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ABSTRACT

This thesis focuses on energy management techniques for distributed systems such as hand-

held mobile devices, sensor nodes, and data center servers. One of the major design prob-

lems in multiple application domains is the mismatch between workloads and resources.

Sub-optimal assignment of workloads to resources can cause underloaded or overloaded

resources, resulting in performance degradation or energy waste. For example, improperly

distributed workloads in battery-powered embedded systems result in inefficient utiliza-

tion of batteries, which shortens battery lifetimes in systems without voltage regulators. In

batteryless sensor nodes, communication frequently becomes unreliable under these condi-

tions. Further, without a method to predict resource utilization times, workload mismatch

in data centers causes resource contention or idle resources. Finally, significant energy can

be wasted not only on data center servers, but also on data center cooling.

This work specifically focuses on the heterogeneity in system hardware components

and workloads. It includes energy management solutions for unregulated or batteryless

embedded systems; and data center servers with heterogeneous workloads, machines, and

processor wear states. This thesis describes four major contributions: (1) This thesis de-

scribes a battery test and energy delivery system design process to maintain battery life in

embedded systems without voltage regulators. (2) In battery-less sensor nodes, this thesis

demonstrates a routing protocol to maintain reliable transmission through the sensor net-

work. (3) This thesis has characterized typical workloads and developed two models to

capture the heterogeneity of data center tasks and machines: a task performance model and

a machine resource utilization model. These models allow users to predict task finish time

on individual machines. It then integrates these two models into a task scheduler based

on the Hadoop framework for MapReduce tasks, and uses this scheduler for server energy

x



minimization using task concentration. (4) In addition to saving server energy consump-

tion, this thesis describes a method of reducing data center cooling energy by maintaining

optimal server processor temperature setpoints through a task assignment algorithm. This

algorithm considers the reliability impact of processor wear states. It records processor

wear states through automatic timing slack tests on a cluster of machines with varying core

temperatures, voltages, and frequencies. These optimal temperature setpoints are used in a

task scheduling algorithm that saves both server and cooling energy.

xi



CHAPTER 1

Introduction

Both small and large scale distributed systems are widely used across different areas. Small

distributed systems are embedded systems used in various applications, e.g., personal hand-

held devices and wireless sensor networks. These applications have great influence on

people’s everyday life. For example, there are 2 billion smartphone users worldwide; this

number will continue increase in the near future. Large distributed systems includes data

centers, which consist of thousands of server computers that provide high computational

power for both computational and data intensive applications. These applications support

both research grade and commercial facilities such as universities, research labs, and

companies. For example, Facebook uses over 20,000 servers in one of its data centers to

support the traffic of its website.

Energy efficiency and energy saving are important to such distributed systems. Em-

bedded systems have tight constraints on space and weight, which constrains the size and

capacity of their energy sources. These constraints cause systems to sacrifice throughput

or lifetime if designed improperly. Data centers have both high computational capacity

and energy consumption. They require 13 billion dollars of electricity every year in the

United States, 50% of which goes to data center cooling systems [1]. Saving energy for such

systems while maintaining system performance can achieve significant economic benefits.

One of the major design challenges in energy saving for embedded systems and data

centers is the mismatch between workloads and resources. Sub-optimal assignment of

1



workloads to resources can cause underloaded or overloaded resources, resulting in perfor-

mance degradation or energy waste. Improperly distributed workloads in battery-powered

embedded systems result in inefficient utilization of batteries, which shortens system life-

times. Workload mismatch in data centers causes resource contention or idle resources.

Resource contention significantly slows down workload execution, decreasing data center

performance, while idle resources waste up to 40% of the total server energy [2].

This problem is particularly severe in a heterogeneous environment. Failing to consider

workload and resource heterogeneity can aggravate the mismatch between workloads and

resources, leading to performance loss or energy waste. This thesis considers the matching

between workloads and two types of heterogeneous resources: the energy sources and

computational resources.

First, we consider heterogeneity in energy sources in embedded systems. Non-ideal

energy sources, such as batteries and scavenged energy sources, have spatial and temporal

variations. This heterogeneity in non-ideal energy sources greatly impacts performance

and lifespan of embedded systems. Failing to consider this heterogeneity causes problems.

Battery voltage decreases and internal resistance increases as a battery is drained. These

changes reduce system throughput and/or decrease system lifetime if workloads do not

adapt to these changes. Wireless sensor networks operating in the wild can completely

eliminate their batteries and operate only using scavenged energy from the environment.

These scavenged energy sources, e.g., wind power, solar power, and water flow power,

however, are available at random times and locations. If workloads are assigned at the

time/location at which the scavenged energy sources are insufficient, the sensor network

suffers from long transmission delay or transmission failure.

Second, heterogeneity in computational and cooling resources in data centers also makes

workload assignments a challenge. In data centers, energy consumption is wasted when or

where computation is low. On the one hand, a large portion of the computational energy on

server machines is spent keeping the machines active even when the machines are idle or
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Figure 1.1: Relationship of research directions of this thesis

running light workloads. Existing heterogeneity-blind assignments aggravate this problem.

These assignments can easily overload or underload computational resources such as CPU,

disk, and memory, creating contention in some resources while leaving others idle, wasting

energy. On the other hand, additional cooling energy is wasted keeping processors running

at unnecessarily low temperature setpoints. These sub-optimal temperature setpoints are

caused by overlooking the difference in processor process variation and wear states.

As a result, finding the optimal workload assignment on heterogeneous resources is an

important, yet unsolved problem. In this thesis, I verify this thesis statement:

Across a wide range of applications, workload assignment policies that consider the

matching between spatially- and temporally- heterogeneous workloads and resources im-

prove system lifetime, energy efficiency, and reliability, compared to existing heterogeneity-

blind policies.
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1.1 Solutions

I divide the above problem into two branches: matching workloads with heterogeneous

energy sources, and matching workloads with heterogeneous computational and cooling

resources. I break these problems into four subproblems and solve them using specific ap-

proaches. The organization is described in Figure 1.1. Below is a list of specific subproblems

and my solutions.

1.1.1 Hardware and Software Codesign of Deregulated Energy Deliv-

ery Systems

Battery-powered embedded systems are constrained by energy source capacity, size, weight,

etc. Researchers have reduced printed-circuit-board (PCB) areas by removing components

from the system, e.g., removing voltage regulators. However, this can degrade system

lifetime as it reduces the system lifetime.

I studied the impact of power deregulation, a technique that removes voltage regulators

from embedded systems to save PCB area, upon embedded system design decisions. When

they operate directly on raw batteries, processors suffer from single-thread performance

degradation as their operating voltages decrease with the battery voltage. Power deregulation

compensates for throughput by activating additional cores when battery voltage is below a

certain threshold. This system can suffer from significant lifetime degradation if designers

do not consider battery discharge characteristics and internal resistance changes.

I developed a battery-system codesign process that explores the matching between a

battery and a power deregulated system. This process explores the relationships among

battery discharge voltage, internal resistance, processor operating voltage, and processor

equivalent resistance. I also provide a procedure for selecting the best-matching battery type

for an embedded system.
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1.1.2 Routing Protocol Design for Sensor Networks Powered by Op-

portunistic Energy Sources

Some sensor nodes operating in wild, outdoor environments operates without batteries

completely to prevent the effort of removing dead batteries or to prevent environmental

pollution from degraded batteries [3]. They rely on energy scavenging from the environment,

e.g., solar power, wind power, and water flow power, etc. These energy sources are

only available intermittently. Therefore, improperly designed routing protocols wake up

sensor nodes when scavenged energy sources are not available, degrading or disabling data

transmission.

I designed an Ambient Energy Aware (AEA) routing protocol for energy scavenging

sensor networks that utilizes the spatial and temporal correlation among energy sources

to maximize the probability of successful data transmission. It detects the energy source

availabilities at the location and time of sensor node activation and uses a probability function

to calculate the awake/sleep schedule of sensor nodes. Sensor nodes with available energy

sources along the path from source nodes to the base station are selected for reliable data

transmission.

1.1.3 Energy and Performance Optimization Considering Resource

Sharing in Heterogeneous Data Centers

Data centers suffer from throughput degradation caused by resource contention. This is

the result of task assignments that overlook machine and task resource utilization. Also,

server machines in data centers consume a significant amount of electricity energy, up

to 40% of which is idle energy consumption [2]. People proposed a task concentration

technique that consolidates tasks on a subset of machines and shuts down the rest [4]. This

reduces idle energy consumption, but can significantly increasing job execution time due to

resource contention among consolidated tasks. Another source of data center performance
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degradation is remote task execution, i.e., running tasks on machines that do not contain

their input data. One common solution to this problems is to always assign tasks to machines

containing the input data of the tasks. Unfortunately, this can result in poor resource sharing

among tasks. The trade-off between data locality and resource contention needs to be

considered.

I designed and implemented Heterogeneous Adaptive Modeling Scheduler (HAMS),

with the purpose of improving performance and reducing energy consumption in data centers.

It uses a resource utilization model and a task performance model to select task assignments

that do not result in significant resource contention. The two models in this scheduler capture

task and machine heterogeneity of a server using resource utilization vectors. This method

allows task concentration without much increasing job execution time, while still reducing

idle energy consumption.

I also evaluate a method that determines whether to assign a task to a machine containing

its input data or to a remote machine. It considers overheads of both migrating tasks and

data using a network data transfer model and resource utilization models. The data transfer

model captures the delay of migrating a data set by considering disk utilization and the

network transfer delay.

1.1.4 Minimizing Data Center Cooling Energy Under Reliability Con-

straints

HAMS only focuses on the computational energy consumptions of server machines. I

extended my work to minimizing cooling energy by selecting the most appropriate operating

temperature setpoints of processors. Lower processor temperature setpoints require larger

amounts of cool air or lower chiller temperatures, increasing cooling power consumption.

These low temperature setpoints are used to prevent reliability problems in the processors.

However, determining the reliability constraint of processors is challenging because proces-

sor wear states are unknown. Therefore, processor temperature setpoints are set to much
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lower values to leave sufficient margins, wasting cooling energy.

I describe a cooling energy saving algorithm that uses task assignment to allow processors

to run at optimal temperature setpoints. The impact of candidate assignments on data center

energy consumption is calculated using a data center thermal transfer model and a cooling

energy model. Assignments resulting in minimal energy consumption are then selected.

The resulting task scheduler achieves on average 18% reduction of total data center energy

consumption.

The optimal temperature setpoint of each processor is given by its reliability constraint

and wear state. While the reliability constraint is specified by users, the processor wear

state is measured through an automatic test process. This test stresses the processor under

different temperature, voltage, and frequency combinations, and records the operating

conditions resulting in system crashes. The processor operating states of this crashes are

used to calculate the processor timing slack, which is used to estimate processor wear states.

1.2 Thesis Overview

The organization of this thesis is described below.

Chapter 2 describes a design flow for power deregulation, a technique that removes

voltage regulators from systems while still maintaining system throughput. We present a

battery and system model that describes regulated and deregulated system behaviors during

battery discharge, and analyzes the impact of several system parameters on battery lifespan.

We also present the result of discharge, resistance, and impedance tests of a new battery

technology suitable for power deregulation.

Chapter 3 describes a routing protocol for reliable communication in battery-less sensor

networks. This design incorporates spatial- and temporal-correlation of scavenged energy

sources. We also discuss the feasibility of this design across different sensor network

applications.
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Chapter 4 presents HAMS, a task scheduler that considers machine and task heterogeneity

for MapReduce tasks in data centers. We also describe task models that describe task

execution time under different background loadings. We then describe how this technique

can be used to aid task concentration technique to save data center energy consumption

by shutting down idle machines. Finally, we develop a network data transfer model, and

integrate it with HAMS to account for remote task execution.

Chapter 5 describes reliability-aware cooling energy saving through task scheduling.

We present a task assignment scheme that selects the optimal temperature setpoints of

processors to minimize cooling energy, while not violating reliability constraints. We

introduce a method of measuring the per-core reliability constraint through an automatic

wear state measurement on server machines.

8



CHAPTER 2

Embedded System and Application Aware

Design of Deregulated Energy Delivery Systems

2.1 Introduction

Bulky, inefficient power regulation circuitry imposes large overhead on embedded systems.

Embedded systems often have size, energy consumption, and battery lifetime constraints.

The (inappropriate) use of voltage regulators can cause an embedded system design to

violate each of these constraints.

First, the voltage regulator can take up to 30% of printed-circuit board (PCB) area in

embedded systems. Figure 2.1 demonstrates the PCB photo of one example embedded

system.

Second, commercial switching voltage regulators suffer from energy loss during conver-

sion. The resulting conversion efficiency of commonly used buck converters is 85%, while

that of buck-boost converters is around 70% [5]. Furthermore, switching regulators have

high power consumptions compared to the rest of the system in sleep mode. The quiescent

current of voltage regulators in sleep mode ranges from tens of microamperes to several

milliamperes, wasting energy [6].

Third, peripheral components in DC–DC converters also add inductance to the power

delivery network, exposing the circuit to LdI/dt effects, potentially causing reliability

problems.
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Figure 2.1: PCB of an iPod Nano [7]. Voltage regulation circuitry and components take up
to 25% of the PCB area.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100

V
o

lt
a

g
e

 (
V

)

Remaining capacity (%)

(a) Discharge curve.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100

In
te

rn
a

l 
re

s
is

ta
n

c
e

 (
Ω

)

Remaining capacity (%)

Li/MnO2
LiAl/MnO2

Li/MoS2
C/LiCoO2
silver-zinc

(b) Internal resistance.

Figure 2.2: Discharge curves and internal resistances of different types of batteries with
capacities of 100 mAh. Data for the silver-zinc battery comes from measurements. Data of
other battery types comes from the Handbook of Batteries [8].

People have proposed system designs to remove voltage regulation circuitry. However,

conventional systems without voltage regulators are usually single-core, low power embed-

ded systems that have limited performance [9]. Such systems directly power processors

using batteries with voltages that decrease over time (Figure 2.2a). To allow reliable opera-

tion, designers generally run processors at the frequency appropriate for the lowest battery

voltage, leaving a large performance margin when the battery voltage is high.

In contrast, power deregulation [10] provides a method to maintain performance on multi-

core systems without voltage regulators. It maintains throughput by activating additional

processor cores as battery voltage decreases, taking advantage of thread-level parallelization.
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Power deregulation is most appropriate for multi-core embedded systems, e.g., those running

signal processing or multi-media applications, whose workloads have good parallelism and

can thus benefit from performance compensation by power deregulation.

However, when designed improperly, the battery lifespans of power deregulated systems

degrade. The influences on battery lifespan in power deregulated systems are complex.

Battery properties, such as depth-of-discharge (DoD) dependant changes in voltage and

internal resistance influence the performances and lifespans of deregulated systems. Previous

work overlooks or underestimates these time-dependent variations. For example, prior

work does not consider the impact of battery internal resistance [10, 11]. This has similar

magnitude to the equivalent resistance of a processor (as shown in Figure 2.2b), causing

significant internal voltage drop for batteries. In power deregulated systems, additional cores

are activated to compensate for performance loss. Determining the battery DoD at which a

new core needs to be activated requires, again, knowledge of both the transient behavior of

the processor and the battery DoD.

We introduce an electrical battery model and a corresponding system model to de-

scribe the time-dependent changes in unregulated systems. We focus our models on power

deregulation, as it out-performs other unregulated systems. The battery model captures

time-dependent changes to battery characteristics. The embedded system model captures

the relationship between battery state, processor voltage, and system power consumption.

Together, these models enable rapid evaluation of different battery–processor combinations

during the design process. We also analyze characteristics of batteries and processors that

influence system lifetime, and give battery selection guidelines for designers of power

deregulated systems.

Widely used rechargeable batteries, such as Lithium-ion, may not be suitable for power

deregulation, because their voltages during the plateau region, a relatively flat region of the

voltage–DoD curve, are significantly higher than the optimal-energy operating voltages of

modern processors. However, there are new, high energy density, battery technologies that
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are good candidates for deregulated systems. We provide test results for one such candidate,

the recently commercialized silver-zinc secondary cell technology.

This chapter makes the following contributions.

1. We describe and evaluate battery and system models that are suitable for the design

of power deregulated systems. They consider battery DoD dependent parameters

including battery voltage and internal resistance.

2. We provide a design process for the codesign of deregulated embedded systems

and their energy delivery subsystems. We give guidelines for battery and processor

selection, and indicate the operating conditions favorable for power deregulation and

conventional regulated systems.

3. We provide the first third-party characterization of the new silver-zinc battery technol-

ogy for embedded applications, including data on discharge curves, impedances, and

internal resistances. The characterization results are used in battery model validation

and lifetime simulation.

2.2 Related Work and Background

The rest of this chapter focuses on evaluating power deregulation, because it is more general

than, and often outperforms, other unregulated design techniques. It is possible to instead

use uniprocessors with large performance margins at high initial battery voltages, thereby

imposing tight limits on performance or resulting in short battery lifespans. For example,

the Telos ultra low-power wireless node [9] uses an unregulated MSP430 RISC processor.

In contrast, power deregulation exploits multi-core processors to improve lifespan and

performance.

We consider the heterogeneity of batteries and workloads. Some existing work also

considers the match between workloads and non-ideal energy sources, e.g., batteries and ul-
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tracapacitors. Cho et al. [12] proposed a method called dynamic voltage regulator scheduling

(DRS) that selects either DC–DC converters, linear regulators, or bare batteries depending

on processor frequency and voltage. Cao et al. [11] designed a battery/ultracapacitor hybrid

system for electric drive vehicles. The match between the output voltage of a battery and

the discharge current of the workload is considered during system design. Their design

is more appropriate when the system is powered by multiple energy sources, while we

focus on single-battery systems and more thoroughly develop the relevant modeling and

system design techniques. Choi et al. proposed DC–DC converter-aware dynamic voltage

scaling [13]. This technique selects the most energy optimal voltage point and gate sizing

for both processors and the converter. While this work improves efficiency of the voltage

regulator, it does not aim to reduce PCB area.

2.3 Power Deregulation

In this section, we briefly describe power deregulation, the process of removing voltage

regulators and their peripheral capacitors and inductors from an embedded system, allowing

it to operate directly on battery power. The battery output voltage thus serves as the operating

voltage of processors.

The time-dependent decreasing battery voltage limits the operating frequency of pro-

cessors, but need not reduce system performance. Constrained by timing requirements,

the processor frequency scales in proportion to its operating voltage, which decreases over

time as the battery discharges. Figure 2.3 shows how power deregulation works during the

battery discharge cycle. At the beginning of discharge, the battery output voltage is higher

than the normal processor operating voltage using a voltage regulator, resulting in higher

operating frequency and therefore higher throughput than necessary. This wastes energy.

Therefore, a portion of cores in the multi-core system are turned off to save energy, leaving

just enough active cores to maintain throughput. As discharge continues, battery voltage
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Figure 2.3: The operating timeline of power deregulation.

decreases slowly. Processor frequency decreases accordingly, reducing the overall system

throughput until it is inadequate. The system then activates another core to compensate

for performance degradation. This process continues, until the processor cut-off voltage is

reached. Short-term temporal fluctuations in battery voltage can be neglected, except when

the battery voltage is near the threshold voltage for activation of additional cores. Hysteresis

within the control software can be used to prevent frequent core activation and deactivation,

as described in Subsection 2.5.2.

2.4 Lifespan for Battery-Powered Systems

Battery energy capacity and average power consumption can be used to roughly approximate

the total lifespan of an embedded system. However, this is only a first-order approximation.

Generally, only a portion of the battery energy can be used because the system shuts down

at some cut-off voltage. Such effects need to be considered when evaluating battery lifespan.

Previous work has simultaneously considered delay and battery lifespan [14], but at the cost

of using a fixed operating voltage that depends on a voltage regulator.

System lifespan is influenced by battery capacity, as well as the time-varying battery
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internal resistance and embedded system power consumption. The battery discharge effect

can be expressed as follows:

capacity =

∫ T

0

(Pint(t) + Psys(t)) dt. (2.1)

Battery internal power consumption Pint(t) changes with battery output voltage and internal

resistance. In power deregulated systems, the embedded processor power consumption

Psys(t) is affected by core activation. These time-varying effects must be considered when

estimating lifespan. Short-term variations of battery discharge current on battery lifespan

are discussed separately in Subsection 2.5.2.

2.5 Model

In this section, we first present battery voltage dependent power and performance models

for regulated and power deregulated systems. We then describe a battery model that is

suitable for computing system lifespan. Finally, we combine these two models to compare

conventional regulated and power deregulated systems.

2.5.1 Power Consumption and Performance Model

In power deregulated systems, battery voltage determines processor voltage, which in turn

constrains frequency [15]:

f = k(Vdd − Vth)a/Vdd . (2.2)

In this work, we set the performance constraint of a power deregulated system to that

of a regulated chip-level multiprocessor (CMP) system with the same number of cores

operating at the optimal-energy DVFS voltage. The optimal DVFS voltage of a regulated

system allows it to operate with the lowest power consumption but still meet its performance

requirement. In this work, we mainly consider a regulated system using non-linear buck
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converters. We refer to this as the “regulated system” in the rest of this chapter. In general,

this performance tolerance can be adjusted based on workload properties and design goals.

For the same workloads, the deregulated and regulated systems must satisfy the same

performance requirements:

Ndereg · fdereg = Nreg · freg ∝ Performance. (2.3)

This model tracks the system performance, and accounts for the influence of single-thread

frequency (f ) on the number of functioning cores (N ) in a multi-core system.

