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ABSTRACT

Ranking firms using revealed preference and other essays about labor markets

by

Isaac Sorkin

Chair: Professor Matthew D. Shapiro

This dissertation contains essays on three questions about the labor market. Chapter

1 considers the question: why do some firms pay so much and some so little? Firms

account for a substantial portion of earnings inequality. Although the standard ex-

planation is that there are search frictions that support an equilibrium with rents,

this chapter finds that compensating differentials for nonpecuniary characteristics are

at least as important. To reach this finding, this chapter develops a structural search

model and estimates it on U.S. administrative data. The model analyzes the revealed

preference information in the labor market: specifically, how workers move between

the 1.5 million firms in the data. Evidence for compensating differentials is workers

systematically moving towards lower-paying firms, while evidence for rents is workers

systematically moving towards higher-paying firms. With on the order of 1.5 mil-

lion parameters, standard estimation approaches are infeasible and so the chapter

develops a new estimation approach that is feasible on such big data.

Chapter 2 considers the question: why do men and women work at different firms?

Men work for higher-paying firms than women. The chapter builds on chapter 1 to

consider two explanations for why men and women work in different firms. First, men

and women might search from different offer distributions. Second, men and women

might have different rankings of firms. Estimation finds that the main explanation

for why men and women are sorted is that women search from a lower-paying offer

distribution than men. Indeed, men and women are estimated to have quite similar

rankings of firms.

Chapter 3 considers the question: what are there long-run effects of the minimum

wage? An empirical consensus suggests that there are small employment effects of

xi



minimum wage increases. This chapter argues that these are short-run elasticities.

Long-run elasticities, which may differ from short-run elasticities, are more policy rel-

evant. This chapter develops a dynamic industry equilibrium model of labor demand.

The model makes two points. First, long-run regressions have been misinterpreted

because even if the short- and long-run employment elasticities differ, standard meth-

ods would not detect a difference using U.S. variation. Second, the model offers a

reconciliation of the small estimated short-run employment effects with the commonly

found pass-through of minimum wage increases to product prices.
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CHAPTER I

Ranking firms using revealed preference

This paper takes a new approach to estimating the value of working at a particular

firm that relies only on quantities, not on earnings. Specifically, I exploit the intu-

itive notion that workers move towards firms with higher value. I use this revealed

preference approach combined with a standard search-theoretic model to estimate the

value of working at essentially each firm in the United States. This approach imposes

sufficient structure to map the 1.5 million by 1.5 million matrix of worker flows across

all firms in the economy into estimates of firm value.

I then combine the revealed-preference based estimate of firm values with earnings

data to decompose the variance of firm-level earnings into a rents and compensating

differentials component. Conditional on person fixed effects, firms account for over

20% of the variance of earnings (e.g. Abowd, Kramarz, and Margolis (1999) and

Card, Heining, and Kline (2013)).1 There are two main explanations for why: rents

and compensating differentials. Recent literature has focused on the rents explanation

(e.g. Postel-Vinay and Robin (2002)). In a decentralized market, frictions prevent

workers from moving to—or bidding away the rents at—the high-paying firms. An

alternative explanation is compensating differentials (e.g. Rosen (1986)). Firms differ

not only in how much they pay, but also in nonpecuniary characteristics. According to

the compensating differentials explanation, people do not want to move to the higher

paying firms because the higher pay compensates for the variation in nonpecuniary

characteristics. Disentangling these explanations in labor market equilibrium can be

quite difficult, but the revealed preference approach allows me to do so. Intuitively,

rents explain the variation in firm-level earnings to the extent that the higher paying

firms are the higher value firms, while compensating differentials explain variation in

1See also Andersson et al. (2012), Barth et al. (2014), and Song et al. (2015) for analyses of the
role of employers and firms in the growth of earnings inequality in the U.S. In this paper, I use the
word firm and employer interchangeably.
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firm-level earnings to the extent that higher paying firms are not the higher value

firm.

Using matched U.S. employer-employee data, I find that both rents and com-

pensating differentials explanations are operative, but compensating differentials are

more important than rents. The quantitative importance of compensating differen-

tials stands in contrast to a conventional wisdom that they are relatively unimportant

in explaining the structure of earnings. Compensating differentials allows a bench-

mark search model to reproduce the extent of earnings dispersion while also yield-

ing a plausible value of nonemployment. The presence of compensating differentials

increases earnings inequality. If amenities were removed and earnings changed to

compensate, then the variance of earnings would fall.

In the first part of the paper, I write down—and develop the tools to estimate—

a simple model of the labor market that contains both the rents explanation and

the compensating differentials explanation. The model is a benchmark partial equi-

librium utility-posting model in the spirit of Burdett and Mortensen (1998). The

non-standard ingredient in the model is that firms post a utility offer that consists

of both earnings and a nonpecuniary bundle, rather than just posting earnings. The

rents explanation is contained in the model because there is the possibility of equi-

librium dispersion: different firms offer different levels of utility. On the other hand,

the compensating differentials explanation is contained in the model because high

earnings might be offset by a low nonpecuniary bundle.

To estimate the levels of utility that firms post, I use only quantity information. I

estimate the model in two steps. In the first step, I isolate the employer-to-employer

and employer-to-nonemployment transitions that plausibly reveal preferences between

employers (or are due to a modeled idiosyncratic shock) by using information about

what the worker’s coworkers were doing at the time of the separation. The idea is

that if an unusually high share of other workers were also separating when the worker

separates, then—in the spirit of the displaced worker literature (Jacobson, LaLonde,

and Sullivan (1993))—a firm-level shock caused the workers to leave, and there is

a high probability that any particular separation was involuntary. In contrast, if

turnover levels look normal when the worker left, then this separation was endogenous

in the sense that any shock must have been idiosyncratic to the worker.

In the second step, I measure the central tendency of worker flows in the labor

market. The core piece of revealed preference information is the number of workers

who go from firm A to B and from B to A, for all pairs of firms in the economy,

as well as between each employer and nonemployment. I record these flows in a 1.5
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million by 1.5 million matrix, where one cell is the number of workers who go from A

to B. The model implies a set of linear restrictions on the entries in this matrix and a

flow-relevant firm-level value. The flow-relevant firm-level value captures the central

tendency of worker flows and is a known function of structural parameters.

Computing this central tendency of the worker flows—and showing that it exists

and has a meaningful economic interpretation—is the main technical contribution of

this paper. The central tendency of worker flows is captured by the top eigenvector

of a suitably normalized matrix of worker flows. Showing when this eigenvector exists

and is unique requires a new analytical result. Computing the eigenvector relies on

techniques from numerical linear algebra that are scalable to massive datasets such

as a 1.5 million by 1.5 million matrix.

I then unravel this central tendency of mobility to recover the value of working

at each firm. The model emphasizes two factors in addition to the value of a firm

that affects the central tendency of mobility. First, a large firm will naturally have

more workers moving away from it than a small firm. I can account for this because

I observe firm size. Second, a firm that makes a lot of offers will naturally have more

workers moving towards it. I estimate the offer distribution by using information in

nonemployment-to-employer flows. By jointly estimating the offer distribution and

the value of nonemployment, I allow nonemployed workers to reject offers.

I estimate the model on the U.S. Census Bureau’s Longitudinal Employer House-

hold Dynamics (LEHD) dataset. The model fits the worker flow data well: it re-

produces both the probability of workers leaving each type of firm and the structure

of worker flows. The model generates considerable heterogeneity across firms in the

probability of an employer-to-nonemployment quit that is also present in the data. To

illustrate this heterogeneity, I sort firms on the based of their estimated value. From

the bottom 5% to the top 5% of firms, employer-to-nonemployment quits vary by a

factor of about 10. Similarly, the model generates heterogeneity in the probability

an employer-to-employer quit that is also present in the data. From the bottom to

the top firms, these vary by a factor of 5. Finally, the model reproduces the detailed

structure of employer-to-employer transitions: not only which firms workers leave,

but also which firms they join.

The estimates provide a new source of evidence in favor of the frictional view of the

labor market: all firms do not offer the same level of utility. In a neoclassical world,

the idiosyncratic utility draw would drive all choices, whereas in a frictional world

the common values would. Both explanations are operative: these two distributions

have about equal dispersion.
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In the second part of the paper, I estimate the earnings that firm post and show

how to combine these with the estimates of firm values to decompose the variation

in firm-level earnings into compensating differentials and rents. The model implies

that—as in Abowd and Schmutte (2014)—I can estimate the earnings that firms

post using a selection-corrected version of the statistical decomposition pioneered by

Abowd, Kramarz, and Margolis (1999) (and also used by Card, Heining, and Kline

(2013)). This decomposition contains a firm effect in earnings that is estimated based

on workers who switch firms.

To identify compensating differentials, I rely on a revealed preference argument.

The feature of the data that most directly says that high-paying firms are not always

high-utility firms is that there are some pairs of firms for which I observe people sys-

tematically moving from the higher-paying firm to the lower-paying firm. By revealed

preference, this observation implies that there must be good nonearnings character-

istics at the lower-paying firm and thus compensating differentials are operative. At

the firm level, the revealed preference argument sets a high bar for finding compen-

sating differentials. To find compensating differentials, the model needs to uncover

patterns of moves to lower-paying firms that cannot be explained by idiosyncratic

utility shocks. An idiosyncratic reason such as sharing a hobby with the boss might

explain why one worker would move to the lower-paying firm, but the model only

finds evidence for compensating differentials if all workers share this preference for

the lower-paying firm. For example, all workers love the boss at the lower-paying

firm.

Formally, I combine the firm-level utilities and earnings to measure the relative

role of compensating differentials and rents by proving an identification result about

measuring compensating differentials in frictional markets. Combining utilities and

earnings gives a lower bound on the variance of nonpecuniary characteristics, which

is the extent of compensating differentials. The complement is the role of rents in

explaining the variance of earnings. The identification result is consistent with a the-

oretical tradition in the search literature that nonpecuniary characteristics might be

positively correlated with earnings (Hwang, Mortensen, and Reed (1998) and Lang

and Majumdar (2004)). In addition to the nonpecuniary characteristics that are

compensating differentials, there is a separate component of nonpecuniary charac-

teristics that are positively correlated with earnings; for example, some high-paying

firms might also offer great benefits. But the variance of this second component is

not identified. Thus, an arbitrarily large share of nonpecuniary characteristics might

be positively correlated with earnings.
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Compensating differentials account for about two-thirds of the variance of firm-

level earnings, while rents account for the remaining third. The estimated ranking of

sectors is intuitively plausible, as is the implied distribution of nonpecuniary charac-

teristics. For example, education has good nonpecuniary characteristics, while firms

in many blue-collar sectors that we associate with physically challenging work have

bad nonpecuniary characteristics. The central finding that compensating differential

are at least as important as frictions at explaining firm-level earnings is robust when

I re-estimate the model across subgroups defined by age and gender.

The finding that rents, or frictions, do not explain all firm-level earnings disper-

sion is complementary to the argument in Hornstein, Krusell, and Violante (2011).

The finding of a quantitatively large role for compensating differentials contrasts

with Hornstein, Krusell, and Violante (2011) who—reflecting a consensus in the

literature—argue (pg. 2883) that compensating differentials “do not show too much

promise” in explaining earnings dispersion. As discussed further in section 1.6, I

also find an empirically reasonable value unemployment, and thus pass a crucial test

proposed by Hornstein, Krusell, and Violante (2011).

Finally, the model estimates imply that if the estimated nonpecuniary character-

istics were removed and earnings changed to reflect this—so that the firm-level com-

ponent of pay dispersion only reflected pure rents—then earnings inequality would

decline. The effect of removing nonpecuniary characteristics and compensating work-

ers on earnings inequality is theoretically ambiguous and depends on the correlation

between earnings potential and nonpecuniary characteristics. In this counterfactual,

earnings inequality as measured by the variance of earnings would decline. This

reduction comes mainly from the lower tail of the income distribution shifting up.

The approach developed in this paper builds on several different strands of the

search literature. To allow a distinction between utility and earnings, I focus on

how workers move across firms. The dominant strand of the structural search lit-

erature seeks instead to understand the distribution of earnings. Bagger and Lentz

(2014) also emphasize patterns in worker reallocation across firms, though they do

not allow for nonpecuniary characteristics and do not exploit the complete structure

of employer-to-employer moves in estimation. Similarly, Moscarini and Postel-Vinay

(2014), Haltiwanger, Hyatt, and McEntarfer (2014) and Kahn and McEntarfer (2014)

explore this feature of the data. The basic two-step estimation approach is similar in

spirit to the two-step procedure in Postel-Vinay and Robin (2002).

The core identification idea that voluntary earnings cuts identify amenities is

shared with a few papers (e.g. Becker (2011), Hall and Mueller (2013), Sullivan and
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To (2014), and Taber and Vejlin (2013)). Only the last paper relates variation in

amenities to compensating differentials. In section 1.6, I discuss the these papers in

more detail.2

The estimation approach applies conditional choice probability estimation (Hotz

and Miller (1993)) to matched employer-employee data, which allows gross worker

flows between firms to exceed net flows. Other papers exploit similar modeling insights

to study situations where gross flows exceed net flows; e.g. Kline (2008) and Artuc,

Chaudhuri, and McLaren (2010).

1.1 Ranking firms using revealed preference

1.1.1 A model with utility-posting firms

This section writes down a partial equilibrium search model in the spirit of Bur-

dett and Mortensen (1998) where firms post utility offers. This model is sometimes

described through the metaphor of a job ladder, where there is a common ranking of

firms and workers try to climb the ladder through employer-to-employer mobility.

To allow the model to contain both the rents and compensating differentials ex-

planations and to rationalize workers making different choices, the structure of job

value is nonstandard in two ways. First, it is in units of utility. By posting a level

of utility, firms can create value for workers through both earnings and nonpecuniary

characteristics. To connect to the second part of the paper, the value that a firm

posts is given by:

V e
i︸︷︷︸

value

= ω︸︷︷︸
conversion factor

( Ψ︸︷︷︸
earnings

+ a︸︷︷︸
amenities

).

The potential trade-off between earnings and nonpecuniary characteristics allows the

model to contain both the compensating differentials explanation and the rents expla-

nation. The key innovation in this paper relative to the structural search literature is

to directly estimate the V e. Second, each period a worker receives a new idiosyncratic

utility draw, which is the preference heterogeneity in the model. This preference het-

erogeneity explains why two workers would make different choices, and so we would

observe workers moving from A to B and B to A. It also explains why over time a

given worker’s feelings about her employer might change and gives the model a theory

of endogenous separations. This restrictive form of preference heterogeneity is prob-

2There is also literature, e.g. Dey and Flinn (2005), Bonhomme and Jolivet (2009) and Aizawa
and Fang (2013), which estimates the value of specific observable amenities in a search environment.
See section 1.6 for further discussion of this approach.
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ably the most controversial assumption in the model. According to this assumption,

all workers consider the same factors when making choices between firms, whereas in

other models different workers might consider different things. Put differently, the

i.i.d. assumption rules out persistent preference heterogeneity.

A key additional assumption in the model is what Hall and Mueller (2013) term the

proportionality-to-productivity hypothesis. Persistent heterogeneity only enters the

model through a worker specific constant which shifts the flow payoff to all employers

as well as nonemployment. The search parameters are the same for all workers and

so I can use the structure of the search model to infer rejected offers.

