grid for a set

of districts that fit the criteria of being compact, contiguous, and roughly equal in

population.6 Specifically, the algorithm is a variant of a weighted k-means strategy

and can be easily described in the following steps (see fFgure 2.5 for a visual of the

procedure):

Step 1 Randomly generate a set of 10 seeds using k-means++. Therefore, the first

seed is assigned to the location of any voter on the grid with uniform probability.

Then the second seed is randomly assigned to the location of any voter on grid

with a probability proportional to the distance from that voter to first seed.

Then the third seed is randomly assigned to the location of any voter on grid

with a probability proportional to the distance from that voter the nearest seed

to that voter. This process repeats until all seeds have been set. The seeds will

be the centroids of the ten districts. See Figure 2.5 (A).

Step 2 Assign all voters to their nearest centroid, thereby partitioning them into

districts.

Step 3 For each district, count the number of voters that have been assigned to it.

Continue only if any district population is more or less than 2.5% of the mean

population.

Step 4 Marginally change the location of the district centroid along the gradient

that best reduces the variance of the population across the districts. Repeat

this step until all districts are within 2.5% of the mean population. See Figure

2.5 (B).

6The algorithm leverages a similar approach used in Fryer Jr and Holden (2011).
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Step 5 The voters are assigned to their nearest centroids and the partisan vote is

calculated. See Figure 2.5 (C).

While this districting algorithm is an attempt to replicate real-world map-making

by assigning voters to districts in adherence to geographic standards, they are not,

however, designed with partisan intent. Of course, partisan intent in the districting

process is a reality. Real-world map-makers can choose the most favorable map from

the set of potential maps. Or they can draw bias into their districts by ignoring

compactness and drawing oddly-shaped districts where boundaries weave through

the landscape to produce partisan favor. Yet there are a number of reasons to think

that gerrymandering has its limitations and that legislators are bound by geographic

constraints.

For example, although we would expect gerrymandered districts to take on wild

shapes, most U.S. Congressional districts are designed with some reasonable compact-

ness. Districts do not usually contain voters that live far from each other, which is

to suggest that despite the opportunities for gaining advantage by drawing such non-

compact, elongated, and far-reaching districts, map-makers tend not to do so. They

seem to defer to a standard of maintaining some geographic compactness, meaning

that the Congressional districts that contain voters in Los Angeles tend to contain

other voters in Los Angeles. And while compact districts can still be designed to

carry partisan favor, being constrained by the standard - at least in part - makes

gerrymandering more difficult. Moreover, Chen and Cottrell (2015) find that most

of the variation in partisanship across Congressional delegations can be explained by

districts that have been drawn without partisan intent. Therefore the unbiased dis-

tricting procedure used in my simulations may convert votes to seats similar to that

of a real-world districting plan.
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Figure 2.5: Once the locations of partisans have been established on the grid, an algo-
rithm is used to randomly generate ten compact and contiguous districts of roughly
equal size. It accomplishes this by randomly distributing ten centroids across the
grid(a), where voters are assigned to the nearest centroid. Then, to correct for malap-
portionment, the gradient-step method iteratively moves the centroids in a direction
that makes small improvements in apportionment(b). It stops when a roughly equal
number of voters are assigned to a set of centroids(c).

2.3.3 Producing the Votes-Seats Curve

After running the segregation models and assigning voters to districts for each

of the three types of clustering at every split of the two party vote, I am able to
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determine the outcome of each hypothetical election. This produces a Democratic

seat share that is associated with every percentage of the Democratic vote. A LOESS

smoother averages all the iterations of the model across every split in vote share. This

generates the votes-seats curve for each of the three types of clustering.

Figure 2.6 plots these curves against each other. In each plot, the x-axis represents

the Democrat’s share of the two-party vote and the y-axis represents the resulting

Democratic share of the seats. While the first plot allows the x-axis to range from

30% to 70% vote share, the second plot limits the range from 45% to 55% in order

to focus on less significant margins of victory. Each curve displays the relationship

between vote share and seat share that occurs when drawing compact and contiguous

districts over an electorate that is sorted according to the three different partisan

spatial patterns. And by comparing the three curves we are able to observe how

partisan geography can potentially influences U.S. representation. This is especially

important in light of the fact that partisanship is becoming more and more segre-

gated (Nall, 2015). Depending on the manner with which these partisans distribute -

symmetrically or asymmetrically - these votes-seats curves will help us to understand

its potential effect on partisan representation.

2.3.4 How partisan clustering affects the votes-seats curve

In Figure 2.6, each curve reflects the outcomes of the model under the three

versions of clustering, where partisans are uniformly distributed (in blue), symmetri-

cally distributed (in purple), and asymmetrically distributed (in pink). If voters are

uniformly distributed, as displayed by the blue line, a “z-shape” curve will link votes-

to-seats. This is consistent with winner-take-all representation, where small margins

of victory allow the winning party to take all of the seats. This is because when the

6,400 voters are randomly distributed across space and assigned to districts, the par-

tisanship of the 640 members of each district will be very similar to the partisanship
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Figure 2.6: The votes-seats curve that results from 30 simulations performed at each
split of the two-party vote for the three types of Democratic clustering. Each curve
is smoothed using a LOESS smoother and 95% confidence intervals are included.

of the state. Therefore, when the partisanship of the state is just above 50% Repub-

lican, the partisanship of each of the districts will be just above 50% Republican. In
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an election where the partisans are distributed uniformly, a simple margin of victory

produces strong gains in seats for the majority party.7

The curve generated from symmetric clustering - the purple line - is a symmetric

curve much like the curve generated by the uniform distribution. The symmetry

simply means that Democrats and Republicans win the same number of seats when

holding the same majority of the vote. Therefore, Democrats are no more well-

off than Republicans would be when holding the same vote share. However, when

compared to the curve produced by the uniform distribution of partisans, the curve

produced by the symmetric distribution of partisans is much flatter. Although they

both cross the 50%-50% intercept, the curve is closer to proportional representation

than winner-take-all. Therefore, a party that wins 55% of the vote wins fewer seats as

the underlying distribution of partisans begin to cluster. This means that geographic

polarization has the effect of making the majority party worse off, regardless of which

party it is.

A similar effect can be observed under asymmetric Democratic clustering, al-

though there are some important differences. When Democrats tend to cluster more

than Republicans (asymmetric Democratic clustering), as we often see with urban-

ization, it produces an asymmetric votes-seats curve. Therefore, when compared to

the curve produced by the uniform distribution, an asymmetric votes-seats curve pro-

duces different gains and losses with respect to the parties. First, as Chen and Rodden

(2013) find, when the two parties approximately split the vote, the Democrats win

fewer seats than they would have under a less-urban environment. In which case,

Republicans win more seats due to geography alone. This is the Republican advan-

tage that is commonly associated with geography. However, analyzing the effect of

Democratic clustering at a hypothetical 50% vote share and inferring that geography

7There is some bend in the curve due to noise in the partisan variation across districts, which
would likely go away as the number of voters increases. However, we can think of the variation due
to the low number of voters as the variation that occurs due to minimal partisan clustering. In
which case, each voter on the grid would represent clusters of many voters as opposed to just one.
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is only a problem for Democrats misses the full picture of how geography impacts the

votes-seats curve. The model improves upon our understanding of the advantages

and disadvantages that both parties experience in the face of partisan clustering.

Moreover, it is important to know how parties are represented beyond a 50%

votes share. Parties are often rewarded for obtaining a supermajority of the seats.

For example, in U.S. legislatures, certain supermajorities can override a veto. This

presents a major partisan advantage if the opposite party was able to win the executive

seat. Moreover, supermajorities allow for parties to overcome potential defectors when

passing legislation. The larger the majority, the more the party can afford to lose

potential swing voters.

To achieve supermajorities, parties will need to achieve larger majorities of the

vote. So understanding what happens to seat share as vote share increases or decreases

across the full spectrum of potential partisan splits is crucial to understanding a

party’s success in the legislature. Therefore, the benefit of the computational model

is that it generates a number hypotheses about what exactly happens to a party’s

electoral success when it gains or loses votes under various degrees and types of

partisan clustering.

2.3.5 Hypotheses

The model tells us about what would happen to the electoral success of a party as

partisan clustering increases or decreases, as the type of partisan clustering changes,

and as a party’s vote share moves from a majority to a minority. Moreover, it gives

insight about how each of these variables interact with each other to produce different

electoral results. Therefore, the expectations generated by the model are numerous.

However, for simplicity I’ve reduced the expectation to the following five general

hypotheses about how Democratic clustering affects the votes-seats curve:
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2.3.5.1 Clustering Reduces Majority Party Seat Share

H1: The geographic clustering of partisans has the effect of reducing the seat share

for the party that wins the majority of the vote.

Formally, if a party’s vote share, VP , is linked to its seat share, SP , through the

function fT , where T ∈ {unif, symm, asym} indexes the function generated by each

of three types of clustering, then for both parties, P ∈ {Dem,Rep}, it is the case

that
∫ 1

.5
fsymm(VP )− funif (VP ) < 0 and

∫ 1

.5
fasym(VP )− funif (VP ) < 0.

This means that partisan clustering - regardless of the type - flattens the votes-

seats curve. This means that the expected number of seats generated by a majority

share of the votes is reduced by the clustering of partisans. Both Republican and

Democratic majorities would weakly prefer the less clustered environment than the

clustered environment, as long as they both hold non-marginal majorities of the vote.8

For example, from the second plot in Figure 2.6, we can move along the x-axis to

observe the outcome of a hypothetical election where a party receives 55% of the vote

both in the absence of geographic clustering (the blue line) and in the presence of

geographic clustering (purple and pink lines). Comparing the two, we see that when

the Democratic party holds 55% of the vote, moving from a non-clustered environment

to a clustered environment will reduce the seat share of Democrats. Similarly, if

the Republican party holds 55% of the vote, clustering will reduce the seat share

of Republicans. Formally, the model implies that fsymm(.55) − funif (.55) < 0 and

fasym(.55)− funif (.55) < 0.

We can see this effect in the plots of Figure 2.7. The plots capture the effect

of partisan concentration on majority party seat share for both Republicans and

Democrats when they hold 55% of the vote. The downward sloping lines show the

change in seat share when the underlying geographic distribution of partisans moves

8This also assumes that the parties prefer a greater share of the seats and does not consider a
preference for incumbency protection
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Figure 2.7: The figure above shows how the geographic clustering of Democrats
changes the seat share of a party with 55% of the vote. Plot A gives the effect
of symmetric clustering, while plot B gives the effect asymmetric clustering. The
red line signifies the effect when Republicans hold the majority, while the blue line
shows the effect when Democrats hold the majority. The implication of both figures is
that clustering disadvantages both parties. However, in the presences of asymmetric
clustering.

from a uniform to a clustered environment. While the first plot captures the effect

of symmetric clustering, the second plot captures the effect of asymmetric clustering.
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And in both cases, clustering reduces the seat share of the majority party.

Observing the blue line in both plots, it is clear that the effect of clustering on

the majority party is that it reduces the number of seats for Democratic majorities.

Democratic votes get packed into too few districts, thus having the effect of wasting

votes in districts that are already overwhelmingly Democratic. However, contrary to

Chen and Rodden, as the red line implies, when the Republican party has a similar

55% vote share, they too receive a disadvantage from clustering. In which case,

clustering has the effect of improving Democratic seat share against the Republican

majority.

However, as the second plot of Figure 2.7 makes clear, asymmetric Democratic

clustering affects the representation of Republicans and Democrats differently. While

both parties lose seats due to clustering when they hold the majority of the vote,

Democrats lose more seats than Republicans. Therefore, asymmetric clustering has

asymmetric partisan consequences. This leads to the second hypothesis.

H2: Asymmetric clustering - where Democrats cluster more than Republicans - has

the effect of reducing the seat share for Democratic voting majorities more than

it does for Republican voting majorities.

Formally, under asymmetric clustering, the seat loss for Democratic majorities is

greater than the seat loss for Republican majorities,
∫ 1

.5
fasym(VDem)− funif (VDem) <∫ 1

.5
fasym(VRep) − funif (VRep) . Asymmetric Democratic clustering has the effect of

bending the votes-seats curve such that the return in seats for any given share of

the vote will differ depending on the party that receives that share of the vote. In

particular, when Democrats hold a majority of the vote, asymmetric Democratic

clustering will reduce the number of Democratic seats more than it would reduce

the number of Republican seats for Republicans holding the same majority. This

effect is displayed in the second plot of Figure 2.7. If the majority party held 55% of
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the vote, asymmetric Democratic clustering would reduce the seat share for Demo-

cratic majorities more than Republican majorities. Therefore, the model implies

fasym(.55Dem) − funif (.55Dem) < fasym(.55Rep) − funif (.55Rep). Therefore, asymmet-

ric Democratic clustering will penalize Democratic majorities more than Republican

majorities.

2.3.5.2 Clustering Reduces Electoral Responsiveness

As Democrats continue to locate in dense urban areas, not only will the majority

vote share translate into fewer seats, but there will also be a reduction the number of

seats gained per additional vote. In other words, the slope of the curve will flatten,

reducing what Tufte (1973) called the “responsiveness” of the electoral system. A

flatter curve means that a party’s seat share is less “responsive” to a change in vote

share. We see that under a clustered environment, a gain in votes translates into fewer

additional seats than in a non-clustered environment. For example, in New York, the

density with which metropolitan New York City Democrats cluster tend to waste

valuable Democratic votes that could be used to win districts elsewhere. Moreover,

as Democrats continue to improve their vote share in a state like New York, their

return in seats for every additional vote is much lower if the votes continue to be urban

votes. As long as their votes join the cluster of urban voters, their seat gain will be

small compared to a less clustered environment. This leads to the third hypothesis.

H3: Clustering reduces the electoral “responsiveness” for both parties by reducing

the slope of the curve. Therefore, as clustering increases, a unit increase in vote

share returns fewer additional seats.

We can see from the model that a party gains fewer seats under a clustered

environment than a non-clustered environment when it moves from a 50% vote share
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to a 55% votes share. Formally, this can be expressed as

fsymm(.55P )− fsymm(.50P ) < funif (.55P )− funif (.50P )

fasym(.50P )− fasym(.55P ) < funif (.55P )− funif (.50P )

Moreover, if the type of clustering is asymmetric, there are different consequences

for the two parties. In particular, the seat share achieved by Democratic majorities

will be less responsive to an increase in vote share than Republicans in the same

position. This asymmetric effect is stated in the fourth hypothesis.

H4: Asymmetric Democratic clustering reduces the electoral “responsiveness” of

Democratic majorities more than it does for Republican majorities.

In an asymmetrically clustered environment, Democrats have less to gain from

increasing their vote share than Republicans do in similar positions. We can see from

the model that a party gains fewer seats under a clustered environment than a non-

clustered environment when it moves from a 50% vote share to a 55% votes share.

Formally, this can be expressed as

fasym(.55Rep)− fasym(.50Rep) > fasym(.50Dem)− fasym(.55Dem)

The asymmetry of the votes-seats curve produced by asymmetric Democratic clus-

tering reduces the slope of the curve for Democratic majorities more than it does for

Republican majorities. Therefore, in states where Democrats hold a majority of the

vote (and given that there are still seats to be won), asymmetric Democratic cluster-

ing has the effect of reducing the efficiency with which additional votes translate into

additional seats. As a result, the asymmetric residential patterns create conditions

where Democratic majorities have less of an incentive to win additional votes per seat

than Republican majorities.
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2.3.5.3 Asymmetric Clustering Produces Pro-Republican Bias in Close

Elections

Finally, as Chen and Rodden (2013) find, the results of the model suggest that

in close elections, the asymmetric clustering of Democrats improves Republican seat

share over the non-clustered counterfactual. This allows Republicans to achieve a

majority of the seats without a majority of the vote. Therefore, this gives the fifth

hypothesis generated by the model.

H5: In close elections, asymmetric clustering reduces Democratic seat share, allowing

Republicans to gain a majority of the seats without a majority of the votes.

The final hypothesis suggests that asymmetric clustering produces electoral bias

toward Republicans. In Figure 2.6 we can see this bias by observing how the pink

line passes below the 50%-50% intercept. Therefore, in states where Democrats are

asymmetrically clustered, Republicans can achieve a majority of the seats without a

majority of the vote. Formally, fasym(.50Rep) > .50.

2.3.6 Policy Implications of the Model

Given that map-makers are constrained by geographic principles like contiguity

and compactness, the model reveals a number of predictions for how residential pat-

terns of partisan voters affect partisan representation in the United States. These

predictions provide important policy implications for both the Democratic and Re-

publican Parties. Because of this, parties must pay attention to how their partisans

are located spatially. And they must pay attention to how partisan platforms can af-

fect the spatial distribution of their voters, especially in light of the continuing spatial

divide between Republicans and Democrats.

Where Democrats have clustered asymmetrically, they can find themselves with

a number of challenges. First, Democrats will have trouble winning the majority of
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seats with marginal majorities of the vote. Unlike the other forms of clustering, the

asymmetric clustering causes the votes-seats curve to dip below the 50%-50% inter-

cept, biasing the system in favor of Republicans. Therefore, in competitive elections,

the asymmetry of partisans causes Democrats to inefficiently waste votes by packing

most of their partisans into a few districts and spreading the rest too thinly across

the other districts. The result is that Republicans gain a natural seat advantage in

the legislature.

We see this in states like Florida and Pennsylvania, where toss-up elections will

naturally produce Republican congressional delegations. Because districts in Miami

and Philadelphia produce overwhelmingly Democratic majorities while districts in the

periphery produce marginal Republican majorities, Democrats lose seats that they

might not otherwise have lost. For example, although Obama won 54% of the vote

in Pennsylvania in 2008, a majority (10) of the 19 districts supported McCain over

Obama. The asymmetry in the distribution of votes across the districts was clear.

All but two of the McCain-majority districts supported McCain with less that 55%

of the vote while only two of the Obama-majority districts supported Obama with

less than 55% of vote. In McCain’s two most supportive districts, he won 56% and

63% respectively. While in Obama won nearly 90% of the vote in both of his most

supportive districts located in the heart of Philidelphia. The asymmetric distribution

of the votes was at the root of Pennsylvania’s Republican delegation.

A second consequence of asymmetric clustering is that, like symmetric clustering,

it reduces the majority party’s seat share as well as the rate at which the majority

party can pick up seats with additional votes. However, unlike symmetric clustering,

it has the effect of disadvantaging Democratic majorities more than it does Repub-

lican majorities. Therefore, where Democrats receive voting majorities, asymmetric

residential patterns will be detrimental to the party’s legislative seats share. Demo-

cratic majorities will be worse off than Republicans in the same position and they
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also have far less to gain by increasing their popular support.

Therefore, in Democratic states Democrats have the incentive to reduce the spatial

clustering of their votes. The overwhelming urban support for Democrats does little

to advance Democratic seat share in these situations. Instead, Democrats would

prefer to swap urban votes for non-urban votes. By improving their support in the

periphery, they are more likely to win back the marginally Republican seats in the

state. As a result, there is much to gain from de-clustering.