Using Equation 2.2, we can substitute the voltage for frequency in Equation 2.3 for every

operating frequency point. The performance constraint then depends on the relationship

between battery external voltage (for power deregulation) and regulator output voltage (for

regulated systems):

Ndereg · Vexternal = Nreg · Vreg . (2.4)

This relates core activation to battery external voltage: a new core is activated when Vexternal

drops below a threshold.

2.5.2 Battery Model

There are several battery models for embedded systems. Chen et al. proposed a runtime

electrical battery model [16] consisting of resistor-capacitor networks. It captures the short-

term and long-term response of the battery. Rao et al. developed a charge well based battery

model that captures the recovery effect [17].

The battery model used in our evaluation is based on the classic model developed by

Lawrence et al. [18]. We select this model because it is suitable for most batteries used in

mobile embedded systems. This model consists of time-varying resistance and a voltage

source in series. This level of complexity is necessary because these are the two major

factors that affect long-term battery discharge behavior and external voltage. It is sufficient
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to accurately model battery external voltage over long time scales. Here we ignore the

temperature dependence of battery internal resistance, as the battery temperature fluctuation

is small in most low-power embedded systems [16]. The model parameters can be measured

during battery characterization. Our testing results on several silver-zinc battery samples

show that this battery model captures the discharge behavior (see Section 2.6).

During our evaluation, we only consider battery voltage changes due to the long-term

discharge effect, e.g., stable power management state changes and workload changes. We

then divide the battery discharge process into several phases. Within each phase, we use the

average current to model the discharge current to the load processors. Therefore, we assume

the systems operate with constant workload, i.e., the equivalent resistance of one core does

not change within one battery discharge phase. We model the processor equivalent resistance

using a fixed resistance, and ignore short-term changes in processor power consumption due

to runtime workload variation. This approach is valid for the following reasons.

• The fluctuations in current resulting from millisecond-scale [19] changes to workload

power consumption are filtered out by the large built-in capacitance of batteries,

making it unnecessary to adjust to them [20]. Longer time scale changes in workload

power consumption that influence battery voltage can be dealt with in the same way

as changes in battery voltage due to discharge.

• We explicitly consider the change in battery efficiency due to short-term variations

in discharge current using an efficiency parameter µ (0 < µ < 1) [14], which can be

calculated based on the discharge current profile.

• Using average discharge current to model the workload will not bias our evaluation

towards either regulated or power deregulated systems. Even given the same average

discharge current, there remain differences between the current profiles of differ-

ent systems due to cache misses, context switches, and application phase changes.

However, the resulting variation in battery lifetime between different pulse discharge
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Figure 2.4: Battery model used for a regulated system.

currents is negligible (3% [14] in both systems).

• We calculate the workload, equivalent loading resistance, and battery efficiency

parameters separately for each discharge phase during long-term battery discharge.

Figure 2.4 shows the quasi-steady-state battery model used in our evaluation. We model

the equivalent resistance of a processor as Rload = Rcore/N , in which N is the number of

cores that are functioning in the multi-core system and Rcore is the equivalent resistance of

an individual core. The equivalent resistance of a core depends on its operating frequency.

In a conventional regulated system, the voltage converter output voltage Vreg is constant

for a fixed DVFS voltage point. In a power deregulated system, the voltage regulator in

Figure 2.4 is removed, and Vexternal directly powers the load. Vexternal follows:

Vexternal(t) =
RcoreVsource(t)

Rcore +NderegRinternal(t)
. (2.5)

The power consumption of a power deregulated system in the battery internal resistance

and external load follows:

Pdereg =
V 2

source(t)

Rinternal(t) +Rcore/Ndereg

. (2.6)

The power consumption of a regulated system has a similar form, except that the regulator

introduces power loss during voltage conversion, which is captured in a conversion efficiency
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variable: conv_eff (0 < conv_eff < 1).

2.5.3 System Level Model

We integrate the performance and battery models for use in design-time battery lifespan esti-

mation of both regulated and power deregulated systems. Power consumption (Equation 2.6),

multiplied by a discharge efficiency parameter µ, is used within the battery discharge be-

havior model (Equation 2.1). Core activation behavior in power deregulation is given by

Equation 2.3. There is not an analytical form of the time-dependent parameters Vsource(t)

and Rinternal(t); they can only be obtained from battery discharge curves, as shown in

Figure 2.2b. Therefore, we used a discrete event simulator that captures the time-varying

battery discharge effect to obtain the system lifetime T using these models and battery

characterization data.

To determine the circumstance in which power deregulation improves system lifespan

over conventional power regulation, two main factors must be considered: battery external

voltage and system power consumption. The former has been derived in Equation 2.5. The

relationship between power consumption on the processors of both systems can be derived

from the performance and battery models:

Pdereg,core = Preg,core ·
Vexternal(t)

Vreg

· conv_eff . (2.7)

Whether a power deregulated system consumes less power or has a higher battery external

voltage than a regulated system depends on the factor (Vexternal/Vreg) · conv_eff , which

changes as the battery discharges. Section 2.7 will further explain the factors that influence

the battery external voltage discharge curve.
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2.6 Characterization and Analysis of a New Silver-Zinc

Battery Technology

For a power deregulated system to operate reliably and efficiently, an appropriate battery

technology must be used. Battery voltage range becomes more important in the absence

of a voltage regulator. Most available high energy density battery technologies, such as

lithium-ion, have plateau voltages ranging from 2 V to 4 V, which are too high for current

and future deep submicron processors. We have evaluated power deregulation when used

with a new, high energy density, low-voltage silver-zinc battery technology, whose two

plateau voltages are around 1.8 V and 1.5 V.

We have obtained sample silver-zinc batteries from ZPower, the company commercializ-

ing this technology, and have performed internal capacitance and resistance measurement to

build and verify the model described in Section 2.5. These measurements have also allowed

us to determine whether the conditions for reliable operation of power deregulated systems

hold for this battery technology. Battery samples with 27 mAh and 100 mAh capacities were

evaluated. It is expected that the silver-zinc battery will be available for commercial use

later this year.

2.6.1 Charging and Discharging Characteristics

We measure the battery discharge curve to obtain its plateau voltage range, and thus verify

that this voltage range is within the operating voltage range of a processor using current

technology.

The discharge curves of the batteries are directly measured using the ZPower Button

Cell Charger/Cycler. The tests are performed with a discharge current of 5 mA for 27 mAh

cells and 10 mA for 100 mAh cells.

The discharge curve of a 100 mAh cell is shown in Figure 2.5. Silver-zinc batteries have

a discharge curve with two voltage plateaus. The discharge voltage of the cell ranges from
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Figure 2.5: Discharge curve for a 100 mAh silver-zinc cell.

1.2 V to 1.8 V, which is suitable for directly powering processors using 180 nm technology

or older (e.g., ARM7TDMI–S).

2.6.2 Internal Resistance

We use pulse testing to measure battery internal resistance, to capture its change during

discharge. The internal resistance of the 27 mAh cell is measured at a discharge current

of 1.5 mA and a pulse current of 0.15 mA, and that of the 100 mAh cell is measured at a

discharge current of 10 mA and a pulse current of 1 mA.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  10  20  30  40  50  60  70

In
te

rn
a

l 
re

s
is

ta
n

c
e

 (
Ω

)

Remaining capacity (%)

27 mAh cell

(a) 27 mAh cell

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  10  20  30  40  50  60  70

In
te

rn
a

l 
re

s
is

ta
n

c
e

 (
Ω

)

Remaining capacity (%)

100 mAh cell

(b) 100 mAh cell

Figure 2.6: Internal resistance test.
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The internal resistance of the battery reaches a sharp spike the same time as the high-

to-low battery voltage transition. These two phenomena, both caused by the chemical

phase change, result in core activation in power deregulated systems. This spike lasts for

a few minutes, which is longer than the response time for core activation, allowing power

deregulation to adapt to the change.

The resistance of a 27 mAh cell is on average 2.2 times that of a 100 mAh cell as shown

in Figure 2.6, i.e., the internal resistance decreases with the increasing battery capacity.

When doing lifetime simulation (see Section 2.7) of batteries with different energy capacities,

we determine the internal resistances using a linear function of battery capacity based on the

two measured capacities [21].

2.6.3 Impedance Test

We performed battery internal impedance tests and calculated the battery internal capacitance

and inductance. This result allows us to conclude that LdI/dt effects will not become more

severe when power deregulation is used.

The impedance of the battery is measured by applying alternating voltage to the battery

at different DoDs, and measuring the phase of the discharge current. We use an Agilent

33250A function generator to generate an alternating voltage with fixed frequency. This

voltage is applied across the battery in series with a 10 kΩ resistor, whose resistance is much

larger than the battery internal resistance and thus keeps the amplitude of the discharge

current constant. The discharge current is sampled using an NI USB 6210 data acquisition

card.

Our measurements show that the magnitude of the battery impedance reduces and the

phase becomes positive as the frequency increases, indicating that the impedance of the

battery is capacitive instead of inductive. To develop a more detailed model of the internal

capacitance of the battery, we calculated the capacitance for the 27 mAh battery using

an RLC model [18], which we simplified by considering only one resistance (Rc). The

22



capacitance remains the same (approximately 100 mF) during discharge, with only 0.05%

variation. Therefore, we consider the capacitance independent of battery DoD.

2.6.4 Summary of Silver-Zinc Battery Evaluation

The measurement results in this section show that the silver-zinc battery is a good candidate

for power deregulated systems. Its two-level output voltage falls in the operating voltage

range of a modern processor. Neither the internal resistance spikes nor the battery impedance

is a source of reliability problems when directly using the battery to power the workload.

We use the internal resistance measurement values in our system lifetime simulation, and

the result in Section 2.9 shows that this silver-zinc battery does not degrade system lifetime

compared to regulated systems. Nevertheless, there are drawbacks to the silver-zinc battery

technology. At present, only ZPower and Yardney rechargeable silver-zinc batteries are

commercially available later this year. To summarize, silver-zinc batteries provide an

example of a battery technology appropriated for power deregulation.

2.7 Factors Affecting System Lifetime

Using the models introduced in Section 2.5, we are able to discuss how the choice of battery

and processor types affect system lifetime of both power deregulated and regulated systems.

A power deregulated system operates until the battery voltage drops below the pro-

cessor’s minimum operating voltage. It is important to consider two phenomena that can

reduce system lifespan. (1) If significant energy remains in the battery when its output

voltage reaches the minimum operating voltage of the processor, the remaining energy

cannot be used. (2) If the battery voltage is significantly higher than the nominal voltage of

the processor, power consumption is higher than necessary for a given performance level,

reducing battery lifespan. Either of these two factors can reduce system lifespan.

The above two factors and our battery and system models can be used to inform design
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decisions for power deregulated systems. The lifetimes of both regulated and power dereg-

ulated systems are influenced by processor and battery characteristics, including battery

internal resistance and discharge curves, the minimum operating voltage of the processor,

the equivalent resistance of the processor, and the number of processors in the system. We

evaluate each variable in this section.

2.7.1 Internal Resistance

We evaluate the influence of Rinternal values on battery lifetime and system design. As

can be seen in Figure 2.2b, Rinternal increases at the end of the battery life cycle for most

batteries. This results in a rapid decrease in Vexternal , as described in Equation 2.5, resulting

in termination when the processor (or regulator) cut-off voltage is reached.

Rinternal is, in general, inversely related to battery capacity [21]. Due to the change in

battery internal resistance, system lifetime does not increase linearly with battery capacity.

Furthermore, larger battery capacity does not necessarily prolong system lifetime for power

deregulation, because the system lifetime does not change monotonically with the corre-

sponding internal resistance change. To allow designers to fairly compare the difference in

battery lifespans given different battery capacities, we consider the scaling effect in battery

internal resistance when selecting different battery capacities in system lifespan evaluation.

Figure 2.7 demonstrates the change in battery lifetime normalized to the battery ca-

pacities of both regulated and power deregulated systems when Rinternal increases. In the

presence of large Rinternal , there is significant voltage drop across Rinternal in both regulated

and power deregulated systems, greatly reducing battery external voltage and causing the

cut-off voltage to be reached quickly. A power deregulated system has longer battery life

compared to a regulated system due to its lower cut-off voltage and absence of regulator

overhead. Systems using buck-boost converters suffer less from lifespan degradation, as they

have much lower cutoff voltages. But the lifespan increase is limited due to their high energy

loss during voltage conversion. When Rinternal is very small, power deregulation reduces
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Figure 2.7: Battery lifespans for power deregulated and regulated systems with varying
battery internal resistance values.

lifespan. The internal voltage drop is ignorable, and Vexternal is similar to Vsource, increasing

system power consumption quadratically. Therefore, power deregulation becomes power

inefficient and drains battery capacity faster, reducing the system lifetime.

2.7.2 Lowest DVFS Voltage

The processor’s lowest DVFS voltage Vmin determines the minimum output voltage of a

voltage regulator. Power deregulated systems work well when processors have Vmin values

close to the battery plateau voltage.

When Vmin is comparable to the voltage of the plateau region of the battery external

voltage curve, in a power deregulated system Vexternal can decrease to Vmin . In this case,

power deregulation results in similar or lower power consumption than voltage regulation,

as described in Equation 2.7. This benefit can exceed the negative effect of sometimes using

a voltage higher than the most power-efficient value. In contrast, when Vmin is much lower

than the plateau region of Vexternal , the additional processor power consumption will reduce

battery life in the power deregulated system.

In addition to satisfying the requirement improved by Vmin , the battery should have a

low enough voltage for reliable operation. To power processors using deep sub-micron
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Figure 2.8: Battery lifetime changes with processor load resistance.

technologies, batteries should have nominal voltages around 1 V. Most existing batteries do

not meet this requirement. Some new battery technologies, however, are suitable for power

deregulation. For example, the plateau voltages of recently commercialized silver-zinc

batteries range from 1.8–1.2 V, which is close enough to processor nominal voltages for

energy-efficient operation. We characterized silver-zinc batteries to determine whether they

were appropriate for power deregulation (see Section 2.6).

2.7.3 Impact of Core Count

The number of available cores in the system determines the granularity with which a power

deregulated system can adapt to changing battery voltage by enabling new cores. The system

performance constraint in Equation 2.3 is set based on the performance of the regulated

system when operating at the optimal energy DVFS voltage. When a new core in a power

deregulated system is activated, the instantaneous increase in performance might potentially

exceed requirements, wasting power. Having more cores tends to reduce this discretization

problem. On the contrary, a regulated system does not benefit in this way from more cores.
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2.7.4 Processor Equivalent Resistance

In a power deregulated system, the equivalent resistance of the processor must be large

enough to prevent a substantial voltage drop across the battery internal resistance. The

equivalent resistance of embedded processors, although varying with different applications,

usually tens of ohms or fewer, which is smaller than the internal resistances of some batteries.

Enabling additional processor cores reduces the load resistance. This reduces the battery

external voltage, as explained in Section 2.5. If the equivalent resistance of the processor

is comparable to Rinternal , this sudden voltage drop will lead to enabling more processors

to maintain the performance. This causes further Vexternal drop, which in turn shortens

the system lifetime(Figure 2.8). Thus, when selecting a processor, the designer should

determine whether the equivalent resistance of the processor is large enough to sustain an

adequate operating voltage during most of the battery discharge curve.

2.8 Deregulated System Design Procedure

We now summarize the design procedure when both conventional regulated and power

deregulated system design styles are considered. The goal is to maximize battery lifetime.

Note that even when a power deregulated system has no or slight lifetime advantage, it may

still be appropriate due to reduced PCB area and system cost. We assume that the designer

has the freedom to choose among several types of batteries with different capacities and

prices.

Figure 2.9 can help with the design process. For each type of battery, the constraints

imposed by battery internal resistance (and hence battery capacity), processor equivalent

resistance, number of cores, and the lowest DVFS voltage point of the system are considered.

The designers should follow the steps below.

1. The change in Rinternal due to the scaling of battery capacity must be considered.

According to Figure 2.7, the normalized battery lifetime depends on the (time-varying)
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battery internal resistance. Thus, the designer should refer to this plot to determine the

range of Rinternal for which battery lifespan is acceptable. The range of appropriate

battery capacities can then be determined.

2. The designer should consider the equivalent resistance of the processor. Based on the

range of Rinternal values, the designer can confirm that processor resistance is high

enough (> 3× according to Figure 2.8) relative to Rinternal to prevent severe voltage

drop across the battery internal resistance when enabling new cores.

3. The number of available cores is already determined by the processor type. However,

the designer must verify that the core count is sufficient to prevent lifespan shortening

due to coarse granularity core activation in response to reducing battery voltage.

4. The designer should verify that the voltages of the batteries being considered are

compatible with the minimum DVFS voltage Vmin of the processor. At this point, the

designer has tentatively selected one or a few processors and battery types. Based

on the known Vmin value of the processor, the designer should check each battery

plateau voltage to determine whether this Vmin leads to a longer lifetime using the

power deregulated system.

5. If the power deregulated system satisfies all these requirements, it is entered into a

list of candidate designs. A regulated system using the same type of battery is also

considered, and is added to the candidate list if appropriate.

6. When all types of batteries have been considered, the designer should refer to other

system constraints (e.g., the operating temperature of the battery or total weight and

size of the system) and rule out inappropriate candidates.

The remaining designs in the candidate list satisfy the designer’s requirements. As a result,

the one most appropriate given the designer’s battery lifespan, PCB area, price, and reliability

requirements is selected.
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Figure 2.9: Design and battery-processor selection for power deregulated and regulated
systems. The numbers correspond to the steps described in Section 2.8.
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2.8.1 Battery Lifespan Comparisons

We performed system lifetime simulation for five battery types. The simulation is done

for regulated systems using buck/buck-boost converters and power deregulated systems.

We leave out comparisons across other unregulated systems because they focus on low

performance applications and fail or significantly shorten battery lifespans for multi-threaded

applications [9]. In contrast, power deregulation works for both low and high performance

applications. In these lifetime comparisons, we use processors with the most suitable number

of cores, and the processor operating voltage matches the plateau voltages of the battery,

i.e., we considered system designs for which power deregulation is likely to be appropriate.

The system used for evaluation is designed to be suitable for operating with all five

battery types. The minimum DVFS voltages of the processors range from 1.2 V to 1.6 V

for the first four batteries, while that voltage of processors used with silver-zinc batteries

is 1.0 V. The buck-boost converter has a cut-off voltage of 0.8 V. The conversion efficiency

is 85% for the buck converter, and 72% for the buck-boost converter [5]. Recent research

shows that the peak efficiency of DC-DC converters can reach 98% [22]. However, this only

happens under low loading current; efficiency is more typically 80%. The quiescent current

of both buck and buck-boost voltage regulators during sleep mode is set to 5 mA [6].

We perform system lifetime evaluations on two applications: multi-core sensor network

applications and multi-media devices. Sensor networks are common applications suitable

for power deregulation. Such applications limit available PCB area and are constrained by

battery energy. Multicore processors can be useful for parallelizable applications such as sig-

nal processing [23], making power deregulation especially favorable. In our simulation, we

set the awake/sleep duty cycle to 1%, which is common in sensor network applications [24].

Multi-media applications are also potential candidates for power deregulation. They

generally use more cores, and can achieve better parallelism when running multi-threaded

programs. This reduces throughput loss when activating new cores. Both these applications

have good thread-level parallelism. In our simulation, we use a parameter (0.85) to describe
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Figure 2.10: Lifespan comparison for sensor network apps.

the performance loss due to non-ideal parallelism.

Figure 2.10 compares system lifetimes of sensor network applications for five battery

types. Power deregulation clearly out-performs both regulated systems for all batteries,

achieving an average system lifespan improvement of 9.8× over buck-boost regulated

systems and 10.2× over buck regulated systems. This benefit in system lifetime mainly

comes from eliminating energy loss in voltage regulators, especially during sleep mode.

Figure 2.11 shows the system life comparisons for multi-media applications. Multimedia

application lifetimes are shorter than sensor network application lifetimes, because there

is no sleep cycle in these multi-media application. In addition, battery discharge currents

are higher. Given appropriate processor–battery matches, the power deregulated systems

outperform buck converter regulated systems for each battery type, having on average

17% longer battery life, while having a lifetime at most 25% less than the buck-boost

converter regulated system. The power deregulated system has similar or better battery life

compared to a buck-boost regulated system when Vexternal is close to the optimal energy

DVFS voltage of the processor, or when the battery discharge curve have a flat tail, leading

to a higher cut-off voltage. On the other hand, buck-boost regulated systems outperform

deregulated systems when batteries have high plateau voltages. Note that even though power
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Figure 2.11: Lifespan comparison for multi-media apps.

Table 2.1: HTC Smart Phone Power Consumption Breakdown

LCD CPU Wifi GPS Audio 3G

Power (mW) 412.042 196.392 234.083 0.0 248.130 0.0

deregulation does not significantly improve multi-media application lifespans, it reduces

PCB area compared to regulated systems.

2.9 Discussion, Caveats, and Future Directions

In this section, we discuss some problems and concerns that are not covered in our earlier

evaluation of power deregulation. This includes comparison with linear regulated systems

and power deregulation of systems with analog devices.