Because workers sometimes move between employers or to nonemployment invol-

untarily, the model contains both exogenous and endogenous moves. By exogenous

moves, I mean moves that are related to a firm-level shock and would typically be

thought of as involuntary. I identify these moves by building on the displaced worker

literature, which aims to capture mass layoff events. By endogenous moves, I mean

moves that result from maximizing decisions in the model. From the worker per-

spective, some of these moves would be perceived as involuntary because they would

be in response to a negative idiosyncratic draw at the current firm. For example,

Mortensen and Pissarides (1994) is a model in which all separations are endogenous,

but many of them are unpleasant for workers.

The following Bellman equation summarizes this verbal discussion of the model.
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A worker at employer i has the following value function:3

V e(vi)︸ ︷︷ ︸
value of being at i

= vi︸︷︷︸
flow payoff

+ β︸︷︷︸
discounter

E
{

δi

∫
ι1

{V n + ι1}dI

︸ ︷︷ ︸
exogenous job destruction

+ ρi(1− δi)
∫

V e(v′)

∫
ι2

{V e(v′) + ι2}dIdF̃

︸ ︷︷ ︸
exogenous employer-to-employer (reallocation)

+ (1− ρi)(1− δi)︸ ︷︷ ︸
no exogenous shocks

×
[
λ1︸︷︷︸
offer

∫
V e(v′)

∫
ι3

∫
ι4

max{V e(v′′) + ι3︸ ︷︷ ︸
accept

, V e(vi) + ι4︸ ︷︷ ︸
reject

}dIdIdF

︸ ︷︷ ︸
endogenous employer-to-employer

+ (1− λ1)︸ ︷︷ ︸
no offer

∫
ι5

∫
ι6

max{V n + ι5︸ ︷︷ ︸
accept

, V e(vi) + ι6︸ ︷︷ ︸
reject

}dIdI

︸ ︷︷ ︸
endogenous job destruction

]}
. (1.1)

Reading from left to right, a worker employed at i has value V e(vi). This value consists

of the deterministic flow payoff, vi, and the continuation value, which she discounts by

β. The flow payoff is the same for all workers at employer i and is the basis on which

the model ranks and values employers. It represents the utility-relevant combination

of pay, benefits and non-wage amenities such as working conditions, status, location

or work-life balance at employer i. In addition, in every state workers also receive an

idiosyncratic utility draw ι, which is drawn from a type I extreme value distribution.

The continuation value weights the expected value of four mutually exclusive

possibilities. Two possibilities generate employer-to-employer transitions. A worker

can be hit by a reallocation shock and forced to take a random draw from the offer

distribution, or she can receive an offer and make a maximizing decision of whether

to accept or reject it. And two possibilities generate employer-to-nonemployment

transitions. A worker can be hit by a job destruction shock and forced to move to

nonemployment, or she can make a maximizing choice to quit to nonemployment.

To estimate the offer distribution, I use information on where workers who are

hired from nonemployment end up. A worker who is nonemployed has the Bellman

3The fact that the idiosyncratic shock shows up on the forward-looking values, rather than in
the flow payoff, may look odd but is standard in the conditional choice probability literature. See
Arcidiacono and Ellickson (2011, pg. 368).
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equation:

V n︸︷︷︸
value of being nonemployed

= b︸︷︷︸
flow payoff

+ β︸︷︷︸
discounter

E
{

λ0︸︷︷︸
offer

∫
V e(v′)

∫
ι7

∫
ι8

max{V e(v′) + ι7︸ ︷︷ ︸
accept

, V n + ι8︸ ︷︷ ︸
reject

}dIdIdF

︸ ︷︷ ︸
endogenous nonemployment-to-employment

+ (1− λ0)

∫
ι9

{V n + ι9}dI

︸ ︷︷ ︸
no offer

}
. (1.2)

Reading from left to right, an unemployed worker receives a total value of nonem-

ployment of b, which includes both unemployment benefits as well as the value of non

market time and household production. Then each period two things might happen.

She might receive an offer from an employer, in which case she decides whether or not

to accept it. Or nothing might happen in which case she receives a new idiosyncratic

draw associated with nonemployment.

1.1.2 Estimating the utility levels that firms post

This section shows how to estimate the utility levels that firms post. To allow

for an arbitrary relationship between utilities and earnings, I do not use the earnings

data in estimation of the utilities.

The estimation procedure is nonparametric and is in the spirit of Postel-Vinay

and Robin (2002). I do not impose parametric assumptions on the distribution of

firm values or on the offer distribution. The estimation proceeds in two steps.

This section describes the two aspects of estimation that leverage novel features

of the data, while appendix 1.9 provides the complete details. The first novel aspect

is in the calibration step. I use firm-level information in the spirit of the displaced

worker literature to estimate which worker transitions do not reflect worker choices.

The second novel aspect is that I develop a flow-relevant firm-level value—and prove

when it exists and how to solve for it—that summarizes the central tendency of worker

flows across employers (and nonemployment) in terms of parameters of the model.

With this value in hand, the model reduces to an overidentified (by one equation)

system of equations. I can then unravel this central tendency into the underlying

structural parameters.
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1.1.2.1 Calibration step: identifying displaced workers probabilistically

To calibrate the firm-specific shocks experienced by workers, I develop a continu-

ous measure of displaced workers, or workers who left their employer because it was

contracting. This amounts to identifying exogenous transitions as excess correlations

in the transitions.

When an employer contracts by a lot, the displaced worker literature claims the

employer contraction caused the worker separations. To see this graphically, con-

sider Figure 1.1. The figure depicts employer-to-employer separation probabilities as

a function of employer growth (and is inspired by Davis, Faberman, and Haltiwanger

(2012, Figure 6), which uses employer-side survey evidence on the reason for sepa-

ration; Flaaen, Shapiro, and Sorkin (2015) displays a similar hockey-stick shape for

a worker-side survey). The figure makes two points. First, even when an employer

grows, workers separate. Second, as an employer starts to shrink, the probability of a

separation rises. Starting with Jacobson, LaLonde, and Sullivan (1993), the displaced

worker literature draws a vertical line at −30% and labels all separations to the left

of this as caused by the employer contracting and all separations to the right as not.

The continuous notion of displacement assigns a displacement probability as the

excess probability of separation at a contracting employer relative to at an expanding

employer. To take a simple numerical example, suppose 7% of the workforce typi-

cally separates each year (and the firm typically hires 7% of its workforce), and in one

year we observe 36% of the workforce separate. Assuming hiring stays constant, the

employer contracts by 29%. The Jacobson, LaLonde, and Sullivan (1993) approach

would label none of these separations as displacements. But 81% ≈ 36%−7%
36%

of the

separations only happened because of a presumed firm-level shock and so are dis-

placements. Conversely, ≈ 19% of the separations were endogenous and would have

happened even in the absence of a firm-level shock.

I use the displacement probabilities to assign displacement, or exogenous, weights

to each transition in the data. To continue with the example, suppose all the tran-

sitions are employer-to-employer. Each of these employer-to-employer transitions

counts as 81% of an exogenous move, and 19% of an endogenous move. To compute

the overall probability of an exogenous job destruction shock (δ in the model), I sum

over the exogenous probabilities of all employer-to-nonemployment transitions in the

data and divide by the number of person-years in the data; while to compute the

probability of an exogenous reallocation shock (ρ in the model), I sum over the ex-

ogenous probability of all the employer-to-employer transitions in the data and divide
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by the number of person-years in the data.4

1.1.2.2 Summarizing the central tendency of endogenous worker flows

The model implies a flow-relevant firm-level value that summarizes the complete

structure of how workers move across firms and can be written in terms of underlying

parameters of the model. To estimate this firm-level value, I derive a set of linear

restrictions from the model on the values that firms post. To show when this firm-level

value exists, I prove a graph theoretic result.

The goal of the firm-level value is to find values that rationalize the structure of

flows between employers. I record endogenous flows between employers in a mobility

matrix, denoted by M . The (i, j) entry in M is the number of non-displaced workers

flowing to employer i from employer j. In the model, workers receive one offer at

a time and so only ever make binary choices. Adopting the standard continuum

assumption in discrete choice models, such flows from employer j to employer i are

given by

Mij︸︷︷︸
j to i flows

= gjW︸︷︷︸
# of workers at j

(1− δj)(1− ρj)︸ ︷︷ ︸
no shocks

λ1fiPr(i � j),︸ ︷︷ ︸
get offer from i and accept

(1.3)

where W is the number of employed workers. To interpret this equation, there are

gjW workers at employer j and (1−δj)(1−ρj) share of them do not undergo exogenous

separations. These workers get an offer from i with probability λ1fi and accept the

offer with probability Pr(i � j).

The model gives rise to a simple expression for the flow-relevant value of an em-

ployer and nonemployment. To derive this expression, consider relative flows between

pairs of employers, which are given by:

Mij

Mji

=
figj(1− δj)(1− ρj)Pr(i � j)

fjgi(1− δi)(1− ρi)Pr(j � i)
. (1.4)

It is helpful to use the type I extreme value distribution to simplify Pr(i � j). Specif-

4This approach to measuring exogenous separations using information on employer-side per-
formance differs from typical approaches. The most common approach uses the rate of flows to
unemployment to estimate exogenous shocks (i.e. Postel-Vinay and Robin (2002, pg. 2319)), or
uses the exogenous shocks to explain unexplained mobility (for example, flows to worse firms as
in Moscarini and Postel-Vinay (2014, pg. 15)). An alternative approach to removing layoffs more
closely in the spirit of this paper is followed by Taber and Vejlin (2013, pg. 22, note 15) who drop
all employer-to-employer transitions from employers that contract by more than 70%; similarly, Fox
(2010, pg. 364) eliminates firm-years in which the firm closed. In both cases, they treat all other
mobility as reflecting worker’s choices.
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ically, the type I extreme value distribution implies the differences in the error terms

are distributed logistic so that

Pr(i � j) =
exp(V e(vi))

exp(V e(vi)) + exp(V e(vj))︸ ︷︷ ︸
logistic (difference of type I errors)

⇒ Pr(i � j)

Pr(j � i)
=
exp(V e(vi))

exp(V e(vj))
. (1.5)

Combining (1.4) and (1.5) gives:

Mij

Mji︸︷︷︸
relative flows

=
fi
fj︸︷︷︸

relative offers

× gj
gi︸︷︷︸

relative size

× (1− δj)(1− ρj)
(1− δi)(1− ρi)︸ ︷︷ ︸

relative shocks

× exp(V e(vi))

exp(V e(vj))
.︸ ︷︷ ︸

relative values

(1.6)

Relative flows (accepted offers) are directly related to relative values, but multiplied

by relative offers and effective size. These additional terms account for the rejected

offers. A firm that is large relative to the number of offers it makes must have had

few rejected offers.5 Now introduce notation which defines the flow-relevant firm-level

value that summarizes the determinants of relative flows. Define

exp(Ṽi)︸ ︷︷ ︸
flow-relevant value

≡ fiexp(V
e(vi))

gi(1− δi)(1− ρi)︸ ︷︷ ︸
offer × value / effective size

. (1.7)

exp(Ṽi) is the flow-relevant value of an employer. It combines differences in the

underlying value of an employer, as well as differences in (effective) size and the

offer rate. For flows between employers and the nonemployed state, an analogous

derivation implies:

Mni

Min

=
(1− λ1)giW (1− δi)(1− ρi)Pr(n � i)

λ0fiUPr(i � n)
=
exp(Ṽn)

exp(Ṽi)
, (1.8)

where

exp(Ṽn)︸ ︷︷ ︸
flow-relevant value

=
(1− λ1)Wexp(V n)

λ0U︸ ︷︷ ︸
offers × values / effect size

. (1.9)

Reading across, the offers to nonemployed workers occur when a worker does not get

an outside offer, and the effective size of the nonemployed pool for valuation purposes

5In steady state where all firms are a constant size, this ratio is in fact sufficient to rank firms.
If firms are growing and shrinking this also reflects the recent growth trajectory. The approach
developed here is not mechanically related to the rate of firm growth.
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is the number of workers who have offers.

Appendix 1.9 shows how to take the employer-level value defined in equations

(1.7) and (1.9) and infer the underlying values of employers and nonemployment.

From the calibration step, I know {gi, δi, ρi,W}. The key remaining object to es-

timate is fi, or the share of offers a firm makes. Intuitively, the structure of the

employer-to-nonemployment transitions tells me the value of nonemployment, while

the nonemployment-to-employment transitions tells me the offer distribution facing

workers. By estimating the value of nonemployment and the offer distribution jointly,

I allow nonemployed workers to reject offers.

To estimate the firm-level value, I now show that the model implies a set of

linear restrictions. Let E be the set of employers and n be the nonemployment state.

Combining (1.6) and (1.7) gives relative flows between employers in terms of exp(Ṽi):

Mij

Mji︸︷︷︸
relative flows

=
exp(Ṽi)

exp(Ṽj)︸ ︷︷ ︸
relative flow-relevant values

. (1.10)

Cross-multiplying (1.10) gives

Mijexp(Ṽj) = Mjiexp(Ṽi), ∀j ∈ E + n,

where the “for all” holds because the derivation of (1.10) goes through for all em-

ployers (as well as nonemployment). Summing across all employers on both sides

gives: ∑
j∈E+n

Mij︸ ︷︷ ︸
# of hires by i

exp(Ṽj)︸ ︷︷ ︸
flow-relevant value

=
∑
j∈E+n

Mji︸ ︷︷ ︸
# of exits from i

exp(Ṽi)︸ ︷︷ ︸
flow-relevant value

. (1.11)

Divide by the summand on the right hand side:

value weighted hires︷ ︸︸ ︷∑
j∈E+n

Mijexp(Ṽj)∑
j∈E+n

Mji︸ ︷︷ ︸
exits

= exp(Ṽi)︸ ︷︷ ︸
flow-relevant value

. (1.12)

Equation (1.12) implies one linear restriction per firm (and one for nonemployment).
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The equation generates a recursive definition of employer quality: the quality of an

employers depends on the quality of employers it hires from, which in turn depends

on the quality of employers it hires from. In words, the equation says that a good

firm hires a lot from other good firms and has few workers leave.

To solve for the flow-relevant values, create the matrix version of equation (1.12).

Specifically, define a square matrix S which is all zeros off-diagonal, and the ith

diagonal entry is Sii =
∑

j∈E+nMji. Then letting exp(Ṽ ) be the |E + n| × 1 vector

that contains the firm-level exp(Ṽi) and exp(Ṽn)

S−1M︸ ︷︷ ︸
normalized flows

exp(Ṽ )︸ ︷︷ ︸
flow-relevant values

= exp(Ṽ )︸ ︷︷ ︸
flow-relevant values

. (1.13)

This equation allows me to solve for exp(Ṽ ). Intuitively, exp(Ṽ ) is the fixed point

of the function S−1M : R|E+n| → R|E+n|. In many settings in economics, fixed points

can be found by starting with an initial guess and repeatedly applying the function

to the resulting output until it converges. Despite the very high-dimensionality of the

function, the same idea applies here.

To show when the exp(Ṽ ) vector exists, requires tools from graph theory. In

the context of a linear system, the fixed point is an eigenvector corresponding to an

eigenvalue of 1. For the iteration idea to work, the technical condition is that S−1M

has an eigenvalue of 1 and this is the largest eigenvalue of the matrix.6 Moreover, in

order for the values to be interpretable I need that the exp(Ṽ ) vector is all positive

so that the Ṽ is defined (the log of negative number is not defined).

Result 1. Let S−1M be matrices representing the set of flows across a set of employ-

ers and be defined as above. If the adjacency matrix associated with M represents a set

of strongly connected employers, then there exists a unique-up-to-multiplicative-factor

vector of the same sign exp(Ṽ ) that solves the following set of equations:

S−1Mexp(Ṽ ) = exp(Ṽ ).