On the other hand, when Democrats find themselves in a state where they hold

the minority of the vote, they can make partisan gains from doing the opposite. In

these cases, Democrats can use the spatial clustering of partisanship to their ad-

vantage. When Republicans hold a strong majority, clustering tends to help save

Democrats from steep losses to their seat share. Therefore, to improve Democratic

seat share, Democrats can target policy that favors metropolitan areas in Republican

states. This can have the effect of producing seat gain where they might not other-

wise receive it. By packing Democrats into a single location, Republicans are simply

unable to break the Democratic majorities without explicitly drawing oddly-shaped,

non-compact districts. Strong metropolitan support, therefore, advances Democratic

seat share when statewide support is generally low. We see this effect in Texas, for

example, where Democrats not only pick up seats from densely packed Democratic

voters in metropolitan cities like Dallas, Houston, and San Antonio, but the strongly

Democratic Texas South, where the Hispanic vote is difficult to dilute even without

VRA protections. The clustering of the Democratic vote in Texas is potentially ex-

plains why Democrats receive at least a third of the seats in Texas despite a significant

minority of the vote.

Moreover, the model reveals another potential solution for Democrats to improve

their representation in these Republican states. The solution is to induce symmetry

within the spatial distribution of the partisan vote. While asymmetric clustering is
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an improvement for Democrats compared to a non-clustered environment, it does not

deliver the same return in seats as symmetric clustering does. In other words, the

non-urban Democrats that join the Republicans on the periphery - which is the cause

of the asymmetric clustering - have the effect of improving the ability for Democrats

to win seats in states where Republicans hold a majority. But compared to more

symmetric clustering, asymmetry is less efficient at doing so. This is because the

Democrats that live outside of urban areas do not have the numbers to win non-

urban districts. Therefore, these votes would be more useful to Democrats if they

were densely concentrated in metropolitan cities, where they might be able to pick up

another seat through packing. So, in states where Republicans are in the majority,

packing has beneficial consequences for Democrats. They would be better off creating

policy that further polarizes voters along geographic dimensions in these states. So,

just as Democrats lose seats due to the geographically polarized environments when

they are in Democratic states, they gain seats in the same way when they are in

Republican states.

An additional consequence of asymmetric clustering is that it has an asymmetric

effect on the slope of the votes-seats curve. Because the slope of the curve is lower

when Democrats hold the majority, it is much more difficult to gain additional seats

from additional votes. On the other hand, when Democrats hold the minority of the

vote, there is the opposite effect. The slope of the curve is much greater, which means

an additional vote translates into a greater number of additional seats. Therefore,

there is greater incentive to target supporters in states with Republican majorities.

By increasing vote share in these states, Democrats can make great improvements to

their seat share in the legislature.

In either case, the model generates the following expectation: Even in the face of

redistricting, partisan clustering affects how partisans are distributed across legislative

districts in such a way that any party holding a non-marginal majority of the vote

42



will likely lose legislative seats. This includes the Republican party.

2.4 Conclusion

Obtaining a greater share of the vote is a major goal for parties. Yet the efficiency

with which votes translate into seats is perhaps of greater concern. This is why the

votes-seats curve is important to scholars. Since it is theoretically possible to achieve

a wide ranging share of the seats given any share of the vote, parties will always be

interested in improving their votes-seats relationship. Changing the curve in a way

that plays to a particular party’s advantage means altering the playing field on which

parties compete for power. The consequences can be major. Therefore, it is in the

best interest for parties to attempt of the change this curve if they are able to.

Because of this incentive, when partisan favor is observed in an election, many

point the finger at gerrymandering. By manipulating district boundaries, parties are

effectively able to change the votes-seats relationship. And since political parties

are often unchecked in the districting process, the accusations of gerrymandering

are common. Simply observing a votes-seats curve that appears favorable to one

party over another triggers the assumption that the partisan favor was intentionally

designed by the boundary-makers.

However, recent research by Chen and Rodden (2013) suggests that partisan fa-

vor might not be the work of parties at all. Instead, the favorable votes seats curve

might be attributable to the geographic distribution of partisan voters. They argue

that boundary-makers are constrained by geographic principles like compactness and

contiguity when constructing districts. And because they adhere to these principles,

they allow for the geographic distribution of voters to influence the votes-seats rela-

tionship. They find that the tendency for Democrats to cluster their vote in dense

urban areas, gives Republicans a natural seat advantage in legislatures, even in the

presence of redistricting. In particular, they suggest that given a 50-50 split of the
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vote, geographic clustering would tip the scales to favor Republicans.

Yet, despite their findings, it remained unclear how the clustering of Democrats

influenced the full votes-seats relationship. This is because we are unable to observe

elections at every split of the vote under various forms of partisan clustering. However,

by simulating elections using an agent-based model to segregate partisan voters, I

was able to develop expectations about how different types of geographic clustering

affects the votes-seats curve across the full spectrum of votes. This provides a set

of predictions about the consequences of partisan residential patterns that have been

previously unexplored.

For example, assuming that districts are drawn to uphold the geographic principles

of contiguity and compactness, the model finds that when Democrats cluster asym-

metrically with respect to Republicans, the votes-seats curve bends in an asymmetric

fashion. The asymmetry of the curve tends to disadvantage Democrats by reducing

their seat share for most spits in the two-party vote. However, when Republicans

hold a significant majority of the vote, Democratic clustering can have the opposite

effect. Instead of disadvantage Democrats, clustering can disadvantage Republicans.

In states with strong Republican support, the geographic concentration of Democrats

forces Democratic seats that might not otherwise have existed. In states like Ten-

nessee, for example, it is difficult to design a set of nine compact and contiguous

districts without drawing Democratic districts in Memphis and Nashville. The very

nature of the residential patterns of partisans in these two metropolitan cities gives

Democrats a boost in their seat share, effectively reducing Republican representation.

The findings of the model provide an important connection between partisan geog-

raphy and representation. Simply because legislative districts are linked to geographic

jurisdictions, there are major representational consequences to something that is so

seemingly inconsequential to politics as residential location. As partisanship divides

along the urban-rural line, for example, the partisan composition of the legislature
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can change without changing the overall partisan vote. Representation is therefore

conditional on the geographic manner in which partisans differentiate themselves

rather than the extent of partisan support. Because of this, scholars must pay closer

attention to how partisan divisions translate into geographic divisions.
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CHAPTER III

Geography or Gerrymandering:

Empirically Testing the Relationship Between Geography and Representation

Abstract

The previous chapter uses a computational model to make predictions about how

the asymmetric geographic clustering of Democratic voters affects the votes-seats

relationship in U.S. legislative elections. In particular, it predicts that the asym-

metric geographic clustering of Democratic voters will lead to the flattening of the

votes-seats curve, thereby reducing the seat share of the majority party. Moreover,

it predicts that the curve will flatten asymmetrically, reducing the seats more for

Democratic majorities than for Republican majorities. In either case, the predictions

imply that partisan spatial patterns are, in theory, an important determinant of the

votes-seats relationship. In this chapter, I provide empirical support for this claim

so as to validate the model’s theoretical predictions. First, I show that the current

Congressional districts are similar in partisan composition to a set of hypothetical

districts drawn using the same geographic parameters as the computational model

that produces those theoretical predictions. Second, I show that the distribution

of the two-party presidential votes across Congressional districts from 1972 to 2004

tends to correlate with the urban/non-urban division in partisanship, implying that

geographic polarization creates district polarization. And third, I show that the effect

of this geographic polarization is that it bends the votes-seats curve in a way that is

consistent with the first and second hypothesis established by the second chapter.
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3.1 Introduction

The function that translates a party’s vote share into its seat share is important

to democratic legislative representation. Normatively, the democratic ideal would be

for the partisan composition of the legislature to reflect the partisan composition of

the constituency. Therefore, vote share and seat share would have a direct 1-to-1

relationship. While proportional rule systems are designed to achieve this ideal by di-

rectly linking seat share to aggregate constituency vote share, single member district

plurality-rule systems - like that which is used in the United States - establish parti-

san seat share through a more indirect process. Rather than linking legislative seats

to aggregate partisan votes in the U.S., seats are instead determined at the district

level. Therefore, the function that links votes to seats depends on a complex elec-

toral process where the population is divided into separate geographically contiguous

constituencies in which parties are elected by achieving the plurality vote in those

constituencies. As a result, a party’s representation depends not only on the share of

votes it receives but also on how those votes are distributed across the districts.

And it is this distribution of the votes that explains, to a large extent, how parties

are represented in U.S. legislatures. In contrast to proportional representation where

a predetermined rule always translates a 60% vote share into approximately 60% seat

share, the electoral system in the U.S. can translate a 60% vote share into wide range

of potential seat shares. For example, in a hypothetical ten district election, the party

that receives 60% of the vote can receive anywhere between 20% and 100% of the

seats depending on how those votes are distributed across the districts. This range

of possible outcomes for a given share of the vote simply highlights the importance

the distribution of votes in single member district systems. It plays a major role in

linking votes to seats. Yet, what explains this distribution of a party’s votes across

the districts in the first place?

One hypothesis that has recently gained traction in political science research is
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that the distribution of partisan votes across the districts is a function of how those

votes are distributed geographically. This hypothesis suggests that the Republican

seat advantage that we see in Congress today is less a result of gerrymandering than

it is a result of the fact that Democrats tend to live in dense urban centers (Erikson,

1972; Chen and Rodden, 2013; Goedert, 2014). Because of this tendency, Democrats

inefficiently pack their votes into urban congressional districts, reducing their ability

to win districts in non-urban areas. Therefore, it is partisan geography that explains

the distribution of votes across the district and determines how votes translate into

seats.

In the previous chapter, I develop a set of expectations under the assumption that

geography explains partisan representation. In particular, I show that the geographic

clustering of partisans tends to flatten the votes-seats curve in way that makes the

majority party worse off. Moreover, if partisan votes cluster asymmetrically - where

Democrats cluster more than Republicans - then the effect of partisan clustering

is that it asymmetrically flattens the vote-seats curve. This generates three major

expectations. First, Democratic majorities will tend to lose more seats than Repub-

lican majorities. Second, Democratic majorities will tend to have less to gain from

additional votes than Republican majorities. And third, Democrats will tend to lose

toss-up elections.

These expectations, however, rely heavily on two major assumptions. First,

real-world districts must be drawn to be geographically compact, contiguous, and

equally apportioned. This means that the set of districts that can be designed by the

boundary-makers are limited to ones that have the tendency to contain geographically

dense populations rather than geographically disparate ones. And second, the model

assumes that partisan influence on the design of the districts is limited. Rather, ger-

rymandering plays only a minor role in determining the votes-seats curve. If both of

these assumptions hold, then districts will tend separate voters based on whether they
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live in dense urban areas versus sparse suburban or rural communities. Therefore,

the clustering of partisanship along that dimension will likely generate the results

produced by the computational model in first chapter.

However, these assumptions are not obvious ones. One can easily point to a num-

ber of districts that have wildly non-compact shapes. Illinois’ 4th district, for exam-

ple, is commonly called the “earmuffs” district as it circuitously wraps around the pe-

riphery of eastern Chicago forming an earmuffs-like half-circle around the city. More-

over, boundary-makers are commonly accused of advantaging their party through

gerrymandering. In Florida, for example, the Republican legislature drew a set of

districts in 2012 that produced a strong Republican delegation with only a margin of

the vote. Hence there is reason to be skeptical of the model’s result.

Therefore, in this chapter I attempt to provide some empirical validation for the

model. I do this in three ways. First, I show that the current Congressional districts

are similar in partisan composition to a set of non-gerrymandered hypothetical dis-

tricts drawn to be compact, contiguous, and equal apportioned. In other words, by

drawing districts according the same rules as those used in the simulations, I am able

to replicate the partisan results of real-world districts. Second, I show that the dis-

tribution of the two-party presidential votes across Congressional districts from 1972

to 2004 tends to correlate with the urban/non-urban division in partisanship, even in

the presence of gerrymandering. This implies that the geographic clustering of par-

tisans determines the distribution of partisan votes across the districts. And third,

I show that the effect of this geographic polarization is that it bends the votes-seats

curve in a way that is consistent with the first and second hypothesis established by

the model. This means that 1) the geographic clustering of partisans has the effect

of reducing the seat share of the party that holds the majority and 2) the reduction

is greater for Democratic majorities than for Republican majorities.
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3.2 An Argument for Partisan Geography over Partisan Ger-

rymandering

Every decade, state governments are responsible for drawing and redrawing leg-

islative districts in the United States. They determine where the districts are located

and, as a result, they determine who is assigned to which districts. This means that,

through districting, a state can redistribute voters across the districts in a way that

produces any number of electoral outcomes. Those who control the districting process

are able to potentially control the partisan results of a legislative election.

Hence, when election outcomes overrepresent a particular party, gerrymandering

is often the first to blame. Through gerrymandering, parties can redesign districts in

a way that improves their seat share without improving vote share. They can shift

their status in a district from the minority to the majority simply by altering the

boundaries. And because of this, gerrymandering is a major concern for Democratic

representation in the United States. Yet, to what extent is gerrymandering actually

occurring across the states? And to what extent does it explain electoral outcomes?

Political scientists have attempted to isolate the effect of gerrymandering on leg-

islative outcomes for years. There is a long line of research employing a number of

empirical techniques that attempt to observe its role on representation. For exam-

ple, many scholars have found that gerrymandering produces significant partisan seat

gain (Abramowitz, 1983; Squire, 1985; Niemi and Winsky, 1992; Born, 1985; King and

Browning, 1987; Gelman and King, 1994; Cox and Katz, 2002). Others have found

that gerrymandering advantages incumbents and produces safer districts (Mayhew,

1974; Tufte, 1973; Cain, 1985). And some have linked gerrymandering to to an in-

crease in Congressional polarization (Fiorina, Abrams and Pope, 2005; Carson et al.,

2007).

However, while most scholars would agree that gerrymandering has an effect on
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representation, many have argued that the effect is limited. For example, there are a

number of redistricting institutions that constrain partisan control of the districting

process. And without full control over the process, it is difficult for parties to achieve

their desired results. Some states have divided government, where districting plans

that show partisan favor are likely be vetoed. Other states have attempted to remove

redistricting authority from the legislature altogether. They do this in a couple ways.

Either they outsource the districting process to independent bipartisan or nonpartisan

commissions or they outsource the process to the state’s judiciary. In either case, the

design of districts is intended to be independent of legislative influence. And, for

the most part, these institutional constraints have been shown to be effective at

curbing partisan advantage (Gelman and King, 1994; McDonald, 2004; Campagna

and Grofman, 1990; Goedert, 2014). At the very least, gerrymandering is made more

difficult by these procedures.

Moreover, some states explicitly prohibit gerrymandering. Arizona, California,

Delaware, Hawaii, Idaho, Iowa, Nebraska, Oregon, Rhode Island, and Washington all

have legislated against some form of partisan or incumbent favoritism (Levitt, 2015).

For example, Article 3 §1(a) of the Florida Constitution declares that “no apportion-

ment plan or district shall be drawn with the intent to favor or disfavor a political

party or incumbent.” And Article 21 §6(e) of California’s constitution explicitly states

that ”Districts shall not be drawn for the purpose of favoring or discriminating against

an incumbent, political candidate, or political party.” Therefore, in these states, legal

action can be taken against the government if suspected of gerrymandering. This

develops a legal incentive for states to refrain from partisan discrimination.

One additional reason why gerrymandering may be limited is that boundary-

makers are constrained by geographic factors. For example, a number of states require

that districts be geographically contiguous and compact. In other words, they are

required to draw districts around dense communities in order to keep people who are

53



geographically proximate to each other under a single representative. Take Michigan

for example. The state has explicitly legislated that “district lines shall be drawn

to achieve the maximum compactness possible” (Michigan Code §3.63(vi)). More-

over, the legislation adds that “Congressional district lines shall break as few county

boundaries as is reasonably possible” (Michigan Code §3.63(ii)) and “as few city and

township boundaries as is reasonably possible”(Michigan Code §3.63(iv)). In other

word, by law, Michigan districts must be designed to uphold the geographic integrity

of communities and counties as much as possible. And by adhering to this principle,

boundary-makers are limited in their ability to assign any voter to a district in order

to strategically achieve a desired outcome.

Because of the limitations on gerrymandering and because of the geographic prin-

ciples with which districts are drawn, geography becomes relevant to partisan repre-

sentation. If districts are being drawn around clustered populations, then the political

preferences of those clusters will influence elections. Erikson (1972) noticed this effect

years ago. Prior to reapportionment, urbanization shifted large portions of the popu-

lation into urban districts. Because these urbanized voters tended to vote Democrat,

valuable Democratic votes were wasted in overwhelmingly Democratic districts. As

a result, Congress was heavily biased toward Republicans.

However, this geographic bias seemed to vanish after 1965 once Westberry vs.

Sanders (376, U.S. 1) ruled that the Constitution required states to partition their

voters into equally apportioned districts. The wave of redistricting that occurred as a

result of this ruling in the 1960’s adjusted districts so that they would no longer pack

urban voters into a single district. As a result, the partisan geography argument be-

came less relevant to scholars as they focused on a growing trend toward incumbency

advantage.

Recently, though, the partisan geography argument has made a comeback. Today

the urban-suburban differences in presidential voting is at its highest point (Nall,
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2015) and many scholars have begun to reference the effect residential patterns have

on partisan outcome of elections (McDonald, 2009, 2010; Erikson, 2002; Jacobson,

2003). For example, in a recent study, McCarty, Poole and Rosenthal (2009) execute

a number of tests that find that gerrymandering provides little explanation for polar-

ization in Congress. Instead, they find that the geographic differences in partisanship

across districts and across states are a much better predictor of ideological variation

in Congress. More recently, Chen and Cottrell (2015) make a similar argument about

Florida. They find that the actual districts in Florida are not much different from

ones that are designed impartially by a computer.

In providing empirical support for the computational model, I essentially continue

this line of argument. The goal of this chapter is to present evidence that the votes-

seats relationship is explained by the underlying partisan geography of the state. To

do this, I begin by establishing a link between partisan geography and district parti-

sanship. First, I attempt to convince the reader that it is safe to assume that districts

are designed to be compact. I do this by showing that a set of districts that have

been drawn to be nothing more than equally apportioned, contiguous, and reason-

ably compact tend to replicate the results of the actual districts in both Tennessee

and Texas. This suggests that the number of Democratic districts in these states

are simply a “natural” result of drawing districts over the state’s unique geographic

distribution of partisans.

I then show that the distribution of the two-party presidential votes across Con-

gressional districts from 1972 to 2004 tends to change as the underlying distribution

of partisans tend to change. This effect holds even when controlling for redistricting.

This implies that the geographic clustering of partisans determines the distribution

of the partisan vote across the districts.