2.9.1 Linear Regulators

Although a linear converter regulated system can save significant PCB area relative to a

buck or buck-boost converter regulated system, it results in an inferior system lifespan

compared to a power deregulated system (which saves even more PCB area). First, linear
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regulators commonly have conversion efficiencies of 60% [25]. Although the efficiency

can be better when the input voltage is close to the output voltage, this condition is also

favorable to power deregulated systems. Second, linear regulators have an input-to-output

voltage difference requirement, i.e., they have higher cut-off voltages than power deregulated

systems, reducing the amount of usable battery energy. Third, the capacitance of a linear

regulator is even smaller than that of a non-linear regulator [26], and as a result is smaller

than that of a battery. Therefore, systems using linear regulators may be more susceptible to

LdI/dt effects than Power Deregulated systems.

2.9.2 Analog Components

Our discussions thus far have focused on the digital processor within an embedded system.

Real systems often also contain analog components that rely on a separate power supply.

Table 2.1 lists the average power consumption breakdown of five users of Android phones

when browsing videos on the YouTube website [27]. The digital components, including

CPU and audio devices, account for 41% of the total power consumption, with an additional

38% if a digital display is used. This reduces the power savings due to power deregulation.

It may be possible to replace some of the analog components with parts that may be powered

directly from batteries. For instance, a typical LCD relies on backlights, which require a high

drive in voltage (higher than 5 V) between electrodes. In contrast, OLED (Organic LED)

displays do not require backlights to function, making it conceivable that such a display

could compensate for some decrease in battery voltage during operation. OLED displays

can operate at 2.55 V [28], which can be supplied by most batteries. If some components

require very precise control of supply voltage, it may be necessary to use a conventional

regulated design for the relevant portion of the embedded system.
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2.9.3 Future Battery Technologies

Our discussion on example battery technologies has focused on the silver-zinc battery, the

voltage range of which is compatible with current processor technology. For future processor

technologies with lower voltage, use of nanoelectrolytes and nanoelectrodes may lead to new

battery technologies with appropriate output voltages that are lower than 1 V. Wu et al. [29]

introduced a silicon nanotube battery anode with a plateau voltage of 0.2 V. Armstrong et

al. [30] described a lithium anode with a plateau region at 0.1 V while maintaining high

energy density.

2.10 Conclusions and Acknowledgments

Battery-system codesign is necessary to maximize the battery lifespans of power deregulated

systems. We have shown that designers should ensure that battery discharge curves, capaci-

ties, and internal resistances are compatible with processor equivalent resistances and power

consumptions. The silver-zinc battery technology is a candidate for power deregulation

of deep submicron processors. Power deregulation can reduce PCB areas and, if designed

properly, maintain similar or greater lifespans compared to conventional regulated systems.
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CHAPTER 3

Spatially- and Temporally-Adaptive

Communication Protocols for Zero-Maintenance

Sensor Networks Relying on Opportunistic

Energy Scavenging

3.1 Introduction

Long unattended lifespans are important for wireless sensor networks because they are often

deployed in locations that are difficult to access. Replacing sensor network node components

or retrieving nodes can be prohibitively expensive. Therefore, sensor node lifetime is of

central importance. Most sensor nodes last a few months; some last a few years. This

implies that component or node replacement is necessary in long-term deployments. Our

work provides a novel method of designing wireless sensor networks to operate for decades

without periodic repair or replacement of sensor nodes.

Several factors constrain sensor node life time. The battery lifespan constraint is typically

encountered first. Rechargeable batteries used in many sensor nodes wear out faster than

other components. Even when energy constraints are loose, batteries have lifetimes ranging

from 1.5 year to 6 years [8, 31]. Battery lifetime is even worse among sensors deployed in

outdoor environments because the batteries suffer from ambient temperature and humidity
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changes, which can degrade the battery lifespans by 75% [31]. Frequent depletion/recharge

cycles can result in 20% decrease in battery lifespans. Consequently, sensor nodes must

periodically have their batteries replaced, wasting time and effort. Even for sensor nodes that

use batteries with lifespans exceeding that of the application, it is still commonly necessary

to eventually collect the nodes because many batteries contain toxic materials such as heavy

metals [3]. The elimination of batteries opens the possibility of designing wireless sensor

nodes that are suitable for long-term, one time deployment. Battery-less wireless sensor

nodes using energy scavenging devices as power supplies can meet this requirement.

Eliminating batteries can potentially make long-term deployment maintenance free.

However, existing battery-less sensor network designs still have problems. Previous works

do not eliminate the need for lifetime-constraining energy storage devices [32, 33]; such

nodes use supercapacitors or battery-supercapacitor hybrid systems for energy storage, which

still constrain the sensor node lifespan [34, 35]. In contrast, we consider a wireless sensor

node design that completely eliminates the need for lifetime-constraining energy storage

devices. The sensor nodes use ambient power sources, such as solar power, wind power,

and water flow as their energy source, replacing the battery with long-term, stable energy

scavenging devices. As a result, the sensor nodes no longer suffer under batter-imposed

lifetime constraints.

Eliminating batteries requires changing the sensor node architecture and modifying the

sensor network protocol design to specifically adapt to the changes in sensor node activities

caused by using ambient power sources: sensor nodes wake up at imperfectly predictable

times. Therefore, existing protocols that rely on pre-scheduled data transmission do not

work. Storage and time synchronization constraints in the sensor node architecture design

also limit the use of battery-less energy scavenging. We propose a protocol that takes power

source availability and remaining memory into consideration.

We consider applications in which the sensing target moves infrequently, as is often the

case for long-term environmental monitoring. They fall into one of the two categories: (1)
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the wireless sensor network only needs to sense when events occur, and these events also

provide energy or (2) sensor nodes are deployed in an environment that provides access to

time-varying energy sources that are event-independent. These properties are commonly

seen in existing distributed sensing applications.

We propose the following modifications to existing wireless sensor network architectures:

(1) replace the power supplies of sensor nodes with energy scavenging devices, which may

be wind or water turbines, piezoelectric generators, or solar panels, depending on the

application and available energy sources; (2) adapt routing decisions based on the spatial

and temporal distributions of power availability for nodes; and (3) store intermediate results

to non-volatile memory, when appropriate, to compensate for loss of power.

Based on these changes, we describe a new sensor network design that is well suited to

energy scavenging. Our major contributions follow.

• We describe a novel routing protocol that works well for sensor networks using

battery-less energy scavenging. The routing protocol reacts to imperfectly predictable

changes in ambient energy sources. It minimizes the end-to-end latency of packet

transmission and achieves 1.3–3× performance improvement over existing designs

for four environmental sensing applications.

• We describe architecture changes to sensor nodes that make them more appropriate

for use with intermittent and imperfectly predictable power supplies.

• We categorize commonly used sensor network applications and provide application

dependent guidance for designers considering battery-less energy scavenging.

We will discuss the details of our design in later sections and compare it with existing

design strategies.

37



3.2 Related Work And Motivation

Large scale, long-term monitoring applications rely on low-maintenance sensor nodes

because in-field repairs and replacement are expensive. Energy scavenging nodes offer a

compelling solution for reducing maintenance costs; they gather ambient energy from the

environment and consequently eliminate the need for battery replacement. However, existing

energy scavenging nodes still have practical limitations that either constrain their lifetimes

or prevent them from being used to build large-scale network applications. In this section,

we point out shortcomings in existing design techniques, summarize our contributions, and

argue for new sensor node and network architectures.

3.2.1 Engery Scavenging with Battery Assistance

Many researchers have proposed using sensor nodes powered by a combination of recharge-

able batteries and scavenged energy including power derived from the sun, ambient vibration,

wind, water flow, and the motion of animals. Among these, solar-power is most widely used

due to its high and stable energy density.

Raghunatha et al. [36] describe a procedure for designing efficient solar-powered sensing

systems. Taneja et al. [37] provided network architecture and node design guidelines for

micro-solar powered sensor networks. Researchers have also developed routing protocols

suitable for solar-powered sensor networks. Voigt et al. [38] proposed and compared two

such protocols. Existing work has used solar-powered sensors for environmental monitoring.

Mainwaring et al. [33] developed a wireless sensor network using solar-powered Mica

Motes for habitat monitoring on Great Duck Island. They used solar panels that can

provide between 60 and 120 Watts in full sunlight. The sensor networks in this chapter

used rechargeable batteries to store scavenged energy. However, the batteries themselves

constrain the sensor node lifetime and hence limit the applicability of these nodes in very

long deployments.
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3.2.2 Why Battery-Less Energy Scavenging?

Batteries are the primary energy storage devices in many sensor nodes. However, they typi-

cally have short lifespans and frequently limit the lifespan of the whole node. Consequently,

researchers have proposed the following methods of eliminating them.

Replace the rapidly degrading rechargeable battery with a supercapacitor. Minami

et al. designed Solar Biscuit [32], a battery-less sensor network that only relies on a solar

panel and a supercapacitor to power the sensor node. They also developed a routing protocol

suited to the long charging time of the supercapacitor. The use of supercapacitors can extend

the lifespan of sensor nodes, but only to a point; supercapacitors also degrade. Studies

have reported that supercapacitors have 13%–15% capacity degradation and double their

internal resistance after one year of power cycle testing [34, 35]. Moreover, the lifetimes

of supercapacitors are temperature-dependent. The expected lifetime halves with every

10Celsius increase of ambient temperature [39, 40]: supercapacitors degrade when deployed

outdoor. In addition, supercapacitors are 4–10 × more expensive than rechargeable batteries

with the same energy capacities and densities. Supercapacitors remain unsuitable for our

goal of long-term deployment, although this may change in the future if their reliable

lifespans are increased.

Reduce the number of charge/discharge cycles in the battery. This can be done by

attaching a supercapacitor or energy scavenging device to the battery, and only discharging

the battery when the other energy supplies fail. Jiang et al. proposed a multi-stage energy

transfer system that uses a solar panel together with a super-capacitor as the first stage and

a rechargeable battery as the second stage [41]. They argued that, when ambient power

is sufficient to power the sensor node, the system can avoid discharging or charging the

battery. This approach can increase the sensor node lifetime to 4 years given a 10% duty

cycle. However, it does not eliminate batteries, which must eventually be gathered from the

environment. We argue that the sensor node lifetime problem should be solved by removing

the battery entirely.
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A few researchers have proposed battery-less sensor nodes with the goal of increasing

sensor node lifetime. Philipose et al. [42] attached an RFID to a battery-less sensor node,

powering the sensor node via the RFID reader. Their work completely removed the energy

storage device. Vyas et al. [43] and Patel et al. [44] combine a battery-less, wireless tag

and a low power sensor node for use in a passive sensor. However, these works require that

energy be directed to each active sensor from an external radio frequency energy source.

This prevents use in distributed applications. Ng et al. [45] design a near-body network

with battery-less wearable biomedical sensors to monitor patient physiological state. This

solution is appropriate for body-range transmission and consists of only a few nodes. Our

work focuses on applications requiring larger scale distribution of sensors.

3.2.3 Node Design and Protocol Support

Existing routing protocols and sensor node architectures are not well suited to energy

scavenging sensor networks. We propose an architecture that is based on partial knowledge

of the spatial and temporal properties of ambient power sources.

The designers of energy scavenging sensor networks face special difficulties in main-

taining functionality and performance. Many environmental power sources, such as solar,

wind, and water flow have intermittent availability. This complicates routing protocol and

node architecture design. First, the scavenging sensor network is dynamic: its connectivity

structure changes dynamically depending on environmental power source status of each

node. Routing protocols must adapt to these changes. Second, the wake-up schedule of

sensor nodes cannot be controlled by the designer. Algorithms that rely on coordinated

activations at pre-determined times to sense, transmit, or receive cannot be used. Third,

sensor nodes lose their power sources at imperfectly predictable times, leaving little time for

nodes to react by transmitting data or preserving it in non-volatile memory. The designers of

energy scavenging wireless sensor networks must consider these domain-specific challenges.

How well would existing sensor node and communication protocol designs fare in a
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battery-less environment? Prior work has proposed flooding-based routing techniques for

energy scavenging sensor networks [32, 36]. These protocols require nodes to wake up at

pre-determined times and use redundant transmissions to compensate for the lost messages.

They are adequate for small-scale networks. However, they would perform poorly in larger-

scale applications such as environmental monitoring. In medium- to large-scale networks,

flooding overwhelms the communication channels, resulting in high latencies and data loss

rates. Geographic routing is another popular candidate protocol; it is easy to implement

and may not require pre-determined schedules for transmissions. However, only using

geographic information for routing in energy scavenging sensor network can cause packets

to be trapped in inactive nodes (as described in detail in Section 3.3). The main weakness of

existing geographic routing protocols in this application is their failure to account for the

fact that nodes frequently become unavailable at imperfectly predictable times and some

nodes are available more frequently than others. This limits network scale, and prevents

operation when many nodes are frequently inactive. Other candidate protocols require

scheduling nodes to transmit at precise times, and therefore cannot be used in battery-less

energy scavenging networks.

3.3 Problem Definition

Our goal is to provide routing protocol and node design techniques suitable for indefinitely

deployed sensor networks. We begin by eliminating the use of energy storage devices

with highly constrained lifespans. Given temporary losses in node power, we attempt to

determine the design techniques yielding the highest end-to-end successful data delivery

rate under a (designer-specified and application-specific) constraint on acceptable latency.

We now describe our model of an energy-scavenging sensor network. Ideally, when all

nodes have access to sufficient power, they form a connected graph N containing |N | nodes,

in which there is a directed edge between two nodes if the first can successfully transmit
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directly to the second. In this situation, nodes can transmit sensed data to the base station

using existing routing protocols. However, the probability of all nodes concurrently having

power at any particular time is small. In each time interval, only a subset of sensor nodes

have enough scavenged power to operate. The graph of these nodes, Ni, is referred to as

the active subset for the ith time interval and does not change within the interval. Note that

intervals can be defined to end whenever the active subset changes.

We model the network packet transmission latency using active subsets. It is likely that

two temporally adjacent active subsets Ni and Ni+1 have a non-empty intersection due to

the temporal correlation of the power source (described in detail in Section 3.5). As shown

in Figure 3.1, packets from a faraway node S can travel through multiple active subsets Ni0

through Ni3 via their intersections to finally arrive at B.

The packet transmission delay is the sum of ttrans_i and tint_i for all active subsets along

the path. ttrans_i is the transmission latency to populate packets within an individual active

subset Ni. tint_i is the time interval between active subset Ni and the next active subset

Ni+1, which is the time when sensor nodes are inactive.

We define the latency of data transmission in the network to be the time required for

all nodes to send their sensed data packets to the base station, i.e., the maximum packet

transmission delay. In reality, some packets will be dropped due to channel overuse or

collision. Others will be trapped in nodes that wake up infrequently. Thus, we define

packet delivery rate to be the percentage of packets that reach the base station at a particular

time. When we compare protocols in later sections, we will compare transmission latencies

associated with particular packet delivery rates.

The limited predictability of ambient power sources reduces designer control of wireless

sensor networks. It prevents the designer from using pre-computed routing paths and requires

routing protocols that adapt to changes in the ambient power source. Pre-computed routing

may falsely send packets to nodes that are not in the temporal intersection of two adjacent

active subsets, preventing packets from further transmission. As can be seen in Figure 3.1,
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Figure 3.1: Battery-less energy scavenging sensor network operation. A node S transmits its
packets to base station B through temporally intersecting active subsets.

node S may send its packet to another node C, which is geographically closer to the base

station B but is in a rarely awake, isolated subset. This can delay packet transmission; the

4-hop path via Ni0 through Ni3 is faster. Instead, we consider the temporal and spatial

statistics of ambient power sources to dynamically change the routing for every active subset

and avoid trapping packets.

We will further describe the design and implementation of our battery-less wireless

sensor network routing protocol in the following sections.

3.4 Design and Implementation

We have developed a routing protocol for sensor nodes that become active at imperfectly

predictable times. Sensor node activation events occur at random times prescribed by the

temporally and spatially correlated statistical processes used to characterize ambient energy

sources. Therefore, nearby nodes have similar behavior. We describe a protocol informed

by these properties, and then discuss four variations of it appropriate for a range of sensing
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applications.

We will first describe a network architecture suitable for energy scavenging environ-

mental monitoring applications. The sensor nodes are widely deployed, and a group of

sensor nodes share a base station. The nodes transmit their sensed data to the base station,

potentially indirectly via other nodes. The base station uses a high-capacity power supply

that will require replacement every few years at much lower cost than recovering all sensor

nodes. In the remainder of this section, we describe how we perform routing given this

network structure.

3.4.1 Sensor Node Architecture

We modify the sensor node architecture to support battery-less energy scavenging and to

guarantee that the sensed data contain valid time stamps.

3.4.1.1 Energy Scavenging Devices

We consider two major modifications to a conventional wireless sensor network node: (1)

removing the battery and (2) attaching an energy scavenging device, e.g., a solar panel,

wind turbine, water turbine, or piezoelectric device [46]. Our design relies on non-volatile

memory to save states between active intervals. Most existing sensor nodes contain non-

volatile memory. Depending on the power source distributions, it may also be appropriate to

use a higher-performance processor and network interface than is typical, in order to quickly

finish processing and communication tasks when power is available.

3.4.1.2 Time Synchronization

Sensor nodes must generally associate times with samples. The local timer in a sensor node

stops working when power is lost, and it needs to be re-synchronized when power is available.

Activation events happen at random times, meaning that sensor nodes cannot determine how

long their timers have been inactive when reactivated. A node can synchronize with the
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base station or its neighbors, which have valid local timers. However, this synchronization

still has some delay because a node can be synchronized only when it is in the same

active subset with other nodes maintaining correct times. The samples gathered during the

synchronization delay will have incorrect time stamps.

We now describe a technique to compensate for time uncertainty in intermittently pow-

ered sensor nodes. Nodes are desynchronized by power loss. They attempt to resynchronize

with neighboring nodes, but until that time they mark data samples with time ranges that are

later used by the base station, together with other sample time stamps, to more accurately

estimate when the data were gathered. This approach can achieve time stamp errors of

less than 80 minutes for 91% packets in a medium scale (500 nodes) sensor network. The

environmental monitoring applications we consider usually gather samples several times a

day (as described in Table 3.1). Therefore, samples with time stamp errors of minutes or

even hours are acceptable.

Our proposed process works in the following steps.

1. The local timer of a sensor node contains an invalid value at the beginning of deploy-

ment. Every sensor node will first try to synchronize with the base station to obtain

the correct time.

2. The sensor node refreshes its local timer value (stored in a non-volatile memory) every

fixed time interval (e.g., one minute) and at every time it is synchronized to nodes

with correct timers. When a sensor node again has access to power, it restarts its local

timer using the stored time stamp in the memory.

3. Every node attaches a node identifier and a unique packet identifier maintained in

non-volatile memory to each packet, guaranteeing that for a particular node, packets

with smaller packet identifiers are always produced earlier than the ones with larger

packet identifiers. Packets also carry time stamp upper bounds (initialized to the

latency constraint) and lower bounds (initialized to the value of the local timer). A
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valid bit is also included, which is set to “true” only when the local timer is known to

have low error at the time of packet generation.

4. The base station refines the time stamps of packets, working within a fixed time

interval. This time interval should be long enough such that most packets generated at

a similar time arrive at the base station before the end of the interval. The generation

time of a packet (with identifier p) is estimated by examining the packets with the

closest smaller and larger packet identifiers (noted as l and u). If these packets have

valid time stamps, the upper and lower bounds for the packet of interest are refined as

follows:

packetp.lower = packet l.upper ,

packetp.upper = packetu.lower . (3.1)

3.4.2 Precomputed Information

Our routing technique bases decisions on temporal power source distributions. Each node

knows the probability of having sufficient power for computation and transmission and its

distance to the base station. This information can either be precomputed from the power

source distribution or gathered after deployment.

The activity rate Pactive of a sensor node is the probability of it having sufficient power

to compute and transmit data [46]. If a sensor node is powered by a wind turbine, it will

only be activated when the wind speed exceeds a threshold value providing enough power.

The probability of a sensor node being awake is
∫ wth

0
f(x, λ, k), where wth is the threshold

wind speed and f(x, λ, k) is the wind speed distribution at that location. The node activity

rate can be computed from historical wind speed distribution data.

The distance d from the sensor node to the base station is the number of wireless

communication hops, assuming all nodes are active. This distance can be gathered during
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network deployment.

3.4.3 Routing Protocols

In order to determine whether existing protocols are sufficient for indefinitely deployed

energy scavenging sensor networks, we make comparisons between several existing routing

protocols: simple flooding, geographic routing, buffer size dependent routing, and undi-

rected routing. We also evaluate the Ambient Energy Aware routing protocol we designed

specifically for this problem.

Flooding is the most commonly described routing protocol for energy scavenging sensor

networks [32, 36]. It is easy to implement in sensor nodes with limited computation power

and has adequate performance for small-scale networks in which the data generation rate is

low. Multiple nodes keep copies of the same packet; thus, even when some of the nodes

lack power and become inactive, the redundant copies of the packet are transmitted by

other nodes. In larger networks, flooding faces two problems: (i) limited resources and (ii)

undirectional transmission. Simple flooding creates redundant packets that can exceed sensor

node memory capacities resulting in dropped packets. In addition, flooding protocols suffer

greatly from limited channel capacity. The network-wide channel capacity is constrained

in battery-less energy scavenging sensor networks by the possibly frequent deactivation of

nodes that are (temporarily) without power. Flooding creates duplicate packets and easily

overwhelms the network. This is especially problematic when nodes wake up infrequently.

Based on the above observations, we now consider routing protocols appropriate for

battery-less energy scavenging sensor networks. These protocols aim to avoid the poor

performance caused by limited buffer size, packet collision, and the randomness of node

active intervals. These protocols have the following characteristics.