Proof. See Appendix 1.8 (also for graph theory definitions).

This result shows that I can only estimate the value of employers in the strongly

connected set. Strongly connected is a restriction on the pattern of zeros in the M

6 In many other contexts the (top) eigenvector of matrices have been shown to have interesting
economic content. Some examples include: the Leontief inverse of the input-output table, and, in a
network context, eigenvector centrality and Bonacich (1987) centrality. For some applications and
development of these network ideas see: Ballester, Calvo-Armengol, and Zenou (2006), Acemoglu
et al. (2012), and Elliott and Golub (2014).
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matrix. To be in the strongly connected set, an employer has to both hire a worker

from, and have a worker hired by, an employer in the strongly connected set. This

result is intuitive. The information used to estimate values is relative flows. If an

employer either never hires, or never has anyone leave, then we cannot figure out its

relative value. To see this, consider equation (1.12). If a firm never hires, then its

value is mechanically zero. Alternatively, if a firm has no workers leave, then the

denominator is zero and the value of the firm is infinite. This result is related to

the identification result in Abowd, Creecy, and Kramarz (2002) who show that the

employer fixed effect in Abowd, Kramarz, and Margolis (1999) can only be estimated

in the connected set of employers. To be in the connected set, an employer has to

either hire a worker from, or have a worker hired by, an employer in the connected

set.

Remark on Result 1: Because the search model implies that the S matrix is

different than in standard applications, the novelty in result 1 is showing that the top

eigenvalue is 1. S divides the ith row of M by the ith column sum of M . In other

applications, i.e. Pinski and Narin (1976), Page et al. (1998) (Google’s PageRank)

and Palacios-Huerta and Volij (2004), the normalizing matrix instead divides the ith

column of M by the ith column sum. This normalization makes the resulting matrix

a transition matrix and standard results imply that the top eigenvalue is 1. With the

alternative normalization implied by the discrete choice model, standard results do

not apply.

The diagonal entries in M are not defined using the model. The following result

shows that because of the normalization, the top eigenvector of S−1M is invariant to

the value of the diagonal entries in M .

Result 2. Suppose that exp(Ṽ ) is a solution to exp(Ṽ ) = S−1Mexp(Ṽ ) for a par-

ticular set of {Mi,i}i∈E . Pick arbitrary alternative values of the diagonal: {M ′
i,i}i∈E 6=

{Mi,i}i∈E . Let S ′ and M ′ be the natural variants on S and M . If exp(Ṽ ) solves

the equation exp(Ṽ ) = S−1Mexp(Ṽ ), then it also solves the equation exp(Ṽ ) =

S ′−1M ′exp(Ṽ ).

Proof. See Appendix 1.8.

1.2 Matched employer-employee data

This section describes the U.S. Census Bureau’s Longitudinal Employer House-

hold Dynamics (LEHD) data, which is a quarterly data that is constructed from
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unempoyment insurance records.7 The LEHD is matched employer-employee data

and so allows me to follow workers across firms.

1.2.1 Data description

Three features of the LEHD should be kept in mind when interpreting the re-

sults. First, the notion of an employer in this dataset is a state-level unemployment

insurance account, though the dataset follows workers across states.8 Second, only

employers that are covered by the unemployment insurance system appear in the

dataset.9 Overall, in 1994 the unemployment insurance system covered about 96% of

employment and 92.5% of wages and salaries (BLS (1997, pg. 42)). Third, the un-

employment insurance system measures earnings, but not hours.10 Thus, variation in

hours as well as benefits will be included in my measure of compensating differentials.

Being able to track employers over time is central to measuring employer-to-

employer flows and administrative errors in the employer identifiers would lead to an

overstatement of flows. Following Benedetto et al. (2007), the assumption is that large

groups of workers moving from employer A to B in consecutive periods—especially if

employer B did not previously exist—likely reflects errors in the administrative data

rather than a genuine set of flows. As such, I correct the employer identifiers using

worker flows. I use the Successor-Predecessor File and assume that if 70% or more of

employer A’s workers moved to employer B, then either employer B is a relabelling

of employer A, or else employer B acquired employer A, and so I do not count this as

an employer-to-employer transition.

7See Abowd et al. (2009) for details.
8This can understate firm size for two reasons. First, for employers that operate in multiple

states, this understates true employer size. Second, it is also possible that possible for a given em-
ployer to have multiple unemployment insurance accounts within a state, which would also lead to
an understatement of true employer size, though this is quantitatively unimportant (personal com-
munication from Henry Hyatt (dated June 12, 2014): “the employment weighted fraction of firmids
with multiple SEINs [state employer identification number] in a given state is about 1.5%, and...this
fraction is actually lower in some of the larger states.”) On the other hand, working conditions are
probably more similar within establishments than within employers, so having a “smaller” notion of
an employer is desirable from the perspective of measuring compensating differentials.

9This restriction results in the exclusion of certain sectors of the economy. In particular, small
nonprofits (those employing fewer than four workers), domestic, self-employed, some agricultural
workers and federal government (but not state and local government) are excluded. For more
complete discussions see Kornfeld and Bloom (1999, pg. 173), BLS (1997, pg. 43) and http:

//workforcesecurity.doleta.gov/unemploy/pdf/uilawcompar/2012/coverage.pdf.
10The notion of earnings captured by UI records is as follows: “gross wages and salaries, bonuses,

stock options, tips and other gratuities, and the value of meals and lodging” (BLS (1997, pg. 44)).
This omits the following components of compensation: “employer contributions to Old-age, Sur-
vivors, and Disability Insurance (OASDI); health insurance; unemployment insurance; workers’
compensation; and private pension and welfare funds” (BLS (1997, pg. 44)).
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I pool data from 27 states from the fourth quarter of 2000 to the first quarter of

2008.11 Pooling data means that I keep track of flows between as well as within these

states. Like the dataset used by Topel and Ward (1992), the LEHD contains limited

worker covariates. In particular, it includes age, race and sex.

1.2.2 Dataset construction

I treat the model as annual model and I make several choices to go from the raw

data to model-relevant objects.

To define a worker’s employer, I reduce my dataset to one observation per person

per year. The observation is the worker’s annual dominant employer: the employer

from which the worker made the most money in the calendar year. In addition, to

facilitate coding transitions, I require that to count as an annual dominant employer

the worker had two quarters of employment at the employer and that the second

quarter occurred in the calender year.12 I also restrict attention to workers aged

18-61 (inclusive) and, following Card, Heining, and Kline (2013), require that the

annualized earnings exceed $3250 (in 2011 dollars). With an annualized dataset it is

not possible to infer whether a change in dominant job was an employer-to-employer

transition or an employer-to-nonemployment-to-employer transition.

To understand more about the transition, I use the quarterly detail of the LEHD to

code transitions as employer-to-employer or employer-to-nonemployment-to-employer

and to construct the displacement probabilities. I construct a quarterly dataset build-

ing on ideas in Bjelland et al. (2011) and Hyatt et al. (2014). First, I code a worker’s

transition between annual dominant employers as employer-to-employer or employer-

to-nonemployer-to-employer. The transition is coded as employer-to-nonemployer-

to-employer if between the annual dominant employers there is a quarter when the

worker is nonemployed, or has very low earnings. Second, I use the quarterly dataset

to measure whether (and by how much) the employer was contracting in the quarter

the worker separated, and to construct the relevant displacement weight (see section

1.1.2.1). See appendix 1.10 for details on dataset construction, and appendix 1.11 for

a discussion of computation.

11I use the following states: CA, FL, GA, HI, ID, IL, IN, KS, MD, ME, MN, MO, MT, NC, ND,
NJ, NM, NV, PA, OR, RI, SC, SD, TN, VA, WA, and WI. See appendix Figure 1.15 for a map.

12Reduction to one observation per person per year is common. See e.g. Abowd, Kramarz,
and Margolis (1999) (France), Abowd, Lengermann, and McKinney (2003) (US), Card, Heining,
and Kline (2013) (Germany), and Card, Cardoso, and Kline (2014) (Portugal). Even outside of
estimating statistical wage decompositions, Bagger et al. (Forthcoming) also reduce to one such
observation per year.
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1.2.3 Sample sizes

The sample restrictions that I impose to estimate the model eliminate many of the

smallest firms where it would be hard to plausibly estimate a firm effect. A standard

step in the estimation of search models is to impose a minimum size threshold; for

example, Postel-Vinay and Robin (2002, pg. 2311) impose a minimum size threshold

of 5. Table 1.1, column (1) shows the full annual sample. The subsequent columns

show what happens to sample sizes and descriptive statistics as I restrict attention to

the largest set of firms I can estimate the firm effects in (column (2)), the set of firms

I use to compute the top eigenvector (column (3)), and the set that I estimate the

model in (column (4)). Moving from column (1) to (4) I lose very few person-years

and people, but I do lose a large number of employers: I keep over 90% of person-

years but only about 25% of employers. Under the assumption that the firms that

I eliminate from column (1) to (4) exist for 7 years, they had 1.5 people per year

on average. The second portion of Table 1.1 shows that the mean and variance of

earnings are quite stable as I lose person-years and employers.

1.3 Features of the choice data

This section displays the patterns in the flow data that go into estimating the

model and shows that the model is able to reproduce them.

1.3.1 Exogenous probabilities

The data are very similar to the stylized Figure 1.1 that I used to motivate and

explain the method to identify displaced workers probabilistically.

Figure 1.2 is consistent with the assumption in Section 1.1.2.1 (and Figure 1.1)

that separation probabilities are flat as employers expand. Figure 1.2a shows the over-

all employer-to-employer and employer-to-nonemployment probabilities as a function

of employer growth. Looking at the right hand side of the graph, the separation

probabilities are reasonably flat.

The left hand side of Figure 1.2a supports the view that employer-level contrac-

tions cause separations. The figure shows that both the employer-to-employer and

the employer-to-nonemployment probabilities rise as employers contract. This sug-

gests that the contraction causes the separation.13 Interestingly, the employer-to-

13This finding is not quite mechanical: it could be that employers contract by cutting hiring. In
some sense it is surprising that there is not more evidence of this margin of adjustment.
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nonemployment probability rises much more rapidly than the employer-to-employer

probability.

The inference from administrative data that workers are being laid-off at contract-

ing employers and are more likely to perceive separations as voluntary at expanding

employers is supported by both employer- and worker-side survey data. Davis, Faber-

man, and Haltiwanger (2012, Figure 6) compute employer-reported reasons for sep-

arations as a function of firm growth rates. They find patterns of employer-reports

of quits and layoffs that are similar to the employer-to-employer line and employer-

to-nonemployment lines in Figure 1.2a. Flaaen, Shapiro, and Sorkin (2015) compute

worker-reported reasons for separations as a function of firm growth rates and find

similar patterns. Specifically, the probability of separating and reporting all reasons

for separations rise as firms contract, but “distress”-related separations rise most

rapidly.

Turning to the bottom panel, Figure 1.2b displays the displacement weight at-

tached to an employer-to-employer and employer-to-nonemployment transition as a

function of the employer growth rate. The displacement probabilities rise rapidly as

the employer contracts. (The displacement probability among expanding employers

is always zero by construction.)

Figure 1.3 shows that the model reproduces the relationship between firm growth

and the endogenous employer-to-employer and employer-to-nonemployment transi-

tions in the data. The figure plots the model estimates of the probability of endoge-

nous employer-to-employer and employer-to-nonemployment transitions as a function

of firm growth rate in the data, as well as in the model.14 The figure shows that the

model reproduces the upward slope on both the left and right of both the employer-

to-employer and employer-to-nonemployment probabilities.

1.3.2 Isolating endogenous moves: constructing the M matrix

Identifying compensating differentials relies on endogenous moves across firms. In

the model, these moves are recorded in the M matrix. This section reports on the

quantitative importance of the two steps I take to focus on endogenous moves. First,

I separate transitions between annual dominant employers into employer-to-employer

14These pictures are constructed slightly differently than Figure 1.2a. Figure 1.2a uses quarterly
growth rates because to construct the displacement weights I want to know what was happening in
the quarter the worker separating. In contrast, Figure 1.3 uses the growth rates from 2001 to 2007
because in estimating the model I assume that the economy is in steady state from 2001 to 2007
and so the firm value is constant over the period. Hence, to assign a single growth per employer I
use the overall growth rate.
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and employer-to-nonemployment-to-employer transitions. Second, even within employer-

to-employer transitions, I use my firm-level calibration of shocks to downweight the

moves where it is less likely that the worker had a choice to stay because the employer

was contracting. Finally, it is worth keeping in mind that even when I label a tran-

sition as endogenous, it does not necessarily mean that it feels good to the worker

because it might be in response to a negative idiosyncratic (worker-match-specific)

shock.

Fewer than half of transitions between annual dominant employers are employer-

to-employer. For workers in column (1) of Table 1.1, I code each transition between

annual dominant jobs as employer-to-employer or employer-to-nonemployment-to-

employer. The top rows of Table 2.3 shows that the annual separation probability is

25% and only 40% of these are employer-to-employer.15

Among employer-to-employer transitions, about three-quarters are endogenous. I

assign the endogenous weight to each employer-to-employer separation. The table

shows that 26% of employer-to-employer transitions are exogenous. At contracting

employers, this exogenous share is 48%.16

Only about a third of employer-to-nonemployment moves are associated with con-

tracting employers. Aggregating across the exogenous weights on each employer-to-

nonemployment transition, 34% of the employer-to-nonemployment transitions are

exogenous; that is, there are many separations to nonemployment in the absence of

what looks like a firm-level shock. In the model this is because workers, especially at

the worst firms, sometimes quit to nonemployment following an idiosyncratic shock.

At contracting firms, 56% of employer-to-nonemployment transitions are exogenous.17

15To compute a probability, the denominator is the number of person-years less one per worker.
The level of transitions is slightly lower—but the share of employer-to-employer transitions is
similar—to what previous literature using similar definitions has found. For example, Bjelland
et al. (2011, pg. 498) find that the quarterly employer-to-employer rate is about 4% (on an an-
nualized basis about 16%), and employer-to-employer flows make up 27% of all separations, while
Hyatt and McEntarfer (2012, Figure 2) find quarterly dominant job separation rates of about 16%
(on an annualized basis about 50%) and close to half of such separations are employer-to-employer.
I find lower separation rates for two reasons. I look at an annual frequency and so miss multiple
separations within a year, and I also select for a slightly more stable populaton by imposing an
earnings test.

16This exogenous share is between the estimates of Sullivan and To (2014, pg. 482, Table 1) that
about 15% of employer-to-employer transitions are reallocation and Moscarini and Postel-Vinay
(2014, pg. 30) who find that about half of employer-to-employer transitions (49.7%) are exogenous
in the sense used here. Unlike Moscarini and Postel-Vinay (2014), I do not use worker outcomes to
separate employer-to-employer transitions into exogenous and endogenous.

17This ratio is the opposite of what Moscarini and Postel-Vinay (2014, pg. 21, Figure 11) find
when separating employer-to-nonemployment transitions into layoffs and quits; they find that about
2
3 of employer-to-nonemployment transitions are layoffs, and 1

3 are quits. This emphasizes that an
endogenous separation is simply due to a shock idiosyncratic to the worker and the separation might
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Summing up across firms, I get novel estimates of the rate of two sources of

exogenous mobility: the job destruction rate, and the reallocation rate. Combin-

ing the displacement weights and the separation probabilities, gives an annual dis-

placed employer-to-nonemployment, or job destruction, rate (δ) of 0.05.18 Combining

the displacement weights and the separation probabilities, gives an annual displaced

employer-to-employer, or reallocation, rate (ρ) or 0.03.19 The remaining rows of Table

2.3 contain the other model parameters.20

1.3.3 The slippery ladder

Figure 1.4 shows that the model generates what the literature has termed a “slip-

pery ladder.” The figure sorts firms into 20 bins on the basis of firm-value. Within

each bin, I compute the average probability of each kind of exogenous separation shock

by summing across the exogenous weights, which are constructed using variation de-

picted in Figure 1.2. The figure shows that job destruction and reallocation shocks

are more likely at the worst firms. This result is not mechanical since the model does

not use the exogenous transitions in computing firm values. This feature of the data

has also been emphasized—or conjectured—by Jarosch (2014), Krolikowski (2014),

Pinheiro and Visschers (2015) and Bagger and Lentz (2014).