In the last section, I test whether a change in partisan geography has the predicted

effect of changing the votes-seats curve. Using the same presidential data I show that
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partisan clustering bends the votes-seats curve in a way that is consistent with the

first and second hypothesis established in the previous chapter by the computational

model. Ultimately, the analysis provides some support for the claim that partisan

geography has an important role in representation in the United States.

3.3 Empirically Linking partisan geography to district par-

tisanship

The computational model of the previous chapter makes predictions about the

votes-seats relationship under various types of partisan clustering. However, the

model’s predictions rely on an important and potentially controversial assumption:

that the boundaries of legislative districts are largely determined by the underly-

ing geographic distribution of the population rather than the political ambitions of

boundary-makers. In other words, it is geography - not gerrymandering - that is

mostly responsible for determining how votes vary across districts and, thus, trans-

late into seats. And it is with this assumption that the model generates predictions

about how geography affects the link between votes and seats.

The assumption is that, by principle, legislative districts are drawn to be geograph-

ically contiguous and reasonably compact even in the face of partisan motivations.

This principle acts to constrain the discretion of boundary-makers by limiting the

set of potential districts they can achieve through gerrymandering. The rules are

simple. Contiguity simply requires that one is able to travel from any location in the

district to any other location in the district without crossing a boundary. Everyone

in a particular district is, therefore, circumscribed by the same border. Compactness,

although somewhat ambiguous in meaning, generally requires that the component

parts of a district are closely packed together (Niemi et al., 1990). In other words,

districts are designed to contain people and places that are in the same proximate
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location.

The principles of contiguity and compactness reduce some of the flexibility in de-

signing far-reaching and oddly-shaped districts. Since there is a normative belief that

geographically cohesive constituencies are desirable for representation, districts that

violate contiguity and compactness are likely to be perceived as illegitimate. Because

of this, drawing compact and contiguous legislative districts is a way to maintain

the integrity of the districts and legitimize the districting process. This is why many

states formally require that boundary-makers draw their district boundaries according

to these principles. To be precise, 23 states formally require that their Congressional

districts be contiguous and 19 states require that they be compact(Levitt, 2015).

Take Idaho for example. Idaho statute, like that of many states, restricts redistrict-

ing commissions from drawing districts that violate these geographic principles. The

statute explicitly states that the commission “should avoid drawing districts that are

oddly shaped” and that the districts should be “composed of contiguous counties”

(Idaho Code §72.1506). Therefore, there is a legal obligation to drawing compact and

contiguous districts.

It is this contiguity and compactness of the districts that make partisan geography

relevant to representation, which is the basis for the predictions of the computational

model. By placing these geographic limitations on the districting process, districts

will have the tendency to be drawn in a way that contains dense residential clusters

such that geographically cohesive communities will remain undivided. Simply put,

voters who live next to each other will be more likely to share a district than voters

who live far apart. And as a result of this tendency, district composition becomes a

function of voter location. Thus, geography is theoretically linked to representation.

If this link holds empirically, then the spatial patterns of partisans should deter-

mine how votes are distributed across the districts and translated into seats. This

should bring legitimacy to the predictions made by the computational model about
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the way in which such spatial patterns change the votes-seats curve. This section

is an attempt to establish this legitimacy. I provide empirical support for the argu-

ment that the distribution of partisan voters across the districts is a function of the

underlying geographic distribution of partisans.

I do this in two ways. First, l replicate the sampling procedure used in the com-

putational model on real-life data. Using a combination of precinct-level presidential

returns and census-level population data, I use the same computer algorithm that I

used in the computational model to randomly draw equally apportioned, contiguous,

and compact districts across Tennessee and Texas, as well as a number of other states.

I then compare the two-party presidential vote of the simulated districts to the two-

party vote of the actual districts in order to show the striking similarities between

the two outcomes. Although it is difficult to claim that boundary-makers are con-

strained by partisan geography and that the spatial distribution of partisans causes

the distribution of votes across the districts, I am able to show that the simulated

districts drawn under such constraints tend to replicate the real-world districts fairly

accurately. While gerrymandering is observable, I show that geography explains a

large extent of the variation across the districts.

To provide further support, I then run a second test that compares the underlying

partisan differences between urban and non-urban counties to the standard deviation

of partisanship across congressional districts in presidential elections from 1972 to

2004. The results of the test show that that as urban and non-urban counties divide

in partisanship, so too does the division between congressional districts. This is

further evidence that partisan geography influences the partisan distribution of votes

across districts.
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3.3.1 Simulating Districts

For the first test, I simply attempt to replicate the computational model of the

first chapter using actual data on the geographic distribution of voters. The purpose

of the test is to observe whether the computational model, which relies on simulating

districts using simulated data, has real-world empirical validity. In particular, the

model produces predictions about how geography affects the votes-seats curve under

the assumption that districts are drawn according to geographic principles that are

required for this relationship between geography and representation to exist in the

first place.

A counter-argument to this assumption is that boundary-makers have the discre-

tion to design any set of districts they please. Therefore, it is the boundary-makers

that determine how votes translate into seats and not geography. And if geography is

irrelevant to a district’s partisan composition, then the predictions generated by the

computational model would have no meaning. Therefore, one must be convinced that

boundary-makers are not at their full discretion in designing districts. Instead, for

the predictions to hold, boundary-makers must be constrained to drawing districts

that are geographically contiguous and compact, allowing for partisan geography to

be a determinant of electoral outcomes.

If partisan geography does in fact determine electoral outcomes, as the computa-

tional model assumes, then the real-world districts of a legislature should be consis-

tent with the set of potential districts that are drawn under geographic constraints.

Therefore, if I randomly sample from the set of compact, contiguous, and equally ap-

portioned districts in any given state and compare the sample to the actual districts

in the state, the outcomes should be similar. At the very least, this would suggest

that the actual districts are no different than ones achieved by drawing maps that

are made to only consider voter geography.
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3.3.1.1 Tennessee

Take Tennessee for example. After the 2010 Census, Tennessee partitions its

6,346,105 residents into nine Congressional districts. Each district is designed to be

approximately equal in population. The population in Tennessee is distributed across

the state in a pattern common to most states. A large majority of the population

resides either in urban centers or the peripheral suburbs. In Tennessee, around 4 of the

6.3 million people live in one of the four major metropolitan areas in the state. Each

of the four - Memphis, Nashville, Knoxville, and Chattanooga - has more than 500,000

individuals. Yet three-quarters of the individuals either live in Memphis or Nashville.

Moreover, these metropolitan areas are geographically distant from each other, such

that they nearly occupy the four corners of the state. Therefore, the geographic

distribution of the state’s population can be characterized by the dense residential

clustering of individuals within multiple, geographically-distant city centers, while

the remaining population resides in smaller-town rural communities.

The residential patterns in Tennessee can be observed visually in Figure 3.1(a).

The state has been divided into a grid of over 8,000 square polygons that have been

constructed from 2010 Census block data to contain small sets of the population.1

The average square contains just over 700 individuals, while a majority of the squares

contain between 350 and 1000 individuals. The centers of each square polygon are

marked by a grey dot and the distribution of these dots give a visual of where Ten-

nessee residents live. Again, the spatial clustering in metropolitan areas is made

clear.

The question posed in this section is whether this spatial distribution of Tennessee

residents determines district composition in the state. In other words, are districts

a function of the underlying spatial distribution of partisan voters? To test this, I

1Data was generously shared by Jowei Chen, who aggregated the Census blocks of each of the
states into a more manageable grid of small geographic units that contain roughly equal populations.
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Figure 3.1: The figure displays the steps of the simulation procedure used in Ten-
nessee. Once the geographic location of Tennessee’s population has been established
on the grid using 2010 Census block data (a), an algorithm is used to randomly gen-
erate 9 compact and contiguous districts of roughly equal size. It accomplishes this
by choosing nine blocks at random from the grid as the initial centers of the districts,
where voters are assigned to the nearest center (b). Then, to correct for malappor-
tionment, the gradient-step method iteratively moves the centers in a direction that
makes small improvements in the apportionment of the districts. The iterations stop
when the centers are positioned so that a roughly equal number of voters (within 1%
of the target population) are assigned to each (c).

simply draw districts that I know to be a function of the geographic distribution of

voters and compare them to the actual districts in the state. If the actual districts

are, in fact, a function of geography, then there should be similarities between the

two sets of districts.

To draw a sample of districts in Tennessee as a function of geography, I simply

follow the same procedure as the computational model. I devise an algorithm that

randomly chooses points on the grid to be the centers of districts. These centers are
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distributed across the state to be geographically distant from each other, so as to

cover the full extent of the state’s disparate geographic populations. Every point on

the grid is assigned to its nearest center, which makes the districts contiguous and at

least somewhat compact. Then the centers are adjusted by an algorithm where the

square polygons on the borders of the districts are shuffled between the districts until

the districts are roughly equal in population. In other words, the algorithm randomly

searches the grid for a set of compact, contiguous, and equally apportioned districts.2

It is a variant of the weighted k-means strategy. The procedure for Tennessee is

described in the following steps (See Figure 3.1 for a visual of the procedure):

Step 1 Randomly generate a set of 9 seeds using k-means++, where the first seed

is assigned to the location of any voter on the grid with uniform probability.

Then the second seed is randomly assigned to the location of any voter on grid

with a probability proportional to the distance from that voter to first seed.

Then third seed is randomly assigned to the location of any voter on grid with

a probability proportional to the distance from the voter to the nearest seed to

that voter (voters who are most distant from a seed are most likely to chosen).

This process repeats until all seeds have been set. The seeds will be the centers

of the nine districts. See Figure 3.1 (b).

Step 2 Assign all voters to their nearest center, thereby partitioning them into dis-

tricts.

Step 3 For each district, count the number of voters that have been assigned to it.

Continue only if any district population is more or less than 1% of the mean

population.

Step 4 Marginally change the location of the district center along the gradient that

best reduces the variance of the population across the districts. Repeat this

2The algorithm leverages a similar approach used in Fryer Jr and Holden (2011).
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step until all districts are within 1% of the mean population.

Step 5 The voters are assigned to their nearest centers (the black dots in Figure

3.5 (c)) forming nine contiguous, compact, and equally apportioned districts

(separated by the black lines in Figure 3.5 (c)).

Using this procedure, I am able to assign each of the square polygons to one of

nine districts in the state using only the location of the population in Tennessee to

inform the assignments. No rule in the algorithm pertains to partisanship directly.

Therefore, the assignments are unaffected by political ambitions as they might be

in real-world districting. Instead, they represent a random sample of equally appor-

tioned, contiguous, and compact districts that have been generated naturally from

the underlying geographic distribution of voters. Yet it is unclear to what extent

these “naturally” generated districts reflect the reality of the districting process in

Tennessee. Surely, there are other factors that contribute to the design of districts

in the real-world process. But if these other factors produce only small differences

between the actual and simulated districts then it is likely the case that both sets of

districts were generated under geographic constraints. To find out, I simply compare

the partisan composition of the natural districts to the composition of the actual

districts.

Following Chen and Rodden (2013) and Chen and Cottrell (2015), I use the two-

party presidential vote from the 2008 general election as a measure of partisanship.

This is a particularly useful measure because the 2008 votes have been collected,

geocoded, and released publicly at the precinct level (Ansolabehere and Rodden,

2012). Since precincts are the most geographically precise level at which votes are

tabulated, they can be used to calculate the partisanship of any district with precision.

By projecting the votes onto the smaller square polygons that have already been

assigned to both the actual and simulated districts, the votes can then be aggregated

at the district level so that actual and simulated districts can be compared.
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Figure 3.2 gives a visual of this process in Tennessee. In the first map of Tennessee

(a), the centers of each square polygon have been marked with a dot. The color of

each dot reflects the difference in the McCain-Obama share of the vote for the voters

within that polygon. Dots that are more red represent polygons where McCain is

favored. And dots that are more blue represent polygons where Obama is favored.

The result is a visual display of the spatial distribution of partisan voters in Tennessee.

Common to most states, partisanship in Tennessee is spatially clustered. While

we see that voters tend to reside in and around metropolitan areas like Memphis (in

the southwest corner), Nashville (in the north-central part of the state), Chattanooga

(in the southeast corner), and Knoxville (in the northeastern part of the state), it is

the the dense urban cores of these metropolitan areas that tend to vote Democratic.

This is in deep contrast to the red Republican clusters that surround the cores in

the suburban periphery. The Republican vote is more sparsely distributed, thinning

as it extends outward beyond the suburbs and into ex-urban and rural communities.

The spatial pattern of partisans is clearly marked by this urban/non-urban division

in Republicans and Democrats.

In the aggregate, Tennessee is a conservative state. It has had two Republican

senators since 1994 and it has supported all but two Republican candidates in pres-

idential elections since 1972 (Carter and Clinton are the exceptions). Even Al Gore

- a Tennessee native and long-time representative - lost the state to George W. Bush

in 2000. So although Obama won the densely populated urban cores of Memphis and

Nashville, McCain received a significant majority of the two-party vote across the

state in 2008. To be precise, McCain carried the state by almost an 8 point margin -

a solid Republican victory that would repeat again in 2012 for Romney. Yet, given a

58% vote share, how do these votes translate into seats?

This question is at the heart of the paper. Hypothetically, districts can be de-

signed to obtain a range of partisan outcomes. In fact, Republicans could design the
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Figure 3.2: (a) The projected partisanship of each of the 8,488 VTD subunits in Ten-
nessee. Obama supporters in blue and McCain supporters in red. McCain received
approximately 58% of the vote. (b) The boundaries of Tennessee’s actual Congres-
sional districts. (c) The two actual Congressional districts where Obama supporters
outnumbered McCain indicated in blue. (d) The boundaries of one of the fifty simu-
lated districting plans. (e) The two simulated Congressional districts where Obama
supporters outnumbered McCain indicated in blue.

district boundaries such that McCain would have carried 58% of the vote in each of

the districts. Such a margin would likely secure every district in Tennessee for the

Republican party. This would certainly have been a favorable partisan outcome for

the Republicans. And it was not beyond their ability to make it happen given that the

party was in control of the state’s districting process in 2012. Yet the argument being

made here is that the number of seats Republicans will receive in Tennessee given a

58% share of the vote depends largely on the geographic distribution of Democrats
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and Republicans. Although 100% seat share may be desirable for Republicans, the

reason why we don’t see Republicans taking all of the seats in Tennessee is simply

because it is difficult to draw nine geographically contiguous and compact districts

that assure Republican victory.

This is particularly the case in Tennessee because of the dense clustering in Mem-

phis and Nashville. Half of the population of Tennessee lives in either of these two

metropolitan areas. The cities have the largest urban centers in the state and are

home to most of its Obama supporters. It is these two cities that are potentially

responsible for maintaining Democratic districts in Tennessee. They make it difficult

for Republicans to create Republican districts in those areas without seriously reduc-

ing the compactness of the districts. Because the Democratic clusters in Memphis

and Nashville are large enough, dense enough, and geographically distinct enough

from each other they potentially force the hands of Republicans to draw at least two

Democratic districts in the state.

Figure 3.2(b) displays the boundaries of the nine post-2010 Congressional districts

in Tennessee and Figure 3.2(c) highlights the two districts that received a majority

Obama vote in 2008 in blue. Sure enough, of the nine districts in Tennessee two

emerge as Democratic districts. And, as expected, these two Democratic districts

emerge from Memphis and Nashville, where Democrats reside in dense urban clus-

ters. Moreover, the simulated districts tend to produce the same outcome. Figure

3.2(c) and 3.2(d) display the result of a single simulated set of districts in the state.

While the boundaries of these districts have been drawn at random they produce two

Democratic districts in Memphis and Nashville just like the actual districts.

This outcome was common among the 50 randomly generated districts. As Fig-

ure 3.3 displays, all of the simulated districts generate at least one Obama-majority

district. And about 40 of the 50 simulated districts generate two Obama-majority

districts. Therefore, we would expect about two Democratic districts to emerge from
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Obama Support Among Post−2010 Congressional Districts in Tennessee
(Actual vs. Simulated Boundaries)

Figure 3.3: The figure plots the partisanship of Tennessee’s Congressional delegation
for each of the 50 simulations. It displays the number of Obama-majority districts
in Tennessee that result from the 50 simulated boundaries randomly generated by
the districting algorithm. And it compares them to the number of Obama-majority
districts that result from the actual post-2010 boundaries. The results of the 50 sim-
ulations are indicated by the black dots arranged along the y-axis and randomly “jit-
tered” along the x-axis for visualization purposes. The average simulation produced
1.8 Democratic districts, as indicated by the dotted line while the actual districts
produced about 2 Democratic districts, as indicated by the red line. Therefore, the
simulated districts do a fairly good job at predicting the actual districts

Tennessee as a “natural” outcome of drawing equally apportioned, contiguous, and

compact districts in the state. Moreover, this “natural” outcome tends to replicate the

true number of districts that supported Obama over McCain in the actual post-2010

districting plans. While this does not prove that the actual districts were generated

using the same rules as the simulations, the similarity in the outcomes are consistent

with the hypothesis that they were at least affected by geographic constraints just as

the simulations were.

To further deconstruct the differences between the actual and simulated district-

ing plans, we can compare the partisan vote share district-by-district. To do this, I
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arrange the nine districts in each of the simulated districting plans from most Republi-

can to least Republican. Then I average the Obama vote share across the simulations

for each of the districts, starting with the most Republican district, then the second-

most Republican district, and the third-most Republican district, and so-forth until

an average vote share for each of the nine districts is obtained. Then I arrange the ac-

tual districts from most Republican to least Republican and match them, as ordered,

to their simulated counterpart. The scatter plot in Figure 3.4 displays the results.

Each district is arranged along the x-axis according to its simulated Obama vote

share and along the y-axis according to its actual Obama vote share. Therefore, the

extent to which the simulations match the actual districts is reflected in the extent to

which the districts fall on the dashed line indicating a 1-to-1 relationship. We can see

from the correlation that the partisan distribution across the districts is very similar

between the actual and simulated districts. While the correlation is not perfect, it

is certainly close. Both produce seven majority-McCain district and two majority-

Obama districts. Both produce an overwhelmingly Democratic district where around

75% of the voters supported Obama (this is the Memphis district). Both produce a

weak Democratic district with just over 50% of the vote. And both produce a set of

Republican districts whose Obama vote share ranges from 30% to just over 40% of

the vote. So the partisan distributions are strikingly similar to one another, which

is especially significant considering that the simulated districts were drawn randomly

according to only a few simple rules that districts be compact, contiguous, and equally

apportioned.