• Acknowledgment. We enable acknowledgment by both sender and receiver nodes.

Receivers acknowledge packet acceptance. When a sender receives the first acknowl-

edgment, it broadcasts a drop request to its neighbors, allowing all but the node that
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transmitted the first acknowledgment to drop their copies of the packet. This avoids

unnecessarily use of memory and communication resources for duplicate packet

copies in multiple nodes, while preserving at least one copy of the packets. The

acknowledgment delay described later reduces the probability of acknowledgments

collision.

• Directional transmission. Packets transmit along the path with the smallest expected

latency to reach the base station. When receiving a packet, instead of acknowledging

immediately, a receiver use a ranking function to delay the acknowledgment. The time

delay is set to give priority to nodes with higher probability of successfully reaching

the base station. The choice of ranking function is a key design feature. Later in this

section, we will discuss the selection of the ranking function in greater detail.

• Random Back-Off. Nodes perform random retransmission back-off on packet colli-

sions to avoid future collisions.

Given these starting properties, we consider several candidate routing protocols. Three

of the protocols (geographic routing, buffer size dependent routing, and undirected) adapt

well-known algorithms to the energy scavenging sensor networks considered in this work.

Geographic routing [47]. Nodes always accept packets from the neighbors that are geo-

graphically further away from the base station. This increases the probability of the packet

reaching the base station. The ranking function is delay i = tunit · di, in which delay i is the

delay of the ith node to acknowledge, tunit is a unit time period, and di is the number of hops

from the ith node to the base station, assuming all nodes are active. As mentioned earlier in

this section, this distance d can easily be gathered during node deployment. One significant

drawback of this approach is the likelihood of creating holes in the network: some nodes

are geographically closer to the base station, but rarely active. Packets will sometimes be

transmitted to these nodes shortly before they become active and then remain trapped for a

long time.
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Buffer size dependent routing. Nodes accept packets from neighbors with less free space

in their message buffers. This avoids buffer overflows, which may result in data loss. The

ranking function is delay i = tunit · (bmax − bi), where bmax is the maximum buffer size and

bi is the remaining size in the node receiving buffer. Unfortunately, this protocol does not

consider the importance of transmission directions. Nodes that frequently wake up or are

closer to the base station receive more packets. As a result, the ranking function will assign

these nodes longer delays, forcing packets to be forwarded to nodes from which packets are

less likely to reach the base station.

Undirected protocol [47]. Nodes are assigned random priorities using ranking function

delay i = tunit · random(ni), where random(ni) returns a random number between 1 and

ni, the number of one-hop neighbors of node i. This protocol has the benefit of simplicity

but is usually inefficient because random prioritization results in slow, indirect paths for

many packets.

The final protocol is a novel approach which is specifically designed to overcome

challenges in battery-less sensor networks:

Ambient Energy Aware protocol. Nodes with the highest probabilities to be (possibly

indirectly) connected to the base station have the highest probabilities of accepting packets

from their neighbors. This protocol makes use of the statistical data on power source

availability and the node activity rate (as described in Subsection 3.4.2) to compute the

ranking function. Our goal is to combine the best attributes from the four protocols described

above, while also using available information on the statistical properties of the ambient

power source. The ranking function is delay i = tunit · (bmax − bi) ·di/Pactive,i, where bmax is

the maximum buffer size, bi and di are the remaining buffer size and distance from the base

station of node i, and Pactive,i is the activity rate of node i. The drawback of this protocol

is its requirement for additional memory on sensor nodes to store power source statistical

properties. Fortunately, this is not a problem in practice because the statistical data can be

preprocessed and reduced to a single number: the node activity rate.
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The most appropriate protocol depends on application characteristics. Therefore, we

will compare the existing and new protocols described above under a variety of operating

conditions.

3.5 Evaluation

In this section, we provide evaluation results for the protocols discussed in the previous

section. We first evaluate the protocols when used in different sensing applications. Then

we determine the sensitivity of protocol quality metrics to variations in application charac-

teristics.

3.5.1 Experiment Setup

Our evaluation considers sensor networks that scavenge energy from wind. To model

changes in wind conditions, our simulation takes location-dependent time-varying wind

traces as input. However, the raw measured wind speed data for large regions and long

duration are not publicly available. Therefore, we generate similar wind traces with statistical

properties based on recorded wind speed distributions [48]. Wind speed traces are then fed

into the discrete-event simulator described later in this section.

Our generated wind speed traces have the following properties. First, the trace for each

particular location has particular temporal correlation values. Second, traces at different

locations have spatial correlation. We can represent the wind speed traces by a group of

correlated Weibull random variables. To generate these random variables, we make use of

two sources of information: (1) a regional wind speed atlas [48] and (2) spatial and temporal

correlation models.

The World of Wind Atlases houses a publicly available archive of wind data from many

regions around the world [48]. For a given region, the atlas logs detailed location-specific

information about wind patterns. Specifically, for each location on the map, the atlas records
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the Weibull parameters (k, λ) that describe variation in wind speed at several altitudes. We

select the wind atlas of one island in Denmark as the source of wind data, because its wind

atlas is representative of many coastal regions in the world.

We use existing wind speed spatial correlation models [49–51]. The spatial correlation

coefficient for wind speed at two different locations is exponentially dependent on the

distance between the locations: c = exp
(
−d/d0

)
, where d is the distance between the

locations and d0 is called correlation distance. This is the distance at which the correlation

between two locations equals exp(−1). We model the temporal correlation coefficient

as exponentially dependent on elapsed time based on the observations of Archer and

Jacobson [49].

We use a wind trace duration equal to the maximum tolerable latency for data trans-

mission. In environmental monitoring applications, it is common for the base station to

processes or transmit data in a daily or weekly pattern [33, 52]. Some packets will carry

incorrect time stamps due to the intermittent power loss of the sensor nodes. Their time

stamps will be refined after reaching the base station using the method described in Sec-

tion 3.4, with the largest error being the packet transmission latency. Thus, packets arriving

at the base station later than one week are likely to have indistinguishable time stamps. They

are considered to be invalid. We set our latency constraint to be one week.

We developed a discrete event wireless sensor network simulator in which changes in

wind speed are events. We generate wind speed traces based on the parameters described

above [48, 49] and provide them to our simulator. The simulator models the activation and

deactivation of sensor nodes when the input wind speeds at the sensor locations change,

forming different active subsets. Within each active subset, it simulates the behavior of

sensing and data transmission of sensor nodes executing any of the four protocols described

in Section 3.4. The network packet delivery rate, node level channel utilization, and

transmission latency are recorded.
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Figure 3.2: Packet delivery rate comparison for four protocols under different applications.
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3.5.2 Application Based Evaluation

Several sensor network applications are suitable for using energy scavenging techniques.

Table 3.1 lists these applications and their properties [33, 52–58]. In the context of these

applications, we evaluate four protocols that were discussed in Section 3.4: Ambient

Energy Aware routing (AEA), geographic routing (Geo), buffer size dependent routing (Buf ),

and undirected routing (Undir). Our results show that no single protocol is best for all

applications.

We consider four wireless sensor network applications from Table 3.1 as our examples

for energy scavenging sensor network: habitat monitoring (habitat) [33], volcano monitoring

(volcano) [52, 53], glacier monitoring (glacsweb) [54], and meteorology and hydrology

monitoring (water) [55]. Each application has a set of parameter values that are used in

their setup, as described in Table 3.1. These four applications have distinct parameters.

habitat, volcano are both small- or medium-scale sensor networks (10–100 nodes evenly

distributed in an area with 2 km radius) in which sensor nodes require a moderate amount of

ambient power (100–200 mW), and only perform data sensing several times a day. water is

a large-scale network (600 nodes) with moderate power requirement. glacier is a medium-

scale sensor network but requires high power supply to sensor nodes. We first evaluate our

protocols on these four applications with fixed parameter values listed in Table 3.1.

Figure 3.2 shows the time-dependent variation in packet delivery rate throughout the

whole network for these four applications. Based on the application constraints described in

Subsection 3.5.1, we set the maximum tolerable packet transmission latency for all packets

to be one week. While some applications (habitat and volcano) have acceptable delivery

rates using simpler routing protocols, others (water) require our proposed Ambient Energy

Aware Protocol to achieve satisfactory performance (i.e., packet latencies less than a week).

For glacier, none of the protocols considered achieve the packet delivery rate within the

latency constraint.

This difference in performance of different protocols can be briefly explained by ref-
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erence to the abstract model described in Section 3.3. First, let us consider the habitat

and volcano applications. They share common properties: small- or medium-scale and

medium power requirement. The first property means that there are always sufficient sensor

nodes active at the same time. This results in an active subset Ni that covers a large portion

of the network. The second property guarantees that the sensor nodes are likely to have

enough memory to store the sensed data without dropping packets. As a result, using simpler

approaches such as geographic routing is sufficient. Second, we consider water, which has a

large-scale sensor network and wider distribution of sensor nodes. This results in a large

active subset Ni that has the potential to overwhelm the network with traffic. It is therefore

favorable to transmit packets through nodes that are more likely to be active, rather than

concentrating the traffic close to the base station. For this application Ambient Energy Aware

routing works best. Third, glacier has a high node power consumption requirement. Only

very high wind speed can provide enough power to activate a node. The resulting active

subset Ni is a sparse network, making it less likely to cover the whole network for a given

latency constraint. As a result, none of the protocols considered have good performance

for this application. To improve the situation, one might switch to a more powerful energy

scavenging device, e.g., a larger turbine.

3.5.3 Delivery Rate for Varying Parameters

No single protocol is best for all application scenarios. To assist application developers to

select the most appropriate protocol, we now show the application-dependent parameter

ranges for which each protocol is best suited.

From the example applications described above, we observe several variable parameters,

which are subject to changes due to special requirements of the application or user preference.

These parameters include: (1) network scale, which is the total number of nodes in the

network; (2) sample size, which is the size of data gathered at every sensing event; (3)

required power consumption, which is the maximum power required for a sensor node to
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perform data processing and transmission; and (4) maximum direct transmission range.

We evaluate how each parameter affects selection of a protocol using a series of parameter

studies. The parameter studies are conducted by varying parameters one at a time while

keeping others constant. We select a set of constant values for these parameters: medium

scale network (300 nodes distributed in a 3 km×3 km region), small sample size (16 B),

medium required power consumption (100 mW), and transmission range for commonly used

nodes (400 m).

The properties of the sensor network influence the selection of protocols. On the one

hand, in large-scale sensor networks, the edge of the network is far from the base station,

requiring more hops to send packets to the destination. Since the wind speed at each sensor

node location varies randomly over time, the probability of transmitting a packet from a

distant node to the base station depends on the node activity rate along the transmission

path. It will often be best to route through a longer path with higher activity rate, rather than

the shortest path. Ambient Energy Aware routing uses knowledge of ambient power source

statistical parameters, giving it an advantage over other routing techniques in large-scale

sensor networks. On the other hand, simpler protocols that simply send many redundant

messages may be sufficient in small-scale networks.

Figure 3.3 shows transmission latencies for different network scales. When the packet

delivery rate requirement is loose, all protocols have similar performance. However, per-

formance differs under stricter packet delivery rate requirements. Geometric routing works

well for small- and medium-scale networks, while buffer size dependent routing works well

only for large networks. In contrast, Ambient Energy Aware routing works well for small,

medium, and large networks.

3.5.3.1 Sample size

Sample size is the amount of data gathered by a node per sample. The sample size affects

how long a sensor node spends sensing and transmitting data. If the data gathering and
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Figure 3.3: Transmission latency comparison of four protocols when network scale changes.
Arrows indicate that latency exceeded application latency constraint.
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Figure 3.4: Transmission latency comparison of four protocols when sample size changes.
Arrows indicate that latency exceeded application latency constraint.

transmission time is too long, the sensor node will not have enough time for data transmission,

reducing the packet transmission rate. We now discuss the effect of sample size on the

network latency.

Figure 3.4 shows packet finish time as a function of sample size for the four protocols.

The packet delivery rates of all protocols stays almost the same when sample size changes.

This is because the sensing time takes up only a small portion of the sensor node active

time even for the largest sample size that we consider. We conclude that the sample size for

similar applications will not significantly affect the packet transmission latency.
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Figure 3.5: Transmission latency comparison of four protocols when transmission range
changes. Arrows indicate that latency exceeded application latency constraint.

3.5.3.2 Transmission range

The transmission range of sensor nodes affects routing protocol selection. The larger the

transmission range, the more immediate neighbors per sensor node. This is especially

important to energy scavenging sensor networks, in which only a subset of neighbors are

active at any time.

Figure 3.5 shows the packet delivery rate as a function of node transmission range for the

four routing protocols. The transmission range of a sensor node depends on the radio device

used in the sensor node, normally ranging from 100 m to 1 km. When the transmission

range is large, simple protocols work as well as Ambient Energy Aware routing. When

the transmission range is small, there are so few immediate neighbors per sensor node that

selection of neighbors during routing is critical. In this case, Ambient Energy Aware routing

protocol outperforms existing alternatives. This result holds for all packet delivery rate

requirements.

3.5.3.3 Power requirement

The power required by a sensor node and an ambient power trace determine when the node

will be active. Required power depends on the hardware platform and the software workload.
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Figure 3.6: Transmission latency comparison of four protocols when threshold wind speed
changes. Arrows indicate that latency exceeded application latency constraint.

In our example application, ambient power is determined by wind speed. We define the

minimum wind speed required by an application as threshold wind speed.

The impact of threshold wind speed on packet transmission latency in the sensor network

is plotted in Figure 3.6. When the threshold wind speed is low, all protocols have short

packet transmission latencies. For high threshold wind speeds, the Ambient Energy Aware

protocol is superior. However, when threshold wind speed is very high, no protocol can finish

transmitting enough packets during the active time periods to meet application requirements.

3.6 Protocol Selection

This section describes the relationship between protocol performance and both channel

utilization and per-node packet delivery rate. It then explains a strategy for selecting an

appropriate communication protocol.

3.6.1 Channel Utilization

Channel utilization is an important additional metric for evaluating our proposed protocols.

The channel capacity is limited by the activity rates of nodes in an energy scavenging sensor

network. We show the channel utilization for every node in a 500-node sensor network using
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Figure 3.7: The node-level activity rate given by the statistical data.

four protocols. Geographic routing has high channel utilization around the base station,

and has very low channel utilization at distant nodes. This increases collision rate near the

base station, causing packets to be dropped. Ambient Energy Aware routing has less traffic

concentrated at the base station (Figure 3.8), reducing the packet drop rate. Buffer size

dependent routing and undirected routing have higher average channel utilizations compared

to the previous two protocols, and their node-level channel utilization distributions follow

the node activity rate (Figure 3.7). This is reasonable because nodes with higher activity

rates are available more frequently and therefore may receive more packets. Whether or

not this natural bias is helpful depends on the distribution of wind speed. If the wind speed

is similar in most sensor locations, the natural bias will lead to spatially balanced channel

use. Otherwise, channel traffic will concentrate on active nodes, and is likely to increase

packet drop rates around those nodes. In this case, Ambient Energy Aware routing helps by

distributing the channel capacity among nodes with higher probability in delivering packets

to the base station.
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Figure 3.8: The node channel utilization for Ambient Energy Aware routing.

3.6.2 Per-Node Packet Delivery Rate

We now consider the fairness of the protocols under evaluation, i.e., the variation of packet

delivery rates of all nodes in the network. We evaluate the fairness by plotting the location-

dependent per-node packet delivery rate across the whole network.

Figure 3.9 shows the per-node packet delivery rate for a medium-scale sensor network.

Ambient Energy Aware routing achieves good fairness among nodes, and results in higher

average per-node packet delivery rate, while geographic, buffer size dependent, and undi-

rected routing favor nodes that are closer to the base station. This result is consistent with the

ranking function used in each protocol. Geographic routing relies on a ranking function that

gives higher priority to nodes closer to the base station. Therefore, it is biased toward causing

heavy communication on the nodes around the base station. Ambient Energy Aware routing

considers the node distance to the base station as well as its activity rate, and therefore

has less severe bias on nodes with different distances to the base station, resulting in better

fairness.
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Figure 3.9: The node level packet delivery rates using four different routing protocols.

3.6.3 Protocol Selection Strategy

Using the results from this section and Section 3.5, we are able to provide protocol selection

strategies for energy scavenging sensor network designers. We first give the conditions

under which the four candidate protocols are appropriate. Undirected routing can only work

efficiently in small-scale networks, and when ambient power is sufficient to power sensor

nodes for most of the time. Buffer size dependent routing works best for small-to-medium

size networks and medium transmission ranges. Geographic routing works best for small

scale network and large transmission ranges. Ambient Energy Aware routing works well

under most conditions, and can out-perform others in large-scale networks, even when

ambient power is not sufficient to frequently wake up sensor nodes. It adapts better to

extreme conditions than other protocols. Based on these working conditions, we provide the

designer with several guidelines.

1. Determine required packet delivery rate and latency. The most appropriate protocol

depends on these requirements.

2. Select values for sensitive parameters. The values for these parameters should be
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determined first, since they are very likely to affect the result. These parameters

include network scale and sensor node transmission range. The optimal protocol

depends strongly on these parameters. On the one hand, Ambient Energy Aware

routing outperforms others under “harsh” conditions: when network scale is large

or sensor nodes have small transmission range. In addition, it performs well under

looser requirements. Designers should choose this protocol when applications require

a large number of sensor nodes, or when they are limited by sensor node communi-

cation hardware. On the other hand, in a small-scale network using nodes with long

transmission ranges, users can instead use simpler protocols.

3. Select values for less sensitive parameters. These parameters either do not greatly

affect packet transmission latency, or always result in the same optimal protocol when

their values vary. These parameters include sample size and the maximum power

consumption of the sensor node. Users are relatively free to select these parameter

values; indeed, to improve the overall performance, we recommend selecting the

most favorable parameter values for a given budget. For instance, using a larger

energy scavenging device can provide more power to the sensor nodes under the same

ambient energy conditions; this then allows users to use more powerful sensor nodes

that boost the performance.

3.7 Discussion and Caveats

In this section, we address some of the simplifying assumptions made during our evaluation

and discuss the impact that they might have on our reported results. We believe that our

experiments capture the most important features of the environment and sensor network

well enough to provide a reasonable evaluation of the routing protocols. However, our

evaluation framework does not consider some secondary effects including long-term wind

speed variation and adjusting node activity rates online. We now address these issues and
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consider combining Ambient Energy Aware Design with more sophisticated protocols.

3.7.1 Long-term Wind Speed Variation

There can be long-term variations in wind speed distribution, on time scales ranging from

three months to half a year [49] due to seasonal changes and long-term weather patterns.

This means that the wind speed distribution will change multiple times during the lifetime

of a long-term deployment. In our previous evaluation, we only use one fixed wind speed

distribution at one location. This distribution is used in the ranking function. For a real

system deployment, long-term wind speed variation should be considered.

The sensor network design can adapt to this variation by pre-storing multiple wind

distributions. The variation of wind speed distribution in one location is periodic, repeating

yearly. This periodic distribution is usually available from the wind atlas of local government

websites [48, 59]. Therefore, even for long-term operations, only a limited number of wind

speed distributions need to be stored in the nodes. We can then program nodes with multiple

wind speed distributions and corresponding times at which the wind speed distribution

changes. Sensor nodes will know to switch to a new activity rate by monitoring time stamps.

3.7.2 Online Adjustment Of Node Activity Rate

Sensor nodes can gather information on their activity rates after deployment. These activity

rates are representative of the actual power source condition at the node’s location. Therefore,

using this value to adjust the pre-stored node activity rates makes them more accurate.

Sensor nodes use timers to gather activity rates. Due to power losses, a node’s timer

may not record the correct time. It can nonetheless record how long a sensor node has been

active. Every time the node has an opportunity to synchronize its timer, it computes its

activity rate by dividing the measured node active time by the total elapsed time since the

last synchronization event and this value is used to update the pre-stored node activity rate.
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3.7.3 Protocol Extensions

Although we mainly compare Ambient Energy Aware routing to geographic routing, other

sophisticated geographic routing protocols, such as Greedy Perimeter Stateless Routing

(GPSR) [47], also face similar problems when applied to energy scavenging sensor network.

GPSR can prevent data from being stuck at the edges of holes in a sensor network. However,

it still cannot avoid sending packets to an infrequently active node in an energy scavenging

sensor network.

It would be possible to use the concepts described in Section 3.4 to design an ambient

energy aware variation of GPSR by using a similar ranking function for each node. Such a

protocol would avoid low activity rate nodes when searching for paths around holes.

3.8 Conclusion

We have described and evaluated a novel class of design techniques for indefinitely deployed

sensor networks. To enable this increased lifespan, we proposed eliminating batteries from

sensor nodes and introducing a new routing protocol that account for the resulting restrictions

in node activity. This protocol can achieve high delivery rate, even when sensor nodes

randomly lose their power sources. It uses stochastic models for ambient power sources and

takes advantage of spatial and temporal correlation to make routing decisions. We evaluated

the newly proposed protocol together with three existing approaches for four commonly used

applications. Finally, we provided guidance on selection of routing protocols for specific

applications.
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CHAPTER 4

A Scheduler For Performance and Energy

Optimization in Data Centers with

Heterogeneous Tasks or Machines

4.1 Introduction

Both performance and energy consumption of data centers depend on the loading conditions

of individual machines. Performance is best when resources don’t needlessly sit idle and

tasks are not hampered by resource contention; energy consumption is minimized when idle

machines use little power. However, in real data centers, resources are often left idle but still

consuming power, while others are over-loaded, even when the aggregate workload for the

data center would permit more efficient use of resources, given the right task scheduling and

assignment policies.