1.3.4 Assessing the fit of the search model

The search model does a reasonable job of fitting the choice (“revealed preference”)

information in the data along three dimensions. First, the model fits the pattern of

workers at better firms being less likely to quit to take another job. Second, the model

fits the pattern of workers at better firms being less likely to quit to nonemployment.

Third, the model fits the detailed structure of the patterns of movements between

employers on employer-to-employer transitions.

be labelled by the firm as a layoff.
18This annual job destruction rate is quite similar to Bagger and Lentz (2014, pg. 34) who estimate

the annual job destruction rate for the low type (which dominates their data) at 0.063. On the other
hand, it is much lower than annualized versions of the monthly layoff rates estimated by Hornstein,
Krusell, and Violante (2011, pg. 2879) (0.03). In general, monthly/quarterly views of the labor
market do not aggregate in an iid way to annual values.

19The reallocation rate is quite a bit lower than the estimate of Bagger and Lentz (2014) of 0.106,
but again, I do not use outcomes to code the reallocation rate.

20I estimate the arrival rate of offers on the job, λ1, by matching the level of non-displaced
employer-to-employer transitions. The annual probability of receiving an offer is 0.20. (This is
lower than the annualized offer rates reported by Moscarini and Postel-Vinay (2014, pg. 30) (about
30%) and Hornstein, Krusell, and Violante (2011, pg. 2889 and Figure 3) (at least 60%). This is
presumably because I have annual data.)
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I first consider whether the model can match both the slope of the probability

of making an employer-to-employer transitions and the slope of the probability of

making employer-to-nonemployment transition by firm value. This tests whether

there is a single employer value that can rationalize the heterogeneity in both kinds

of transitions. Heuristically, the slope of the probability of the employer-to-employer

transitions tells us how different the firms are: in the model, the slope reflects the

different probabilities across firms of accepting an offer from a random firm. Given

these values, the model then picks the value of nonemployment to match the overall

probability of endogenous employer-to-nonemployment transitions, but not the slope.

It is not mechanical that a single firm value would match both slopes.

First, the search model is able to match the probability of endogenous employer-

to-employer transitions across employers. Figure 1.5a shows the probability of an en-

dogenous employer-to-employer separation in the data and in the model. To construct

the figure, I take all firms and sort them on the basis of the estimated firm values (V e)

into 20 equal-person-year-size bins. For each firm, I then compute the model-implied

probability of an endogenous employer-to-employer separation. Within bin, I average

over the firm-specific probabilities implied by the model and in the data. The model

implies that the probability of an endogenous employer-to-employer transition varies

by a factor of about 5 from the bottom 5% to the top 5% of firms. This variation is

also present in the data.

Second, the model predicts that workers at better firms are less likely to make en-

dogenous employer-to-nonemployment transitions, a pattern that is also in the data.

Figure 1.5b shows the probability of an endogenous employer-to-nonemployment sep-

aration in the data and the model. The construction of the figure is analogous to

the employer-to-employer figure. The figure shows that the model implies that the

probability of an endogenous employer-to-nonemployment transition (i.e. one from

an expanding firm) varies by a factor of about 10 from the bottom 5% to the top 5%

of firms, which nearly exactly matches the patterns in the data.

Third, the search model matches the detailed patterns of how workers make

employer-to-employer transitions. To study how well the model matches the detailed

structure of employer-to-employer transitions, I compare rankings based on “global”

and “local” information. The model uses “global information” and says that A wins

if ṼA > ṼC .21 The local information is contained in binary comparisons. A binary

comparison of employer A and C occurs when I observe accepted offers from A to C

21That is, I focus on the information in the accepted offers to parallel the binary comparisons. I
use the values defined in equation (1.7).
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and C to A. In the binary comparison, I say that employer A wins if more workers

join A from C than vice-versa.

Any disagreement between the global and the local rankings should be explained

by small samples. In small samples, these two rankings can differ. For an example of

this phenomenon, consider Figure 1.6. In this figure, C wins on the binary comparison

over A (2 > 1). But when the accepted offers related to B are taken into account, the

estimated value has A winning, or ṼA > ṼC . In large samples, this cannot happen.

The extent of disagreement between the global and local rankings is broadly con-

sistent with the model being the data generating process. When I weight the com-

parisons by the number of accepted offers represented in each comparison, the model

and the binary comparisons agree on 70.39% of comparisons. Is 70% big or small?

This number allows me to reject the null of the model being equivalent to all firms

having the same value (the neoclassical model of the labor market).22 I find that the

90 percent confidence interval under the random null is [49.67%, 50.28%]. Under the

null that the model is the data generating process the 90 percent confidence interval

is [75.38%, 75.56%].23 This means that the data are statistically inconsistent with the

model being the data generating process, but the economic magnitude of the rejection

is not large. Thus, I conclude that the top eigenvector of the mobility matrix does a

reasonable job of summarizing the structure of the employer-to-employer transitions.

1.3.5 Dispersion in the labor market

There is dispersion in the labor market when measured either in terms of the

value that employers provide to their workers, or in terms of earnings (I discuss how

I estimate the firm-level earnings in section 1.4). Strikingly, however, there is more

dispersion when measured in terms of earnings. This section also shows that patterns

of left-shifts in the offer distribution predicted by search theory maintain in both

value and earnings space.

Figure 1.10a provides a new source of evidence that there is equilibrium disper-

sion. The figure plots the dispersion in the common values of firms (V e) and the

idiosyncratic draw (ι). In a benchmark frictional model (i.e. Burdett and Mortensen

22If in the data I observe 5 workers flowing from A to B and 10 workers flowing from B to A,
then I take 10 + 5 = 15 draws from a binomial distribution where the probability of choosing A is
0.5. I ask what share of weighted comparisons the model and the binary comparisons agree on. I
repeat this procedure 50 times to generate a null distribution under the hypothesis of all firms are
eqully appealling.

23I repeat the procedure described in footnote 22 except that the probability of choosing A is

given by exp(ṼA)

exp(ṼA)+exp(ṼB)
, where exp(ṼA) is what I estimate in the model (and similarly for B) and

the probability of choosing B is the remaining probability.
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(1998)), workers agree on the ranking of firms and only voluntarily move towards

better firms. All mobility is explained by common firm values and the model would

find no dispersion in ι. Alternatively, in a benchmark neoclassical model in which

firms play no special role (i.e. Topel and Ward (1992)), all mobility is explained by

the idiosyncratic draw and the model would find no dispersion in V e. The data are

inconsistent with both extreme views. The dispersion in the common firm values and

the idiosyncratic draws are similar. Looking only at information in quantities, there

is clear evidence that there are good and bad firms. But these firm-level differences

do not fully explain worker choices.

Figure 1.10b shows that there is less dispersion in values than in earnings. The fig-

ure plots the dispersion in the firm-level earnings (Ψ) and the residual in the earnings

equation (r). Comparing the two panels, what is clear is that the common component

is relatively more important in terms of earnings than in terms of values. This feature

says that the systematic patterns in mobility are weaker than the systematic patterns

in earnings changes.

Figure 1.11 shows that the offer distribution is left-shifted relative to the distri-

bution of where workers are employed, whether this is measured in terms of values

(top panel) or earnings (lower panel). Note that the earnings result is not mechani-

cal since the earnings information is not used in the estimation of the search model.

In addition, the figures compare where workers who are hired from nonemployment

and on reallocation shocks are hired. In specifying the model, I do not allow the

reallocated workers to reject offers (though this is not particularly central to the esti-

mation). It is clear, however, that the reallocated workers on average end up at better

firms than the workers hired from nonemployment. Thus, related to Bowlus and Vil-

huber (2002), who argue that potentially-displaced workers treat nonemployment as

an outside option, there is evidence that workers who successfully make employer-

to-employer transitions from contracting firms are more selective than workers who

move from nonemployment.

1.4 Earnings

So far this paper has shown how to estimate the value of each firm on the basis

of the choices that workers make. In this section I turn to the task of estimating a

notion of the earnings posted by each employer. In section 1.5, I show how to combine

the values and earnings to decompose the variation in firm-level earnings into a rents

and compensating differentials component.
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1.4.1 Estimating earnings that firms post

To measure the earnings offered by firms, I use the following equation for log

earnings (known as the Abowd, Kramarz, and Margolis (1999) decomposition):

ywt︸︷︷︸
log earnings

= αw︸︷︷︸
person effect

+ ΨJ(w,t)︸ ︷︷ ︸
firm effect

+ x′wtβ︸︷︷︸
covariates

+ rwt︸︷︷︸
residual/error term

, (1.14)

where ywt is log earnings of person w at time t, αw is a person fixed effect, ΨJ(w,t) is

the firm fixed effect at the employer j where worker w is employed at time t (denoted

by J(w, t)), and r is an error term. Canonically, x is a set of covariates including

higher-order polynomial terms in age.24

Once I use the search model to selection-correct the equation, the firm effects in

equation (2.1), Ψ, are the model-consistent notion of earnings, where the Ψ is the

same firm-level earnings as discussed in section 1.1. The firm effects are identified by

workers who switch firms. As such, the firm effects remove a time-invariant worker

effect and so captures the earnings at a firm shared by all workers.25 The one concep-

tual difference from the search model is that the search model contains a theory of the

error term whereas consistent estimation of equation (2.1) using movers requires that

workers do not move on the basis of the error term. To remedy this inconsistency,

I selection-correct equation (2.1) by inserting the expected value of the idiosyncratic

utility draw calculated from the search model. Appendix Table 1.16 shows that this

does not affect the firm effects. See appendix 1.12 for details.

Knowledge of the firm effects allows me to quantify the role of firms in earnings

using the following decomposition of the variance of earnings:

Var(ywt)︸ ︷︷ ︸
variance of earnings

= Cov(αw, ywt)︸ ︷︷ ︸
person effect

+ Cov(ΨJ(w,t), ywt)︸ ︷︷ ︸
firm effect

+ Cov(x′wtβ, ywt)︸ ︷︷ ︸
covariates

+ Cov(rwt, ywt)︸ ︷︷ ︸
residual

.

(1.15)

The share of the variance in earnings due to firm effects is given by:

Cov(ΨJ(w,t), ywt)

Var(ywt)
. (1.16)

24Because I only use 7 years of data, the linear terms in the age-wage profile are highly correlated
with the person fixed effects and so, following Card, Heining, and Kline (2013), are omitted.

25One implementation difference from what is standard is that typically researchers use both
employer-to-employer and employer-to-nonemployment-to-employer movers to estimate the firm ef-
fects. Table 1.16 shows that restricting to just employer-to-employer transitions barely changes the
firm effects (the correlation with the benchmark is 0.96).

25



Firms play an important role in earnings determination. The third portion of

Table 1.1 performs the Abowd, Kramarz, and Margolis (1999) decomposition (equa-

tion (1.15)). About 22-3% of the variance of earnings is explained by employer-level

heterogeneity.26

1.4.2 Earnings cuts are an important feature of the data

This section shows that seemingly voluntary earnings cuts are widespread, are

captured by the firm effects, and are not offset by future earnings increases. Besides

emphasizing the prevalence of earnings cuts, this section serves two broader purposes

in the paper. First, once selection-corrected, the model of the labor market underlying

the Abowd, Kramarz, and Margolis (1999) earnings decomposition is the same as the

model of the labor market reflected in the benchmark search model used in this paper.

Since utility is unobserved while earnings are observed, there are more ways to test

this model of the labor market using the earnings data than using the choice data.

Second, by documenting that changes in firm effects are related to individual level

earnings changes and that such earnings cuts are widespread, this section begins to

build the empirical case that something besides pursuit of higher-pay explains some

employer-to-employer moves. In section 1.5, I directly relate the average direction of

mobility in the labor market to the average pattern in earnings changes.

Earnings cuts are widespread in the data.27 Table 1.3 shows that 42% of changes

between annual dominant employers take earnings cuts. Even restricting to tran-

sitions that are most likely to be voluntary—employer-to-employer, weighting sep-

arations from expanding employers more heavily—37% of transitions take earnings

cuts.

The firm effects capture the probability of an earnings cuts. Table 1.3 shows that

52% of the most likely to be voluntary moves to lower-firm-effects firms have earnings

cuts, while only 26% of the moves to higher-paying firms have earnings cuts. Figure

1.7 shows this fact graphically. Figure 1.7a plots the change in firm effects against

the probability of taking an earnings cut on an employer-to-employer transition, while

panels 1.7b show this for employer-to-nonemployment-to-employer transitions. The

26This share is broadly in line with the literature. For example, Card, Heining, and Kline (2013,
Table IV) perform a related decomposition and find that the establishment share is about 20%.
Comparing columns (2) and (3) also shows that changing the sample does not affect the decompo-
sition.

27Earnings cuts are widespread in any dataset. See, for example, Jolivet, Postel-Vinay, and Robin
(2006). Tjaden and Wellschmied (2014) argue that such earnings cuts are explained by reallocation
shocks.
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probability of an earnings cut is monotonically decreases as workers move to higher-

paying firms: from the largest downward moves to the largest upward moves the

probability of an earnings cut falls from about 80% to 10%.

The firm effects capture the magnitude of the earnings cuts. As emphasized by

Chetty, Friedman, and Rockoff (2014), a measure of bias in firm effects (or, in their

case, teacher value-added) is to consider the β1 coefficient in the following regression:

individual-level earnings change = β0 + β1firm effect change.

If the firm effects are unbiased, then we expect β1 = 1.28 The x-axis of Figure 1.8

plots the vigintiles of changes in firm effects at transitions between annual dominant

employers against the average individual-level change in earnings on these transitions.

The solid line plots the best-fitting line from a regression run on the individual level

data. The thin-dashed line shows the line we would expect to see if the firm effects

were unbiased. The two lines are not that far apart. The lower panel shows that

the fit is better in the employer-to-nonemployment-to-employer transitions than the

employer-to-employer transitions. (For employer-to-employer transitions the slope

coefficient is 0.82, for employer-to-nonemployment-to-employer transitions it is 1.03.)

It is not mechanical that changes in firm effects capture the magnitude of the

earnings cuts, and this result is not predicted by models where mobility is on the

basis of comparative advantage. A natural concern is that the firm effects summarize

the information in the individual earnings changes and so the fit apparent in Figure

1.8 is mechanical. But this fit does not arise on data simulated from models where

mobility is on the basis of comparative advantage in two ways. First, in models where

mobility is on the basis of comparative advantage (i.e. matching models) there are

no earnings cuts, and so the individual level earnings changes always lie above the

x-axis. Second, in models where mobility is on the basis of comparative advantage

there is not the approximate symmetry in earnings changes from moving to a better

or a worse firm (Card, Heining, and Kline (2013, pg. 990) and Card, Cardoso, and

Kline (2014, pg. 10) emphasize this symmetry property). Appendix Figure 1.16 plots

the analogous figure to Figure 1.8 with data simulated from the example production

28Chetty, Friedman, and Rockoff (2014) perform this exercise using a leave-one-out estimator to
eliminate the mechanical correlation from the fact that the individual test scores are used to estimate
the teacher value-added. In my case, leave-one-out is computationally infeasible since building the
matrices and estimating the firm effects takes at least an hour. Nevertheless, some evidence that this
mechanical effect is unlikely to be important comes from the fact that the firm effects are very stable
when estimating using subgroups. For example, the correlation between the firm effects estimated
separately on men and women is 0.92, while on people 18-34 and 35-61 it is 0.86.
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function in Eeckhout and Kircher (2011). The estimate of β1 is about 0.4 and, unlike

in the data, the earnings changes display a v-shape in the firm effects changes.