However, while there are similarities, it is important to point out that there are

differences between the two distributions as well. And these differences are poten-

tially the result of gerrymandering. This is evidenced by the fact that both of the

Democratic districts in Tennessee are more Democratic that their simulated coun-

terfactual, while most of the Republican districts are more Republican than their
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Obama Vote Across the 9 Post−2010 Congressional Districts in Tennessee
(Actual vs. Simulated Boundaries)

Figure 3.4: The figure compares the simulated Obama vote share across districts in
Tennessee to the actual vote share. The Obama vote share for each of the nine post-
2010 districts in Tennessee are ordered from least to most liberal. Then the Obama
vote share for each of the nine simulated districts are ordered from least to most
liberal and averaged across the fifty simulations. The actual and simulated districts
are then matched according this order and their vote share is plotted above. The
points are arranged along the x-axis according to their simulated Obama vote share
and arranged along the y-axis according to their actual Obama vote share. The strong
correlation between the two suggests that the actual districts and simulated districts
have similar distributions.

simulated counterfactual. Take the two most liberal Republican districts for exam-

ple. In the simulations, these districts achieve at least a 40% Obama vote share. But

in the actual plans, these districts stay under 37% Obama vote share. Therefore,

the districts are safer for the respective majority parties than they would have been

under a set of districts that might have emerged through more “natural” conditions.

Because of this, it is possible that Tennessee’s Republican state legislature, which

controlled the districting process in 2012, designed the districts so that seven of the

nine would remain safe Republican seats. Therefore, they conceded the two Demo-

cratic seats in Memphis and Nashville, packed them with slightly more Democrats

than the districts might otherwise have contained, and used the extra Republican

votes to pad the other seven districts for safety. Therefore, one might argue that
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Tennessee simply exemplifies that a state’s districts are a function of gerrymandering

and not geography.

However, although gerrymandering might have taken place in Tennessee, the re-

sults are not inconsistent with a geography story. It is still very likely that the

boundary-makers were geographically constrained. For example, if the goal of the

Republicans was to make seven safe Republican districts by sacrificing two Demo-

cratic districts, why not overwhelmingly pack both of those Democratic districts to

the full extent possible? If geography was no constraint, Republicans could easily draw

district boundaries around Democratic voters in a way that would overwhelmingly

pack the two Democratic districts. Then they could reassign the extra Republican

voters to the Republican districts and improve the safety of a Republican victory in

those districts.

Yet, they did not do this. Instead, the distribution of partisanship across the

state’s nine districts seems to closely follow the distribution of partisanship achieved

by the simulations. While it is just one example, it is consistent with the assumption

that geography affects the votes-seats relationship. In Tennessee, the geographic clus-

tering of Democrats in Memphis and Knoxville establishes two Democratic districts

in a state where Democrats are in the minority.

3.3.1.2 Texas

Another example of a state where Democrats likely win seats due to Democratic

clustering is in Texas. With over 25 million people declared in the 2010 Census, Texas

was allocated 36 congressional districts in 2012. In a state where McCain was favored

by just over 5 points and Romney was favored by just over 7 points, Republicans

managed secure exactly two-thirds of the seats in 2012. While some might perceive

that this is a direct result of gerrymandering, I provide evidence that the result is much

more natural than it appears. I conduct the same procedure in Texas as I did with

70



Tennessee to provide further evidence that this underlying geographic distribution of

partisans in Texas has power in explaining partisanship across the state’s districts.

Figure 3.5(a) displays the geographic distribution of the 2008 Obama-McCain vote

in Texas. Like Tennessee, Texas is marked by a largely Republican population where

residents cluster into a handful of cities that are spread out across the state’s disparate

geography. Over 4 million people live in Harris County (Houston) on the easternmost

part of Texas, while another 4 million people live over 200 miles northwest in Dallas

and Tarrant counties (the Dallas-Fort Worth area). El Paso, on the other hand, is

tucked remotely into the state’s western corner between Mexico and New Mexico and

is over 500 miles from the nearest major Metropolitan city, San Antonio. At the cores

of these cities are dense Democratic populations, with strong Republican suburbs at

the peripheries. The spatial patterns of partisans in Texas seem to be consistent with

those of Tennessee.

However there are some differences. In Texas, some major cities appear to be

more partisan than others. For example, El Paso County - with over 800,000 residents

and marked by a large Hispanic population - overwhelmingly supported Obama with

nearly two-thirds of the vote in 2008. Yet Houston’s Harris County was less supportive

of Obama, having split the vote between the two presidential candidates nearly 50-

50. Moreover, not all rural areas in Texas support McCain over Obama. Though

it may be difficult to observe in the figure, rural communities located south of San

Antonio are actually strong Obama supporters. These are predominantly Hispanic

communities that carry a significant Democratic vote and they add a unique twist to

the already complex geographic distribution of Texas partisans.
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(a)
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(d) (e)

Figure 3.5: (a) The projected partisanship of each of the 54,401 VTD subunits in
Texas. Obama supporters in blue and McCain supporters in red. McCain received ap-
proximately 55% of the vote. (b) The boundaries of Texas’ actual 2012 Congressional
districts. (c) The 12 Congressional districts where Obama supporters outnumbered
McCain indicated in blue. (d) The boundaries of one of the fifty simulated district-
ing plans. (e) The 12 simulated Congressional districts where Obama supporters
outnumbered McCain indicated in blue.
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Yet, although the partisan distributions in Texas and Tennessee have their dif-

ferences, partisan geography still appears to explain a lot of the variation in the

partisan composition of the districts. We can see that the actual districting plans

in Figures 3.5(a) and 3.5(b) produce very similar Obama-majority districts as the

simulated districting plan displayed in Figures 3.5(c) and 3.5(d). Both have a to-

tal of 12 Obama-majority districts and 24 McCain-majority district. Moreover, in

both plans, the Obama-majority districts seem to emerge in nearly identical loca-

tions. Both have Democratic districts that extend across the southern part of the

state from El Paso in the West to the very southern tip of the Texas-Mexico border

in East, extending up toward Corpus Christi and into southern San Antonio. And

both have multiple Democratic districts that emerge from Houston and Dallas, as

well as the San Antonio-Austin area. The similarities between the real-world districts

and the simulated districts are striking.

Figure 3.6 displays the partisan outcomes of all fifty simulated districts that were

run in Texas. Once again, the simulations tend to replicate the outcome of the

real-world districts fairly well. Most of the simulations produced either 12 or 13

districts while average simulation produced 12.4 districts. Therefore, one could expect

between 12 and 13 Democratic districts to emerge from Texas as a natural result of

the districting process. By drawing 36 equally apportioned, contiguous, and compact

districts over the unique geographic distribution of voters in Texas, Democrats will

naturally win between 12 and 13 seats. And sure enough, this number almost perfectly

estimates the actual outcome in the state, suggesting that geography once again

played a significant role in the determining partisan seat share in Texas.

Moreover, we can look at a district-by-district comparison for Texas in Figure

3.7. The figure shows that, much like Tennessee, compact, contiguous, and equally

apportioned districts drawn at random from the underlying population do a pretty

good job at predicting the partisan composition of each of the actual districts. Most
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Obama Support Among Post−2010 Congressional Districts in Texas
(Actual vs. Simulated Boundaries)

Figure 3.6: The figure plots the partisanship of Texas’ Congressional delegation for
each of the 50 simulations. The average simulation produced 12.4 Democratic districts
while the actual districts similarly produced 12 Democratic districts. McCain won
two-thirds of the districts with 55% of the vote and, although some might suggest
that this is the product of gerrymandering in the state, the simulations show that the
outcome is likely the “natural” outcome for Texas. This is especially the case given
that the simulated districts do a fairly good job at predicting the actual districts

of the districts fall on the 1-to-1 line. Both the simulated and actual districts range

from around 25% to around 75%. Both have many more Republican districts than

Democratic Districts, meaning that in both cases the distribution of Democratic votes

are skewed toward Republicans. The similarities between the two distributions imply

that geography plays a role in the districting process.

Yet there are clear differences between the actual and simulated distributions.

And much like in Tennessee, these differences imply gerrymandering. The strongest

indicator of this is that districts tend to fall off the 1-to-1 line as they approach the

simulated 50-50 split. As a result, the districts that should be competitive under a

natural districting process are less competitive under the actual districting process.

What is occurring is that most of the Democratic districts in Texas are even more
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Obama Vote Across the 36 Post−2010 Congressional Districts in Texas
(Actual vs. Simulated Boundaries)

Figure 3.7: The figure compares the simulated Obama vote share across districts
in Texas to the actual vote share. The 36 actual Congressional districts are plotted
against the average simulated district. The strong correlation between the two groups
suggests that the actual districts and simulated districts have similar distributions.
The implication is that the distribution of partisan votes across Texas districts is a
function of drawing compact, contiguous, and equally apportioned districts over the
the complex partisan geography in the state. Moreover, the discontinuity at 50% vote
share suggests that although geography plays a role, so does gerrymandering.

extreme than they should be under a randomly drawn districting plan. The Re-

publican voters that should be in those districts are being distributed into the more

marginally Republican districts so as to bolster the safety of those seats. As a re-

sult, the marginally Democratic and marginally Republican seats are safer than their

counterfactual, reducing the likelihood that the districts will change parties given a

swing in the partisan vote share.

Moreover, gerrymandering in Texas has a strong racial component. Since 1975,

Texas has been a pre-clearance state under Section 5 of the Voting Rights Act. This

means that the districting plan for the state must be approved by the Department of

Justice to ensure that the minority vote is not diluted. And while the Republican-

controlled Texas legislature designed official maps for the state, these maps were

eventually adjusted by a federal three-judge panel in San Antonio. The panel made
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changes to the map that would improve the voting blocs for Hispanics and blacks

in a number of districts (Fernandez, 2012). We can see the affect of this in Figure

3.8. The first plot in Figure 3.8 compares the Hispanic populations of each district

in the state to the Hispanic populations of the simulations. The second plot does

the same for black populations. Clearly, there are a number districts where Hispanic

and black populations exceed that which would be expected under a random draw

of the districts. Therefore, Texas exemplifies a state where districts are drawn to

intentionally improve the voting strength of racial minorities.

Still, racial gerrymandering has partisan consequences. Since Hispanics and blacks

vote overwhelmingly Democratic, packing their vote into a few districts can create an

inefficient distribution of Democratic voters across the districts. And, as we saw in

Figure 3.7, Republicans have used this Democratic packing to redistribute Republican

voters to marginally Republican districts, creating the discontinuity mentioned above.

Therefore, it is clear that Texas districting is not a purely natural process. There is

no doubt that gerrymandering is present. We have observed the partisan advantage

being adopted into the plan. And we have observed the legal influences on a district’s

racial composition. Both of which cause the redistricting plan in Texas to deviate from

a more natural result in which partisan geography determines districts composition.

Nonetheless, the results do not overturn the hypothesis that partisan geography

is a determinant of district composition. On the contrary, the similarities between

the simulated and actual districts are consistent with the assumption that partisan

geography is influential. For example, the simulated districts - that are drawn only ac-

cording to geography - tend to replicate the partisan outcomes of the actual districts

quite well. They provide a simple answer to the question: “Given a 55% McCain

vote share, why is McCain favored in 67% of the districts in Texas?” The simula-

tions suggest that this is the natural outcome of drawing compact, contiguous, and

equally apportioned districts. While gerrymandering may cause the deviation from
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Figure 3.8: Comparing the Hispanic populations (top) and black populations (bot-
tom) between each of the actual and simulated districts. Racial gerrymandering is
clearly present in Texas, where the voting blocs of racial minorities are protected
under Section 5 of the Voting Rights Act. Both Hispanics and blacks are packed into
districts where they achieve stronger voting blocs that they would have under a more
“natural” set of districts.

this natural outcome, the deviations are not major.

3.3.1.3 Additional States

In order to provide further support for the hypothesis that districts are a function

of partisan geography, I have performed similar simulations on four additional states.

This time, instead of using states that favored McCain, I use states that favored

Obama. In particular, I analyze the two largest Democratic states in the west, Cali-
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(d) Pennsylvania

Figure 3.9: A comparison of the actual and simulated districts for four large Demo-
cratic states. The figure plots California (61% Obama vote share), Washington (57%
Obama vote share), New York (63% Obama vote share), and Pennsylvania (54%
Obama vote share). The figures provides more support for the hypothesis that rep-
resentation is influenced by the underlying geography of voters. In each state, the
simulated districts -which only consider voter geography - are nearly identical to the
actual districts.

fornia and Washington, as well as the two largest Democratic states in the East, New

York and Pennsylvania. There are 108 districts across the four states, representing a

fourth of the the total number of districts in Congress. Although it is not an analysis

of every state, it covers significant a portion of Congress.

I have simulated 50 different districting plans for each of the states, just as I did

for Texas and Tennessee. And I have similarly plotted the Obama vote share for each
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district against its simulated counterpart in Figure 3.9. The result of this exercise is

clear. Almost every actual district across the four states is predicted by the simulated

districts with precision. Both the range and variance of the districts in the two groups

are nearly identical to each other. The correlation in each state is almost a 1-to-1

mapping. Most striking are the 53 districts in California, where we can see that only

a few districts deviate from perfect linearity. The distribution of votes across the

Congressional districts in the state is thoroughly explained as a function of drawing

compact, contiguous, and equally apportioned districts over the partisan geography

of California.

The relationship between the simulations and the actual districts provide jus-

tification for the assumption that partisan geography affects representation. The

distribution of votes across the districts in a state is determined by the clustering of

Democrats and Republicans. When constrained to draw compact, contiguous, and

equally apportioned districts over a complex geographic distribution of partisans, the

districts will be more likely to contain clusters of Democrats and clusters of Republi-

cans. This has the effect of changing the relationship between votes and seats. And

this is the basis of the computational model set out in Chapter 1.

3.3.2 The Relationship between District Partisanship and County-level

differences in Partisanship

In this section, I use historic presidential data to provide further evidence that

the underlying geographic distribution of partisans is, in fact, associated with how

partisans are distributed across Congressional districts. This is the major assumption

made by the computational model of the previous chapter and the purpose of the

empirical section thus far. Specifically, I test whether an increase in the geographic

clustering of partisans creates a subsequent increase in the polarization of partisanship

across Congressional districts. Therefore, I am testing if the way in which partisanship
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is distributed geographically in a state is connected to the way in which partisan

votes are distributed across its districts. Once again, this builds a connection between

partisan geography and the composition of Congressional districts. Then, once I have

established this link, I will use the next section to show that the increase in partisan

clustering produces an effect that corresponds with the hypotheses generated by the

computational model. Specifically, partisan clustering tends to distribute partisans

across legislative districts in such a way that would reduce the seat share of any

party that would hypothetically hold a 55% majority of the vote. Moreover, it would

reduce the seat share for Democrats more than Republicans. In other words, partisan

clustering distributes partisans across districts in such a way that disadvantages the

party with the majority vote, but has the effect of disadvantaging Democrats more

than Republicans because of the tendency to cluster.

I use the two-party presidential vote from 1972 to 2004 aggregated at the con-

gressional district level and at the county level. The presidential vote works as a

proxy for partisanship at both the subnational and subdistrict levels. The Congres-

sional district-level aggregation, for example, indicates how partisanship is distributed

across each state’s district. And the county-level aggregation allows me to measure

how partisanship is distributed geographically. There are 3,143 counties in the United

States, which produces a much finer view of the geographic landscape than the 435

Congressional districts. Moreover, unlike Congressional districts, counties stay in the

same place, making them independent of district borders. Therefore, where partisans

tend to cluster in urban areas, we should expect to see the division between urban and

non-urban partisanship increase. As a result, the difference between the urban and

non-urban Democratic vote share works as a proxy for the geographic polarization

of partisans. Although imperfect, it should give a relatively good measure of how

partisans cluster within and across states.

To measure the division in partisanship between urban and non-urban counties
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in each presidential election, I simply identify those counties that are more than 50%

urban according to the most recent Census to each election. For example, I used the

2000 Census to identify urban counties in the 2004, 2000, and 1996 elections, I used

the 1990 Census to identify urban counties for the 1992 and 1988 elections, and so

on. Then I simply added the two-party vote across the urban counties and across the

non-urban counties for each state and took the absolute difference in their partisan

vote share. The presidential two-party vote share is assumed to be a good proxy for

partisanship at the state, district, and sub-district levels for which it is being used.3

Again, the difference between the urban and non-urban presidential vote is in-

tended to capture partisan clustering. And if geographic partisan clustering affects

the distribution of the partisan vote across Congressional districts, then as this divi-

sion increases - and as partisan clustering increases - there should be a corresponding

increase in the distribution of partisans across Congressional districts. In other words,

as Democratic clustering goes up, so too should the standard deviation in Democratic

vote share across a state’s Congressional districts. If this is the case, then it can be said

that the geographic polarization of partisan votes similarly affects the the deviation

in the district-level vote, thereby tying the geographic distribution of partisanship to

the district-level distribution of partisanship. This is a crucial step in connecting ge-

ography to the votes-seats curve since the distribution of partisanship across districts

is what determines how votes translate into seats.

Figure 3.10 displays this relationship between the urban/non-urban difference in a

state’s Democratic vote share and the standard deviation of that state’s Democratic

vote share for each of the presidential elections from 1972 to 2004. As we can see,

in each election there is a clear, positive correlation between the urban/non-urban

difference and the district-level standard deviation. States like New York, California,

3While it is not perfect, and is susceptible to presidential tides, county-level presidential vote
data is perhaps the best measure for assessing partisan clustering at the sub-district level, where
data is scarce.
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The Relationship between the Urban−Rural Difference in Partisanship and
 the deviation in the Two−Party Presidential Vote Accross Congressional Districts 

Figure 3.10: The relationship between the division in the two-party vote share be-
tween urban and non-urban counties and the dispersion of the partisan vote across
Congressional districts for each presidential election from 1972 to 2004.

Pennsylvania, and New Jersey consistently show strong differences between urban

and non-urban presidential vote. And, as a result, they also show a high degree of

deviation in district-level partisanship. On the other hand, states where there is less

of an urban/non-urban division - like Arizona, Massachusetts, Kentucky, and Utah -

show a much lower degree of deviation in district-level partisanship.
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This cross-state analysis presents a clear relationship between geographic-level

polarization and district-level polarization across the states. It suggests that con-

gressional districts are designed in such way that divides the districts according to

urban/non-urban geographic divisions. Rather than split up urban clusters and com-

bine them with non-urban communities, districts are designed, instead, to contain

them. This is why district partisanship is so responsive to urban/non-urban differ-

ences in the vote.

While these scatterplots show cross-state relationships between districts and their

underlying partisan geography, Table 3.1 displays this relationship using within-state

variation. It sets up a basic multivariate OLS regression model where the dependent

variable is, again, the standard deviation of the Democratic presidential vote share

across a state’s congressional districts over the nine elections from 1972 to 2004.4

The primary independent variable is the absolute difference between urban and non-

urban counties. States that have held less than two districts for any of the elections

are excluded, making it it a thirtyfive state regression. State-level fixed-effects are

added so as to capture within-state variation. This eliminates a lot of the noise in the

cross-state relationship due to differences in the underlying geographic distribution

of partisans as well as differences in the number of districts in a state.