Suboptimal task assignment and scheduling causes resource contention on data center

machines, reducing performance. Existing task schedulers achieve acceptable performance

in data centers with moderate workloads that are mostly homogeneous, but suffer perfor-

mance degradation when workloads vary and are heavy. They have three main drawbacks.

1. They do not consider machine loading during task assignment. The Hadoop default

scheduler uses a constant constraint on the number of concurrent tasks. This number
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compositions. The optimal latency value depends on the particular workload.

is generally suboptimal for task latency, as demonstrated in Figure 4.1, because the

scheduler does not adapt to changes in loading conditions: machines are generally

either overloaded or under-loaded. This increases average task latency.

2. They ignore resource sharing among concurrent tasks. Some existing works model

concurrent loading effects by summing the utilizations of individual tasks running sep-

arately, instead of considering resource sharing, which increases resource contention

and task latency [60–62].

3. They overlook task and machine heterogeneity, resulting in resource contention and

therefore idle resources, increasing job finish time [63]. For example, consider

a 6-node cluster running a heterogeneous workload. Figure 4.2 demonstrates the

imbalanced resource utilization of each machine, which leads to a 6× difference in

workload finish times across different machines.

We have developed HAMS (Heterogeneous Adaptive Modeling Scheduler), a task

scheduler that improves data center performance by addressing the above three problems.
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Figure 4.2: CPU and IO loading on a cluster of six machines running a group of workload.
The workload consists of 40 CPU intensive tasks and 40 IO intensive tasks. The cluster
consists of two types of computers: machine 1–3 and machine 4–6. The IO loadings for
machine 4–6 are approximately zero.

HAMS initiates self-characterization of tasks on each type of machines in data centers,

building two task-and-machine heterogeneity-aware models: a predictive task performance

model and a background-loading-aware machine model. HAMS also monitors machine

background loading. Using this loading information and the above two models, HAMS is

predicts task execution latencies under many potential post-assignment workloads supporting

scheduling decisions that optimize resource utilization and minimize job finish times.

HAMS can also be used to save data center energy when combined with a task concentra-

tion algorithm. Commercial data centers spend a lot of energy keeping idle or underloaded

machines on. Diurnal and longer-term changes in workload permit substantial benefit

from concentrating tasks and powering down idle machines when data center utilization

is low. Such periods generally last several hours and the loading commonly varies from

<10% to 80% in a single day [64, 65]. Idle machines consume 40% the power of loaded

machines [2, 66, 67]. As a result, data centers with many idle machines waste a lot of

energy. Energy efficiency can be improved by concentrating tasks on a subset of machines

and shutting down the rest [4, 60, 68]. However, existing task concentration techniques
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increase task latency greatly, which can result in a 3.6× increase in job finish time [4]. This

limits their use, and increases energy consumption by causing workloads to take longer

than necessary. In contrast, HAMS concentrates tasks to machines with loading conditions

that minimize resource contentions, thereby maintaining task performance, and powers off

underutilized machines to save energy consumption.

We have implemented our modeling and task scheduling techniques for the MapReduce

programming model, which is used for processing large datasets. MapReduce is widely

used in distributed systems and cloud computing. We chose it for evaluation because this

paradigm is common in modern data centers. However, the modeling and scheduling ideas

described in this chapter can be extended to other computing paradigms. We base HAMS

on the Hadoop framework, an open-source platform that is widely used in industry and

academia.

4.1.1 Contributions

This chapter presents a novel task scheduler that optimizes data center performance and is

suitable for task concentration. It makes three contributions.

• We describe a data center modeling, assignment, and scheduling technique that adapts

to task and machine heterogeneity. Our task modeling technique specifically addresses

task resource contention.

• We describe how to predict the impact of data center assignment decisions on already-

running tasks, making task migration (with its associated overhead) unnecessary.

• We provide an approach that reduces data center energy consumption via task concen-

tration with little impact on latency. This approach does not require frequent activation

or deactivation of machines.
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4.2 Problem Definition

We aim to improve data center performance through intelligent task scheduling. The task

scheduler should adapt to machine loading conditions and impose little overhead. We

face two major challenges. First, the number of possible multi-task assignments grows

exponentially with the number of pending jobs. Second, to avoid task migration overhead,

task scheduling decisions are made before actually executing the tasks. This requires

accurate prediction of the performance implication of task assignment decisions before they

are made, which requires sophisticated performance models that capture task and resource

heterogeneity. This section formalizes these problems and describes the insights that lead us

to solutions.

4.2.1 Performance Metrics

We use an assignment-dependent performance predictor to evaluate candidate task assign-

ments. Each data center machine contains multiple CPUs, a shared memory system, and a

dedicated hard drive. This configuration is used in research and commercial data centers,

e.g., Amazon EC2. Tasks running on the same machine share its resources, and do not

interfere with tasks running on other machines (network effects are discussed in Subsec-

tion 4.3.3). To estimate the rate of progress for tasks assigned to particular resources, it is

necessary to consider the total load imposed on the resources.

We first define some terms that we use when describing machine throughput and job

deadline prediction.

• A task is the unit of MapReduce execution. One task processes a known amount of

input data.

• A job is a combination of several Map or Reduce tasks.

• Work is the time spent by a task to process a fixed amount of data. It can be described
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as a function of the input data size and the CPU time for task execution (exe_time) on

an unloaded machine. This is a per-task characteristic. The work for task i is work i.

• A resource utilization vector (U(CPU ,memory , disk)) consists of the utilization

percentages for several resources that influence task performance or machine power

consumption. CPU, memory, and disk utilization are the elements of the resource

utilization vector.

• Performance degradation ratio is the ratio of the execution time of a task running

on a loaded machine to the execution time of the same task running on an unloaded

machine, i.e., for task i

ratioi =
exe_time i, loaded(U)

exe_time i, unloaded

. (4.1)

• The finish time (Tfinish, j ) of a job is the time when the jth job finishes execution.

We define our goal and the corresponding cost function as follows.

Aggregate throughput: Our goal is to optimize the aggregate throughput of all tasks in

the entire data center, i.e.,

Throughput =
all_tasks∑

i=1

ratioi × work i. (4.2)

In order to maximize aggregate throughput, we optimize the execution time and machine

assignments of tasks.

Fairness: We use the following function of the amount of time that a job takes to finish

after its deadline to describe the cost of deadline violation of all N jobs:

Unfairness =
N∑

j =1

(
max((Tfinish, j − deadlinej), 0 s)

deadlinej

)γ

. (4.3)

γ will generally be ≥ 1. We try to meet all job deadlines. If a deadline cannot be met due to
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resource constraints, we minimize the summed violations of job deadlines.

Formal problem definition: Given the resource utilization vectors of machines in a

cluster and resource utilization functions for tasks, determine which tasks should be assigned

to each machine to achieve the best throughput and meet job deadlines. We will later extend

this definition to optimize energy consumption. The subsequent sections describe these

models and our task assignment algorithm.

4.2.2 Energy Optimization

Our task scheduling algorithms can be extended to optimize energy consumption as well

as performance. Tasks can be concentrated on a subset of machines, reducing data center

power consumption. When a group of jobs runs on a cluster with multiple machines, the

scheduler detects the resource utilization of each machine, and shuts off those on which all

resources are under-utilized for a certain period of time, e.g., 80 seconds, a common task

execution time [69]. Machines are turned back on when the average job latency increases

beyond a user-specified threshold percentage. Therefore, the energy saved by concentration

follows:

Esaved = Enormal − Econ

= Pnormal · Lnormal − Pcon · Lcon , (4.4)

in which Enormal and Econ are the total energy consumptions before and after task concentra-

tion, and P and L are the total power consumption and task latency. The latency of turning

on/off machines is usually tens of seconds [4], which is ignorable because the number of

powered down machines need change only every few hours.

The above approach, however, can increase energy consumption if the task execution la-

tency (Lcon) increases. After task concentration, the workloads on active machines increase,

increasing the probability of resource contention, leading to performance degradation, there-
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fore reducing possible energy savings. We consider resource sharing and task heterogeneity

to optimize energy consumption, and explicitly model the impact of task execution time

on energy. This approach makes use of the same task scheduling infrastructure used for

performance optimization.

4.3 Design and Implementation

This section describes the design and implementation of HAMS. We consider the effect

of resource contention on CPU, memory, and disks shared by concurrently running tasks.

Our scheduler consists of two models and a predictor. It estimates future task resource

utilization vectors based on the resource utilization vectors of already-running tasks, and

predicts the resulting execution times of candidate and already-running tasks. These models

allow prediction of the aggregated throughput of each machine in the cluster, which is used

to guide task assignment and scheduling.

HAMS has two main components that are used in an iterative prediction process.

1. Task models are used to estimate task properties. They take background resource

utilization as inputs. We build the resource utilization and execution time models via

pre-characterization. Each type of task is executed with resource loading conditions

spanning the range encountered during normal execution.

2. Machine throughput prediction estimates machine properties using information of

its loaded tasks. Before assigning candidate tasks, the scheduler uses task models to

predict the future throughput of a machine, and makes the final assignment decision

by selecting the task combination with maximal throughput.

Figure 4.3 illustrates the design of HAMS. Incoming tasks t1, t2, ..., tn are first assigned

to the cluster for pre-characterization. Each type of task is characterized on different types of

machinesM1,M2, ...,Mm to build their machine type dependent models. The task scheduler
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Figure 4.3: System architecture of HAMS.

then starts using task performance models to optimize task combinations. The rest of this

section explains this process in detail.

4.3.1 Task Pre-Characterization and Performance Modeling

We use a resource utilization dependent task performance model to predict task execution

times and machine throughputs. The model is built during the task characterization process,

which explicitly considers task heterogeneity and resource contention.

4.3.1.1 Model Description

An accurate model for task execution time is central to making high-quality assignment

decisions. This task model must capture the effects of task heterogeneity. Some previous

work [69, 70] uses task execution time alone to characterize tasks. There are two main

drawbacks to using task execution time. First, this time does not capture differences in

resource utilization among tasks. Tasks with the same execution time can have very different

resource utilization patterns. Second, this time is usually measured on unloaded machines,

and does not change linearly with the machine loading.
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We aim to provide task models that capture the heterogeneity of individual tasks, and

capture the influence of resource contention with other tasks on performance. Task hetero-

geneity can be represented by a set of resource utilization vectors and their corresponding

execution times. Task performance changes imposed by contention with other tasks can be

captured by identifying how a task’s resource utilization vector is affected by concurrently

running tasks. More precisely, we determine the impact of heterogeneous machine back-

ground loading on each task type, and also determine how each task influences the total

loading of the machine. We first describe a model based on per-task resource utilization

vectors. We then describe a model that estimates task execution times based on these vectors.

Our task resource utilization and performance model consists of two functions.

1. A model of task resource utilization vector (CPU, I/O, memory) as a function of

background loading.

2. A model of task execution time as a function of its resource utilization vector.

We express these two models as functions of resource utilization vectors for the candidate

task ti and the machine:

Ui = R(Ubackground) and (4.5)

Di = P (Ui), (4.6)

in which functions R(U) and P (U) represent the relationship between the resource utiliza-

tion vector and performance, Ubackground is the resource utilization vector of the machine

background loadings (i.e., the CPU, memory, and disk vector resulting from all existing

tasks running on the associated machine), Ui is the predicted resource utilization vector of

the candidate task ti, and Di is the predicted execution time of that task.

Model functions R and P come from interpolation of the relationships among task

performance, resource utilization, and background loadings. Figure 4.4 shows an example of

model function, P . The task resource utilization relationship cannot be captured by a simple,
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Figure 4.4: Performance model for one Map task. Task latency is dependent on resource
utilizations.

linear model; using a non-linear multi-dimensional surface is necessary. When using the

model to compute task resource utilization under arbitrary loadings, we use multi-dimension

interpolation from the model matrix. The surface can be sampled with sufficient density to

keep interpolation error low.

Cache effect is omitted in the resource utilization vector presented above because

MapReduce tasks are typically not very sensitive to changes in cache miss rate resulting

from inter-task cache contention. We used memory-intensive background loading tasks to

vary the degree of cache contention experienced by each type of task in our benchmarks,

thereby varying the cache miss rates measured by processor performance counters from

nearly 0% to 60%. The resulting change in task execution time was only 3%. Note that

although it is unnecessary to consider the impact of cache contention on task execution

time, our measurements indicate that memory contention has a significant impact on task

execution time, and is therefore explicitly modeled.

76



4.3.1.2 Model Building

We determine the resource utilization and execution time functions for each task by char-

acterizing it on a machine with a controlled range of loadings. During characterization,

tasks are run in the presence of concurrent threads that apply varying and controlled loads

to CPU, memory, and disk. For each loading condition, the resulting execution times and

resource utilization vectors are noted. We sweep the background loading of each resource

from unloaded to nearly fully loaded, and iteratively increase the number of samples for

each resource until adding more points does not significant change the surfaces (per-task

resource utilization and task execution time).

In real data centers, some types of tasks are typically executed many times. It is possible

to avoid pre-characterization of a particular type of task until it has been encountered

numerous times, or to gradually increase modeling resolution as execution count increases.

This amortizes characterization overhead. The time spent on pre-characterizing one task

should be small compared to the total runtime of it being repeatedly run on a data center.

Therefore, we recommend only characterizing tasks that contribute to jobs that lasts over 10

minutes and repeats over 300 times, i.e., the tasks that account for more than 10% of the

total data center workload [70]. We list the pre-characterization overhead of an example

group of such tasks in Table 4.1. The average overhead is 2.5% of the total workload runtime

for pre-characterizing 50 and 100 samples across different types of tasks. This overhead is

taken into account when discussing our performance improvement result.

4.3.2 Throughput Prediction

Task performance models are used to calculate the throughputs of machines running partic-

ular sets of tasks. This allows the scheduler to determine whether additional tasks should

be assigned and, if so, which machines they should be assigned to. By using the models to

estimate the impact of different tentative assignment decisions, it is possible to optimize

performance and energy consumption.
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Table 4.1: Task Pre-Characterization Overhead

task avg. runtime (s) 50 samples 100 samples

JavaSort1 48.0 1.8% 2.7%

WordCount0 43.0 1.2% 2.4%

WordCount1 80.0 2.5% 4.4%

HtmlIndexing 65.0 2.0% 3.6%

Predicting the implications of a particular assignment decision is challenging, because it

is not practical to solve for task resource utilization and execution time directly from Equa-

tions 4.5 and 4.6. The non-linearity of these functions prevents derivation of a closed-form

analytical solution. Therefore, we use the two-stage iterative process shown in Figure 4.5 to

solve for per-task resource utilizations and execution times.

The scheduler predicts the resource utilization of the candidate task using Equation 4.5.

The input to that equation, background loading, only accounts for already-assigned tasks

on the target machine, without considering the new candidate. Therefore, this value is

inaccurate; however, it serves as a good starting point for iterative estimation. Next, this

estimated resource utilization vector is used to recompute the resource utilization vectors

of already-running tasks using Equation 3. We cannot simply add up and renormalize the

resource utilization vectors of each individual task for this value, since tasks can share

resources. However, we can start by assuming a linear relationship between individual

task resource utilization vector Ui and the aggregate background loadings and iterate until

convergence using the following equation:

Ubackground = L(U1, U2, ..., UM) =
M∑
i=1

Ui · αi, (4.7)

in which M is the number of concurrent tasks on the same machine, L(U1, U2, ..., UM)

describes the linear relationship, and αi’s are constants.

78



We use the predicted resource utilization vector value for each task, including the already-

running tasks and the candidate task, in the execution time model to compute the predicted

task execution times of all concurrent tasks. This value is later used in the throughput

calculation in Equation 4.2.

After carrying out these steps for every candidate task, the scheduler selects the task–

machine pair resulting in the highest predicted throughput. If the maximum predicted

throughput is lower than the current throughput, the scheduler pauses until a task completes

execution before reconsidering the assignment of additional tasks. This policy is important;

it acts to optimize flow control for maximal throughput.

During evaluation, we built task models on physical machines. However, the same

method can be applied to virtual machines, if the scheduler is made aware of resource

sharing. Resource utilization will be changed if the same resource is shared among two

different virtual machines. It is possible to determine which physical node is hosting a

virtual machine, enabling measurement of shared resource utilization by different virtual

machines. During task pre-characterization and task execution, the resource utilization

of a task and background loadings can be measured from virtual machines that share the

same resource as the candidate tasks. Therefore, the scheduler is able to obtain sufficient

information to perform task modeling and scheduling.

4.3.3 Model Accuracy

We now discuss the two main limitations on the accuracy of our task performance models.

1. The resource utilization vector of already-running tasks may change during task exe-

cution due to the completion, assignment, and dynamic changes of resource utilization

by other tasks. However, prediction is done before assigning a task. It would be possi-

ble to compensate for such changes by periodically re-estimating task performance

and migrating tasks to other resources. Unfortunately, this solution is complicated and

increases estimation overhead. Fortunately, there is another way to compensate for
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Figure 4.5: Task throughput prediction procedure.
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post-assignment changes in resource utilization. Task assignment decisions occurring

after a resource utilization change consider the impact of that change. They also

consider the impact of the new assignment decision on the completion times of all

currently running tasks. This form of adaptation achieves most of the benefit of

periodic task migration without its complexity as long as each machine concurrently

runs more than a couple of tasks, which is generally the case in data centers.

2. We recommend neglecting some secondary factors that influence prediction accuracy

by only 2%, e.g., impacts of network and disk seek latencies. First, modern data

centers use network switches of sufficient speed, e.g., 40 G links [71], that network

transfer delay can be neglected. Furthermore, network transfer for large datasets is

extremely rare because data locality is commonly maintained, as described in the

following subsection. Second, modern hard drive seek times are small enough to

safely neglect the variation in disk access latency. We repeatedly ran tasks with

fixed resource utilization and found that the parameters neglected by the model only

introduced 2% error in performance prediction.

4.3.4 Impact on Data Locality

Our task assignment and concentration techniques have little impact on data locality. This

is because Hadoop distributes multiple (by default 3) replicas of data for a task across

different levels of network hierarchy, allowing most tasks to access their data on local or

adjacent nodes with low network latency. If data center designers choose to use a network

architecture in which network delays are large and highly variable, it would be necessary to

extend the model in HAMS to explicitly consider data locality. We discuss this impact of

data locality on HAMS in Section 4.6.
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4.3.5 Other Design Considerations

The use of model-based task assignment naturally entails additional changes relative to

the Hadoop default scheduler. The following changes result in additional performance

improvement and fairness preservation.

HAMS makes task assignment decisions dynamically when new tasks become available

for execution and when tasks finish execution. The original Hadoop scheduler is invoked

periodically at a fixed interval, which produces unnecessary overhead (if too frequent) or

suboptimal results (if too infrequent). Furthermore, the Hadoop original scheduler waits until

all tasks in a pending group finish before admitting new tasks, wasting resources near the

end of a group’s execution. HAMS assigns tasks until there is no throughput improvement;

it then stop assigning new tasks until there is status change, e.g., task completion or new

job arrival. As a result, HAMS rapidly responds to changes in loading and avoids leaving

resources idle.

HAMS adaptively sets the number of concurrently running tasks on a machine. Existing

Hadoop schedulers use a fixed, user-specified limit on the maximum number of concurrent

tasks. This limit is a coarse way of preventing detrimental resource contention, but it ignores

task heterogeneity. HAMS stops assigning tasks to a machine when its resource utilization

vector becomes so unbalanced that assigning additional tasks would reduce aggregate

throughput. In addition, HAMS stops assigning additional tasks when a machine’s physical

memory is 70% full to avoid swapping to disk. Swapping could have been handled implicitly

by task performance models. However, it is so destructive that explicitly preventing it results

in correct behavior and enables simpler task performance models.

HAMS also preserves fairness among jobs by respecting deadlines, which may be speci-

fied by users or automatically assigned. HAMS minimizes the aggregate deadline violation

penalty for assignment decisions (Equation 4.3). Candidate task assignment decisions that

will not result in deadline violations are prioritized over those resulting in deadline viola-

tions. Using the result from task performance prediction, we can estimate job finish time by
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assuming that job progress rate will remain the same in the near future. This progress rate is

calculated using the recent task progress during a short time period, and is updated every

time the loading condition of a machine changes, to increase estimation accuracy. Although

HAMS considers fairness, space constraints force us to focus on performance and energy

comparison in our experimental evaluation (see Section Section 4.5).

4.4 Power Model

This section describes the power model HAMS uses for energy optimization. Server machine

power consumption depends on resource utilization. We do not claim that this model is

novel; it is instead a means of evaluating the impact of our contribution (heterogeneous task

modeling and scheduling) on energy consumption.

Idle power consumption can contribute up to 40% of the total machine power consump-

tion, especially in machines with many hard drives and a lot of memory. CPU and memory

power management only save a limited amount of machine power. Ongoing work on power

proportional computing is attempting to remedy this situation [4,60,64], but it is unclear that

idle power consumption will be reduced to nearly zero in the foreseeable future. Turning off

or sleeping an entire machine reduces its power consumption to nearly zero, but imposes

a large time penalty when it is again required. We evaluate using HAMS to reduce the

performance penalty of concentrating tasks onto a limited number of machines, making it

safe to power off some machines.