The earnings cuts captured by moving to lower-firm effects firms are not offset by

future earnings increases. One explanation for earnings cuts is that workers accept

earnings cuts in exchange for the possibility of steeper earnings profiles. Following

Abowd, Kramarz, and Margolis (1999), I estimate firm-specific earnings slopes us-

ing the wage growth of the stayers. Figure 1.9 shows that when workers move to

lower-paying firms they do not move to firms offering steeper slopes in earnings (the

coefficient is 0.00). Similarly, the firm effects in the intercept are weakly positively

correlated with the slope when estimated in separate regression (the correlation is

0.02) and only weakly negatively correlated when estimated in the same regression

(the correlation is −0.03). These results are quantitatively different than the leading

theory that explains earnings cuts as a function of an option value of a future increase.

I simulate Papp (2013)’s calibration of Cahuc, Postel-Vinay, and Robin (2006), which

is calibrated to match the share of earnings cuts in the data. In the simulated data,

the correlation between the firm effects in intercept and slope is −0.90. This re-

sult implies that earnings cuts are not explained by the possibility of future earnings

increases at the same firm.

1.5 Why do some firms pay so much and some so little?

So far I have shown how to estimate a value of each employer as revealed by worker

choices, as well as the earnings at each firm. This section shows that combining these

two measures allows a decomposition of the variance of firm earnings into a part

explained by rents and a part explained by compensating differentials. Compensating

differentials are more important than rents in explaining why some firms pay so much

and some so little.

1.5.1 Measuring compensating differentials and rents

This section shows that the relationship between the values and earnings that firms

post is sufficient to decompose the variance of earnings into a component explained

by compensating differentials and a component explained by rents.

A firm i posts a combination of earnings and nonpecuniary characteristics that

leads to a firm-wide value. The forward-looking value of being employed at firm i,
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V e
i takes the following additively separable form:

V e
i︸︷︷︸

forward-looking values

= ω︸︷︷︸
value per log dollar

×( Ψi︸︷︷︸
earnings

+ ai︸︷︷︸
amenities/nonpecuniary

), (1.17)

where ω is value per log dollar, Ψ is the firm-specific earnings, and ai is the nonpecu-

niary or amenity bundle at the firm. There are two related features of how a is defined

worth noting. First, the nonpecuniary bundle is in the same units as earnings. These

units make it meaningful to talk about trading-off earnings and the nonpecuniary

bundle. Second, because earnings are a flow, a is defined in flow-equivalent units.

Being in flow units means that a captures differences in the riskiness of firms, for

example, in the model there are firm-level differences in rates of job destruction.

Compensating differentials generate variation in earnings when a worker makes a

one-for-one trade-off between earnings and nonpecuniary characteristics. To see this

formally, suppose we observe a at the firm-level and run a regression Ψ = βa. If a

reflects only nonpecuniary characteristics that generate variation in earnings through

compensating differentials, then in equilibrium we should estimate β̂ = −1, that is,

workers are willing to pay one to avoid one unit of the nonpecuniary bundle.

In contrast, rents generate variation in earnings—resulting in equilibrium dispersion—

when higher earnings firms are higher-utility firms (this can be an equilibrium out-

come because of frictions). This part of earnings reflects rents because in the absence

of frictions competitive pressure would push all firms to offer the same level of utility

(but not necessarily the same earnings).

The following result characterizes what can be identified using the patterns of

utilities and earnings that firms post identifies, and is the basis of how I measure

compensating differentials and frictions.

Result 3. Suppose the utility function is given by equation (1.17), and {V e
i }i∈E and

{Ψi}i∈E are known. Then

V ar(a) ∈ [V ar(Ψ)(1−R2),+∞),

where R2 = Corr(V e,Ψ)2. In these limits:

V ar(Ψ + a) ∈ [V ar(Ψ)R2,∞),

Corr(Ψ, a) ∈ [−
√

1−R2,
√
R2], and

Cov(Ψ, a) ∈ [−(1−R2)V ar(Ψ),∞].
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Proof. See Appendix 1.8.

I use the result to decompose the variation in firm-level earnings into compensating

differentials and rents. Specifically, the result makes the following accounting identity

interpretable:

V ar(Ψ)︸ ︷︷ ︸
variance of firm effects

= R2V ar(Ψ)︸ ︷︷ ︸
rents

+ (1−R2)V ar(Ψ)︸ ︷︷ ︸
compensating differentials

,

where R2 = Corr(V e,Ψ)2. The first term reflects rents because it is the part of the

variance of firm effects that is accounted for by variation in utility in the labor market.

To understand why the second term in the decomposition is compensating dif-

ferentials, it is helpful to consider the infeasible decomposition of the nonpecuniary

part of firm value into two components: a = arosen + amortensen.29 The arosen com-

ponent reflects compensating differentials. It is the lower bound of the variance of

nonpecuniary characteristics, V ar(arosen) = V ar(Ψ)(1 − R2). A regression between

earnings and arosen finds a willingness to pay to avoid one unit of this component of

nonpecuniary characteristics of 1 log dollar.30 The amortensen component reflects the

possibility that some firms offer not only high levels of pay but also, on average, high

levels of nonpecuniary characteristics; for example, a high-paying firm might also offer

great benefits and a nice work environment. The correlation of amortensen with Ψ is at

the upper bound given in the result, Corr(Ψ, alang) =
√
R2 = Corr(V e,Ψ). But the

variance of amortensen is not identified: it lies in [0,+∞].

Because the variance of amortensen is not identified, there are three interesting

quantities that I cannot point identify. The first is the overall variance of nonpe-

cuniary characteristics. The second is the overall correlation between earnings and

nonpecuniary characteristics.31 And third, I can only provide a (informative) lower

bound on the variance of utility offered by firms.32

29These components are labelled in honor of Rosen (1986) and Mortensen (2003). I could equally
name the second term after Lang and Majumdar (2004) who, like Hwang, Mortensen, and Reed
(1998), construct examples in search environments in which it is an equilibrium for Ψ and a to be
perfectly positively correlated. Similarly, I could name the second term after Pierce (2001) who
presents evidence that on average benefits are positively correlated with earnings.

30Consider β̂ estimated from Ψ = βarosen. Then β̂ = Cov(Ψ,arosen)
V ar(arosen) = −(1−R2)V ar(Ψ)

(1−R2)V ar(Ψ) = −1.
31This fact also shows that measuring the correlation between earnings and nonpecuniary charac-

teristics is not informative about the role of compensating differentials in the labor market.
32One might hope that I could use knowledge of the variance of utility to pin down V ar(amortensen).

The reason I cannot is because I do not know how the units on utility relate to the units on earnings,

or α. To see why this is a problem, note the variance in utility in log dollar units is given by V ar(V )
α2 .

For a given empirical value of V ar(V ), the variance in log dollar units can be made arbitrarily large
by sending α→ 0. (The result limits how arbitrarily small I can make this variance.)
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1.5.2 Sectoral-level evidence

This section discusses the utilities and earnings that firms post aggregated to the

sector level.33 At this level of aggregation, we can assess the intuitive plausibility of

the results of the model.

Table 1.4 shows that there are similarities between these rankings, which is evi-

dence of rents. Column (1) ranks sectors on the basis of the utilities and column (2)

ranks sectors on the basis of earnings. The evidence for rents is that some high-paying

sectors are high-utility (or “good”) sectors and some low-paying sectors are low-utility

(or “bad”) sectors. For example, both approaches agree that hotels/restaurants is a

bad sector in which to work. And both approaches agree that utilities is a good sector

in which to work.

On the other hand, there are also differences between these rankings, which is

evidence for compensating differentials. The most striking sector is education. It is

one of the best sectors in terms of utility and one of the worst in terms of earnings.

This implies the presence of good nonearnings characteristics in education. Simi-

larly, public administration is much higher ranked in terms of utility than earnings.

In contrast, traditionally blue-collar and male sectors—mining, manufacturing, and

construction—tend to be ranked higher in terms of earnings than utility, which implies

the presence of bad nonpecuniary characteristics.34

Figure 1.12a shows the quantitative version of the alignment between sector-level

values and earnings. It shows the scatterplot of the sectoral-level values and earnings,

as well as the best-fitting line. The R2—on an employment-weighted basis—is 0.45.

Thus, 45% of the inter-sectoral wage structure is rents and 55% is compensating

differentials.

1.5.3 First-pass answer

Section 1.5.1 showed that a quantitative answer to the question why some firms

systematically pay some workers so much and some so little is provided by computing

the R2 between earnings and utility. The first row of Table 1.5 reports that 25% of the

variance of firm-level earnings is related to utility so that compensating differentials

account for 75% of the variance of firm-level earnings.

Figure 1.12b shows that the relationship between the firm-level values and earn-

ings is approximately linear. It shows a binned scatterplot of the firm-level values

33A sector is a slightly more aggregated than a 2-digit NAICS. Because of disclosure limitations,
I cannot report results about individual firms.

34In Sorkin (2015b) I explore the implications of patterns like this for gender earnings gap.
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and earnings as well as the line of best fit on the firm-by-firm data, where I have

grouped firms into twenty equally-employment-weighted bins (vigintiles). The ap-

proximate linearity of the relationship implies that the correlation (or R2) captures

the relationship and richer ways of relating the values and earnings would not yield

a tighter relationship.35

The figure also illustrates the identification result. The upward slope in the line

of best fit is the variation in earnings that is reflected in the variation in values

and reflects rents. The figure also shows the variation in firm-level earnings holding

utility constant: it plots plus and minus one standard deviation bands of the firm-

level earnings within a firm-level utility bin. This variation in earnings is not—in

equilibrium—reflected in utility and so must compensate for amenities: the firms

above the line have relatively bad amenities and the firms below the line have relatively

good amenities.

1.5.4 Addressing measurement error

Measurement error in either earnings or utility leads me to overstate the role of

compensating differentials. Because there is potentially measurement error in both

the left hand side and the right hand side variable, standard approaches are not

applicable. Grouping firms by exogenous characteristics addresses measurement error.

This leads me to revise down the role of compensating differentials presented in the

previous section.

Because I have administrative data, the main source of measurement error is the

fact that the firm-level values and earnings are estimated. In particular, for consistent

estimates of the R2, I need a law of large numbers to obtain within each firm so that

my estimates of the firm-level earnings and values have converged. This means that

at bigger firms the firm-level values and earnings are more precisely estimated.

Figure 1.13a shows that at smaller firms the correlation between values and earn-

ings is lower, and thus suggests the importance of measurement error. I sort firms

on the basis of firm size and then group firms into 20 bins, where each bin represents

35Some readers might wonder how this correlation relates to tabulations showing that workers are
more likely to transition to higher paying firms than to lower-paying firms as measured by Abowd,
Kramarz, and Margolis (1999) firm effects; for example Card, Heining, and Kline (2012, Appendix
Table 3) or Schmutte (2015, Table 3). A given transition matrix across firm effects is consistent with
almost any correlation. The estimation of Ṽ constructs the ranking that results in the “best-fitting”
transition matrix (according to a specific loss function). This best-fitting transition matrix might
be nearly identical to the transition matrix using the firm effects in earnings (in which case the
correlation would be 1), or radically different (in which case the correlation could approach zero; the
lower-bound depends on how well the firm effects in earnings predicts mobility patterns). It is also
important to note that the transition matrix—and Ṽ—only contains information in accepted offers.
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the same number of person-years (so that the bins on the left hand side of the graph

have many more firms than bins on the right hand side). Within each bin, I compute

the correlation between the values and earnings. Consistent with the law of large

numbers logic, the R2 rises rapidly as I consider larger firms and then is flat among

firms with between about 50 and 1800 workers per years (log size of 4 to 7.5). Incon-

sistent with the law of large numbers logic, for the biggest firms in the dataset the

correlation then starts rising again. The interpretation of this finding is simply that

compensating differentials are less prevalent among larger firms than smaller firms.

To address the possibility of measurement error in both the earnings and utility,

I group firms based on common characteristics. Because the quantity I am interested

in is the R2 in a regression, I need to account for measurement error in the left-hand

side and right-hand side variable simultaneously. I group firms by characteristics

which predict both earnings and nonpecuniary characteristics, and then ask how

related these group-level averages are. A limitation of this approach is that the

within-group relationship is open to interpretation: an imperfect relationship might

reflect measurement error or the role of nonpecuniary characteristics. As such, I offer

bounds. See appendix 1.13 for a formal discussion.

To find grouping characteristics, I appeal to three literatures. First, the spatial

equilibrium literature (e.g. Roback (1982)) argues that location-level differences in

earnings reflect nonpecuniary characteristics in the form of higher house prices or

other amenities such as weather. As such, I ask how related are county-level means

of earnings and utilities. Second, the inter-industry-wage differential literature (e.g.

Krueger and Summers (1988)) argues that there is important industry-level variation

in earnings that reflects rents in the labor market. As such, I ask how related are

earnings and utilities at the industry level.36 Finally, I appeal to the firm-size wage

differential literature (e.g. Brown and Medoff (1989)) and group firms by size. I use

the same 20 bins of firms sorted on the basis of firm size discussed above.

Table 1.15 shows that these groupings together explain about 60% of the variance

of firm-level earnings.37 Unconditionally, about 12% of the variance of earnings is

at the county-level, 50% is at the 4-digit industry level and 3% is based on firm-size

categories. These groupings explain a similar share of the variance of the firm-level

36The reason to remove county-level means first is that industry composition is a feature of a
place, i.e. Beaudry, Green, and Sand (2012).

37Table 1.14 shows that there are many employer-to-employer transitions across these boundaries.
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values.38

Table 1.5 presents the main results of this paper that about a third (31%) of the

variance of firm-level earnings is accounted for by rents, and the remaining two-thirds

is compensating differentials. To get there, I first extract the signal in each of the

grouping variables and then aggregate. Specifically, to extract the signal I compute

the group-level mean of both the earnings and utilities, compute the R2 between them,

and then subtract off these group-level means to have only within-group variation.

For the county grouping, about 12% of the variance in earnings is between-county and

consistent with the Roback (1982) model, the between-county variation in earnings

is only loosely related to utility: the R2 is 0.04. Thus, the location grouping says

that 0.12 × 0.04 ≈ 0.01 of the overall variance of firm-level earnings is rents and

0.12× 0.96 ≈ 0.11 is compensating differentials.

The remaining two grouping variables are industry and size. Industries account

for about half the variance of earnings. Industry-level variation in earnings is more

tightly linked to utility than county-level variation: about a third of the industry-level

variation is related to utility. The final grouping variable is firm size. After removing

the location- and industry-level means, firm size accounts for 1% share of the variance

of earnings, and this variation is very weakly related to firm-level values.