The first model (1) of Table 3.1 establishes that there is a significant within-state

relationship between the urban/non-urban divide and the district-level standard devi-

ation of partisanship. This suggests that as the urban/non-urban divide increases in

a state, on average, the partisan differences across that state’s congressional districts

increase as well. Therefore, district partisanship is a function of urban/non-urban

partisan divisions. As a result, geographic polarization creates district-level polariza-

tion, which is consistent with the assumption made by the computational model of

Chapter 1.

4I begin at 1972 because it is the first election where every district has been designed to be equally
apportioned under the law.
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However, the expectations of the computational model is that partisan clustering

will affect the votes-seats relationship even under partisan redistricting. The assump-

tion is that districts are drawn to be equally apportioned, contiguous, and generally

compact, which limits the set of possible boundaries that can be drawn to favor a

particular party. This is an important assumption because it has the effect of making

geography relevant to election outcomes since districts will tend to contain compact

geographic clusters rather than extend to far reaching areas to include distant voters.

Yet for this assumption to hold, the effect of partisan geography should be indepen-

dent of redistricting. Therefore, the second model in Table 3.1 attempts to control for

the effect of redistricting by adding a dummy variable for the years when redistrict-

ing occurred and an interaction variable between redistricting years and urban/non-

urban difference. The purpose of this interaction is to observe whether the effect of

the urban/non-urban difference variable is different in redistricting years. However,

its insignificance in the model suggest the effect of the urban/non-urban difference

variable is not diminished by redistricting and the average within-state effect of clus-

tering on county-level partisanship remains. Although, given the significance of the

redistricting variable, the model does suggest that redistricting does play a role in

polarizing the district, but the effect is independent of the effect of geographic clus-

tering measure. In other words, the geographic clustering of partisanship remains an

important force in determining the distribution of partisanship across districts, even

with redistricting.

Additionally, in the third model, I control for another potentially confounding

variable: total number of districts. Since the total number districts likely has an

effect on the standard deviation of Democratic votes across the districts (especially

since it changes the denominator of the measure), I attempt to isolate its effect using

it as a control variable. Model (3) shows the result. We can see that the variable is

positive and significant, suggesting that adding a district to a state has the effect of
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increasing the standard deviation of partisanship across its districts. This is somewhat

counterintuitive because one might expect a decrease in the standard deviation as a

result of increasing the denominator in calculating the standard deviation measure.

However, when adding a district over a non-uniform spatial distribution of partisan

votes, the relationship between the number of districts and the standard deviation is

further complicated. In fact, by adding another compact district to a geographically

polarized state the districts have the potential to polarize themselves. Nonetheless,

as we can observe from the model, the urban/non-urban effect remains even when

holding the number of districts constant.

However, this effect is lost when the model is run on southern states only. As

we can see from the fourth model, by reducing the observations to include only the

eleven former Confederate states, the effect of the urban/non-urban difference vari-

able is eliminated.5 There are a number of potential explanations for this. One likely

explanation is that in most Southern states, the geographic distribution of partisans

is different than the geographic distribution of partisan elsewhere. In particular, par-

tisan division and presidential voting in the South is much more aligned along racial

dimensions than the non-Southern states (Valentino and Sears, 2005). And unlike the

non-Southern states, this racial divide is not necessarily an urban/non-urban divide.

Rather in deep-south states - ranging from East Texas to North Carolina - blacks tend

to reside in a rural agricultural region that has come to be known as the“black belt.”

Although, the “black belt” creates a certain partisan spatial pattern, it is different

from the urban/non-urban pattern observed in non-Southern states. Because of this,

the urban/non-urban difference measure likely fails to capture the type of clustering

going on in the South.

Moreover, the districts in these Southern states are subject to DOJ pre-clearance

5Although the interaction term is still significant, I assume that this is a spurious effect. There
is little theoretical reason why urban/non-urban geographic difference have an effect in redistricting
years but not in others.
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under Section 5 of the Voting Rights Act. This means that boundary-makers are

restricted from drawing districts that dilute the black vote. As a result, these states

have intentionally designed non-compact districts that combine rural and urban black

voters so as to achieve majority-black voting blocs. Therefore, these states are con-

sistently engaging in racial gerrymandering. They violate the geographic principle

of compactness to meet the legal requirements set out by the VRA. Therefore, geo-

graphic clustering would not have the same effect on the standard deviation of votes

across the districts as it would have in non-southern states.

Nonetheless, the relationship between partisan geography and district composition

does seem to hold for most states. We see that the polarization of the districts

tend to increase as partisanship tends to cluster geographically. And, moreover, this

relationship holds even in the presence of redistricting. Therefore, providing empirical

validity for the computational model, I have established that distribution of votes

across the districts is a function geography.

3.3.3 Linking partisan geography to the votes-seats curve

Although this does not necessarily mean that Congressional districts will change as

a result of the changing partisan polarization of districts, it does mean that geography

and trends in geography are a component of changing district composition. And

when district composition is lopsided across the districts in such a way that it packs

Democrats into a few districts but not others, then it naturally alters the opportunity

for Democrats to win those districts compared to what they would have won without

such packing. When Democrats cluster geographically, they cram their votes into a

few large dense areas. And if those dense areas are dense enough and are populated

enough, they can create Democratic districts where they might not otherwise have

received them.

Given that there is a link between partisan geography and the variance of district
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partisanship, I can proceed to show how that connection translates votes into seats.

The goal of this section is to test the validity of the computational model. Specifically,

I test the first and second hypotheses to simply observe whether partisan clustering

has the effect of (1) flattening the votes-seats curve and (2) does so in a way that

affects the parties asymmetrically. By testing the first and second hypothesis, we can

begin to observe whether the districts are affected in a way that is predicted by the

computational model in Chapter 2. The first hypothesis states that the geographic

clustering of Democratic voters has the effect of reducing the seats for the majority

party, regardless of which party is in the majority. However, as the second hypothesis

predicts, Democrats should experience a greater reduction of seats than Republicans.

In order to test these hypotheses, I want to observe what the average effect of

partisan clustering is on a Congressional election in a state where Democrats hold a

significant majority of the vote compared to when Republicans hold a significant ma-

jority of the vote. Unfortunately, to isolate the effect of geography on the votes-seats

curve is a challenge. One would need to observe the same legislative election occur

under two different geographic concentrations of partisans and observe the differences

under a Democratic majority and under a Republican majority, while all else is held

equal. Since such a case does not exist, I attempt to leverage the variation in geo-

graphic concentrations of partisans within states over time. Using the presidential

elections above allows me to observe the Democratic vote share for a state and its con-

gressional districts and to measure the geographic clustering of its partisans using the

urban-rural difference measure above. Ideally, I would observe a state where Repub-

licans hold a 55% majority of the presidential vote in each election and observe how

the party’s difference changes as the underlying urban-rural difference in partisanship

changes over time. Then I would observe that same state where Democrats hold a

55% majority in each election and similarly make the same observation. Therefore,

I would be observing the effect of geographic clustering on seat share while holding
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vote share constant, both when Republicans hold the majority and when Democrats

hold the majority.

Since a state’s vote share changes over the course of nine elections, I would not

be able to hold the vote share constant. Nor would I be able to observe the same

state where one party has the same vote share in the same election. However, to

get a sense of what such an occurrence might look like, I induce this hypothetical

situation for each state using uniform statewide swings. Therfore, I adjust a state’s

election results to a 55% Republican majority and to a 55% Democratic majority by

uniformly shifting the vote share of each district by the difference needed to adjust

the statewide vote share to 55% in either direction. For example, a state with a

Democratic vote share of 51% can be adjusted to a 55% Democratic vote share by

adding 4 points to each of its district’s Democratic share of the vote. This gives me

two versions of the same state: one where the Democrats hold a majority and one

where the Republicans hold a majority for each election. With these two versions

of the same state I can observe changes to their seat share given the changes in the

underlying urban-rural partisan differences.

In order to calculate seat share for the majority party for each state in each year, I

calculate the percent of districts that have a majority of that party’s presidential votes.

I do this for the whole spectrum of the potential vote share under the uniform swing

to get a votes-seats curve for each state. Then I use a LOESS smoother to smooth

the curve, allowing for a marginal change in vote share to correspond with a marginal

change in seat share at every percentile of votes. This eliminates the discontinuity

of the vote-seats curve, in which a single vote can potentially turn a party’s seat

share from 0% to 25% in a 4-district state. Instead, a single vote gradually increases

the propensity for the seat share to change. In other words, it gives an expected

value of that seat share for every percent of the vote share. This is equivalent to

the smoother used in displaying the vote-seats relationship of the 10-district state
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in the computational model, where the curve allows for every share of the seats to

correspond with a unique share of the votes.

Using the 35 states that have had no fewer than 3 districts since 1970, I estimate

the average effect of an increase in the urban-rural difference in partisanship - the

same variable used above - on the majority party’s projected share of the seats,

given a hypothetical 55% vote share.6 Each model uses fixed effects to capture the

within-state variation. The first model (1) of Figure 3.2 suggests - as expected -

that urban-rural differences in the partisanship of voters has the average effect across

the states of decreasing the majority party’s expected share of the seats. The effect

occurs regardless of the party in the majority. Therefore, one can expect non-marginal

majorities to lose seats as their votes become clustered.

The second model in Figure 3.2 makes two additions to the first model. First, it

adds a control for the total number of seats in the state. Although the hypothesis

assumes that this number is held constant, real-world districts gain and lose seats

with fluctuations in their population. So, controlling for this effect is the best I can

do. Interestingly enough, the variable is significant and negative, suggesting that the

addition of a seat creates a reduction in the majority party’s seat share, all else equal.

This implies that, on average, we can expect an additional seat to vote against the

majority party. This is counterintuitive, and I do not have a good explanation for

why this is. But it may have something to do with underlying geographic distribution

of voters making it difficult to add an additional majority party seat.

Second, I have added an interaction variable. The variable interacts the urban-

rural difference measure with a dummy variable indicating whether Democrats (1) or

6The projected seat share uses presidential voting data rather than Congressional voting data.
It assumes that Democrats win the Congressional seat where the Democratic presidential candidate
receives a majority of the vote. Moreover, the estimated seat share at a hypothetical 55% vote share
is determined by estimating the votes-seats curve for every state. To do this, I used uniform swings
to get a prediction of the seat share at every split of the two-party vote. I then used a LOESS
smoother to achieve a smoothed continuous curve across across the full set of votes. Therefore, the
seat share recorded in the data is the LOESS prediction at a 55% Republican seat share and at a
55% Democratic seat share
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Republicans (0) hold the hypothetical 55% majority. This tests whether the average

effect of Democratic clustering is different for Democrats than it is for Republicans.

The second hypothesis of the computational model expects that if the clustering is

asymmetric, the reduction of seats should be greater for Democrats than for Repub-

licans. The significant negative effect suggests that it is. While both majority parties

lose seats due to Democratic clustering, one can expect the Democrats to lose more

than the Republicans. In other words, the average effect of Democratic clustering

across the states is one that likely produces asymmetric seat gains and losses for the

party. Figure 3.11 plots the interaction effect. The x-axis is the difference between

the two-party presidential vote between and urban and non-urban counties. The

y-axis is the projected seat share of the average state. The red and blue lines repre-

sent the linear relationship between the two variables for Republican majorities and

Democratic majorities respectively. Therefore, given a hypothetical 55% vote share,

both Democrats and Republicans would lose seats from partisan clustering. However,

Democrats would lose more seats than Republicans would lose.

Ultimately, the result makes a basic point that how votes translate into seats is

connected to the geographic polarization of voters. As voters polarize geographi-

cally the votes-seats curve will experience a change. In particular, the tendency for

Democratic votes to cluster in urban areas has an effect of creating an asymmetric

votes-seats curve that mostly harms Democrats. Compared to a less clustered en-

vironment - for most shares of the two-party vote - Democrats lose legislative seats

through clustering. However, Democrats can find this type of asymmetric clustering

favorable for cases when they hold a non-marginal minority of the vote. Therefore,

Democrats can make partisan gains from clustering in Republican controlled states.

In the third model, I test whether the effect holds even in the presence of redis-

tricting. There is the potential that the effect of partisan clustering on the votes-seats

curve is lost once parties redraw district boundaries. Therefore, the parties redraw
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the boundaries to produce a set of districts that eliminate the negative affect of

partisan clustering. Therefore, I reduce the set of the observations to include only

those elections immediately following a redistricting cycle. These elections consist

of newly-minted districts where boundary-makers have recently been given the op-

portunity to alter disadvantageous districts. Yet still, the same effect of partisan

clustering persists. It distributes the partisan vote across the districts in a way that

harms the majority party, but asymmetrically harms Democrats more than Repub-

licans. Therefore, partisan clustering changes the votes-seats curve despite presence

of gerrymandering.

In the fourth model, I test whether the effect holds in the former Confederate

South. As mentioned above, the South has a very different partisan landscape than

the rest of the country. For example, as a result of the black belt, there is a large

population of non-urban Democratic voters in the deep South, which is unlike the

partisan clustering we see elsewhere. Moreover, every state in the deep South is sub-
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ject to pre-clearance by the DOJ. This results in serious racial gerrymandering, where

minority-majority districts are intentionally designed to maintain black representa-

tion. Hence, partisan clustering is likely to have a very different effect on partisan

seat share across Southern states. Sure enough, we see that the significance of both

the urban/non-urban difference variable and the interaction variable falls out for the

South.

In the fifth model (5), I address a potential point of criticism that the test uses

some states that are unlikely to swing from 55% Democrat to 55% Republican. Cur-

rently, I am making inferences about what would occur in a state if the majority

switched from Democrat to Republican (or vice-versa). One might argue that this is

not a credible scenario for the states that are consistently Democrat or consistently

Republican. Therefore, the conclusions might not hold in more moderate states where

such a switch is more likely to occur. To correct for this, I reduce the observations

to “marginal” states only. These are states that are, on average, within 3 percentage

points of a toss-up election. Therefore, we can assume that these are states that might

credibly switch from Republican to Democrat in the presence of a partisan tide. Still,

the effect holds. Even in marginal states, where partisan vote share is most likely

to swing from one party to the next, partisan clustering along the urban/non-urban

dimension has the same effect of asymmetrically flattening the votes-seats curve.

3.4 Conclusion

The previous chapter develops a model that produces a set of theoretical expecta-

tions about how partisan geography influences partisan representation in the United

States. In particular, the model suggests that the geographic clustering of partisan

voters determines the shape of the votes-seats curve. As Democratic voters tend to

cluster in dense metropolitan areas, their votes will pack into a few districts, increas-

ing the dispersion of votes across the districts and leading to a flatter votes-seats
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curve. And, if this clustering is asymmetric - where Democrats cluster more than

Republicans - then this curve will flatten asymmetrically. A flatter curve means that

partisan clustering has the effect of reducing the majority party’s share of the seats

And the asymmetry of the curve means that Democratic majorities will lose more

seats than Republican majorities.

In this chapter, I have attempted to provide some empirical validation for the

model and its expectations about the votes-seats curve. I have done this in three ways.

First, I have shown that the current Congressional districts are similar in partisan

composition to a set of districts that have been drawn in a way that only considers

the underlying geography of the state’s population. The composition of the current

districts deviate only marginally from the set of hypothetical districts drawn to be

compact, contiguous, and equal apportioned. In Tennessee and Texas, for example,

the average hypothetical districts produce the nearly the same number of McCain-

majority districts as the actual districting plans in those states. Despite being states

where McCain received a strong majority of the votes, the geographic density with

which Democrats cluster in these states lead to Democratic seats. It is difficult to

draw compact and contiguous districts in Tennessee without drawing two Democratic

districts around the densely packed Democrats in Memphis and Nashville. Therefore,

the Democratic clustering in those cities produce Democratic seats in Tennessee. And

this phenomenon exists even as gerrymandering in those states is used to protect

incumbents.

Second, I show that the standard deviation of the two-party presidential votes

across Congressional districts from 1972 to 2004 increases as the urban/non-urban

division in partisanship increases. Therefore, districts tend to be aligned with the

urban/non-urban geographic divisions. Thus, as Democrats tend to cluster in urban

areas, they pack themselves into a few districts causing Democratic districts to be-

come more Democratic and Republican districts to become more Republican. The
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implication is that the geographic clustering of partisans changes the distribution of

partisan votes across the districts, thereby changing how votes translate into seats.

And lastly, I show how this geographic clustering affects the votes-seats curve. In

particular, I show that partisan clustering flattens the curve in a way that is consistent

with the first and second hypothesis established by the model of the fist chapter. This

means that the geographic clustering of partisans reduces the seat share of the party

that holds the majority and that the reduction is greater for Democratic majorities

than for Republican majorities.

Therefore, does partisan geography influence partisan representation in U.S. leg-

islatures? In this chapter, I have provided empirical evidence to suggest that it does

and that it does so in a way established by the computational model of Chapter 1.
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CHAPTER IV

Regulating in a Federal System:

Exploring federal and state implementation of OSHA regulation

Abstract

To accomplish the formidable task of enforcing federal health and safety stan-

dards in millions of workplaces across the country, OSHA must delegate and devolve

inspection authority to lower-level federal and state bureaucrats. The agency not

only enlists its regional offices to carry out inspections, but it also grants some states

the authority to enforce federal health and safety standards on its behalf. I examine

whether this delegation and devolution results in policy drift, where state inspection

activity becomes unresponsive to the central preferences of Congress and the pres-

ident. Using a rich dataset recording the results of each of the approximately four

million inspections conducted by OSHA from 1972 to 2013, I examine federal and

state influences on OSHA enforcement activity. I find that where states carry out

their own inspections through federally approved state-plans, health and safety stan-

dards are less stringently enforced than in states where inspections are conducted by

federal agents. Moreover, I support this finding by leveraging the geographic preci-

sion of the dataset to observe geographic discontinuities in OSHA enforcement across

boundaries of state and federal jurisdictions.
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4.1 Introduction

Institutional studies of policy-making at the federal level tend to focus on how var-

ious political actors - primarily those within Washington, D.C. - shape the outcome

of national policy. These studies concentrate mostly on the political behavior of the

highest-level policy makers within the three branches of government at the center of

the federal political system. They are interested in how policy change is affected by

the pivotal members of both chambers of Congress (Krehbiel, 1998; Binder, 1999; Tse-

belis, 2002), by the committees that set the legislative agenda (Cox and McCubbins,

2005; Shepsle and Weingast, 1987), by the president and his appointed leaders within

the executive branch (Lewis, 2008; Howell, 2003; Neustadt, 1960), and by the justices

on the bench of the Supreme Court (Shipan, 2000; Segal, 1997). When explaining

federal policy creation and change, the predominant focus is on these centralized

political actors.

However, such analyses of political institutions fail to capture the political sys-

tem in its entirety. They ignore the full extent of the political process from policy

construction to policy implementation and, as a result, are likely to miss some of

major determinants of policy change. While it is important to understand how these

centralized actors affect policy, it also important not to overlook the fact that many

decisions and actions responsible for shaping policy occur outside of Washington’s

political center. When having to implement federal policy at the local level, for ex-

ample, those at the top must delegate or devolve authority to those at the extremities

of the political system. Implementing federal policy across the extensive, diverse, and

geographically disparate population of the United States is a substantial undertaking

which requires political decision-makers at the center of the system to employ others

to execute the task on their behalf. They delegate authority to more decentralized

agents who are able to ensure that all individuals in the United States are held equally

accountable to federal standards - whether those individuals are from industrial cities
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in California or farming communities in Vermont.