We now describe the power model used for evaluation. It has been found [66, 67, 72]

that the active power of a machine mainly depends on variation in CPU utilization, and that

variation in memory and disk utilization has limited effect (approximately 4%) on the total

power consumption. Therefore, we omitted the power effects of varying the use of these
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two resources. Machine power consumption is modeled as follows:

Ptotal = Pidle + Pactive · CPU %. (4.8)

We break the machine total power consumption into idle power and active power, which is

linear in the CPU utilization.

We compare the energy consumptions of the normal operating mode and task concen-

tration using the following power model. Under normal operation, all m machines in a

cluster are active. During task concentration, only a subset (numbering r) remain active.

Let Lnorm and Lcon be the total execution times during normal operating mode and after

task concentration. The relative increase in aggregate workload latency as a result of task

concentration can be described using a factor c = Lcon/Lnorm . Thus, the energy saved by

task concentration follows:

Esaved = Pnorm · Lnorm − Pcon · Lcon

= Lnorm [Pidle(m− c · r)+

Pactive(m · CPU norm%− c · r · CPU con%)]. (4.9)

The above energy savings depend on the relationship between Pidle and Pactive , and also

the difference in performance and the number of machines that are still active after task

concentration. If (1) idle power is significant, (2) the scheduler permits task concentration

with little performance penalty, and (3) the number of active machines is significantly

reduced, then significant energy savings are possible. The first condition is determined by

the properties of the machines in the data center. The second and third conditions depend on

the task scheduler. We will later show that HAMS is able to reduce r and Lcon relative to

other Hadoop schedulers resulting in significant energy savings.

Power consumption data are available from server datasheets. We gather power con-

sumption values for two types of machines: HP and Dell servers (two Intel Xeon E5540
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Table 4.2: Server Power Consumption Breakdown

Machine
Pmax Pidle Ptotal

(W) (W) (W)

Dell M610 255 116 (0.44 + 0.56× CPU %)× 255

HP BL640c 257 118 (0.46 + 0.54× CPU %)× 257

processors, 6 RAMs, and 2 HDDs), which are similar to those used in our evaluation. The

machine idle power (Pidle) and maximum power (Pmax, when the CPU is fully utilized) are

shown in Table 4.2 [73]. The last column in this table demonstrates the linear power model

for these two servers. These two models have similar parameters. We will later use these

models for evaluating the impact of scheduling policy on energy consumption.

4.5 Evaluation of the Task Scheduler

This section presents our experimental evaluation of HAMS. Our task scheduling policy

is based on the facts that (1) balanced resource utilization leads to higher throughput and

(2) for most tasks, increasing the per task resource utilization improves performance. Both

machine and task resource utilization are affected by the resource sharing conditions implied

by scheduling decisions. We report the impact of scheduling policy on data centers running

Hadoop for several benchmarks containing varying mixes of CPU-, memory-, and disk-

intensive tasks. HAMS outperforms existing scheduling policies for both homogeneous and

heterogeneous task combinations. We also report the impact of using HAMS to optimize

energy consumption.
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4.5.1 Experimental Setup

We perform our evaluation on Emulab clusters [74] using two types of machines. Type 1

has two 64-bit Intel Quad Core Xeon E5530 processors, 8 GB memory, and two 250 GB,

7200 RPM hard drives. Type 2 has a 3.0 GHz 64-bit dual-core Xeon processor, 2 GB

memory, and two 146 GB 10,000 RPM hard drives. These machines use tree-structured

network connections; the Hadoop name node is at the root and data nodes are at the leafs. We

use two clusters: a single-node cluster containing only one data node on a type 1 machine,

and a 30-node cluster with 15 type 1 machines and 15 type 2 machines. While running

the workloads, we measure the resource utilization of each machine using Linux /proc

pseudo-files.

We used two sets of experiments to determine the aggregate throughput of a cluster

when using HAMS and existing scheduling policies.

1. Evaluating task modeling and throughput prediction on the single-node cluster. This is

included primarily to simplify displaying and explaining machine resource utilization

and concurrent running tasks information. In a cluster, our task assignment policy

assigns every task to the machine that results in the highest data center throughput.

The assignment process can be divided into two steps: (1) estimate the throughput of

every machine for the candidate task considering the impact on other tasks and (2)

assign to the machine resulting in the maximum overall throughput. The second step

is straightforward; therefore, our evaluation focuses on the first step, which can be

reduced to evaluating the scheduling policies on a loaded machine after scaling down

the workload from one appropriate for a many-machine cluster to one appropriate

for a single machine. We use the default data replication factor (level 3) provided by

Hadoop. Therefore, little network traffic occurs in multi-machine clusters, reducing

the overhead of the second step. As a result, it is possible to get a lot of information

about the performance of different scheduling policies with this set of experiments.
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2. Evaluating scalability and energy savings on the 30-node, 90-core cluster. These

experiments are necessary to determine how the scheduling policies perform on a

cluster. We start from the benchmarks used in the first set of experiments but increase

the number of jobs in proportion to the number of machines.

4.5.2 Benchmarks

To evaluate the impact of loading conditions on scheduler performance, benchmarks should

cover a range loading conditions. Our benchmarks exercise three different resources (CPU,

disk, and memory) with different intensities by mixing tasks that heavily use particular

resources. They are based on three types of tasks: sorting, word counting, and HTML

indexing. We pick these tasks because they are commonly used in data centers and in

evaluating related modeling and optimization techniques [69, 70]. We prepared several

variants within each task type to produce different resource utilization levels, as described

in Table 4.3. The table also demonstrates nine benchmarks with varying task mixtures.

BM1–5 are heavily-loaded, while BM6–9 are lightly loaded.

The above workloads can be divided into two categories: (1) naturally balanced work-

loads, which contain tasks that are nearly balanced in their resource utilization and (2)

unbalanced workloads, which contain tasks that heavily use one of the resources (CPU, disk,

or memory), resulting in unbalanced resource utilization when running one task alone, but

have a potential for balanced resource utilization when multiple tasks are run concurrently,

if appropriate scheduling decisions are made. A well-provisioned data center will have

an aggregate resource balance appropriate to the tasks it will run. Otherwise, the cost of

the data center could be reduced with little or no performance penalty by decreasing the

over-provisioned resource(s).
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4.5.3 Performance Evaluation For All Benchmarks

We compare the scheduling policy used by HAMS with three other policies from Hadoop

and other research projects. The original Hadoop scheduler is called ori; a scheduler that

treats tasks as homogeneous [63] is called simple; and a scheduler that models heterogeneous

tasks by considering execution time when run on an otherwise-unloaded machine [69, 70] is

called hetero.

We perform two sets of experiments by running the four schedulers on the single-

node cluster and the multi-node cluster. Improvements already account for task pre-

characterization overhead.

• Figure 4.6a compares the results produced by the four scheduling policies on the

single-node cluster. HAMS improves finish time by 13% compared to ori and by 11%

compared to the other two schedulers. The improvement ranges from none to 24%,

depending on the types of tasks in the benchmark.

• Figure 4.6b shows the performance comparison of four schedulers on the 30-node

cluster. HAMS has an average performance improvement of 15% over ori and

10% over the other two schedulers. The performance improvements for unbalanced,

heterogeneous benchmarks (BM2–BM5) are larger than for the single-node case.

4.5.4 Balancing Machine Resource Utilization

The reduction in benchmark execution time results from improvement in machine resource

utilization by better balancing utilization. HAMS has multiple features that might have

brought this improvement. We now evaluate the impact of each. The simple scheduling

policy ignores task heterogeneity and resource contention and the hetero policy considers

task heterogeneity but ignores its change due to resource contention. As a result, they make

unwise assignments by either issuing sub-optimal task combinations or by overloading

machines. HAMS avoids these problems.
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Figure 4.6: Workload execution times for HAMS and existing Hadoop schedulers on two
clusters.
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Figure 4.7: Distribution of resource utilization vectors when running one benchmark using
ori and HAMS. We omitted the results for the other schedulers because simple is similar to
ori and hetero is similar to HAMS for this example.

Avoiding sub-optimal task combinations helps for unbalanced, heterogeneous tasks.

Figure 4.7 shows the distribution of resource utilization vectors during execution of an

unbalanced workload. We omit memory loading for figure, because it doesn’t vary much.

Both ori and simple produce unbalanced resource use. HAMS and hetero balance resource

use.

Preventing over-utilization or under-utilization of machines helps when the workload

over-utilizes some resources because a fixed number of concurrent tasks are run on each

machine, as is the case for ori. This strategy improves throughput for both heterogeneous
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Figure 4.8: The number of concurrently running tasks on the cluster. The labels mark the
job finish times for different schedulers.

and homogeneous workloads. Even when assigning a homogeneous tasks, ori, which always

assigns a fixed number of tasks, may generate sub-optimal loading. When assigning a

heterogeneous workload, task schedulers that are not aware of task heterogeneity (simple),

or use a task model that neglects task interference (hetero), also result in inappropriate

concurrency. Figure 4.8 shows an example of this. Ori loads the cluster with too many tasks,

while simple and hetero load the cluster with too few.

To summarize, HAMS achieves performance improvement for both heterogeneous and

homogeneous workloads. The biggest benefits occur for two types of workloads. (1)

Unbalanced, heterogeneous workloads (BM2–BM5). This is due to the more comprehensive

task and resource utilization modeling in HAMS. These workloads also benefit more from

HAMS when run on heterogeneous clusters than when run on homogeneous ones. (2)

Workloads that can overload machines (BM1). This is due to adapting the number of

concurrently running tasks based on task resource use and machine resource availability.

All four task schedulers perform similarly for lightly loaded benchmarks, e.g., BM6–

BM9 (Figure 4.9). This is due to the lack of resource contention or overloading, which makes
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Figure 4.9: Execution time comparison of schedulers for lightly-loaded benchmarks on a
30-node cluster.

task assignment policies unimportant. Such loads often occur at night. While we cannot

improve the performance of such workloads, we can improve the energy consumption.

4.5.5 Energy Consumption Reduction

This section explains the impact of scheduling policy on energy consumption for clusters

using task concentration.

We run the same groups of benchmarks described in Subsection 4.5.2 in the multi-node

cluster and measure the resource utilization of every machine during execution. These data

are used to calculate machine power consumption using the model described in Table 4.2.

The energy consumption is then computed using Equation 4.9 with the parameter values

from the power model and measured resource utilization. We require benchmarks to finish

in the same amount of time as they require during the most heavily loaded period in the

diurnal cycle [65].

Figure 4.10 shows energy savings for ori and HAMS for five benchmarks taken from

Subsection 4.5.2. Simple and hetero perform only slightly better than ori, therefore we focus
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Figure 4.10: Energy savings with task concentration for ori and HAMS. init does not use
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.

on ori and HAMS. Ori achieves 10% average reduction in energy consumption given the

constraint that night-time performance must be at least as good as daytime performance.

HAMS achieves 23% reduction in energy consumption because it optimizes resource

sharing among concentrated tasks, allowing more machines to be powered down while

honoring performance constraints (see Figure 4.11). To summarize, HAMS reduces energy

consumption compared to ori under the same latency constraint.

The amount of energy saved by HAMS depends on workloads. In benchmark BM5,

BM6, and BM7, task concentration reduces energy consumption for both HAMS and ori,

although HAMS does better. Note that BM6 and BM7 are lightly-loaded benchmarks

for which task assignment policy has little impact on performance, but are suitable for

energy reduction because they leave rooms for task concentration. BM3 and BM9 are

not suitable for task concentration because they very heavily load the data center, leaving

few idle machines to power down. If a data center is almost always heavily loaded, task

concentration doesn’t help.
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Figure 4.11: Energy consumption–latency relationship for Benchmark 6.

4.6 Additional Feature Considering Data Locality

Our previous discussion on HAMS has focused on task and machine resource sharing only.

Data locality can also significantly impact data center task execution. Assigning a task

remotely, i.e., on a machine that does not contain the input data replication of the task,

requires the input data of the task to be transferred through the network, increasing task

execution latency.

One common solution to this problem is to always assign a task to the machine containing

its input data, e.g., to keep data locality. This solution reduces the overall job execution

latency because transferring workloads (tasks) has smaller overhead than transferring data.

Some works compute the probability of scheduling a task based on their data replications,

and select the one with the highest locality [75, 76]. Ibrahim et al. design a key partitioning

method to partition keys of Map tasks according to their input data location. Some other

approaches improve data locality through initial data placement and redistribution. These

works distribute data in proportion to the computational abilities of machines, i.e., hardware

setup of servers [77–79].

However, the above assumption does not always hold. Keeping all tasks on their data-
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Figure 4.12: Experiment setup for the motivating example. The input data of all tasks reside
in node 1. We test the assignment of these 20 tasks starting from running all tasks on node 1
(all local) to running all tasks on node 2 (all remote), increase the number of remote task by
1 each time.
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Figure 4.13: Change of workload durations as the number of remote tasks changes.

local machines can result in sub-optimal resource sharing, if these local tasks on the same

machine happen to compete on the same resource. Severe resource contention can sometimes

result in higher task execution time compared to the delay induced by remote data transfer.

On the contrary, remote tasks can have shorter execution time if they are assigned to remote,

but resource-contention-free machines. Existing works that consider resource contention

on remote machines use the CPU loading as one single indicator of the total loadings on a

machine, ignoring contention on multiple resources [80].

A task scheduler that considers resource utilization and remote assignment together
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needs to balance between these two effects. Only considering resource balancing or targeting

best locality can both lead to sub-optimal assignments. We use one motivating example to

demonstrate the idea. We perform a test with 20 tasks running on a cluster of two nodes

(Figure 4.12). The execution time of these 20 assignments are show in Figure 4.13. The

lowest execution time is not achieved by “balanced assignment”, which is 10 tasks in each

node, nor “local assignment”, which has no remote tasks. Instead, optimal assignment

contains slightly lower number of remote tasks (5 tasks) and higher number of local tasks

(15 tasks). This is because the balanced assignment fails to consider the task input data

transfer delay, therefore slows down the machine with remote tasks; The local assignment

overloads machine resources with too many concurrent tasks, slowing down task execution

by resource contention.

In summary, an optimal task assignment scheme depends on the overhead of two effects:

resource contentions caused by local tasks, and the network transfer latency of remote tasks.

To capture the impacts of these two effects during the task assignment process, detailed

models on task execution and network transfer are required.

4.6.1 Models

We propose to use three models to describe the performance impact of local and remote

tasks.

1. Local task resource utilization and execution time model: It describes the change in

resource utilization, and the corresponding slow down in task execution time when

assigning a new task on the same machine. This model is already described in our

previous task scheduler design, HAMS, in Chapter 4.

2. Network transfer model: It calculates the delay of transferring data through networks.

3. Remote task resource utilization model: It models the change in resource utilization

of the source machine, the machine that provides data for a remote task.
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Figure 4.14: Experiment setup for building the network transfer model.
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Figure 4.15: Network transfer model for one task.

The first model has already been constructed in our previous work; we describe the

format and construction process of the remaining two models in the following sections.

4.6.1.1 Network Transfer Model

The network transfer model describes the delay on a remote task execution caused by

network data transfer. This network delay in a data center is mainly caused by insufficient

capacity of the network switches. It is a function of the network background loading, and is

independent of the task type. Therefore, we can characterize the network transfer separately.

The network background loading and the corresponding network delay can be directly

measured. I design an experiment to gather these data and construct the model. The

experiment uses two nodes (node 1 and node 2). All 20 tasks are initially running on node 1.

As demonstrated in Figure 4.14, there are i sets of data on node 1 and 20 - i sets of data on
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node 2. Varying i from 0 to 20 changes the number of remote tasks from 20 to 0. This allows

us to rule out other effects (e.g., resource contentions from local tasks) and only consider

the delay change due to network transfer. For each execution, we measure the finish time of

the task set and also the network traffic, and perform a curve fit to extract model parameters.

The resulting network delay model is linear, as shown in Figure 4.15. It takes the

following format:

execution_time(second) = p1× network_data(GB) + p2. (4.10)

p1 is the fitting parameter, and p2 is close to the task execution time on a data local, unloaded

machine. While p1 is independent of tasks and can be used across different task types,

p2 can be taken from the previously built task execution time model from HAMS. In our

measurement, we obtain the value of p1 and p2 as 3.8 and 221.4.

The above characterization process assumes that the measured delay increase is com-

pletely caused by the network transfer latency. However, part of this delay can also be a

result of the increase in disk IO when remote data are written to local disk. We measure

the disk IO increase on the destination machine, and compare it with that of a local task.

The additional disk IO ranges from 2% to 9%, which is not sufficient to significantly change

the task execution time. Therefore, we ignore this effect in our characterization process and

treat the measured delay as purely caused by network data transfer.

4.6.1.2 Remote Task Resource Utilization Model

The remote task resource utilization model captures the resource utilization changes on the

source machine due to data transfer. More specifically, it captures the increase in disk IO

utilization.

Measurement shows that the increase in disk IO is proportional to the remote data size.
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Therefore, we describe the increase in disk utilization below:

num_of _remote_task · α · remote_input_size

num_of _local_task · local_input_size
, (4.11)

in which α is a scaling factor.

4.6.2 Scheduler Design

We design a task scheduler that integrates the above three models together, and determines

weather to assign a local or remote task on a machine when called. If assigning a remote

task, the scheduler also determines the source machine that the task should read its input

data from.

The assignment process computes task execution overhead for all candidate tasks, both

local and remote, and select the assignment that results in the highest overall throughput

in both the local and remote machines. It considers resource contention generated by the

candidate tasks. This is done by computing the impact of this candidate assignment on

already-running tasks residing on the destination machines. It also considers the increase of

disk IO on all candidate source machines. These impacts can be captured using the network

transfer model and remote task resource utilization model. The process of scheduling one

task is demonstrated in Figure 4.16. Task t1 is assigned to machine 1 as a remote task. It has

two impacts: the network delay n1, which is calculated using the network transfer model,

and the increase in the disk IO of the source node (machine 0), which is calculated using the

remote task resource utilization model, and is represented in the disk utilization of task t0.

The above process is repeated every time when an assignment decision is made, resulting

in repeated computation of the network delay and resource utilization. This computation is

redundant if the loading conditions of the source machines stay unchanged or only change

slightly. We use a global bookkeeping data structure to prevent these unnecessary overhead,

and only update this information on-demand, as demonstrated in the table in Figure 4.16. It
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Figure 4.16: Overview of the task scheduler.

records the network transfer delay of a unit size data trunk between two machines, and also

records the modeled task resource utilization and the corresponding execution time on every

candidate remote machines. Both this network delay and remote task execution time are

affected by the background loading on the source and the destination machines. As a result,

they are only updated when the network loadings or the loadings on the remote machine

change.

4.6.3 Experimental Results

We integrated the network delay model into HAMS and implemented the above task as-

signment algorithm. Tasks running on machines containing their input data are called local

tasks. Tasks getting their input data from machines within the same rack, or from a different

rack, are called remote tasks. The data locality rate is the percentage of local tasks out of

all tasks. We use this data locality rate to describe how much locality a task scheduling

algorithm should have to achieve best performance. We evaluate two aspect of the improved

scheduler: First, we measure the data locality rate that results in optimal job finish time.

Second, we compare the overall task execution time of this remote task aware algorithm with

HAMS. We compare the improvement in overall benchmark execution time when explicitly

considering data locality and remote tasks.
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Table 4.4: Average Data Locality And Job Finish Time

Scheduling Algorithms Original HAMS Local NHAMS

Data locality rate 12% 39% 100% 45%

Normalized job finish time 1.0 0.62 0.84 0.51

We measured the average data locality rates and average improvement in job finish times

for several task scheduling algorithms:

• The hadoop original scheduling algorithm. This algorithm completely ignores data

locality.

• The HAMS without the network delay model. This scheduler targets optimal resource

utilization among tasks, while does not guarantee data locality.

• The local scheduling algorithm, which runs every task on machines containing its

input data.

• NHAMS: The HAMS with network delay model and locality aware scheduling. This

algorithm integrates network transfer model together with task resource and perfor-

mance models.

We deploy the above schedulers on a 16-node cluster. This cluster has two racks of

machines connecting via one network switch. Each rack contains 8 machines. One rack has

tpye 1 machines, and the other rack has type 2 machines. We run three benchmarks using

the four scheduling algorithms, and measure and calculate the average data locality rate and

performance change.

The results are shown in Table 4.4. NHAMS achieves shortest job finish time, while

its average data locality rate is only 45%. This result in a data locality rate lower than the

local scheduling algorithm, and higher than HAMS. This result shows that neither running

all tasks locally, nor only considering task resource sharing but ignoring data locality can
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minimize job finish time. Combining the two models together achieves the best performance

in task execution. This result is consistent with our example shown in Figure 4.13.

4.7 Related Work

This section summarizes related work in the areas of task performance modeling, data center

load-balancing, and energy optimization.

Resource utilization based task modeling is common in data center task scheduling. It

optimizes task performance by doing load-balancing on machines. There are two variants

of this approach. (1) Some researchers formulate this problem as multi-dimensional vector

packing. Mastroianni et al. use a probability function based on CPU and RAM utilization

to make assignment decisions [61]. Borgetto et al. use a metric called yield to describe

the ratio of required to maximum possible resource utilization [62]. These methods model

tasks individually. They do not consider resource contention among tasks or machine

heterogeneity. (2) Other researchers construct detailed models focusing on sharing one

specific resource. Tang et al. evaluated the impact of memory resource sharing on co-located

tasks and designed a thread-to-core mapping algorithm that is suitable for such sharing [81].