After having removed the signal in the grouping variables, I am left with the

within-industry, net-of-location and net-of-firm-size variation in earnings and utility,

which includes measurement error and so I present bounds. This component accounts

for about 40% of the variance of firm-level earnings. Figure 1.13b shows how the R2

varies by firm size bin having removed the common component. As expected, because

I have extracted much of the signal in the values and earnings, the R2 are now lower

in all size bins and it takes longer for the R2 to flatten out. This means that we expect

measurement error to be more important in this residual component of earnings and

utility. An upper bound on the contribution of compensating differentials comes from

assuming that there is no measurement error in this component and so the R2 reflects

the true relationship. To get a lower bound, I take the maximum value of the R2

in the picture (in the largest firm size category). To get my preferred estimate, I

take the average of the “flat” portion of the figure where the asymptote suggests that

measurement error is not driving estimates.

Even at the lower bound, compensating differentials account for a majority of

38The table also displays these statistics for single-units. There is a concern that geography
is ambiguous for multi-units. Because multi-unit status is correlated with industry and size, the
single-unit numbers differ for reasons beyond measurement issues.
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the firm-level variation in earnings. These three options result in a range of the

contribution of compensating differentials to the variance of firm-level earnings of

56% to 72% with a preferred estimate of 69%.

Appendix 1.14 re-estimates the model on subgroups defined by age and gender.

The central finding of the paper is robust within each subgroup—though compensat-

ing differentials are much more important in explaining earnings dispersion among

older workers than younger workers. The appendix also shows that aggregating across

industries and locations does not do too much damage to the data.

1.6 Discussion and implications

1.6.1 Compensating differentials

This paper finds that compensating differentials explain about 15% of the variance

of individual-level earnings in the U.S. economy.39 While one should interpret this

point estimate cautiously given the numerous strong assumptions it took to reach it,

the take-away of this analysis is that compensating differentials are important. The

feature of the data that points to this finding is that there are systematic patterns

of workers moving to lower-paying firms. Moreover, the intuitive plausibility of this

interpretation is supported by the sectoral-level analysis.

The importance of compensating differentials contrasts with the conventional wis-

dom summarized by Hornstein, Krusell, and Violante (2011, pg. 2883) that compen-

sating differentials do “not show too much promise” in explaining earnings dispersion.

Their pessimism about compensating differentials comes from the vast literature esti-

mating willingness to pay for particular amenities—e.g. risk of death, risk of separa-

tion, or health insurance. With a few exceptions, this literature has not found robust

evidence that compensating differentials are important. An important assumption in

the one-amenity-at-a-time approach, however, is that firms compensate workers for

particular amenities through pay, rather than through variation in other amenities.

The fact that this literature has studied more than one amenity suggests that there is

scope for this assumption not to hold. A benefit of the revealed preference approach

is that it considers the entire bundle of amenities as perceived and valued by workers.

Since this paper identifies compensating differentials through patterns of moving

to lower-paying firms, one may wonder why previous literature documenting the large

39This number comes from the following calculation. According to Table 1.1, firms account for
22% of the variance of earnings. According to Table 1.5, 69% of the variance of firm-level earnings
is compensating differentials. And 0.22× 0.69 = 0.15.
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number of voluntary earnings cuts had not been interpreted as evidence of the impor-

tance of compensating differentials. The difference is that this paper operates at the

firm-level rather than the individual level. The intuition of the identification result

is that compensating differentials are behavior that is not explained by earnings. At

the firm level, this definition is reasonable because we expect persistent character-

istics of a firm that are valued by all workers to be priced in the market. At the

individual level, however, this definition is not reasonable. Some of the behavior that

is not explained by earnings might reflect individual-level idiosyncrasies—such as a

worker sharing a hobby with a boss—that is unlikely to be taken into account when

wages are set. Indeed, this paper allows for individual-level idiosyncrasies through

the idiosyncratic utility draw, ι, and choices on the basis of ι are not attributed to

compensating differentials.

To illustrate the fact that the literature has been justified in not taking individual-

level earnings cuts as evidence of compensating differentials, I compute the relation-

ship between pay and behavior implied by the estimates in Hall and Mueller (2013)

and Sullivan and To (2014). Both papers estimate search models similar to the one

in this paper using individual level survey data. And both papers emphasize the in-

tuition that voluntary earnings cuts—or rejecting higher-paying offers—implies that

by revealed preference amenities are important.40 I take the preferred estimates from

these papers and compute the implied relationship between behavior and pay.41 For

the Hall and Mueller (2013) estimates, pay can only explain 8% of the variation in

utility at the individual level. Sullivan and To (2014) allow for three types. For these

types, pay can only explain 12% (type I), 21% (type 2) and 28% (type 3) of the vari-

ation in utility at the individual level.42 Hence, relative to my estimate that variation

in pay can explain about 31% of variation in behavior (value) at the firm-level, using

the individual-level earnings cut intuition would find a larger role for compensating

differentials, and this likely reflects idiosyncratic factors.

Taber and Vejlin (2013) is the only other paper I am aware of that estimates the

role of compensating differentials using revealed preference at the firm-level. Their

40Becker (2011) and Nunn (2013) also use individual-level survey data, but estimate richer models.
41I take the preferred estimates from these papers and simulate the steady state distribution of

matches. Within each simulated match, I compute utility and earnings. I then compute the R2

between utility and earnings (see appendix 1.16 for details).
42The respective population proportions are 0.14, 0.50 and 0.36. One important feature of Sullivan

and To (2014) is that they use a sample of unmarried men, who never attended college, and are 26
or younger. Based on Table 1.18, this a group for which it appears equilibrium dispersion is likely to
be more important in explaining the variance of earnings (i.e. my preferred estimate for this group
is that compensating differentials’ share is 0.46).
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paper answers a different question related to the role of nonpecuniary characteristics

than this paper. The calculation in this paper answers the question: “what would

the variance of earnings be if we priced the part of nonpecuniary characteristics that

is priced in earnings?” The counterfactual calculation in Taber and Vejlin (2013)

related to the role of nonpecuniary characteristics answers the question: “what would

the variance of earnings be if people only valued money?”43 The answers to these

two questions have no mechanical relationship. In addition, this paper develops a

methodology that allows for firm-level estimates of earnings and amenities, while

Taber and Vejlin (2013) rely on more aggregated features of the data.

1.6.2 Rents

This paper provides two new sources of evidence on the importance of rents in

the labor market, and frictional models more generally.

The first source of evidence is that the model uncovers systematic patterns of

worker mobility across firms. Systematic patterns of worker mobility are a core pre-

diction of the Burdett and Mortensen (1998) model. In this model, search frictions

support an equilibrium with dispersion where some firms offer low levels of utility

(labelled pay in the model) and some offer high levels. Workers climb the implied job

ladder through employer-to-employer transitions. Despite the centrality of this job

ladder to search models, this paper is novel in showing how to uncover the job ladder

from worker behavior, rather than assuming that it is indexed by pay or some other

observable firm-level characteristic. And by comparing the dispersion in the idiosyn-

cratic draws to the common firm-values, this paper also quantifies the importance of

firms in explaining mobility.

The second source of evidence is that the higher-value firms are also, on average,

the higher-paying firms. This source of evidence is related to a long tradition in

labor economics that compared industry-level variation in quit rates to industry-

level variation in pay. This tradition argued that the positive relationship provided

evidence that—at least some of—the inter-industry wage structure reflected rents (see,

for example, Ulman (1965, Table III) and Krueger and Summers (1988, Table IX)).

The measure of firm-level pay I use, which uses the Abowd, Kramarz, and Margolis

(1999) decomposition, can be viewed as the modern version of the inter-industry

43They compare the variance of earnings in two steady states. In the first steady state, workers
move on the basis of the estimated total job value, which includes nonpecuniary characteristics. In
the second steady state, they “turn off” the nonpecuniary characteristics and workers move on the
basis of the estimated earnings in each job, that is, they do not price out the nonpecuniary charac-
teristics for the same reason that I cannot identify the variance of all nonpecuniary characteristics.
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wage differential literature by documenting that there are systematic differences in

firm-level pay even after removing person fixed effects. Similarly, the estimated search

model in this paper can be viewed as the modern version of a quit rate in documenting

systematic patterns in choices in the labor market.

1.6.3 Ability of search models to match earnings dispersion

This paper finds that search frictions by themselves have a hard time explaining

firm-level earnings dispersion. This message is consistent with Hornstein, Krusell,

and Violante (2011). They argue that benchmark search models have a hard time

rationalizing the extent of earnings dispersion—measured as the residual in a Min-

cerian regression using Census data—in the labor market. Their observation is that

unemployed workers find jobs quickly—which suggests that workers do not face a

large amount of dispersion in job value in the offer distribution since otherwise they

would wait for a better offer.

By focusing on the behavior of employed workers, rather than unemployed workers,

this paper provides a complementary source of evidence to Hornstein, Krusell, and

Violante (2011) that rents do not explain all earnings dispersion. The key evidence

that rents do not explain all the firm-level dispersion in earnings is the finding of

systematic patterns of employed workers making employer-to-employer transitions to

lower-paying firms. As such, this paper focuses on the firm-level part of the variance

of earnings. This part of earnings variation controls for person fixed effects and thus

is more likely to reflect frictions than the Mincerian residual.

Unlike Hornstein, Krusell, and Violante (2011), this paper argues that an impor-

tant part of why frictions do not explain all earnings dispersion is because compen-

sating differentials are quantitatively large.

Hornstein, Krusell, and Violante (2011) argue that search models that explain

earnings dispersion typically imply implausibly low values of unemployment. Because

utility is only measured up to an additive constant, I cannot compare the value of

unemployment relative to the average value of a job. One statistic that I can compare

to other estimates is the share of offers accepted among the unemployed. Hall and

Mueller (2013, pg. 12) report that in their sample of job seekers in New Jersey

collecting unemployment insurance, unemployed workers accept 71.5% of offers. I

estimate that the nonemployed accept 72.5% of offers, which provides evidence that

my estimate of the value of nonemployment is plausible.
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1.6.4 Inequality

This section combines the implications of the estimates of compensating differ-

entials and rents by considering the consequences for earnings inequality of pricing

the arosen portion of nonpecuniary characteristics (this leaves the amortensen portion

unpriced). Eliminating compensating differentials would reduce earnings inequality.

Theoretically, the effect on inequality of pricing out the arosen component is am-

biguous and depends on the correlation between nonpecuniary characteristics and

overall earnings. To see how eliminating compensating differentials could decrease

inequality, consider an Educator and a Miner. They both receive the same utility

from their jobs, but the Miner receives more monetary compensation than the Ed-

ucator because the Miner’s job is relatively dangerous while the Educator’s job is

relatively meaningful. As a result, there is substantial earnings inequality: the Miner

is highly paid and the Educator is poorly paid. Equalizing the pleasantness of their

work leads them to both be equally well-paid and so earnings inequality—or the vari-

ance of earnings—decreases. On the other hand, to see how eliminating compensating

differentials could increase inequality, consider the Professor (of economics) and the

Miner. Even given their large differences in non-earnings compensation, the Professor

is still better paid than the Miner. Equalizing the pleasantness of their work leads

the difference in their earnings to be even more dramatic and so earnings inequality

increases.

To measure the effect on inequality of pricing out arosen, I use the identification

result in section 1.5.1. V e represents dispersion in utility and so takes into account

the good and bad amenities reflected in arosen. Pricing out arosen means that the

variance of utility in log dollar units is given by the lower bound in result 3. Hence,

I replace the firm-level earnings, Ψ, with the firm-level pure rent component, which

is proportional to V e.44 Then I recompute the variance of individual-level earnings.

Because of concerns about measurement error, I do this in stages where I sequentially

price out the location piece, the industry and etc.

Table 1.6 shows that at my central estimate, removing amenities and compensating

workers would reduce inequality. About half of the effect occurs at the industry-level.

Figure 1.14 shows that this counterfactual has surprising impacts on the structure

of earnings. The figure plots the actual distribution of earnings, and the counterfac-

tual distribution at my central estimate. Inequality is reduced primarily by shifting

44Specifically, I normalize the variance of V e so that it is in log dollar units. Let V ar(Ψ) be the
variance of the firm effects in earnings, V ar(V e) be the variance of values, and R2 = Corr(Ψ, V e)2.

Then the constant is
√

V ar(Ψ)
V ar(V e)R

2.
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in the lower tail of the distribution. This is not what we would expect from the pat-

terns of sorting of workers to firms. Figure 1.14b shows a naive counterfactual. To

compute the naive counterfactual, I multiply the firm effects by 1−R2 and recompute

the variance of earnings. The naive counterfactual shifts in both the lower and the

upper tail of the income distribution. As documented in the last row of Table 1.6,

this has a much larger effect on the variance of earnings than what I estimate. The

reason for this surprise is that while the earnings potential of workers is positively

correlated with rents, it is negatively correlated with arosen amenities.

1.7 Conclusion

This paper exploits the intuitive notion that workers will move towards firms with

higher value to develop a method to estimate a revealed value of essentially every firm

in the U.S. economy. It then shows how to combine this value with earnings data to

measure the relative role of rents and compensating differentials in explaining why

some firms pay so much and some so little. The paper finds that compensating differ-

entials and rents are both quantitatively important explanations, but compensating

differentials are more important. The intuition for the importance of compensating

differentials is that there are systematic patterns of moves towards lower-paying firms.

The rankings of sectors are plausible, as is the implied distribution of compensating

differentials. The main finding is robust across a number of subgroups.

The ideas and methods in this paper potentially have many applications. The

empirical methodology could be used to study a variety of other questions. In Sorkin

(2015b) I explore the gender earnings gap: namely, over 20% of the gender earnings

gap is due to men being in higher-paying firms (and industries) than women. Simi-

larly, the findings in appendix 1.14 suggests that there are interesting differences by

age. The firm-level moment also suggests a simple way of studying the direction of

reallocation in the labor market, a question which has recently received attention due

to the work of Moscarini and Postel-Vinay (2013). Figure 1.10a suggests a new way

to assess the extent of frictions in labor markets; it might be that frictions differ by

geography (i.e. one benefit of density might be more competitive labor markets).

Finally, the core economic and computational insight of this paper could be fleshed

out in different product demand-type contexts. Specifically, this paper emphasizes

that there is lots of identifying information in switching behavior and has developed a

technique that is computationally feasible when there are a large number of options.