With delegation, however, there is the potential for the loss of control. Any

directive made by the center of the political system must filter through a series of

delegations until it is applied at its most decentralized point. And as policy makes

its way down the hierarchical ladder, its potential to deviate from the original policy

increases at every rung. Since lower-level agents can make influential decisions and

alter policy away from its original intent, it is important to question whether the

political principals at the top of the hierarchy lose control to the various agents at

the bottom.

Scholars have long studied this principal-agent problem with respect to bureau-

cratic delegation(McCubbins and Schwartz, 1984; Epstein and O’Halloran, 1994; Fer-

ejohn and Shipan, 1990; Krehbiel, 1998; Wiseman, 2009). Both Congress and the

president rely on delegating tasks to bureaucrats. However, the relationship between

these central authorities and the bureaucracy is not the only principal-agent relation-

ship that affects the execution of federal policy. Congress and the president also rely

on the states to implement federal policy on their behalf.

Although this relationship receives less scholarly attention, it is not uncommon

for the federal government to delegate authority to the states (McCann, 2015). We

see this, for example, with the implementation of Medicaid. To administer the pro-

gram, states receive incentives from the federal government through matching grants.

This way, the federal governments provides aid to low income families by essentially

compensating the states to provide the services on their behalf. It is a form of del-

egation that allows the federal government to accomplish its goal of provide aid by

outsourcing it to the states.

A similar type of delegation occurs with the implementation of federal health and

safety standards. With the passage of the Occupational Safety and Health Act in

1970 under the Nixon administration, the federal government became responsible for
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maintaining and enforcing federal health and safety standards across all workplaces

in the United States. However, to help the accomplish this goal, states were given

the option to construct their own administration that would allow them to imple-

ment federal standards. The federal government would provide a matching grant as

incentive, but the state would be required to maintain a program that is at least

as effective as the federal government’s. As a result, just under half of the states

implement federal OSHA standards in their territory on their own. The state agen-

cies are fully administered by the states themselves. The inspections are governed

by a state-level agency, executed by state-level inspection officers, and adjudicated

through a state-level judicial system. The federal government has the responsibility

to revoke a state plan’s status. However, it has yet to exercise this threat.

In this chapter, I attempt to explore the consequences of this devolution. In

particular, I ask whether such devolution has forced the federal government to lose

control over their responsibility to ensure workplace safety and health standards. To

answer this question, I analyze inspection logs collected by the Occupational Safety

and Health Administration going back to 1972. By observing individual inspections

carried out on local establishments by federal OSHA and various state safety and

health agencies, I show that the delegation has potentially led to less stringent in-

spections. By comparing the stringency with which safety and health standards are

implemented across state and federal agencies, I am able to observe how devolution

leads to a a lack of control.

4.2 Review of Bureaucratic Control

In order to implement the laws it creates, Congress must engage in delegation. It

tasks agencies with the responsibility to carry out the rules and regulations that it

designs. Because of this, political scientists have long questioned whether such delega-

tion creates a loss of control to the agencies. With major informational asymmetries
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between Congress and the bureaucracy, it is easy to suspect that agencies are able

to act independent of congressional preferences. Many have argued that in the del-

egation process, agencies have gained a striking level of autonomy (Carpenter, 2001;

Niskanen, 1975). If this is the case, the disconnect between the elected legislators and

the non-elected implementers has grave implications for our democracy.

However, many institutional studies of the bureaucracy have found evidence to

the contrary. Although the agency is given discretion over the implementation of

law, it is constrained by various political forces. And despite the need for delegation,

Congress is capable of reducing bureaucratic drift by reducing informational asymme-

tries through active and passive monitoring (McCubbins and Schwartz, 1984), by ap-

plying ex-post punishments to bureaucrats through public shaming in Congressional

oversight hearings (Kiewiet, 1991), by limiting the agency’s budget (Carpenter, 1996),

by legislating rules and procedures limiting bureaucratic discretion (McCubbins, Noll

and Weingast, 1987; Huber and Shipan, 2002), and by checking the president’s ap-

pointment powers (Wood and Waterman, 1991). Thus, Congress has a number of

tools for keeping a leash on bureaucratic behavior.

These studies suggest that in order to determine policy outcomes in the United

States, we must look across the branches and observe the system as a series of interac-

tions between them. A comprehensive analysis must not just focus on the preferences

of the principals, but also at the behavior of their various agents. This perspective

has led scholars to try to incorporate the full set of players into their analysis on

policy change, from the president and Congress to the committees and bureaucrats.

To better predict policy movement, one must identify the ideological placement of

the relevant committees in Congress, the pivotal voters in the House and Senate, the

president, the Supreme Court, and the agency altogether (Ferejohn and Shipan, 1990;

Shipan, 2004).

Still, these studies are limited to inter-branch relationships. They explain policy
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change by observing the behavior of those at the center of the federal government in

Washington. To the extent that they examine delegation, their focus is on bureau-

cratic delegation. Yet delegation to the bureaucracy is not the only way in which

Washington executes its laws. Some policy require more complex forms of delegation.

This is particularly the case when implementing federal policy at the local level. The

political center must delegate to multiple agents that are spread out across the coun-

try. They not only do this through through bureaucratic delegation but they do this

through federal-to-state delegation as well.

The federal government often leverages the states to do its bidding. For example,

it uses intergovernmental grants to encourage states to regulate air pollution, manage

Medicaid programs, and provide job training for the economically disadvantaged.

Instead of executing federal policy using federal agencies, it essentially pay states to

do it on their behalf.

Whether it is through bureaucratic delegation or through federal-to-state delega-

tion, those who are at the center of the political system must delegate extensively in

order to carry out large-scale, local-level policy across the United States. Therefore,

as the government attempts to apply its policy regionally, it must rely more heavily

on others to do its bidding. Agents administer permits and carry out inspections,

assess compliance, and issue penalties. And each of these tasks represents the end of

a long chain of decisions that carry a directive from its origin in Washington to its

ground-level execution. And as this distance increases, so too does the potential for

bureaucratic drift. Therefore, to what extent are the street-level decisions responsive

to central-level politics? Is the implementation of federal law uniformly carried out

according to the wishes of central political actors in D.C., or does delegation make

policy vulnerable to regional pressures?

In this chapter, I explore whether such regional enforcement of federal policy leads

to a loss of control by the federal government. In particular, I explore whether the
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implementation of federal health and safety standards has drifted away from federal

preferences as a result of delegating enforcement authority to the states.

4.3 Implementation of federal inspections: the case of OSHA

The Occupational Health and Safety Administration in the Department of La-

bor is responsible for ensuring safe working conditions by enforcing health and safety

standards established under the OSH Act of 1970. They have a number of regional

offices where they engage in about 100,000 regional inspections of business establish-

ments each year. For a number of reasons OSHA is a good test case for exploring

regional variation in the implementation of federal law.

First, the implementation of OSHA standards are local. Inspectors show up at

the door of local businesses across just about every county of every state. This

includes nearly 100,000 private sector establishments that employ over 12 million

employees nationwide. Having such strong local presence across the nation allows

one to potentially compare OSHA activity in Fairbanks, Alaska to the activity in

Portland, Maine.

Second, in order to implement these inspections regionally, OSHA divides itself

into regional hubs and delegates authority to subordinates within these regions to

carry out central directives. The agency’s delegation process, which is both vertical

and horizontal, provides numerous instances where OSHA subordinates use their

discretion to apply federal standards. For example, to inspect a fertilizer plant in

Texas, OSHA calls upon its 6th regional office that covers four contiguous central-

southern states. The regional office then calls upon the area office in Texas responsible

for the jurisdiction that covers the fertilizer plant. And the area office sends a federal

inspector to make an assessment of the plant’s compliance to federal laws.

Third, OSHA implementation is controversial. Pro-business Republicans and pro-

labor Democrats contentiously disagree over its costs and benefits. Thus, there is
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reason to suspect both national and regional opposition to OSHA agency activity

where either pro-business interests or pro-labor interests dominate.

Fourth, OSHA allows states to adopt their own plans for enforcing federal health

and safety standards. In order to regulate workplace health and safety more efficiently

and effectively, the federal government entrusts primary authority over the inspection

process to some of the fifty states. Other than being monitored through an annual

review, state OSH are given almost full discretion over the implementation of federal

inspections. This is a unique feature of OSHA implementation and the major focus

of this paper. Since the federal government formally devolves inspection authority to

some states and not others, we can compare the two programs to explore the effect

of devolution on implementation. In this paper specifically, I assess the differences in

inspection stringency between federal and state plans.

Lastly, OSHA inspections are recorded in detail. The dataset is large and can be

cut and analyzed in a number of ways to identify variation in inspection behavior.

4.4 Exploring the Data

As part of President Obama’s Open Government Initiative, the Department of

Labor (DOL) recently launched a webpage dedicated to making DOL enforcement

data publicly available and easily searchable online.1 Through this website, I was

able to access OSHA’s inspection database, which contains records of every inspec-

tion conducted by the agency since the first inspection in 1972. As of January 1,

2014, OSHA had conducted 4,077,338 inspections across the country, issued a total

of 11,119,827 citations, and collected 4,758,681 penalties for a total of $3,554,041,378

in fines paid (nominal dollars). Each of these inspections is documented in detail,

down to the name and address of the establishment being inspected.

Figure 4.1 demonstrates the varied geographic distribution of these worksite in-

1http://ogesdw.dol.gov
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Figure 4.1: Map of Geocoded OSHA Inspections

I geocoded the address of as many of the inspection sites going back to 1972 that could
be matched in the ArcGIS database of US addresses. About 60% of all the inspection
addresses matched total. This number was closer to 70% in the last decade. All
of them are plotted on the map above, reflecting the geographic concentration of
inspections.

spections. It displays every inspection carried out by OSHA, geocoded down to the

address of each establishment where the inspection took place. As expected, inspec-

tions are carried out in all regions - rural and urban - across the United States.

They are densely clustered in populous areas where a large number of workplaces

are located. And they are disproportionately located in high industrial areas where

workplace hazards are more likely to be present, such as the rustbelt in the northwest

and the major manufacturing areas in the South.

4.4.1 Enforcement Effort

Moreover, we can observe trends in OSHA’s inspection activity over time. Figure

4.2 shows the number of inspections recorded by OSHA since its first recorded in-

spection in 1972. These include all inspections of all types conducted by the agency.

Immediately, we can see that there is a major jump in recorded inspections at the

beginning of the Reagan Administration. Unfortunately, this is an artifact of the
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Figure 4.2: The above figure shows the number of inspections recorded in the database
by year. The vertical dashed lines in gray indicate president turnover. Notice that
there is an alarming jump in recorded inspections from 1982 to 1984. This jump
reflects the migration of states with initially approved state-plans to the federal Inte-
grated Management Information System (IMIS), such that after 1984 all inspections
are recorded in the database. For this reason, when observing inspection trends across
all states, it is important to limit the analysis to the period after 1984. Thus, pre-1984
represents only federal, while 1984 on represents state and federal plans.

database and the way OSHA keeps records. Prior to 1984, record keeping had not

yet been standardized and states that were conducting inspections under an approved

state-plan had their own system for recording inspection activity. Until 1982 did these

states begin transitioning to OSHA’s Integrated Management Information System, a

centralized and uniform database that would collect and record information on all

inspections conducted by both state and federal officials. Therefore, inspection totals

displayed in Figure 4.2 prior to 1984 consist of inspections that were conducted by

federal OSHA only.

Since 1984, the total number of inspections has been in a decline. And the trends

in this change appear to be consistent with administrative effects. As one might

expect from a Republican administration, both Reagan and Bush administrations
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saw declines in inspection number. During their tenure inspections fell from approxi-

mately 130,000 in 1984 to approximately 110,000 inspections by the end of the Bush

Administration in 1993 for a 15% reduction. This is consistent with what we might

expect from a pro-business, Republican agenda, where efforts are taken to reduce the

regulatory burden on businesses.

However, the decline continues on into the Clinton administration where we see

even greater reductions in the annual inspection total. Indicating the decline in reg-

ulatory efforts, this reduction by the Clinton Administration is often criticized by

pro-labor Democrats as being lax on enforcing workplace health and safety (Lurie,

Long, and Wolfe 1999). This decline coincides with Vice President Gore’s “Reinvent-

ing Government” campaign, which focused efforts on making the federal government

more effective and efficient. The campaign directed agency heads to reinvent their

agency so that it would not only work better but also cost less (Gore, 1993). In

response, Labor Secretary, Robert Reich hired Joseph Dear to administer OSHA’s

reinvention. Under Dear, the OSHA offices were directed to measure themselves on

the quality of inspections rather than quantity. And as a result, OSHA’s inspection

numbers were reduced by approximately 10,000 annual inspections and remained at a

steady 100,000 annual inspections for the next couple decades - with some variation.

It is easy to see presidential effects on inspection totals here. But perhaps this

measure is noisy. Not all inspections are conducted under the same protocol. In

fact, OSHA conducts six types of inspections. The most common are programmed

or planned inspections. These are proactive inspections that are predetermined by

the agency to target potential violators and are used as way a to actively audit

high-hazard business establishments. Some of these inspections are predetermined

by lottery while others are predetermined by formula. In order to deter business

establishments from violating federal OSHA standards, they are all executed without

advanced notice so as to maintain the threat of a potential inspection.

110



The other five types of inspections are conducted in response to 1) imminent

danger situations, 2) fatalities and catastrophes, 3) complaints, 4) referrals, and 5)

previous violations. These inspections are very different from programmed inspections

in that they are reactionary in nature. They are triggered by an external event rather

than conducted through the regular auditing procedures.2

In order to reduce the noise in the data, I focus on the subset inspections that

are planned or programmed. I choose to focus on these inspections rather than

unplanned inspections for two reasons. First, they are substantively different from

the other types of inspections because they are performed as a standard audit rather

than a reaction to a potential violation. The unplanned inspections are likely to ebb

and flow by chance, whereas the planned inspections are potentially more political.

Second, planned or programmed inspections are the standard inspection conducted

by the agency. They represent the bulk of inspections carried out by OSHA. For

example, in 2010, planned or programmed inspections made up more than 60% of

the total number of inspections. The next most common type of inspection was in

response to a complaint. These inspections made up only about 17% of the total

number inspections in 2010. The third most common type of inspection was a result

of referrals from other agencies (around 10%). Accidents, fatalities and catastrophes,

imminent danger situations, and follow-up inspections were each no more than about

3% of the total number of inspections.3

Figure 4.3 displays the counts for only those inspections that are programmed

or planned. I have also limited the observations to include only those inspections

from 1984 to 2013 so that each observed total is an aggregate sum of inspections

2See U.S. Department of Labor Program Highlights, Fact Sheet No. OSHA 2098, “OSHA In-
spections.”

3Since I have decided to focus on planned or programmed inspections, the analysis does not
necessarily generate expectations about unplanned inspections. It is possible that an analysis of un-
planned inspections might generate different results. However, there is a strong correlation between
the median planned and unplanned inspections at both the state and federal level. Although, as one
might expect, the unplanned inspections tend to result in slightly larger median non-zero penalty
than the planned inspections
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Figure 4.3: The above figure shows the number of planned or programmed inspec-
tions recorded in the database by year. The vertical dashed lines in gray indicate
president turnover. Any reactionary inspections (inspections that are responding to
a complaint) are excluded.

conducted by both federal and state officials. This seems to reduce a great deal of

the noise associated with unplanned, reactionary inspections. Still the same trend

seems to emerge. There is a steady decline with Reagan and Bush and an immediate

decline under Joseph Dear’s leadership. The inspection trend then basically flat-lines

by the end of the Clinton Administration at just over 30,000 programmed inspections

a year.

4.4.2 State Plans

As I mentioned above, this is the aggregate sum of inspections made by federal

and state officials. It is a measure of total levels of OSHA enforcement across all

states. However, it is important to note that OSHA enforcement authority in some

states has devolved to state agencies. Though federal safety and health standards

are determined by Congress, the responsibility for implementing those standards falls
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in the hands of the state-level occupational safety and health administrations for 21

of the 50 states. Since its inception in 1970, federal OSHA has approved these 21

states to administer federal occupational safety and health regulations on their own,

acting as virtually independent state agencies. However, these states are never fully

immune to federal supremacy because Section 18 of the OSH Act - the section that

conceives these state plans - gives the general requirement that these states maintain

an enforcement of occupational safety and health standards at least as effective as

the federal government’s enforcement.

Therefore, in many ways this is an instance of where the federal government

delegates enforcement authority not just to its lower-level agencies but also to the state

agencies themselves. The federal government benefits from this for a couple reasons:

not only does it share the cost of these inspections with the states, but the states are

also more attuned to the industries of their regions and are in a better position to

regulate more efficiently and effectively. The states, on the other hand, might gain in

the independence from federal regulators and the ability to tailor enforcement efforts

to be more appropriate for the industries unique to their regions. Nonetheless, the

legal independence is only partial since they must meet the condition of Section 18.

Moreover, these states are subject to federal oversight through annual reviews.

Table 4.1 gives a list of the states that have been granted operational status as

of 2013.4 They are a smattering of both Republican and Democratic states, high

and low industrial states, and states from all regions of the US. Although all of

these states applied for the approval of a state plan just after the OSHA Act was

passed in the early 1970’s, most were not given full operational status until the early

1980’s, a full decade later. Not until a state gains full operational status does federal

OSHA suspend its authority to conduct inspections in that state. Once operational

status is approved, the state-level office of occupational health and safety operates

4information for this table was taken from the OSHA website in February 2014. https://www.

osha.gov/dcsp/osp/faq.html#oshaprogram
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Table 4.1: States with State-Plan Status

State Initial Approval Certified Final Approval Operational Status

1 Alaska 1973 1977 1984 1984
2 Arizona 1974 1981 1985 1985
3 California 1973 1977 1977
4 Hawaii 1973 1978 1984 1984
5 Indiana 1974 1981 1986 1986
6 Iowa 1973 1976 1985 1985
7 Kentucky 1973 1980 1985 1985
8 Maryland 1973 1980 1985 1985
9 Michigan 1973 1981 1981

10 Minnesota 1973 1976 1985 1985
11 Nevada 1973 1981 2000 2000
12 New Mexico 1975 1984 1984
13 North Carolina 1973 1976 1996 1996
14 Oregon 1972 1982 2005 2005
15 South Carolina 1972 1976 1987 1987
16 Tennessee 1973 1978 1985 1985
17 Utah 1973 1976 1985 1985
18 Vermont 1973 1977 1977
19 Virginia 1976 1984 1988 1988
20 Washington 1973 1982 1982
21 Wyoming 1974 1980 1985 1985

the enforcement of health and safety standards in that state. This means that these

states determine not only which establishments to target and to inspect, but this

also means that the states are in full control of a large portion of the adjudication

process. Thus, these states own a portion of the appellate procedure for contestation.