We take a more general approach and consider memory, CPU, and IO.

Task and machine heterogeneity have been modeled in prior work. Ganapathi et al.

developed statistical models to predict execution times for MapReduce jobs [82]. Their

model is based on features peculiar to MapReduce jobs, while our modeling approach is

based on measured responses to heterogeneous resource utilization, and can therefore be

readily extended to other cloud computing tasks. Delimitrou et al. designed Paragon [83], a

server heterogeneity aware scheduler that selects the most suitable server for workloads based

on server configuration and interface. Zaharia et al. develop LATE [84], a scheduler that

improves speculative task assignment based on estimated task finish time. They explicitly

consider machine heterogeneity when computing the expected finish time. These models
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do not consider the impact of resource utilization on task performance, while we provide a

more accurate model that captures both heterogeneity and resource contention.

There are several methods of optimizing data center energy use by task concentration

and powering down sub-group of machines. Meisner et al. developed PowerNap [2], a

system to minimize machine idle power and transition time. Their application requires

hardware redesign. Our approach does not require hardware changes and makes high-

latency power state transitions less harmful. Pinheiro et al. migrated tasks into sub-groups of

machines [60]. They determine when to migrate tasks and disable/enable nodes to minimize

energy consumption. Their model for data center throughput neglects load-dependent

resource usage. Lang et al. proposed to use all machines in a cluster to finish the workload

and power down the whole cluster [4]. This approach can reduce energy consumption when

there are significant time gaps between job arrivals. However, it does not work when jobs

frequently arrive, leaving little or no gap for powering down machines. HAMS can save

energy in the presence of frequently or infrequently arriving jobs.

4.8 Conclusion And Future Work

This chapter has describe HAMS, a task scheduler for the Hadoop MapReduce framework

that accurately models the relationships among task resource utilization, performance, and

power consumption in order to optimize performance and energy consumption. HAMS pre-

dicts task execution time and optimizes task assignment decisions by explicitly considering

task and machine resource heterogeneity using a background-loading-aware task perfor-

mance model. This brings an average performance improvement of 13% over the Hadoop

original scheduler and 11% over schedulers that overlook task and machine heterogeneity

or machine background loading. When used together with task concentration, HAMS

reduces energy consumption by 23% while meeting task latency requirements. Existing

scheduling policies reduce energy consumption by only 10% under the same conditions. We
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also consider the impact of locality when data replication is insufficient to provide local

input data to tasks. Adding a network transfer model to HAMS achieved an additional 9%

performance improvement. Finally, we discussed the data locality rate favorable for task

execution time.
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CHAPTER 5

Reliability-Aware Cooling Energy Saving

Through Task Assignment in Heterogeneous

Data Centers

5.1 Introduction

Data center energy consumption has become a significant problem. Commercial data centers

consumes millions of dollars per year of electricity; the computational capacities of data

centers are typically constrained by their energy availabilities.

Data center energy consumption can be reduced by reducing cooling energy. Cooling

energy accounts for a large portion of data center total energy consumption. The cooling

efficiency of a data center can be quantized by Power Usage Effectiveness (PUE), which

is the ratio of the computational energy to the total energy. The PUE of a traditional data

center ranges from 1.5 to 2 [85, 86]. Therefore, reducing cooling energy can result in 30%

to 50% reduction in data center energy consumption.

People have proposed energy saving solutions for data centers. However, the focus has

been on server energy reduction, while cooling energy is often ignored. Even when people

consider cooling energy, it is optimized independently from server energy [87, 88]. Cooling

energy consumption in a data center consists of server fan energy and cooling system energy.

The energy consumption of server fans is a function of server processor temperature, and
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therefore is dependent on server utilization. The energy consumption of data center cooling

system strongly depends on the number of active servers and the temperatures of server

heat sinks. Therefore, cooling energy is strongly dependent on server operating states. This

observation leads us to consider the effects of concurrently optimizing server energy and

data center cooling energy.

It is not straightforward to optimize both server and cooling energy consumption, as there

is a trade-off between the two. Cooling energy decreases when the operating temperatures of

servers increase. Nevertheless, higher temperature setpoints also increase energy consump-

tions in server processors. In 45 nm or newer technology, a large portion of server power is

due to leakage, which increases exponentially with temperature. Figure 5.1 illustrates the

temperature dependence of the data center cooling, leakage, and total energy consumption.

The optimal overall energy consumption is achieved when servers operate at 50 ◦C or higher.

These temperature setpoints of server processors are higher than the current operating

temperature range used in data centers (e.g., 30 ◦C–40 ◦C). These operating temperature

standards are used to avoid reliability problems. The reliability of a server processor is

affected by temperature-dependent fault mechanisms such as Time-Dependent-Dielectric-

Breakdown (TDDB), Electromigration (EM), Thermal Cycling (TC), and Negative-Bias

Temperature Instability (NBTI) effects. These effects are more severe at high temperatures.

Running servers at higher temperature will certainly shorten the lifetimes of server proces-

sors. However, it may not much affect the overall system lifetime. The system lifetime

of a server is constrained by the least reliable components, which in most cases are hard

drives and RAM rather than the processors. The hard drives are usually the first to fail, with

average lifetimes of half a year, followed by the RAM, which typically fails within one

year [89]. The reliabilities of these two components are not strongly temperature-dependent;

therefore, it is safe to push the processor to run at a higher temperature until its lifetime

reduces to that of the hard drives or any user-specified lifetime constraints, while optimal

energy saving is achieved.
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Figure 5.1: Relationship between data center energy consumption, temperature, and proces-
sor lifetime.

The temperature setpoints of processor cores are affected by two factors: the total

energy consumption of the data center and the reliabilities of the processor cores. There are

two temperature-dependent terms in the data center total energy consumption: the cooling

energy and leakage energy. Cooling energy dominates data center total energy [1]. When

processors are set to run at a higher temperature, less heat is required to be removed from

the server room to reach the desired processor temperature setpoints, so the cooling energy

is lower. Therefore, the constraint on total energy consumption sets the minimum processor

temperature (Tmin in Figure 5.1) that will result in acceptable total energy consumption.

The reliabilities of processor cores can be described by the mean-time-to-failures (MTTFs)

of the cores, which decrease with rising temperature. The lower bound of core MTTF sets

the maximum value of the processor operating temperature (Tmax in Figure 5.1).

In data centers using multi-core servers, it is suboptimal to set one single temperature

setpoint for all server processors. This is due to heterogeneity of server processor cores.

This heterogeneity has three sources: First, the server processors of different machines are

at different wear states, since they are either of different ages, or have different utilization
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histories. Second, cores have different loadings. Third, cooling conditions vary among

servers because the temperature distribution and air flow are not exactly the same for

every machine. As a result, the optimal temperature setpoints for each processor have to

be calculated separately. On the other hand, different cores have different requirement

for cooling air temperature. This air temperature is usually determined by the output air

temperature of the cooling equipment–usually chillers–in data centers. However, in practice,

this temperature is set to one single value for a whole rack of servers. The operating

temperature setpoint of each server depends on the operating state of all servers. This

requires detailed thermal modeling of the data center, and the complexity scales up with the

number of servers.

People have proposed data center energy optimization techniques under reliability

constraints. These works focus on reliability-aware DVFS techniques [90] or workload

scheduling [91]. Existing methods have two disadvantages. First, they only consider energy

saving on a single server, without considering the impact on data center cooling system

energy consumption. Second, they do not have a way of measuring the reliability influencing

wear states of individual processor cores and their changes over time. In contrast, we

optimize data center energy consumption as processor wear states change. Furthermore, we

propose a method to measure the processor reliability.

The reliability constraint shown in Figure 5.1 is determined by the processor MTTF and

its wear state. While the required core MTTF is pre-determined and is age-independent, the

processor wear state, which describes how much the core wears out due to different fault

mechanisms, depends on the operating states of the processor, and changes over time as

processor cores are stressed. The wear-out of processors increases with the processor stress

time, and in most cases is also temperature dependent. However, it is not straight-forward to

directly measure the processor wear state, before the core fails.

We developed a method of measuring processor wear state that focuses on one type of

faults–the timing error. Timing errors are detectable during normal processor operating
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Figure 5.2: This figure shows a voltage–temperature dependency curve of a processor. This
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and are still an outcome of several major fault mechanisms that lead to processor lifetime

degradation. A timing error can be observed directly when the system fails to operate. This

happens when the timing slack in the critical path of the processor reduces to zero or negative

as the processor wears out. Therefore, a measurement of the timing slack tells people how far

the processor is from a timing error. At each fixed wear state, the timing slack reduces as the

processor runs at extreme operating conditions (e.g., high operating temperature or low core

supply voltage). Therefore, one could stress the processor to extreme operating conditions,

and record the temperature-voltage-frequency points at which timing errors occur. Using this

information, one can deduce the remaining timing slack under normal operating condition

(lower temperature and higher core supply voltage) by modeling the temperature-dependent

timing change on the critical path, as shown in Figure 5.2. Performing this measurement at

every stage of processor life allows us to measure wear progression and build a map of the

time-dependent processor wear state.
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The above wear state measurement requires setting the processor at different Dynamic

Voltage and Frequency Scaling (DVFS) states, and restarting the server when a timing error

happens. This test can be performed without physical access to the servers by using a

remote-controlled switch to detect the occurrence of timing errors, and restart the machine.

5.2 Related Work

Existing works have used different approaches to minimize data center energy consumption.

Some work has considered only one stand-alone servers and other work has considered a

whole data center. First, when considering only one stand-alone server, people optimize

the socket-level workload distribution to reduce server fan energy consumption. Ayoub et

al. proposed cool and save [87], with the goal of reducing the overall energy consumption

of servers by doing socket-level task assignment. This technique saves cooling energy by

reducing CPU fan speed. Coskun et al. developed a temperature aware task scheduling

method to balance workloads in MPSoCs (Multiprocessor system-on-chip) [92]. They used

a method called Adaptive-Random to calculate the task assignment probability of each core

based on its temperature difference with the threshold temperature. Huang et al. designed

TAPO [88], a technique that selects the temperature setpoints of server machines and data

center ventilation systems. However, these techniques consider the data center cooling

system and servers separately. We descirbe a method to co-optimize the cooling system and

computation system, and will show that this can achieve better overall energy savings in

later parts of this chapter. Second, when considering a data center, people propose to save

energy through optimizing energy distribution among different servers. Das et al. provide

a utility function based solution to power down under-utilized servers to save energy [93].

Chen et al. use a predictive model to find the temperature setpoints for server inlets [94].

Some works characterize and model the cooling system to optimize the cooling control

flow. Heath et al. designed Mercury, a system that models the heat and air flow to emulate
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temperature distribution in the data center [95]. Breen et al. designed a system model of

server heat sink temperature as a function of data center air-flow and server temperature

setpoints [96]. In later part of this work, we will integrate some of these models into our

data center cooling system model.

People have also done research on energy optimization under reliability constraints.

Basoglu et al. proposed NBTI-aware DVFS, a voltage scaling scheme that assigns optimal

operating voltages to processor cores [90]. Sun et al. designed a NBTI-aware workload

balacing scheme for multi-core systems, with the goal of reducing the variation in lifetime

degradation of multi-core systems [91]. These works focus on a multi-core system in a

stand-alone server. We focus on data center clusters.

5.3 Problem Definition

The goal of this work is to optimize the total energy of a data center. The total energy

consists of two major parts: the server computational energy Emachine, and the cooling

energy Ecooling. These two terms are directly affected by tasks running on the servers.

Furthermore, cooling energy is also a function of several user-controlled variables in the data

center setting. Therefore, we use dynamic task assignment that changes the above variables

to achieve optimal energy consumption. In addition, we impose a reliability constraint on

our solution.

1. Objective: minimize data center total energy consumption, including computation

energy and cooling energy, while trying to meet all task deadlines. The total energy

consumption of the data center can be expressed as follows:

Etotal =
n−1∑
i=0

Emachine, i + Ecooling, (5.1)

in which n is the number of servers.
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Figure 5.3: Thermal transfer network model for an air-cooled data center. Each core is
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heat sink temperature of core i, server room temperature, and outside air temperature.

The cost function can be expressed as the total energy plus the deadline cost function.

f = Etotal +
n−1∑
i=0

(di − di0)α,

in which α is a parameter larger than 1. Therefore, assignments that result in little or

no deadline violation for tasks are favorable. Both the energy term and task deadlines

are affected by task assignment decisions.

2. Input: A pool of tasks. At the time when an assignment decision is made, we assume

that the scheduler always knows the type and number of all candidate tasks. A new
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group of tasks can arrive later and will of course affect the scheduling decision;

however, the time interval between the arrivals of two groups of tasks is generally

longer than the average execution time of one task. Therefore, the above assumption

about the task scheduler still holds under most circumstances.

3. Controllable Variables:

• task assignment (when and where to assign a task),

• processor operating voltage (Vc),

• processor frequency (fc), and

• chiller air flow rate (Fair).

4. Constraints: MTTF of each core. It is a function of the failure rate of each core:

Processor mean-time-to-failure: MTTF(Tc, fc, Vc, ti) < MTTFconstraint.

Calculating the above objective function and constraint requires detailed modeling of

data center energy consumption and the processor lifetime. We discuss our models in the

following sections.

5.3.1 System Overview

We present the overview of our experiment and task scheduling design. This design consists

of two parts: a wear state crash test and a reliability aware task scheduler. The system

diagram is shown in Figure 5.4.

The wear state crash test is performed on each individual core. When running this

test, the core is loaded with a group of CPU stressmarks. They exercise the core to cover

most DVFS states until the core crashes. The crash states are used to compute processor

temperature setpoints using two models: the core reliability model, and the circuit model of

the core critical path. The temperature setpoint of each core is used in the task scheduler.
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Figure 5.4: System diagram of wear state test and reliability aware task scheduler.

The reliability aware task scheduler minimizes data center energy consumption through

task assignment. The scheduler selects tasks from the input task pool and assign them

to cores, targeting at their temperature setpoints. We use a data center thermal model to

calculate core temperature when assigning candidate tasks. Also, the energy consumption of

each assignment is calculated using a data center energy model. The scheduler then selects

the assignment with minimum energy consumption under the core temperature constraint.

We discuss the above models and two parts of our design in the following sections.

5.4 Modeling

In this section, we describe several models that will be used in our design: the energy and

thermal models of servers, and reliability models. These models are used in our wear state
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measurement and task scheduler design.

5.4.1 Energy and Thermal Modeling

The total energy consumption of the data center consists of server energy consumption and

cooling energy consumption. The server energy consumption can be easily modeled using

the CPU utilization. The cooling energy is dependent on both the core power consumption

and its operating temperature, and therefore requires using a thermal transfer network.

The total energy consumption of server processors is the sum of individual core energy

consumptions. The core energy consumption consists of two parts: the idle energy, which is

mostly independent of the workload; and the utilization-dependent active energy:

Eserver =
n−1∑
i=0

(Eidle + ui · Eactive) , (5.2)

in which n is the number of servers, Eidle and Eactive are the idle and active energy con-

sumptions of the server, ui is the resource utilization vector of machine i.

Chiller energy is the main contributor to cooling energy consumption. We assume that

the chiller uses air cooling only. It pumps in ambient air and uses it to cool the data center.

Therefore, the chiller energy consumption is a linear function of its air flow rate Fair:

Echiller = AchillerFair. (5.3)

Achiller is a constant.

In order to calculate the cooling energy consumption, we need to find the value of Fair,

which is determined by the processor power consumption and the ambient air temperature

outside the data center. This relationship can be described using the thermal transfer network

shown in Figure 5.3, which models the heat distribution among each core, and shows the

heat flow from processor fans to the central cooling system [86]. The thermal relationship in
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one individual core and its fan can be modeled as follows:

Pcore_i(Rhs +Rfan_i) = Tc_i − Troom. (5.4)

Pcore_i is the power consumption of the ith core, Rhs and Rfan_i are the thermal resistance

of the heat sink and the server fan, and Tc_i and Troom are the core and room temperature.

The thermal relationship between the server room and the chiller can be described using

the following equation:

Rair

n−1∑
i=0

Pcore_i = Troom − Tair_out. (5.5)

Thermal resistance of the air-cooled fan system (Rair) can be modeled using its air

flow rate: Fair. This air flow rate Fair must be sufficient to cool the servers. That is, the

amount of heat taken away by the chiller outlet should be equal to the heat generated by

servers [87, 97]. For each server, the following equations hold:

Rair = 1/(FairCair) and (5.6)

Rfan_i = 1/(Ffan_iCair). (5.7)

Considering mass conservation in air flow, we have the following relationships among air

flow rates:

n−1∑
j=0

Ffan_j = Fair. (5.8)

Solving Ffan_i from Equation 5.4 and Equation 5.5 yields

Ffan_i =
Pcore_i

Tc_i − Tair_out − 1
Fair

∑n−1
j=0 Pcore_j

. (5.9)

Substituting Equation 5.9 into Equation 5.7 yields an expression of Ffan using Pcore_i and
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Tc_i:

Fair =
n−1∑
i=0

Pcore_i

Tc_i − Tair_out − 1
Fair

∑n−1
j=0 Pcore_j

. (5.10)

In the above expression, processor power consumption Pcore_i is a function of the

workload on the core, which is determined by the task assignment algorithm. The core

temperature Tc_i is constrained by the reliability requirement of the processor, which can be

solved for using the reliability constraint.

5.4.2 Reliability Constraints

The system reliability constraint sets a lower bound on the required MTTF of the system.

This required MTTF of the system is the expected time at which the processor will first

encounter a failure. In the rest of our discussion, we focus on failure introduced by NBTI

effects. NBTI is one of the dominating mechanism for circuit failure [98]. It causes circuit

failure by slowing down transistors and leads to a timing error, which can be caught by

external measurements. NBTI affects circuit timing due to increasing threshold voltage,

thus slowing down the circuit. Therefore, the NBTI effect can be modeled by considering

time-dependent change in the threshold voltage [98, 99]:

∆Vth(t) = ∆Vth_max · (1− e−(t/τ)β) and (5.11)

τ =

(
Ni · eEH/kTc ·D00

kTc · β

)−1/β

· Eox−1/β. (5.12)

The time constant τ indicates when ∆Vth reaches 63% of Vth_max. τ is solely dependent

on the operating temperature Tc of the circuit, while Ni, EH , k, D00, β, and Eox are all

process-dependent constants.

We calculate the system MTTF as the time when the change in the threshold voltage
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∆Vth(t) reaches a certain portion of the maximum voltage ∆Vth_max:

∆Vth(MTTF ) = D ·∆Vth_max, (5.13)

in which D is a constant specified by the user.

The system MTTF is affected by both the core stress time t and core wear state. The

wear state describes the wear-out of processors, i.e., the reduction in processor MTTF caused

by fault mechanisms. It can be measured using our proposed experiment. The analysis

yields the current threshold voltage Vth_c. The remaining lifetime after stress should still

satisfy the reliability requirement:

∆Vth(tremaining) + (Vthc − Vth0) = D ·∆Vth_max, (5.14)

in which Vth0 is the starting threshold voltage before stress.

Using the above equation together with Equation 5.12, we can calculate the remaining

lifetime of the circuit under stress:

tremaining = τ

[
−1 · ln

(
1−D +

Vthc − Vth0

∆Vth_max

)]1/β

. (5.15)

This tremaining, plus the already stressed time, has to be longer than the required system

lifetime:

tremaining + tstressed ≥MTTFconstraint. (5.16)

Using Equation 5.15 and Equation 5.16, we can solve for the lower bound on the
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temperature-dependent time constant τmin:

τmin =(MTTFconstraint − tstressed)

·

[
−1 · ln

(
1−D +

Vthc − Vth0

∆Vth_max

)]−1/β

. (5.17)

Combining this equation with Equation 5.12, we can solve for the operating range of core

temperature Tc. Therefore, the reliability constraint can be transfered into a temperature

constraint of each processor core. The range of Tc can be used in solving Fair from

Equation 5.10, which directly gives us the cooling energy consumption.

5.4.3 Wear State Measurement

The processor wear state can be described using the increase of threshold voltage of transis-

tors. This increase affects processor delay d:

d = A · (VGS − Vth)α, (5.18)

in which A and α are constants, and VGS is the gate-to-source voltage. Therefore, the

maximum increase in processor threshold voltage ∆Vth_max is a function of the maximum

allowed critical path delay of the processor, dmax, and the current increase in threshold

voltage ∆Vthc is a function of the current critical path delay dc. Using Equation 5.18, we

derive the expression of ∆Vth_max:

VGS − Vth0 −∆Vth_max

VGS − Vth0

=

(
dmax
d0

)1/α

and (5.19)

∆Vth_max = (VGS − Vth0)

(
1−

(
dmax
d0

)1/α
)
. (5.20)
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Similarly, the expression of ∆Vthc is

∆Vthc = (VGS − Vth0)

(
1−

(
dc
d0

)1/α
)
. (5.21)

Therefore, the ratio ∆Vthc
∆Vth_max

is described as follows:

∆Vthc
∆Vth_max

=
1−

(
dc
d0

)1/α

1−
(
dmax
d0

)1/α
. (5.22)

The maximum circuit critical path delay dmax that would not result in a timing error is one

over the rated frequency of the processor. The critical path delay d0 can be measured at the

beginning of the processor life, and dc can be measured at the current operation state. Both

of these delays can be obtained through processor crash tests, which will be described in the

following sections.