This could be applied in a variety of other settings: for example, to study the value
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of locations and products (see also Bils (2009)).
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Table 1.1: Summary statistics and the variance of earnings

All Connected S. Connected S. Connected
by EE by EE by EE
and ENE (restrictions)

(1) (2) (3) (4)
Sample size
People-years 504, 945, 000 500, 584, 000 470, 387, 000 456, 746, 000
People 105, 921, 000 104, 778, 000 100, 547, 000 98,821,000
Employers 6, 155, 000 5, 258, 000 1, 971, 000 1, 528, 000
Summary statistics
Mean log earnings 10.43 10.43 10.45 10.45
Variance of log earnings 0.70 0.70 0.69 0.68
Share of variance of earnings explained by each parameter set
Employers N/A 0.23 0.22 N/A
People N/A 0.54 0.55 N/A
Covariates N/A 0.11 0.11 N/A
Overall fit of AKM decomposition
R2 N/A 0.88 0.88 N/A
Adj. R2 N/A 0.85 0.85 N/A

Sample counts are rounded to the nearest thousand. The data is at an annual fre-
quency. There is one observation per person per year. The observation is the job from
which a person made the most money, but only if she made at least $3250 ($2011).
The table includes person-years in which on December 31 of the year the person was
18-61 (inclusive). The extra restrictions in the final column are that an employer
have non-missing industry information, hire a worker on an exogenous EE transition,
and hire a worker from nonemployment.
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Table 1.2: Transition probabilities and model parameters

Symbol Description Value
Overall employer-to-employer Transition Probability 0.10
Overall employer-to-nonemployment Transition Probability 0.15
employer-to-employer Share of Transitions 0.40

Pr(displacement | employer-to-employer) 0.26
Pr(displacement | employer-to-nonemployment) 0.34
Pr(displacement | employer-to-employer & contracting) 0.48
Pr(displacement | employer-to-nonemployment & contracting) 0.56

δ Exogenous employer-to-nonemployment probability 0.05
ρ Exogenous employer-to-employer probability 0.03
λ1 Probability of offer on-the-job 0.20

All probabilities and parameters are annual. The sample for the transition probabil-
ities is column (1) of Table 1.1). A worker only counts as separating if she appears
again in the dataset. The sample for estimating λ1 and below is column (4) of Table
1.1. The ρ is related to the calculated probability of making an exogenous employer-
to-employer transition by (1− δ)ρ. λ1 is estimated from the model.
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Table 1.3: Earnings cuts are common and correlated at the firm level

Pr(y ↓) All EN EE EE (weighted)
Unconditional 0.42 0.47 0.38 0.37
When moving to a
...higher paying firm 0.29 0.33 0.26 0.26
...lower paying firm 0.58 0.62 0.52 0.52

The pay of a firm is defined by its firm effect. This table summarizes moves where a
worker had a different dominant employer in consecutive years.
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Table 1.4: Ranking sectors

Utility Earnings
(largest to smallest) (largest to smallest)
(1) (2)

Utilities Mining
Public Admin. Utilities
Education Information
Mining Manufacturing
Management Prof./Scientific/Technical Services

Manufacturing Management
Finance and Insurance Finance and Insurance
Wholesale Trade Wholesale Trade
Information Construction
Prof./Scientific/Technical Services Public Admin.

Transport/Warehousing Transport/Warehousing
Health Care Health Care
Construction Real Estate
Agriculture Agriculture
Other services Admin/Support/Waste Management

Real Estate Education
Arts/Entertainment/Recreation Other Services
Retail Trade Retail Trade
Admin/Support/Waste Management Arts/Entertainment/Recreation
Hotels/Restaurants Hotels/Restaurants

This table uses the sample of firms in column (4) of table 1.1.
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Figure 1.1: A continuous measure of displaced workers

employer grows →← employer shrinks

separation probability: employer-to-employer or employer-to-nonemployment

average
endogenous

excess

This figure illustrates how I assign displacement probabilities as a function of

employer growth. Pr(displaced)= excess
average+excess

, while endogenous is the complement.

48



Figure 1.2: Constructing displacement rates

(a) Quarterly probabilities

(b) Displacement weights

These figures shows the data used to construct the exogenous weights. The probabili-
ties and growth rates are quarterly. The probabilities are computed in one percentage
point wide bins of employer growth rates. The figure plots a five bin moving average.
The exogenous weight is the probability of an employer-to-employer (or employer-to-
nonemployment) transition in a given growth bin minus the average probability of
an employer-to-employer (or employer-to-nonemployment) transition at an expand-
ing employer divided by the probability of an employer-to-employer (or employer-to-
nonemployment) transition in the growth bin. At expanding employer the exogenous
weight is zero by construction.
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Figure 1.3: Endogenous employer-to-employer and employer-to-nonemployment
probabilities by firm growth rate

(a) Employer-to-employer

(b) Employer-to-nonemployment

These figures plot the model-implied firm-specific endogenous employer-to-
nonemployment and employer-to-employer probabilities as well as these probabilities
in the data as a function of firm-growth. Firm growth is growth from 2001 to 2007.
To construct the figure, I sort firms into 20 equal person-sized year bins on the basis
of firm-growth. To be consistent with the axes in figure 1.2a this figure only displays
seventeen bins.
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Figure 1.4: The “slippery ladder”: exogenous shocks by firm value

This figure sorts firms into 20 bins on the basis of firm-value. Within each bin, I com-
pute the average probability of each kind of exogenous shock by summing across the
exogenous weights in each transition, which are constructed using variation depicted
in figure 1.2.
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Figure 1.5: Endogenous employer-to-employer and employer-to-nonemployment
probabilities by firm value

(a) Employer-to-employer

(b) Employer-to-nonemployment

This figure sorts firms into 20 bins on the basis of firm-value. For each firm, I compute
the model-implied probability of a voluntary employer-to-employer and employer-to-
nonemployment transition. I then take the person-year-weighted average of the model
and data within each bin.
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Figure 1.6: The model returns a different answer than a binary comparison

A

B

C

1

4

2

7

M =

0 7 1
0 0 4
2 0 0



S =

2 0 0
0 7 0
0 0 5



S−1M =

0 7
2

1
2

0 0 4
7

2
5

0 0



exp(Ṽ ) =

0.614
0.140
0.246


Given M , the matrix S is defined as follows: entry Sii =

∑
jMji (the ith column

sum), while the off-diagonal entries are zero. Hence S−1M divides the ith row of
M by the ith column sum of M (this means that S−1M is not a transition matrix).
exp(Ṽ ) is the solution to the following equation: exp(Ṽ ) = S−1Mexp(Ṽ ).
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Figure 1.7: Change in firm pay predicts probability of an earnings cut

(a) Employer-to-employer

(b) Employer-to-nonemployment-to-employer

This figure considers the sample of workers who switch annual dominant jobs between
consecutive years. The earnings considered are the earnings in the last year at the
previous job and in the first year at the new job.
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Figure 1.8: Change in firm pay predicts magnitude of earnings change

(a) Employer-to-employer

(b) Employer-to-nonemployment-to-employer

This figure considers the sample of workers who switch annual dominant jobs between
consecutive years. The circles plot the bin means where I have sorted the job changers
into 20 bins on the basis of the change in the firm effects. The solid line plots the
best-fitting line estimated based on the micro-data. The dashed red line plots the
45 degree line. The coefficient in the upper panel is 0.82 and the coefficient in the
bottom panel is 1.03 (the standard errors are essentially zero).
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Figure 1.9: Change in firm pay does not predict change in slope of earnings

(a) Employer-to-employer

(b) Employer-to-nonemployment-to-employer

This figure considers the sample of workers who switch annual dominant jobs between
consecutive years. The circles plot the bin means where I have sorted the job changers
into 20 bins on the basis of the change in the firm effects. The slope of firm-level
pay is estimated using the earnings changes of the stayers. The solid line plots the
best-fitting line estimated based on the micro-data.
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Figure 1.10: Dispersion in the labor market

(a) Values

(b) Earnings

Both distributions are normalized so that the median value is zero.
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Figure 1.11: Distributions

(a) Values

(b) Earnings

This figure plots the dispersion in the firm-level values (top panel) and earnings
(bottom panel) in four distributions: the offer distribution, the distribution of where
hires from nonemployment accept offers, where displaced workers making employer-
to-employer transitions accept offers, and finally the distribution among the employed
workers.
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Figure 1.12: Relationship between values and earnings

(a) Sector level

(b) Overall

The top panel of this figure plots the sector-level means of the earnings and values.
The solid black line plots the regression line run at the sector-level and weighting by
the number of person-years represented by each sector. The R2 is 0.45. The bottom
panel sorts firms on the basis of firm-level values. The circles plot 20 equal-person-
year-sized bins as well as the mean firm-level earnings, while the solid line plots the
regression line estimated on the firm-level data. The red line shows plus and minus
one standard deviation of the firm-level earnings within each value bin. The R2 is
0.25.
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Figure 1.13: Relationship between R2 and firm size

(a) All

(b) Residual

This figure sorts firms on the basis of firm size into 20 equal person-year-sized bins.
The upper panel plots the R2 between the “raw” firm-level values and earnings com-
puted bin-by-bin. The bottom panel plots the R2 on the residual firm-level values
and earnings, where I have removed the county-, industry- and size- means from the
earnings and the values.
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Figure 1.14: Counterfactual inequality

(a) Counterfactual

(b) “Naive”

The top panel of this figure plots the distribution of income in the data, and in a
counterfactual where I use my estimates of the firm-level values to price out com-
pensating differentials. The bottom panel considers a “naive” counterfactual where I
deflate all the firm components of earnings by a constant fraction and then recompute
income.
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1.8 Appendix: Omitted Proofs

Proof of Result 1

Notational/definitional preliminaries: This follows the presentation in Minc

(1988) of standard graph theory definitions. Let M be a matrix where entry Mij

measures flows from employer j to employer i. Note that all entries in M are by

construction non-negative: the entries are either zeros, or positive values. Let E be a

set (of employers) labelled from 1...n. Let A be a set of ordered pairs of elements of

E . The pair D = (E , A) is a directed graph. E is the set of vertices, and the elements

of A are the arcs of D which represent directed flows between employers. A sequence

of arcs (i, t1)(t1, t2)...(tm−2, tm−1)(tm−1, j) is a path connecting j to i. The adjacency

matrix of a directed graph is the (0, 1) matrix whose (i, j) entry is 1 if and only if

(i, j) is an arc of D. An adjacency matrix is associated with a non-negative matrix

M if it has the same zero pattern as M . The directed graph is strongly connected if

for any pair of distinct vertices i and j there is a path in D connecting i to j and j

to i. The directed graph is connected if for any pair of distinct vertices i and j there

is a path in D connecting i to j or a path connecting j to i.

Proof. Observe that if M is strongly connected, then every column sum is non-zero

so that the adjacency matrix associated with M is the same as the adjacency matrix

associated with S−1M.

By Minc (1988)[chapter 4, theorem 3.2] a non-negative matrix is irreducible if and

only if the associated directed graph is strongly connected. By Minc (1988)[chapter 1,

theorem 4.4] an irreducible matrix has exactly one eigenvector in En (the simplex). If

M represents a set of strongly connected firms then these two theorems (often jointly

called the Perron-Frobenius theorem) guarantee the existence of a unique solution of

the form:

S−1Mexp(Ṽ ) = λexp(Ṽ ),

where all the entries in exp(Ṽ ) are of the same sign, and, when we take the positive

version, λ > 0.

All that remains to show is that λ = 1.

Consider the jth row of S−1Mexp(Ṽ ) = λexp(Ṽ ). Let ej be the basis vector; that
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is, it is a zero vector with 1 in the jth row.

[S−1Mexp(Ṽ )]j = [λexp(Ṽ )]j (1.18)

eTjMexp(Ṽ )

||Mej||1
= λeTj exp(Ṽ ), (1.19)

where || · ||1 is the l1 norm of a matrix so for an arbitrary matrix A we have ||A||1 =∑
i

∑
j |aij|. Note that ||Mej||1 is a scalar.

Because M is a nonnegative matrix we can rewrite the l1 norm as a dot product

with a vector of ones. Specifically, let 1 be a column vector of 1s:

||Mej||1 = 1TMej. (1.20)

Rearrange:

eTjMexp(Ṽ )

||Mej||1
= λeTj exp(Ṽ ) (1.21)

eTjMexp(Ṽ )

1TMej
= λeTj exp(Ṽ ) (1.22)

eTjMexp(Ṽ ) = λ1TMeje
T
j exp(Ṽ ). (1.23)

Now sum over the rows:∑
j

eTjMexp(Ṽ ) =
∑
j

λ1TMeje
T
j exp(Ṽ ) (1.24)∑

j

eTjMexp(Ṽ ) = λ
∑
j

1TMeje
T
j exp(Ṽ ) (1.25)

1TMexp(Ṽ ) = λ
∑
j

1TMeje
T
j exp(Ṽ ) (1.26)

1TMexp(Ṽ ) = λ1TM
∑
j

eje
T
j exp(Ṽ ) (1.27)

1TMexp(Ṽ ) = λ1TMexp(Ṽ ). (1.28)

Hence, λ = 1.
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Proof of Result 2

Proof. The proof shows that the diagonal elements cancel out. First, use the identity

from (1.11):

exp(Ṽi)
∑

j′∈E+n

Mj′i =
∑
j∈E+n

Mijexp(Ṽj).

Expand to write the diagonal elements explicitly:

exp(Ṽi)Mii + exp(Ṽi)
∑

j′∈E+n\{i}

Mj′i =
∑

j 6=i∈E+n\{i}

Mijexp(Ṽj) + exp(Ṽi)Mii.

Then cancel the diagonal terms to show that (1.11) holds with arbitrary diagonal

elements:

exp(Ṽi)
∑

j′∈E+n\{i}

Mj′i =
∑

j 6=i∈E+n\{i}

Mijexp(Ṽj).

Proof of Result 3

Preliminaries: It is helpful to first have explicit expressions for a number of quan-

tities. Write the R2 between Ψ and V in terms of the known variable V and the

unknown variable a:

R2 =
Cov(Ψ, V )2

V ar(Ψ)V ar(V )
(1.29)

=
Cov(Ψ, α(Ψ + a))2

V ar(Ψ)V ar(α(Ψ + a))
(1.30)

=
α2Cov(Ψ, (Ψ + a))2

α2V ar(Ψ)V ar((Ψ + a))
(1.31)

=
[V ar(Ψ) + Cov(Ψ, a)]2

V ar(Ψ)[V ar(Ψ) + V ar(a) + 2Cov(Ψ, a)]
. (1.32)
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It is also helpful to write V ar(a) in terms of one unknown by rearranging equation

(1.32):

R2[V ar(Ψ)2 + V ar(Ψ)V ar(a) + 2V ar(Ψ)Cov(Ψ, a)] = V ar(Ψ)2 + 2V ar(Ψ)Cov(Ψ, a) + Cov(Ψ, a)2

(1.33)

R2V ar(Ψ)V ar(a) = (1−R2)V ar(Ψ)2 + 2(1−R2)V ar(Ψ)Cov(Ψ, a) + Cov(Ψ, a)2

(1.34)

V ar(a) =
(1−R2)V ar(Ψ)2 + 2(1−R2)V ar(Ψ)Cov(Ψ, a) + Cov(Ψ, a)2

R2V ar(Ψ)
.

(1.35)

The following is a useful expression for Corr(Ψ, a):

Corr(Ψ, a) =
Cov(Ψ, a)√
V ar(a)V ar(Ψ)

(1.36)

=
Cov(Ψ, a)√

(1−R2)V ar(Ψ)2+2(1−R2)V ar(Ψ)Cov(Ψ,a)+Cov(Ψ,a)2

R2V ar(Ψ)
V ar(Ψ)

(1.37)

=
√
R2

Cov(Ψ, a)√
(1−R2)V ar(Ψ)2 + 2(1−R2)V ar(Ψ)Cov(Ψ, a) + Cov(Ψ, a)2

.

(1.38)

Proof. A lower bound on V ar(a): To minimize V ar(a), start with the expression

for V ar(a) (equation (1.35)) in terms of Cov(Ψ, a) and take the first order condition

with respect to Cov(Ψ, a):

∂V ar(a)

∂Cov(Ψ, a)
=

2(1−R2)V ar(Ψ) + 2Cov(Ψ, a)

R2V ar(Ψ)
(1.39)

0 =
2(1−R2)V ar(Ψ) + 2Cov(Ψ, a)

R2V ar(Ψ)
(1.40)

Cov(Ψ, a) = −(1−R2)V ar(Ψ). (1.41)

The second order condition is, 2
R2V ar(Ψ)

which is positive. Substitute this into the

expression for V ar(a) (equation (1.35)) to get that the minimum value is given by:

V ar(a) =
(1−R2)V ar(Ψ)2 + 2(1−R2)V ar(Ψ)(−(1−R2)V ar(Ψ)) + (−(1−R2)V ar(Ψ))2

R2V ar(Ψ)

(1.42)

= V ar(Ψ)(1−R2). (1.43)
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Compute the correlation between Ψ and a at this lower bound:

Corr(Ψ, a) =
Cov(Ψ, a)√
V ar(a)V ar(Ψ)

(1.44)

=
−(1−R2)V ar(Ψ)√

V ar(Ψ)(1−R2)V ar(Ψ)
(1.45)

= −
√

1−R2. (1.46)

And compute the variance of utility in log dollar units:

V ar(Ψ + a) = V ar(Ψ) + V ar(a) + 2Cov(Ψ, a) (1.47)

= V ar(Ψ) + V ar(Ψ)(1−R2)− 2(1−R2)V ar(Ψ) (1.48)

= R2V ar(Ψ). (1.49)

An upper bound on V ar(a): Take the limit of the expression for for V ar(a)

(equation (1.35)):

lim
Cov(Ψ,a)→∞

(1−R2)V ar(Ψ)2 + 2(1−R2)V ar(Ψ)Cov(Ψ, a) + Cov(Ψ, a)2

R2V ar(Ψ)
=∞.