Therefore, in these states, contested penalties go through a state-level appeals process

in which penalties can be thrown out or abated. However, eventually an appeal can

make its way to a federal review commission or administrative law judge or even the

Supreme Court. So again, the states are not fully independent.

Given that inspection authority is decentralized to the state governments it makes

sense to disaggregate the inspection numbers in Figure 4.3 to compare the number

of inspections between state and federal entities. We can then ask if there are differ-

ences in the enforcement level between these two groups. Specifically, we can observe

whether the state plans are responsive to federal preferences in the same way that

federal inspections are.
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Figure 4.4: The first plot displays the total number of programmed inspections per
year that are carried out by federal (solid line) and by state (dashed line) offices. The
second plot does the same except that the total number of inspections are divided
by the total number of establishments that are covered under each jurisdiction, as
indicated from Census data of business patterns from 1988 to 2012. State plans not
only conduct more inspections, but they also conduct more inspections per establish-
ment in their state. Moreover, we can see the Joseph Dear’s reforms during Clinton’s
administration in 1994 has significantly reduced the number of inspections for federal
OSHA but not for the state plan states. This suggests that the state plans were
unresponsive to the federal reinvention strategy
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Figure 4.4 contains the same inspections as Figure 4.3, except the totals are dis-

aggregated to display the sum of inspections conducted by state plans and the sum

of inspections conducted by federal OSHA. In the first plot of Figure 4.4, the total

number of inspections are displayed while in the second plot of Figure 4.4, I have

divided total number inspections by the total number of establishments in each juris-

diction (the establishments from the Census and spans the years from 1988 to 2012)

. Therefore the second plot controls for size of the jurisdiction.

There are a couple main points that can be drawn from these plots. First we

can see that most occupational health and safety inspections are conducted by state

OSHA offices. In fact, in most years state-level offices conduct more than twice as

many inspections as federal offices despite the fact that they are being conducted

in a minority of the states. Second, the change in inspection levels differs between

federal and state-level plans. We can see that the gap between federal and state

inspections has increased since 1984 and that the trend line for federal inspections

seems to be more responsive to the presidential administrative agendas discussed

above. For example, federal inspection numbers experience a steep decline from

the Reagan administration through the Clinton administration, whereas the state

inspection numbers experience a more gradual decline.

Moreover, we can see that Joseph Dear’s reinvention strategy had a significant

effect on federal OSHA inspections. There is a sharp decline in the number of inspec-

tions that the federal offices conducted after he arrives in 1994. The strategy was to

reduce the regulatory burden set out by the federal government. The same effect is

not present among state-level inspections.

The differences in the inspection trends suggest that states with state plans are less

responsive to central administrative initiatives. These states seem to have successfully

achieved a level of autonomy that protects them from federal-level partisan tides or

federal-level agendas. Although this figure fails to shed light on whether state-plans
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are upholding safety and health standards at least as effectively as federal OSHA

(something we cannot tell from the sheer number of inspections across jurisdictions

that might contain very different numbers of hazardous industries), it does tell us

that there is a disconnect between federal agendas and state level agendas. These

trends suggest that the federal government has lost control of policy administration

in those states with state plans.

4.4.3 Enforcement Stringency

To further explore whether state plans are responsive to federal standards or

whether they act fully independent of them, we can look at how stringently they

enforce those standards compared to their federal counterpart. One way to measure

enforcement stringency is to use the size of the penalty awarded by the inspection

officer after an inspection is conducted. There is a degree of discretion that is given to

inspectors in identifying violations and assessing the penalty size for that violation.

So an inspector that enforces health and safety standards more stringently would be

one who observes more violations in an inspection, classifies more violations as being

serious violations, and then assesses a larger penalty for those violations. Therefore,

in states where health and safety standards are more stringently assessed, violators

would be required to pay more for their transgressions than in states where the same

standards were less stringently assessed.

An inspector conducting an inspection makes a number of decisions in observing a

potential violation. She can decide to issue no penalties whatsoever, or she can decide

to simply issue a citation without a penalty, or she can issue citation with a penalty.

Therefore, there are number of variables we can observe indicating the stringency of

an inspection. For example, we can observe whether or not an establishment has been

cited. And given that it has been cited, we can observe how many citations have been

issued. And given that citations have been issued, we can observe whether or not the
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Figure 4.5: The plot attempts the gauge the stringency with which OSHA punishes
health and safety violators over time by measuring the non-zero penalty in which
the average inspection results. While the increase in the average penalty is partly
attributable to inflation, there are a few major changes in the average penalty that
have occurred. The first occurs under the Bush administration, where Congress passes
a bill in 1990 that raises the maximum penalty per violation. This gets reduced in
1994 under Clinton as Al Gore spearheads an attempt to reduce the regulatory burden
on small businesses - an attempt that is well supported by the Republican majority
in Congress. Then in 2010, through unilateral executive action, Obama drastically
increases the fine for safety and health violations.

establishment has been penalized. And given that it has been penalized, we can also

observe the size of the total penalty.

For ease of analysis, I have decided to focus only on the last variable. There-

fore, I am limiting the observations only to those inspections that resulted in an

initial penalty. By excluding all inspections where no action was taken or where an

establishment was cited without penalty, I am able to compare penalties across all

inspections where penalties were issued. Hence my variable of interest is penalty size,

which is a non-zero value.

Figure 4.5 displays the median non-zero penalty for every inspection conducted
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in each year since 1984. The median non-zero penalty measures the stringency with

which inspectors punish violators given that the inspector has decided to issue a

penalty in the first place. I have chosen to ignore prior decisions - like the decision

to inspect the establishment and the decision give a citation - so as to focus solely on

the decision about the size of the penalty to give.5

We can see here that the while total inspection numbers have been on the decline

since 1984, the median penalty per inspection has been trending upwards. Most no-

tably this trend begins in 1990 when Congress passes a bill that raises the maximum

penalty allowed for a number of particular infractions. Because of this we see steep

increases in the median penalty assessed from 1990 until Joseph Dear’s leadership

during the Clinton Administration beginning in 1993. The agency’s reinvention dur-

ing that time not only saw steep declines in the number of inspections but it also

saw steep decreases in the size of the penalty assessed. This effect was part of Dear’s

strategy to reduce the regulatory burden on employers by working with employers to

reduce hazards rather than threaten them with fines.

Additionally, this figure shows the enormous penalty hikes that coincide with

the Obama Administration’s effort to incentivize workplace compliance to OSHA

5One could choose to expand the scope of the analysis to include inspections that resulted in zero
penalties. In the current analysis, such an inspection is taken out of the sample and disregarded
when estimating inspector stringency. A major reason for doing this is that there are a large number
of inspections that result in no penalty whatsoever. Under George W. Bush’s administration, for
example, about 30% of federal inspections resulted in no initial penalty. The large number of zeros in
the data has the tendency to bias the median penalty size toward zero, reducing valuable variation
in the variable of interest. Since I am primarily concerned with how the median penalty varies
across jurisdictions, I choose to drop the zeros from the analysis. In doing so, I limit the analysis to
variation in penalties among inspections where penalties are issued.

However, one might argue that an inspector’s decision to avoid issuing a penalty is an indicator
of leniency and there may be systematic differences in the number of zero-penalties across state and
federal jurisdictions that are responsible for the results in the paper. It would be especially troubling
for the current analysis if federal OSHA averaged more zero-sized penalties than state-run OSHA.
In which case, the paper?s finding that state-run OSHA was less stringent than federal OSHA may
be attributed to the difference in zero-sized penalties dropped from the analysis.

Yet, this is not the case. While federal OSHA issues zero penalties in about 30% of its inspections,
state-run OSHA issues them about 50% of their inspections. Therefore, while there is a systematic
difference between them, the difference suggests that state OSHA is even less stringent than the
current analysis suggests. Hence, the results of the paper should hold.
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Figure 4.6: The figure shows that inspections carried out by federal OSHA result
in larger penalties than inspections carried out by state-run OSHA. Moreover, this
figure shows that state-level OSHA penalties are almost non-responsive to federal
preferences. For example, Obama’s push to levy greater penalties in 2010 only has
impact among states where federal officers carry out inspections. There is almost no
response among inspections carried out in states that deliver their own inspections

standards. By drastically increasing the penalties handed out per inspections the

Administration intended to a take a hard stance against violators. Spearheaded by

OSHA’s director, David Michaels, the Obama Administration has made a point to

use steep penalties to severely punish transgressions.

Figure 4.6 disaggregates the median non-zero penalties per inspection displayed

in Figure 4.5 into those performed in states covered by federal OSHA and those

performed in states covered by state-plans. This allows us to compare enforcement

stringency across the two groups over time. This leads to a couple main observations.

First, there is a noticeable difference in the median penalty levied by the two groups.

Today, a fine levied by Federal OSHA will likely cost an establishment $5,000, whereas

a fine levied by a state plan will likely cost an establishment $500. And second, this

difference has generally increased over time. While those penalties assessed by federal
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OSHA have responded to federal initiatives ( i.e. Congress enacting legislation in 1990

to increase penalty sizes, Dear in 1994 to decrease penalty sizes, and Obama in 2010

to drastically increase penalty sizes) those penalties assessed by the state plans have

not responded in kind. Rather the penalties have remained fairly low and the changes

have remained fairly flat.

Figure 4.7
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Figure 4.8
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Disaggregating these trends by states can emphasize this point further. I have

displayed the state-level trends in the size of the median penalty in Figures 4.7 and

4.8. Figure 4.7 displays those states that are covered by federal OSHA while Figure

4.8 displays those states covered by state-plans. Although there are differences in the

penalty size across the states, the trends are pretty consistent within each group. Each
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of the states covered by federal OSHA respond similarly to presidential initiatives.

For example, it is clear that each state can be seen to drastically increase penalty

sizes in 2010. However, such a trend is not present across most states with state

plans. Those states experience fairly flat trend-lines. Moreover, all but a few of these

states seem to be unresponsive to to the Obama’s hike in penalties.

4.5 Does devolution lead to a loss of political control?

I have shown that state plans enforce health and safety standards differently than

federal OSHA. And I have shown that they are less responsive to federal partisan tides.

But has this led to a loss of political control? In other words, with devolution, might

it be the case that states covered by state plans are able to sway federal occupational

safety and health standards toward their own partisan agendas?

Figure 4.9 attempts to answer this question. This figure takes Figure 4.6 and

disaggregates it further into two more groups representing partisanship. The solid

lines reflect median penalties among inspections conducted by federal OSHA and the

dashed lines represent the median penalties among inspections conducted by state

plans. I have then further grouped these into states with Republican governors (in red)

and states with Democratic governors (in blue). This allows us to observe whether the

stringency with which inspections are conducted differs based on the partisanship of

the state’s governor. While we might not expect a difference in inspection stringency

between Republican states and Democratic states where federal OSHA conducts its

inspections, we might expect differences in state-plan states. This would suggest

that devolution has resulted in a loss of control, and that states curb its stringency

according to regional partisanship.

However, as we can see from Figure 4.9, this does not appear to be the case.

Instead, there appears to be little difference in the stringency with which inspectors

punish violators. The evidence suggests that a governor’s partisanship, regardless

123



0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Year

P
en

al
ty

 (
in

 d
ol

la
rs

)

Governor Republican Democrat

Jurisdiction Federal State

Median Non−Zero Penalty Per Year

Figure 4.9: This plot disaggregates the median non-zero penalty per year by governor
partisanship. The purpose is to observe if there are systematic differences between
Democratic and Republican states that emerge as a result of devolving regulatory
authority. However, the similarities between states with Democratic governors and
states with Republican governors implies that the devolution of authority does not
result in a loss of political control.

of jurisdiction, has no effect on penalties. Even despite the devolution of authority,

partisan governors do not seem to systematically manipulate the penalty size accord-

ing to their expected partisan preferences. State-plans run by Democrats levy fines

similarly to state-plans run by Republicans.

Here I provide a more detailed test of whether the implementation of federal

health and safety standards are influenced more by centralized political actors (such

as the president and Congress) or by decentralized political actors (such as state

leaders) and I test whether this influence is conditioned on devolution (whether the

inspection is conducted by federal OSHA or by states with state plans). To do this, I
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set up the following two simple linear models where a state’s median penalty size in

each year from 1984 to 2013 is the dependent variable and federal and state political

actors that might influence the penalties as the independent variable. The basic

idea of this setup is to test whether OSHA inspections are responsive to central or

regional political forces and to test whether this responsiveness is different depending

on whether states control the inspection process or whether federal OSHA controls

the inspection process. Not only can we observe the differences in coefficients between

federal and state-level influence, but we can also observe if those differences change

depending on whether the inspection is devolved or not.

To set up the test, I conduct two simple OLS regressions: one on federal inspec-

tions and one on state inspections. Each regression contains potential federal-level

influences and potential state-level influences on the size of the median penalty for

each state-year observation. Therefore, if devolution leads to a loss of control, then

the state-level predictors should significantly predict the penalty size in state-plans

rather than federal plans, whereas the federal-level predictors should not. On the

other hand, if the federal government successfully maintains control despite devolu-

tion, then state level predictors should be insignificant for both models. Only the

federal-level predictors should significantly predict penalty size.

Among FEDERAL OSHA Inspections:

Median Nonzero Penaltyfed =

β0,fed + β1,fedFederal Level Influences + β2,fedState Level Influences + efed (4.1)

Among STATE OSHA Inspections:
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Median Nonzero Penaltystate =

β0,state + β1,stateFederal Level Influences + β2,stateState Level Influences + estate

(4.2)

INDEPENDENT VARIABLES OF INTEREST

The independent variables are used to measure two levels of possible influence on

OSHA inspection activity. At one level, there are indicators of federal influence. These

are basic variables that intend to measure the effects of president and congressional

preferences.

Federal-level Influences

President Dummies - A dummy for each president from 1984 to 2013. This

attempts to capture the influence of presidential administrations. It is expected that

under Democratic presidents, OSHA will increase the stringency of its enforcement,

while under Republican presidents the stringency should be reduced.

Democratic Congress - A dummy indicating years when Democrats control a

majority of the House. It is expected that under Democratic Congresses, OSHA will

increase its enforcement activity.

State-level Influences

Democrat Governor - A dummy variable indicating years where there is a

Democratic governor. If state partisanship influences inspection behavior in that

state we should expect that in those states where there is a Democratic governor

there would be more stringent enforcement (Klarner, 2003).6

Divided Government - A dummy variable indicating years when one party fails

to control all three branches in the state legislature. It is interacted with Democratic

governor as way to indicate when governors are less influential as a result of an

6Data from Klarner website at http://www.indstate.edu/polisci/klarnerpolitics.htm

126

http://www.indstate.edu/polisci/klarnerpolitics.htm


opposing legislature. Therefore, divided government should reduce the effect of the

governor.7

4.6 Results

The results of the OLS regressions can be found in the Table 4.2. The first first

and second column are the result of the models run on federal and state OSHA

respectively. The third and fourth column are the same as the first and second, but

with state-level fixed effects. Generally the tests verify the conclusions drawn by the

preceding figures. There is evidence of significant presidential effects on both federal

and state inspections. However, these presidential effects are much more limited in

the states with state plans than in states with federal plans.

Moreover, the state-level variables are not significant in states where federal OSHA

conducts inspections. However, for state OSHA, a Democratic governor is expected

to significantly reduces the size of a penalty in the state. While the significance of the

variable corresponds with the hypothesis that state plans allow states to ideologically

affect inspections, the direction of the sign is unexpected. Assuming that Democrats

prefer stricter inspections than Republicans, we would not expect Democratic gover-

nors to decrease the size of the penalty. Moreover, in the next set of models using

state fixed-effects to capture within-state variation, the Democratic governor vari-

able falls out of significance. Therefore, the significance in the first model was likely

spurious.

The model does validate a couple results observed above. First, across all presi-

dential administrations state OSHA penalizes violators less than federal OSHA. State

OSHA is simply less stringent than Federal OSHA when doling out fines. Despite

their legal mandate to be “at least as effective” as Federal OSHA, states are nowhere

near as stringent when it comes to fines.

7Data from Klarner website at http://www.indstate.edu/polisci/klarnerpolitics.htm
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Median Non-Zero Penalty

FEDERAL STATE FEDERAL STATE

FEDERAL VARIABLES

Reagan 265.5 157.5 750.8∗∗∗ 180.8
(168.4) (119.3) (232.6) (128.9)

Bush I 855.7∗∗∗ 349.2∗∗∗ 1,343.2∗∗∗ 357.8∗∗∗

(168.7) (120.6) (233.9) (130.5)

Clinton 1,487.6∗∗∗ 654.9∗∗∗ 1,978.6∗∗∗ 678.9∗∗∗

(86.8) (68.2) (193.1) (101.5)

Bush II 1,976.0∗∗∗ 927.4∗∗∗ 2,469.0∗∗∗ 938.8∗∗∗

(82.2) (66.1) (190.1) (101.2)

Obama 3,752.2∗∗∗ 1,092.5∗∗∗ 4,212.5∗∗∗ 1,148.7∗∗∗

(171.0) (121.1) (229.9) (129.3)

Democratic Congress −139.5 61.6 −107.4 35.3
(139.9) (92.8) (129.3) (76.2)

STATE VARIABLES

Democratic Governor 35.2 −205.9∗∗∗ −99.4 74.4
(98.8) (72.6) (122.4) (86.8)

Divided State 7.5 −176.9∗∗ −128.3 140.8∗

Government (89.7) (70.5) (113.7) (78.7)

Democratic Governor X −177.1 120.7 8.1 −152.3
Divided Government (133.2) (92.4) (185.3) (109.0)

State Fixed Effects No No Yes Yes

Observations 756 565 756 565
R2 0.808 0.576 0.844 0.727

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.2: An OLS regression estimating the median non-zero penalty. Model uses
state-year observations from 1984 to 2013. The dependent variable is the median
non-zero penalty for each state in a particular year. The results in the first and third
column are constrained to inspections under federal OSHA, whereas the results in
the second and fourth column are constrained to inspections in states where there is
a state plan.
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Figure 4.10: The Obama Effect: Median Non-Zero Penalty by Agency

And second, when the Obama administration sought to discourage health and

safety violations by increasing the penalties levied on violators, state OSHAs were

nearly unaffected. Figure 4.10 shows the predictions from the fixed-effects models for

the size of the penalties in the Bush administration versus the Obama administration

(assuming a Republican Governor, a Republican Congress, and a unified state legis-

lature). In both administrations, the size of the penalties for state OSHA is smaller

than the size of the penalties for federal OSHA. However, when moving from the

Bush administration to the Obama administration, there is a major increase in the

penalty size for federal OSHA but not state OSHA. Therefore, as mentioned above,

state OSHA was nearly unresponsive to Obama’s push to increase enforcement.
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4.7 Controlling for Geography: Matching Neighbors

Despite enforcing the exact same health and safety standards, it appears that

federal OSHA fines violators more than state OSHA does. Although this might sug-

gest that devolution allows for states to engage in less stringent inspections, it is also

possible that those establishments that are subject to OSHA standards are differ-

ent in federal jurisdictions than those in state jurisdictions. Because industries vary

geographically, it is plausible that it is simply the geographic location of state-plan

states that determine their difference in levied penalties. For example, violations in

state-plan states like California, Oregon, and Washington are different from federal

states like Maine and New Hampshire because they deal with different types of es-

tablishments and industries that tend to correlate with their difference in geographic

location. The deep south, for example, is almost fully covered by federal OSHA, and

may not be comparable to the state-plan states that cover most of the west.