Substituting Equation 5.22 into Equation 5.17, we can solve for the lower bound of the

time constant of MTTF aging:

τmin =(MTTFconstraint − tstressed)

·

−1 · ln

1−D +
1−

(
dc
d0

)1/α

1−
(
dmax
d0

)1/α




−1/β

. (5.23)

This τmin, which is later translated into the processor temperature setpoint, can be computed

using user-measurable parameters. Therefore, we have derived a method of calculating

processor temperature setpoint from measurement.
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Figure 5.5: Using measured wear states and the circuit critical path model to determine the
processor temperature setpoint.

5.5 Methodology and Design

In this section, we describe the design of our system for reliability aware task assignment.

The system consists of two parts: automatic wear state characterization and reliability-aware

task scheduling to minimize energy consumption. We first describe online measurement of

processor wear state through crash testing. The wear states are used to describe the lifetime

degradation of processors, and serve as guidances for reliability-aware task scheduling. We

then describe the reliability-aware task scheduler.

5.5.1 Core Wear-State Test

Processor wear due to NBTI is a result of voltage increase. This increase can be measured

by capturing processor timing errors. NBTI increases the transistor threshold voltage during

long-term stress, slowing processors down, thereby reducing processor timing slacks. Timing
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slack is the difference between processor critical path delay and clock period. If timing

slack becomes zero, the processor may fail and crash, which can be observed externally.

Figure 5.5 illustrates the test process. We describe the test in detail in this subsection.

A crash happens when the processor encounters a timing error. A worn-out processor

crashes under normal operating conditions, while a healthy processor only crashes under

extreme conditions, e.g., voltage-temperature-frequency points at which it is not rated to

operate. To cause a crash for healthy processors, we stress it with a CPU-intensive workloads

and run it under different frequency-voltage-temperature conditions until it crashes. The

frequency-voltage-temperature points at which the processor crashes are recorded as the

crash state.

The frequency at the crash state is one over the critical path delay of the processor under

that specific, extreme voltage and temperature condition. Under normal conditions with

lower temperature and higher voltage, the critical path delay decreases, leaving some timing

slack to the processor clock cycle. This timing slack can be used to calculate the current

transistor threshold voltage, which can be used to compute the processor remaining lifetime

using Equation 5.17.

To compute this normal operating condition frequency from the crash condition fre-

quency, one can use the voltage-temperature-frequency curve of the critical path of a

processor. We generate this curve through SPICE simulation on a serial inverter train

modeling the processor critical path, and adjust transistor sizing to match the measured

crash state frequency under crash voltage and temperature condition. Therefore, the simu-

lated frequency at normal operating voltage and temperature should represents the actual

normal operating frequency. We discuss the process of building this critical path model in

Subsection 5.6.2.

In a real data center, this test can be repeated periodically, e.g., every six months. We

perform automatic execution of the stressmarks and data logger. The machine will shut

down after a crash; it can be restarted using a remotely controlled power strip. The whole
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process can be performed automatically.

5.5.2 Task Scheduler Design

We use dynamic task scheduling to achieve optimization in both computation and cooling

energy consumption in data centers. The task scheduler consists of three models: the task

performance and utilization model, the thermal and energy model, and the core reliability

model. The details of the three models are described in Section 5.4. Using these three

models, we are able to develop a dynamic task assigning procedure.

We incorporate task scheduling with reliability constraints to minimize data center energy.

As briefly introduced before, the key concept of reliability-aware task assignment is to have

processors run at the highest temperature that would not violate system lifetime requirements.

Increasing processor operating temperatures allows the chiller to run at a higher output

temperature or reduced air flow rate, thereby reducing the cooling energy consumption. The

upper bounds of core temperatures are determined by core reliability constraint, as shown

in Equation 5.17. This desired operating temperature for every core is achieved through

dynamically scheduling tasks and adjusting chiller output temperature. The operating

temperature for every core is computed separately: we consider heterogeneity caused by

process variation and different wear states across different cores, and accommodate different

temperature setpoints for cores in the same data center.

The task scheduler performs dynamic task assignment, i.e., assigns tasks as they arrive

and adjusts assignment decisions based on previous assignments and current conditions.

Assignment decisions aim to minimize total energy consumption of the data center without

violating processor reliability constraints. Both the data center energy consumption and

processor reliability are affected by processor temperature, which is a function of the

utilization of each core. Therefore, the task scheduler should predict CPU utilizations of

assigning candidate tasks, and use these values to estimate core temperatures, machine and

cooling energy consumptions, and core reliabilities. Such estimations are done through task
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Figure 5.6: The flow chart of the task assignment algorithm. It consists of three main parts: 1.
Task utilization and response time prediction ; 2. Per-core temperature, power consumption,
reliability, and task response time calculation; and 3. Cooling energy calculation.
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and machine modeling. Figure 5.6 demonstrates the three-step assignment process:

1. Task pruning. This is done by correlating the (predicted) processor resource utilization

(u0, u1, ..., un−1) with the core MTTF requirement. We select the task assignment

that results in high correlation between its CPU utilization and MTTF distribution

of cores. The resource utilization of cores running existing tasks are reported by

the operating system, while that of the core that will host the candidate task can be

estimated using the task model. If the correlation between core resource utilization and

MTTF is low, the candidate task is not suitable for assignment and will be postponed

for later consideration.

2. Temperature, power, reliability, and performance modeling. The resource utilizations

ui calculated from the previous step are used to compute core temperature Tcore_i and

power consumption Pcore_i using the corresponding models. The resulting tempera-

ture and power consumption are used in two models: the reliability model and the

performance model. The MTTF value calculated from the reliability model should

be larger than the MTTF constraint, and the predicted task response time di from the

performance model should be shorter than the task deadline. Violating either of these

constraints will result in dropping the candidate task.

3. Cooling energy modeling. As described in Equation 5.10, cooling energy consumption

is a function of the temperatures and power consumptions of all cores. These values

are output from the previous step and used in the cooling energy consumption model

to determine chiller air flow rate Fair. This yields the total energy consumption

of assigning the candidate task. The task resulting in the minimum total energy

consumption is assigned.
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5.6 Experiments

This section describe the process of processor wear state measurement and deployment of

the adaptive temperature tasks scheduler.

5.6.1 Wear State Measurement

Wear state measurement captures a series of crash states of a processor. This measurement is

performed under extreme conditions to cause processors to crash. The resulting crash states

are used to build a circuit critical path model, which can be used to derive circuit timing

slacks under normal operating conditions. This timing slack can be used to calculate the

processor temperature setpoint under this wear state.

We perform the wear state measurement on a server with one 3.16 GHz, quad-core Xeon

5460 processor and 8 GB RAM. The server fans are removed from the system to allow

processor temperature to increase. Installing more advanced fan control system can allow

users to disable fans from the operating system, avoiding removal of processor fans. At

high temperatures, processors are more likely to crash. The circuit delay increases with

increasing operating temperature. Therefore, this high operating temperature increases the

probability of processor timing errors, shortening the stress time required for the processor

to crash.

Before knowing the current processor wear state, we don’t know the DVFS state and

operating temperature at which the processor will crash. Therefore, the wear state test

has to iterate through several extreme operating state of the processor. The test stresses

processors under different DVFS states and operating temperatures. These DVFS states

can be set by programing the model-specific registers (msr) of the processor. The processor

operating temperature can be adjusted by running CPU stress marks that change the power

consumption of the processor. We change the combination of instructions with different

power consumption (nop, memory access, branch, and computational intensive instructions)
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Table 5.1: Voltage = 1.47 V, frequency = 3.16 GHz

Temperature (◦C) Crash number Total number of measurements

95 1 6

97 6 6

99 10 10

to change the power consumption of these stress marks, resulting in varying equilibrium

temperatures for the server processor.

At each DVFS state, the processor is stressed for a fixed time interval. Ideally, for a given

voltage-frequency state, the core should consistently crash when its operating temperature

reaches a threshold. However, noise in the system randomly changes the circuit delay,

resulting in a distribution of this crash state temperature, instead of one single value. To rule

out this noise from our measurement result, we assume that the circuit delay due to random

noise follows Gaussian distribution. Instead of only stressing the processor at one fixed

temperature point, we sweep a range of operating temperatures for the processor, and repeat

the stress test for several times. We record the number of crashes under each temperature

point. This crash number on different temperatures should follow Gaussian distribution as

well. As a result, the crash temperature is the temperature at the 50% probability of this

distribution.

We have successfully measured two different crash states on the testing server processor.

These two crash states are shown in Tables 5.1 and 5.2. The temperatures at the 50%

probability of these two states are 97 ◦C and 99 ◦C. Therefore, the two measured crash states

are (1.47 V, 3.16 GHz, 97 ◦C) and (1.41 V, 2.67 GHz, 99 ◦C).

5.6.2 Circuit Critical Path Model

Using the measured crash states, we build a circuit model that fits the measured data and

can later be used to calculate the processor temperature setpoints. The crash states indicate
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Table 5.2: Voltage = 1.41 V, frequency = 2.67 GHz

Temperature (◦C) Crash number Total number of measurements

95 0 6

97 3 6

99 10 10

the processor critical path delays under extreme conditions, e.g., high temperature and low

voltage. Using this information, we calculate the processor critical path delay under normal

operating conditions, and further calculating the temperature setpoint of this processor. This

is done by building a processor critical path model.

We model the processor critical path with a chain of combinational logic gates. The

propagation delay of this chain should equal to the measured crash delay (1/f ) at the pro-

cessor crash temperature and operating voltage. This delay is affected by several parameters,

including the logic depth, the gate type, and the sizing of each stage. Therefore, finding one

single model based on the limited number of measured crash states is difficult, as there can

be a large number of circuit structures that fit the measurement data. Increasing the number

of measured crash states can increase the model accuracy. However, the number of crash

states that can be measured by users is limited, because users can only set the processor to

run at several fixed DVFS operating states, and some of these states will not result in timing

errors.

Therefore, instead of building one critical path model, we select a group of circuit chains,

all of which are consistent with the measured crash states, to give simulation result of the

range of processor delay, and calculate the processor temperature setpoint accordingly. We

use Monte-Carlo simulation to determine this group of circuit models. The simulation

considers three parameters: the gate type, the number of stages, and the sizing of each

gate. We increase the number of runs until adding more runs does not change the range of

processor delay by more than 5%.
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Figure 5.7: The temperature-delay relationship from the critical path model simulation.

The resulting circuit critical path model after 500 runs is shown in Figure 5.7. This

model covers three operating voltage level and the temperature range that we are interested

in. The processor critical path delay at each temperature and operating voltage can be

determined using this model. This delay can be used in the process described in Figure 5.5

to calculate the processor temperature setpoint given the MTTF constraint.

5.6.3 Task Scheduler Deployment

We integrate the reliability model and core temperature setpoints into the reliability aware

task scheduler, and deploy the scheduler on a cluster of servers to evaluate its impact on data

center energy consumption.

The task scheduler is deployed on a cluster of servers. The cluster contains two racks,

with eight servers on each rack. We assume that the server fan can adjust its speed continu-

ously, i.e., it can always achieve the air flow rate required by the scheduler.

We run a group of benchmarks with different CPU intensity levels. These benchmarks

consume different amounts of power and can result in different temperature distributions

among server processors.
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Figure 5.8: Total energy consumptions for three algorithms.

In this cluster, the wear states of processors are represented as their initial MTTF values.

These MTTF values are the processor lifetimes under a certain operating temperature and

voltage. They are used to describe the initial difference in failure rates of processors. The

difference of these MTTF values are due to process variation. We generate these MTTF

values with a Gaussian distribution with 6 year mean and 1.5 year variance. This distribution

is used as initial process variation of processors [100]. As processors wear out, the mean

of their distribution becomes larger and the variance becomes smaller [98, 101]. Therefore,

we select the mean value after two years of usage and the initial variance as the initial

distribution parameters. This distribution captures the possible MTTF values that processors

can have after two years of wear. As processors further wear out, the mean and variance of

this distribution can change. We evaluate these changes in our result discussion.

We compare our proposed solution with existing energy saving approaches for servers.

People have designed temperature management techniques for servers, but their focus has

always been setting different cores at the same target temperature setpoint [87, 92]. The

difference among these existing methods lies in how close the cores can approach the

target setpoints. Here we use this approach as our baseline for comparison, and assume
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that processors can reach their temperature setpoint with little performance and energy

overhead. In the deployed experiment, we compare among three different methods of using

the processor temperature setpoints.

• The Fixed Temperature method, in which every core targets the same fixed temperature

setpoint. This setpoint is specified by the data center manager, and therefore does not

require the wear state test. This method does not guarantee the MTTF constraint to be

satisfied in every core. This is the simplest algorithm and is the one currently used in

most commercial data centers.

• The Universal Temperature method, in which every core targets the lowest temperature

setpoint of all cores. This method requires a wear state test of every core, but does not

require the iterative method of computing th suitable fan speed for every core. This

method guarantees the MTTF constraint would be satisfied by all cores, but has the

potential of wasting cooling energy on the most reliable cores.

• The Varying Temperature method, which sets every core to run at its own temperature

setpoint based on its individual wear state measurement result. This method satisfies
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the reliability constraint for all cores while reducing cooling energy waste.

We use the total data center energy consumption as a metric to evaluate the above three

algorithms. Figure 5.8 demonstrates the energy consumption of the three algorithms across

a group of benchmarks. Comparing to the baseline (the Fixed Temperature method), the

Universal Temperature setpoint algorithm saves 11.5% energy on average, and the Varying

Temperature setpoint method saves 13.3% energy. Different benchmarks having different

energy savings because these benchmarks vary in CPU utilizations, as demonstrated in

Figure 5.9. Some benchmarks cause CPUs to run at hither loadings to reach their core

temperature setpoints. Some other benchmarks constrain their CPU utilization to lower

level to prevent resource contention, so that workloads can finish in shorter times without

increasing in server energy consumption. The Varying Temperature method captures both

properties and therefore saves more energy than the other two algorithms.

The Varying Temperature method saves more energy than the other two methods because

it does not run processors at unnecessarily low temperature setpoints. The temperature
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setpoints of the above three algorithms are shown in Figure 5.10. The varying temperature

reduces cooling energy waste in the data center. On the contrary, the Universal Temperature

method sets every core to run at the lowest temperature setpoint of all cores, over-cooling

some more reliable cores which should have been able to run at higher temperatures. The

Fixed Temperature method runs all cores at an unnecessarily low temperature, burning

cooling energy.

In the above evaluation, the temperature setpoint of the Fixed Temperature method is set

to 40 ◦C. As described earlier, data center total energy consumption decreases with processor

temperature setpoint. Therefore, increasing the temperature setpoint can potentially benefit

the Fixed Temperature method. The Fixed Temperature method can achieve reasonable

energy saving if its temperature setpoint is close to the average of the temperature setpoints

of all cores. However, this can result in MTTF constraint violations for some less reliable

cores. Figure 5.11 demonstrates the change in energy consumption of the three algorithms

when the fixed operating temperature increases from 40 ◦C to 80 ◦C. At low temperatures,

the energy consumption of the Fixed Temperature method is higher than the other two. At
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Figure 5.12: Total energy consumption of the cluster when the mean of core MTTF changes.

higher temperatures, the energy consumption of the Fixed temperature method decreases,

saving more energy compared to the other two methods. However, this high operating

temperature has already violate the MTTF constraint for some cores.

5.6.4 Result Discussions

Above experiments assume that wear states of processors follows the same distribution. This

is under the assumption that processors are of the same type, and the difference in wear

state is mainly caused by process variation and difference in processor aging. However,

this distribution can change in real data centers. A data center can have both new and

old processors; it can also have processors from different types or makers. This different

distributions of MTTF among cores can impact energy saving results. We discuss this

impact and provide guidance for data center managers to reduce energy and maintenance

cost of servers. We start with the Gaussian distribution and evaluate the impact of changing

the mean and variance of the distribution.

First, Figure 5.12 demonstrates the relationship between the mean of core MTTF distri-
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Figure 5.13: Total energy consumption of the cluster when the variance of core MTTF
changes.

bution and server energy consumption. The mean increases from one year to five years. The

energy consumption of both the Universal Temperature and Fixed Temperature methods

decreases with the mean of core MTTF, i.e., when cores becomes more reliable. The reason

is straightforward: higher core MTTF means that cores are more reliable, allowing the

temperature setpoint to be reached with the given MTTF constraint, reducing cooling energy

consumption.

Second, Figure 5.13 shows the impact of increasing the variance of core MTTF distribu-

tion on server energy consumption. When the variance increases from 0.5 year to 6 years

while the mean stays unchanged, the energy consumption of the Universal Temperature

method increases accordingly. This is because the temperature setpoint in this method

is constrained by the least reliable core in the system. Therefore, larger variance results

in a smaller MTTF for the least reliable core and a lower universal temperature setpoint,

increasing the cooling energy waste in other more reliable cores. As a contrary, the energy

consumption of the Varying Temperature method increases only slightly with increasing

variance of core MTTF distribution, because this method guarantees that every core runs at
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its optimal temperature setpoint. These setpoints are calculated separately based on the wear

state of each core. Therefore the overall energy consumption, which is the sum of cooling

energies for all processors, is affected little by the variance of the core MTTF distributions.

As a result, when the variance of core MTTF distribution of the cores is small, the above

two methods result in little difference in energy usage. Each consumes higher energy when

the mean of core MTTF distribution increases. When the variance of core MTTFs is large,

the Varying Temperature method saves more energy.

Finally, we present an alternative way for the Universal Temperature method to achieve

decent energy savings when the core MTTF variance is large. This method can save addi-

tional energy by replacing one or several of the least reliable cores with new ones. As shown

in Figure 5.10, two unreliable cores lower the temperature setpoint of the Universal Tem-

perature algorithms. Replacing these cores with reliable ones can increase the temperature

setpoint, which reduces cooling energy consumption. Therefore, the total cost of Universal

Temperature algorithm is the above energy savings, plus the cost of core replacement. We

perform Monte-Carlo simulation of 100 runs on core wear states following a distribution of

4 years of mean and 1.5 years of variance, and calculated the energy saving produced by

replacing the least reliable core(s). The average energy savings is 5.4% and the maximum is

16%. As a result, the Universal Temperature algorithm avoids frequent crash state test and

can save a lot of energy, but may require core replacement.

5.7 Conclusion

We have described a reliability aware task scheduling algorithm that reduces cooling energy

consumptions of servers. This method reduces cooling energy consumption by running each

core at its optimal temperature setpoint. We develop two components for this scheduler: an

automatic processor crash test method, which measures core wear state and calculates the

corresponding temperature setpoint of processor, and a reliability aware task scheduling
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algorithm, which assign tasks to processors to reach their desired temperature setpoints. The

scheduler reduces energy consumption by 13% on average, compared with a technique using

reliability unaware temperature setpoints. We also evaluated the scheduler in the presence

of varying core wear state distributions and pointed out the most appropriate assignment

algorithm in each case.
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CHAPTER 6

Conclusion and Future Works

This thesis has discussed several problems and solutions related to matching resources and

workloads. Our designs allow systems to remain functional given limited energy sources, or

improve system throughput and reduce energy use given user-specified reliability constraint.

This thesis focuses on two types of systems.

• Embedded systems. We have developed two methods to explore designs for systems

using restricted or unreliable energy sources for embedded applications. First, we

developed a power deregulation method that allows an embedded system to operate

on unregulated batteries. We then designed a process for application-based battery

and processor selection, to extend system lifespan in deregulated systems. Second,

we developed the AEA (Ambient Energy Aware) routing protocol for batteryless

sensor networks operating on scavenged energy sources. The AEA protocol matches

spatially- and temporally-correlated energy sources with workloads in the system to

provide successful data transmission.

• Data centers. We have also optimized workload and resource matching in data

centers, with the goal of improving performance and saving energy. We have de-

veloped HAMS (Heterogeneous Adaptive Modeling Scheduler), a task scheduler

that optimizes workload allocation based on available computational resources. To

optimize scheduling results, we developed task performance models that consider

machine resource utilization and heterogeneity of machine and tasks. These models
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predict task resource utilizations and execution times. HAMS improves overall data

center throughput and reduces computational energy consumption via task concen-

tration. In addition, we reduced the data center cooling energy by determining the

optimal processor temperature setpoints. To calculate these setpoints, we developed

an automatic crash test method to measure the wear states of processors. We also

provided a reliability model and an energy model for data cetners. We incorporated

the processor temperature setpoint, the reliability model, and the energy model into

HAMS to minimize data center computational and cooling energy.

This thesis has focused on the software side of system design. Fine-grained modeling of

the physical system has the potential to further improve the reported results. Researchers

who are interested in this area should consider the following directions.

• Building more sophisticated and customized thermal models for data centers.

Currently we use an analytical thermal model for the server room cooling system.

However, this model only considers a single air inlet in the server room. Developing

a more accurate data center thermal model can improve the energy consumption of

reliability-aware task scheduling. Researchers can use Computational Fluid Dynamics

(CFD) tools to simulate air flows in the server room and derive the relationship among

heat transfer, air flow rate, and temperature.

• Improving the processor critical path model. An accurate critical path model

should select the correct number of combinational logic stages, the types of gates, and

the optimal gate sizings. In this study, we used Monte Carlo simulation to identify

the group of models that fit the measurement data. However, more thorough analysis

should be conducted to select more reasonable parameter values, and further increase

the accuracy of the modeled server temperature setpoint results.
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