To infer that the difference in inspection jurisdiction (state or federal) is what

is causing the difference in levied penalties, we would hypothetically observe the

outcome of two inspections, identical in every way other than the jurisdiction of the

officer that carries it out. Therefore, the difference in outcome can be attributed to

the difference in jurisdiction.

Unfortunately, such a hypothetical cannot be observed. A difference in the juris-

diction of the officer already implies that the inspections take place in different states

and, therefore, in distinct geographic locations. And since the geographic location of

the inspection correlates with a host of variables that might have a systematic effect

on the outcome, it is difficult to conclude that the difference in outcome is the result

of a difference in jurisdiction rather than a difference in location.

However, we can attempt to minimize this bias caused by geography by finding

inspections that are geographically similar to each other, but differ in the jurisdiction

of the inspection officer. In other words, we can try to control for the effect of
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geography (and the variables that are associated with it) by comparing inspections

that share in location but differ in jurisdiction. The next part of the analysis attempts

to do just this. By matching similar inspections on the borders of state-plan states to

neighboring inspection on the border of federal OSHA states, we can assume that the

marginal difference in geography (and, thus, the marginal difference in the variables

that are associated with geography) is not the cause of any difference in outcome.

Instead, we can begin to attribute the difference in penalty to the difference in OSHA

inspection jurisdiction.

The following is an attempt to test whether the implementation of federal health

and safety standards are influenced by its partial devolution to state authority by

controlling for the geographic location of the inspection. So far, there is evidence

that state inspections result in smaller penalties than those conducted by federal in-

spectors. However, since state and federal inspections occur in geographically distinct

locations, the variables associated geography may be responsible for this difference.

To control for geography, I set up a test that finds inspections that occur on borders

between state and federal jurisdictions. This allows me to match a single state inspec-

tion with its closest neighboring federal inspection. The basic idea of this setup is to

compare two similar inspections that occur in the same basic location, but differ in

the jurisdiction of the inspector. Ideally, this will isolate the effect on levied penalties

that is attributable to federal-state differences and nothing else.8 The test takes the

following steps:

Step 1: Isolate the border between state and federal jurisdictions

Since OSHA records the address of every establishment that it inspects, we can

identify the exact location of the inspection. Having geocoded these records, I am

able to precisely locate any inspected establishment relative to any other inspected

8I follow the approach to analyzing geographic discontinuities used by Keele and Titiunik (2014).
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Figure 4.11: Establishing the Borders Between State and Federal Plans
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establishment. Moreover, I can locate these establishments relative to its state bor-

der. For the purpose of this analysis, I want identify all establishments that are

marginally close to a border between state and federal OSHA jurisdictions. These

are the establishments that we can compare to their neighbors on the other side.

To do this, I first specify the location of the border between state and federal
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jurisdictions. The first map in Figure 4.11 is a map of the United States that identifies

states that have established a state-OSHA program. They are marked in green.

Inspections in these states are conducted by state officers, whereas those in the other

states are conducted by federal officers. The boundary between these federal and

state inspections is created using a GIS techniques that eliminate all the state borders

between identical jurisdictions. What remains are only the borders between different

jurisdictions. The result is displayed in the second map of Figure 4.11, where a set of

borders divide state and federal jurisdictions.

The next step is create a buffer zone that circumscribes any point that is marginally

close to that border. This will be used to isolate the set of inspections that are within

a specific maximum distance from the border. Every inspection that will match with

a neighboring inspection across the border with be contained in this set. Specifically,

the buffer zone indicated in Figure 4.11 includes every point that is within 10 miles

of the border.

Step 2: Only keep similar inspections within the buffer zone

I then remove any inspection that is outside of this buffer zone, leaving only those

inspections that are within 10 miles of this border. These are the inspections that

will be candidates for matching. However, because I will only match inspections that

are within 5 miles of each other, the 10 mile buffer zone is an overestimate of the

sample I am interested in. Nonetheless, it effectively subsets the data to contain all

potential matches.

In sum, the subsetting process works as follows. First, I begin with the universe of

inspections that have been recorded by OSHA since its inception. There are over four

million in total. Then I whittle those inspections down to a relevant subset of generally

similar inspections. These are planned or programmed inspections (non-complaints)

conducted only on the construction industry during the eight years of the George W.
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Figure 4.12: Example: Inspections in VT and NH

Vermont

New Hampshire

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

● ●●
●

●●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●
●

●

●

● ●

●

●
●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●

● ●●

●
●

●●

●

●●

●

●

●

●

●●●
●

●

●

●●

●

●
●

●

●

●●

●
●

●
●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●● ●

●
●

●

●

●

●●
●●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●●● ●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●
●●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●●●●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●●

●●

●●

●●

●

●

●

●
●

●

●●●●

●

●

●

●●

●●●

●

●

●
●●

●

●

●●●●
●●

●●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●● ●

●
●

●●●●●

●

●

●

●●● ●

●

●●

●

●●

●●

●

●

●

●

●

●

●
●●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●●●●

●●

●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●●●●●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●
●

● ●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

● ●

●

●
●
●●●●

●

●

●●●

●

●

●●

●

●●

●

●●

●

●●●●

●

●

●●
●●

● ●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

(a) All Inspections in VT and NH

Vermont

New Hampshire

●

●

●

●●●
●

●

●●●

●●

●●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●●●

●●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●●●

●●●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●● ●

●

●
●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●
●

●●

●●

●

●●

●●●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●●●●

●

●

●

(b) All Inspections in 10 miles from the bor-
der

Bush administration. This allows for the inspection type, industry type, and president

to be held constant. Further, this set of inspections is cut down to only include

those that have been successfully geocoded to their street address. The downside of

this geocoding process is that it removes about 40% of the inspections. However, I

assume that the removal process is random with respect to location and, therefore,

inconsequential. The last step is to remove all inspections outside of the buffer zone.

What remains are 8,776 geocoded inspections on the construction industry conducted

between 2001 and 2008 that are within 10 miles of a boundary between state and

federal jurisdictions.

Take, for example, the border between New Hampshire and Vermont in Figure

4.12. The first map locates every inspection in our sample across the two states.

The second map removes those inspections that are conducted outside of the 10 mile

buffer. The remaining inspections are candidates for matching, in that a subset of

these inspections will match with a nearest neighbor across the border that is within

5 miles of itself. This allows us to compare the outcomes of those inspections that
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are marginally close to each other, but are divided by a state boundary.

Step 3: Geographic Matching Algorithm

For the third step, I match inspections within the buffer zone that are conducted

under state jurisdiction to the nearest inspection conducted in federal jurisdictions.

I then only keep those matches that are within 5 miles of each other. In other words,

if the nearest match is over 5 miles away I remove that pair from the sample. The

matching algorithm is defined as follows:

1. Begin with all the inspections within the buffer zone

2. Divide these into two groups according to their state and federal jurisdictions

3. For each inspection within the state jurisdiction measure its distance in miles

from every inspection conducted under federal jurisdiction and record the in-

spection that minimizes that distance.

4. Once every inspection has a match, drop those pairs where the minimum dis-

tance between them is more than 5 miles

This procedure creates a set of state-level inspections that are paired with its

nearest federal-level inspection up to 5 miles. Of the original 8,776 inspections within

the buffer zone, there are 2,424 matched pairs. Ninety percent of these pairs are

within 1.75 miles of each other and fifty percent are less than a mile apart.9

For each inspection, I have recorded the dollar amount of the initial penalty that

was levied. Then I took the difference in penalties between the pairs by subtracting

the penalty of the state inspection from the penalty of the federal inspection. The

result is a set of 2,424 differences. If the stringency of state inspections are no different

9I did not match on exact year, so it is possible that an inspection in 2001 is compared to an
inspection in 2008. However, the average difference in year between the pair is less than a year.
Therefore, there is no significant systematic difference between the years of the penalties.
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●

State OSHA Penalty − Federal OSHA Penalty
 (In Total Dollars)

−1400 −1200 −1000 −800 −600 −400 −200 0 200 400 600 800

Figure 4.13: Matched Establishments: Federal-state difference in penalty amount
between federal and state inspections of geographically similar construction sites be-
tween 2001 and 2008. The negative difference suggests that even when comparing
geographically similar inspections, an establishment located in the state jurisdiction
can expect a smaller non-zero penalty than if it were located in federal jurisdiction.

from the stringency of federal inspections, there should be no difference between

federal and state penalties on average.

Figure 4.13 summarizes the differences. I have plotted the average dollar difference

along with its 95% confidence interval. The average difference in penalty is about

$1000. This means that even given similar inspections located marginally close to

each other, we can expect that federal OSHA will fine about $1000 more than its

state-level counterpart.

While the matching analysis has been used up to this point to test whether there

is a systematic difference in regulatory behavior between federal and state jurisdic-

tions, it can also be used to test whether political variables also affect this behavior.

For example, as hypothesized above, it is possible that the devolution of regulatory

authority to the states allows those states to inject political influence into the regu-

latory process. While the regression tests failed to reveal such political influence, it

is possible that the null effect was the result of comparing establishments that are

dissimilar. Instead, by comparing establishments that are alike - both in kind and in

location - the matching approach may be able to uncover political influence produced

by devolving regulatory authority to the states.
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State OSHA Penalty − Federal OSHA Penalty
 (In Total Dollars)
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●

State Plan with Democratic Governor
State Plan with Republican Governor

Figure 4.14: Matched Establishments: Federal-state difference in penalty amount
between federal and state inspections of geographically similar construction sites be-
tween 2001 and 2008 separated by the partisanship of the governor of the state ju-
risdiction. The interval in red represents the state-federal difference when the state
jurisdiction is governed by a Republican. The interval in blue represents the differ-
ence when the state jurisdiction is governed by a Democrat. The difference between
the two samples suggests, contrary to expectations, that Republican states are more
stringent than Democratic states. However, a two-sample t-test reveals that the
difference is not quite significant at the .05 level and suggests that the governor’s
partisanship does not systematically affect the penalty difference between state and
federal jurisdictions.

In which case, the state-federal difference in penalties (displayed in Figure 4.13)

would differ depending on which party controls the inspection carried out under state

jurisdiction. Therefore, while state inspectors may be less stringent than their federal

counterparts, perhaps this difference in stringency changes as the partisan ship of the

state changes. We might expect for inspections carried out in Democratic states to

be more stringent than those carried out in Republican states. In which case, the

negative state-federal difference in penalties, which we observe in Figure 4.13, would

be greater if Republicans controlled the state than if Democrats controlled the state.

In Figure 4.14, I have separated the matched state-federal pairs into two groups

based on the partisanship of the governor in the state jurisdiction. Of the 2,424

matched pairs 1,468 had state-run plans where a Democratic governor was in power,

while the rest had a state-run plan where a Republican was in power. An average of

the difference in each group is plotted along with its 95% confidence interval.
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The interval in red represents the state-federal difference when the state jurisdic-

tion is represented by a Republican. The interval in blue represents the difference

when the state jurisdiction is represented by a Democrat. The difference between

the two samples suggests, contrary to expectations, that Republican states are more

stringent than Democratic states. Yet this is likely a spurious difference, since a

two-sample t-test reveals that the difference is not quite significant at the .05 level.

Therefore, as we observed in the regression results above, there does not appear to

be much of a difference in regulatory behavior between Democratic and Republican

states.

4.8 Conclusion

There are two primary sources for a political analysis of OSHA inspections. Scholz,

Twombly and Headrick (1991) argue that OSHA enforcement is determined by both

central and regional political pressures, while Huber (2007) has countered that claim

arguing that the enforcement is primarily determined by central, but not regional

actors. Huber claims that OSHA enforces its health and safety standards by engaging

in what he terms strategic neutrality. He argues that OSHA standards are enforced

uniformly and neutrally across the various geographic arms of the agency. Thus,

the decentralized field-level bureaucrats are insulated from the political environment

at the ground level and are tightly tethered to the commands of central leadership.

As a result, he argues that we are not likely to observe regional variation of OSHA

enforcement.

In this paper, I find evidence that both theories might have empirical truth. On

one hand, I find that inspections are not responsive to regional political pressures as

Huber contends. On the other hand, with an analysis of state plans, I find that some

states are not in lock-step with federal pressures as Scholz might contend. Thus, it

appears that the federal government loses some control over the implementation of
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occupational health and safety standards by devolving its authority to the states.

However, it does not appear that there is significant ideological drifting occurring

within those states.
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CHAPTER V

Conclusion

The goal of the dissertation is to explore how geographic boundaries play a role

in shaping the American political system. I do this in two contexts. First, I ana-

lyze how electoral district boundaries interact with partisan geography to determine

partisan representation. And second, I explore how geographically defined adminis-

trative district boundaries change the way people experience policy. In both cases, I

show how geography is made relevant to politics through the existence of geographic

boundaries.

In Chapter 1, I explore how partisan geography influences representation. Using

a computational model to simulate elections I am able to improve upon previous

research by Chen and Rodden (2013) who provide evidence of a link between Demo-

cratic clustering and electoral bias. I develop this link more thoroughly by designing

a computational model that simulates the process of electing representatives from a

geographically distributed set of partisan voters. By observing the results of hypo-

thetical elections across a range of state-level partisan support and under multiple

types of Democratic clustering, I show exactly how Democratic clustering affects the

votes-seats curve in single-member district systems.

The results of the model provide a number of implications for research on Demo-

cratic representation. First, the model develops a new understanding of the votes-
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seats curve that is entirely based on the geographic distribution of voters. While oth-

ers have used the votes-seats curve to measure representation in the United States,

the curve has conventionally been assumed to be some variation of an exponential

function. However, I develop a conception of the curve that doesn’t fit a conventional

functional from, but is rather determined by the complex geographic distribution of

voters that underlies the system. Therefore, the seat share of a party doesn’t simply

depend on an increase in electoral support, but it also depends on the geographic

location of those new supporters.

Second, I show that Democratic clustering can take on multiple formations which

affect the votes-seats curve in different ways. Democrats can concentrate symmetri-

cally with respect to Republicans or they can concentrate asymmetrically with respect

to Republicans. Both are cases of Democratic concentration, but are shown to have

drastically different electoral effects. Specifically, as Democrats cluster the votes-seats

curve flattens, reducing the seats of the party that holds a majority electoral sup-

port. Therefore, there are conditions under which either party can lose seats due to

Democratic clustering. However, as the clustering becomes asymmetric the votes-

seats curve flattens asymmetrically. This means that while both majority parties will

lose seats, Democrats will lose more seats than Republicans in the same position.

The findings of Chapter 1 suggest that the relationship between Democratic con-

centration and electoral bias is much more complex than Chen and Rodden conclude.

There is more to consider about the geographic nature of partisan spatial patterns

when analyzing its effect on representation. For example, in analyzing the effect of

Democratic concentration one must also consider the spatial patterns of Republicans,

as wells as the number of clusters that occur, and the location of the clusters. Each

of these can change the distribution of votes across the districts and, hence, alter the

votes-seats curve.

After developing exceptions about how geographic clustering affects the votes-

143



seats curve in Chapter 1, I test those expectations in Chapter 2 by giving empirical

support for the model. I do this by establishing that districts are designed in such

a way that partisan geography influences the distribution of partisans across the

districts, which is a major assumption of the theoretical model. First, I show that

districts designed by a computer, which uses nothing more than the geographic distri-

bution of voters to guide it in drawing the districts, do a pretty good job of replicating

the partisanship of real-world districts. This is evidence that the real-world districts

depend similarly on voter geography. And second, I show that when partisanship in-

creasingly divides along the urban/non-urban dimension, the distribution of partisan

votes similarly divides across the districts in such a way that produces asymmetry in

the votes-seats curve.

While Chapter 2 provides some convincing evidence that the districts are designed

in such a way that makes partisan representation dependent on voter geography, there

is more than can be done in future research to convey this point. For example, while

the use of county-level data in the historical analysis of presidential elections may

capture some of the variation in partisan geography, it is a very imprecise measure.

Counties that cover large metropolitan areas like Houston and Dallas fail to cap-

ture the intricacies of how Democrats and Republicans tend to segregate between

urban and suburban areas. To better measure such segregation, one must use more

geographically detailed data that can better capture within-county variation in par-

tisanship.

While precinct-level data has not been systematically collected, aggregated, and

merged with geo-coded Voting Tabulation Districts across the U.S. other than in 2008,

collecting this data for previous years could help researchers to understand precisely

how partisanship has clustered over time. Although such a task may not be feasible,

one could potentially estimate local-level partisanship across the states using Census

demographic variables as an alternative. Accurate estimates could prove invaluable
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to research on political geography and gerrymandering by developing an historical

account of how geography plays a role in Congressional representation.

For example, the simulations performed in Chapter 2 could be extended back

through previous years to see if geography has consistently been a major influence

in determining elections. One could observe how within-state changes in the type

of partisan clustering has affected representation. And with more precise geographic

measures of partisanship, I am better able to measure the complexities of partisan

clustering. With recent developments in sophisticated measures of segregation, I can

move beyond the blunt measurement of urban/non-urban partisan difference used in

this thesis to provide a more accurate analysis of the various ways in which partisans

cluster (Roberto, 2015).

In Chapter 3, I continue the objective of the dissertation by exploring another way

in which geographically-defined political boundaries play a role in politics. Specifi-

cally, I examine how the enforcement of federal regulatory policy changes as one moves

across administrative boundaries. By comparing the administration of federal health

and safety standards across geographically separate federal and state jurisdictions,

I find differences in the stringency with which state and federal inspectors penalize

business establishments. Therefore, if an establishment is located in a jurisdiction

where they are inspected and subsequently penalized by a state officer rather than

a federal officer, that establishment is likely to pay a greater fine than they would if

they were located in a federal jurisdiction.

The result implies that the process of devolving federal regulatory authority pro-

duces systematic differences in the way that policy is executed across geographic

space. Consequently, the existence of geographically-defined administrative bound-

aries have the potential to create geographic disparities in governance.

Altogether, the previous three chapters provide an analysis of the way in which

political districts affect politics. Specifically, I show how electoral districts interact
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with partisan geography to skew representation and I show how geographically-defined

administrative districts create geographic discontinuities in the execution of policy.
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