(1.50)

Note that this implies that V ar(a) goes to infinity with the square of Cov(Ψ, a),

which is why the R2 expression remains finite.

What is Corr(Ψ, a) in this case?

lim
Cov(Ψ,a)→∞

Corr(Ψ, a) = lim
Cov(Ψ,a)→∞

√
R2

Cov(Ψ, a)√
(1−R2)V ar(Ψ)2 + 2(1−R2)V ar(Ψ)Cov(Ψ, a) + Cov(Ψ, a)2

(1.51)

=
√
R2 (1.52)

= Corr(Ψ, V ). (1.53)

And:

V ar(Ψ + a)→∞. (1.54)
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1.9 Appendix: Description of estimating the model

With N employers, the model depends on the following parameters:

• N × {fi, gi, V e(vi), ρi, δi} = 5N

• {W,λ1, V
n} = 3,

for a total of 5N+3 parameters. In the model, there are three additional parameters,

λ0, U and β. It turns out that I do not need to know these parameters to estimate

the parts of the model that I want to estimate. (If I wanted to estimate b or vi I

would need to know these three parameters).

I use 5N + 4 moments. In particular, N × {f oi , gi, Ṽi, ρi, δi} = 5N , and W is also

observed (f oi is the “observed” share of hires from nonemployment, and is defined more

formally below). The three remaining moments are Ṽn, the probability of making an

endogenous employer−to−employer transition (equation (1.67)), and a moment that

relates where workers go on nonemployment-to-employment transitions to the value

of nonemployment (equation (1.60)). Intuitively, the value of nonemployment, V n is

increasing in the probability of making an nonemployment-to-employment transition,

while the probability of an outside offer λ1 is increasing in the probability of an

endogenous employer− to−employer transition. The overidentification comes in the

fact that Ṽn also contains information about the value of nonemployment.

I now present the steps to estimating the model, which outlines both the equations

I need to determine the parameters as well as the solution algorithm. There are two

groups of steps. Calibration steps, and moment matching steps.

1.9.1 Data and calibration steps

Step 1: The relative size of employers (gi) and the number of workers (W ) are

summary statistics of the data. This gives N + 1 parameters.

Step 2: Get a firm-specific estimate of the δi and the ρi. Implement the method

discussed in section 1.1.2.1 to measure displaced workers. This gives the matrix of

mobility that reflects preferences, or M . Aggregating the displaced mobility by source

relative to the number of workers gives the probability of job destruction shocks (δi)

and the probability of reallocation shocks ((1−δi)ρi). This step gives 2N parameters.
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1.9.2 Moment matching steps

Define f oi to be the share of workers hired from nonemployment that are hired by

firm i, or:

f oi ≡
fi

exp(V e(vi))
exp(V e(vi))+exp(V n)∑

i′∈E fi′
exp(V e(vi′ ))

exp(V e(vi′ ))+exp(V
n)

λ0U

λ0U
=

Min∑
j∈EMjn

. (1.55)

The denominator is the share of offers accepted by unemployed workers. This equation

only identifies fi up to scale.45 Hence, I use the natural normalization
∑

i∈E fi = 1.

Define C1 to be the share of offers that are accepted from unemployment, or:

C1 ≡
∑
i′∈E

fi′
exp(V e(vi′))

exp(V e(vi′)) + exp(V n)
(1.56)

so that f oi can be written more compactly as:

f oi =
fi

exp(V e(vi))
exp(V e(vi))+exp(V n)

C1

. (1.57)

Use a grid-search to find a value for λ1 (the arrival rate of offers) that minimizes

the gap between the probability of an employer-to-employer transition in the data

and the model. The reason to use gridsearch is that the function from a guess of

λ1 to a new value of λ1 implied by the following steps is not a contraction mapping

(nor is it guaranteed that the model can exactly reproduce the employer-to-employer

transition probability in the data).

Step 1: Solve the following equations, where I maintain the convention of data or

variables whose values are known by a given step are on the left-hand side, and

unknowns on the right-hand-side. In the following equation, gi and f oi are known

directly from data, δi and ρi are estimated based on the displaced workers,46 and Ṽi

is estimated based on the matrix of moves across firms:

giexp(Ṽi)

f oi
(1− δi)(1− ρi) = gi

fiexp(V
e(vi))

gi(1− δi)(1− ρi)
C1

1

fi

exp(V e(vi)) + exp(V n)

exp(V e(vi))
(1− δi)(1− ρi)

(1.58)

= C1[exp(V e(vi)) + exp(V n)]. (1.59)

45For all α,
fi

exp(V e(ln vi))

exp(V e(ln vi))+exp(V u)∑
i′∈E fi′

exp(V e(ln v
i′ ))

exp(V e(ln v
i′ ))+exp(V u)

=
αfi

exp(V e(ln vi))

exp(V e(ln vi))+exp(V u)∑
i′∈E αfi′

exp(V e(ln v
i′ ))

exp(V e(ln v
i′ ))+exp(V u)

.

46In practice, I used the person-year weighted average value of (1− δi)(1− ρi).
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In the next equation, W is data, Min is known from the matrix of moves, λ1 is from

the calibration step, and exp(Ṽn) is estimated from the matrix of moves:

1

1− λ1

1

W

∑
i∈E

Minexp(Ṽn) =
1

1− λ1

1

W

∑
i∈E

λ0Ufi
exp(V e(vi))

exp(V n) + exp(V e(vi))

(1− λ1)Wexp(V n)

λ0U

(1.60)

=
1

1− λ1

(1− λ1)exp(V n)
∑
i∈E

fi
exp(V e(vi))

exp(V n) + exp(V e(vi))

(1.61)

= exp(V n)C1. (1.62)

Step 2: Given a value of λ1:

• Combining equations (1.59) and (1.62), give the following two terms: C1exp(V
e(vi))

and C1exp(V
n).

• Rewrite Equation (1.56) by multiplying by C1

C1
and rearranging:

f oi = fi
exp(V e(vi))

exp(V e(vi)) + exp(V n)

1

C1

(1.63)

= fi
C1exp(V

e(vi))

C1exp(V e(vi)) + C1exp(V n)

1

C1

(1.64)

f oi
C1exp(V

e(vi)) + C1exp(V
n)

C1exp(V e(vi))
=

fi
C1

. (1.65)

In this equation, the terms on the left-hand-side are known from step 1, so this

step gives fi
C1
.

• Now that fi
C1

is known, solve for C1 by using the normalization
∑

i∈E fi = 1

(note that C1 contains fi, so the scale transformation cancels out.47)

∑
i∈E

fi
C1

=

∑
i∈E fi

C1

=
1

C1

. (1.66)

Now that C1 is known and from equation (1.65) fi
C1

is known, it is possible to

solve for fi since fi
C1

is known from equation (1.65).

47 Define f̂i = αfi and let Ĉ1 be the C1 constructed using f̂i. Then f̂i
Ĉ1

= fi
C1

=
αfi∑

i′∈E αfi′
exp(V e(v

i′ ))
exp(V e(v

i′ ))+exp(V n)

.
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• Knowledge of C1 gives exp(V n) and exp(V e(vi)), via Equations (1.59) and

(1.62).

This step produces the following 2N + 1 parameters: {fi, exp(V e(vi)), exp(V
n)}. In

combination, this gives 5N + 3 parameters.

Step 3: Given the parameters of the model, compute the probability of an “endoge-

nous” employer-to-employer transition:

λ1

∑
i

gi(1− δi)(1− ρi)
∑
j

fj
exp(V e

j )

exp(V e
j ) + exp(V e

i )
. (1.67)

To make this computationally feasible, group firms into 1000 categories on the basis

of the firm values (V e).

1.10 Appendix: Constructing datasets

1.10.1 Annual dataset

I follow Abowd, Lengermann, and McKinney (2003) to construct the dataset to

estimate the earnings decomposition. I depart from them to define employment in

a way that is consistent with how employment is defined to construct employer-to-

employer flows, to follow more recent literature in imposing age restrictions, and to

follow more recent literature in dropping very low earnings jobs.

For the purposes of estimating the earnings decomposition, the annual dominant

employer is the employer from which the worker had the highest earnings in the

calendar year. This job is chosen from among the employers where the worker had

two or more consecutive quarters of earnings within the calendar year; the reason

to restrict to jobs with two or more consecutive quarters of earnings is to allow

me to code transitions between employers as employer-to-employer or employer-to-

nonemployment-to-employer in a way that I discuss below.48 In this set of jobs, the

48This eliminates quarters of employment that Abowd, Lengermann, and McKinney (2003, pg.
15-16) term “discontinuous,” that is, where a worker is observed in neither adjacent quarter. Abowd,
Lengermann, and McKinney (2003, 15-16) report that such discontinuous quarters of employment
accounted for 5 percent of person-year observations in their final dataset. Second, it eliminates
“continuous” quarters of employment where the first quarter of the match is quarter IV within the
year, and the second quarter is quarter I of the following year. Under the assumption that con-
tinuous quarters are uniformly distributed within the year, this eliminates 1

8 of continuous workers.
Abowd, Lengermann, and McKinney (2003, 15-16) report that continuous quarters account for 11
percent of observations in their final dataset, so this eliminates about 1.4 percent of observations. In
constructing the dataset, making these two restrictions slightly decreased the variance of earnings,
and so slightly increased the fit of the AKM model.
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annual dominant employer is the one with the highest total earnings in the calendar

year.

To construct annualized earnings, for each quarter within a year first identify the

nature of the workers attachment to the employer. Specifically, code quarter t of

earnings into one of the following two mutually exclusive categories: full-quarter (if

earnings from the employer in t − 1, t and t + 1) or continuous (if earnings in t − 1

and t, or t and t + 1). Annualize these earnings as follows. First, if the worker had

any quarters of full-quarter earnings, take the average of these quarters and multiply

by 4 to get an annualized salary. Second, if a the worker did not have full-quarter

earnings and has any quarters of continuous earnings, take the average of these and

multiply by 8 to get an annualized salary. The justification for this procedure is that

if a worker is present in only two consecutive quarters and if employment duration is

uniformly distributed then on average the earnings represent 1
2

a quarter’s worth of

work, while if a worker is present in both adjacent quarters then the earnings reflect

a full quarters work.49 Then take the log of these earnings.

I then make two additional sample restrictions. First, I keep workers between the

ages of 18-61 (on December 31st of the year), inclusive. This is an attempt to avoid

issues with retirement. This age restriction is similar to e.g. Card, Heining, and

Kline (2013) (20-60 in Germany) and Taber and Vejlin (2013) (19-55 in Denmark),

though Abowd, Lengermann, and McKinney (2003) do not report imposing any age

restriction. Second, following Card, Heining, and Kline (2013) I drop observations

with annualized earnings of less than $3250 in 2011:IV dollars.50

I use this dataset to construct three employer-level characteristics. First, average

annual employment (based on employment as defined above). Second, average age

of these workers. Finally, I construct the average log annualized earnings of workers.

I also merge on industry information (six digit NAICS codes), and information on

whether the employer is a multi-unit.

I now summarize how the various sample restrictions affect the same size. Table

1.7 shows that there are about 650 million person-employer-years before imposing an

earnings test, 614 million after imposing an earnings test, and 505 million after going

down to one observation per person per year. This means that after dropping the

low-earnings jobs, there are an average of 1.2 employers per person per year.51 Table

49In the small number of cases where a worker had forward-looking continuous employment in
quarter IV, and another quarter of continuous employment at the same employer, I included this
quarter in the earnings calculation.

50They drop daily wages of less than 10 euros. 10 euros × ≈ 1.3 euros per dollar ×250 days per
year= 3250.

51For Germany, Card, Heining, and Kline (2013, Appendix Table 1a, row 5) find 1.10 employers
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1.8 shows the distribution of the number of jobs-per-year in row 2 of Table 1.7.

Table 1.9 shows that on the full annual dataset, 91% share of person-year obser-

vations are full-quarter and 9% are continuous.52 Table 1.10) shows the distribution

of the number of years per person. About 40% of the people are in the dataset for all

7 years, and only 13% are in the dataset for only a single year. Table 1.11 shows that

there is a substantial amount of mobility in this sample: half of the workers have two

or more employers. Table 1.12 shows that about 10% of person-employer matches (or

30% of person-years) last for the entire span of my data. On the other hand, almost

half of matches (20% of person-years) only last for a single year.

1.10.2 Quarterly dataset

I build on ideas developed in Bjelland et al. (2011) and Hyatt et al. (2014). Specif-

ically, restricting to jobs with two quarters of earnings and using overlapping quarters

of earnings to label an employer-to-employer (employer-to-employer) transition comes

from Bjelland et al. (2011, pg. 496, equation 2). The idea of using earnings in the

two quarters to select the dominant job is found in Hyatt et al. (2014, pg. 3).

For the purposes of measuring flows, the quarterly dominant employer in quarter

t is the employer from which the worker had the highest earnings summing over

quarter t and t− 1. This job is chosen from among the employers where the worker

had positive earnings in both quarter t and quarter t − 1. To count as employment,

the earnings must pass the the same earnings test as for the annual dataset.53 For

the person-quarters that remain after the earnings test, the goal is to select a single

employer—the quarterly dominant employer. The quarterly dominant employer is

the employer from which the worker has the most total earnings summing across t−1

and t. There is one exception to this selection rule. If a worker has earnings from

her annual dominant employer in quarters t − 1 and t, then this employer is the

quarterly dominant employer regardless of whether it is the employer with the most

total earnings summing across t − 1 and t. The reason for prioritizing the annual

dominant job is that I want to use this quarterly dataset to code transitions between

annual dominant jobs and so it is important that they appear in the quarterly dataset.

per person per year, and this number is stable from 1985 to 2009.
52Abowd, Lengermann, and McKinney (2003, pg. 15-16) find 84% are full-quarter, 11% are

continuous and 5% are discontinuous.
53Sum together the two quarters of earnings and multiply by 4. If the earnings are below $3250 then

drop the person-employer match. Multiplying by 4 is assuming that each quarter is a continuous
quarter of employment. By assuming that this is a continuous quarter of employer this includes
more jobs than the annual dataset; specifically, if a job is actually full-quarter, then the annualized
earnings treating it as full quarter can be lower than assuming it is continuous.
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If a worker has different quarterly dominant employers in quarter t and t+1, then

this worker had earnings from both employers in quarter t and I label the worker

as having undergone an employer-to-employer transition in quarter t. If a worker

has no dominant employer in quarter t + 1, then, with one exception highlighted

below, I consider that worker to have been nonemployed in quarter t = 1, and so

I label the transition from the quarter t dominant employer as a transition into

nonemployment.54.55

I depart from prior work to address the possibility that workers move on the

seam between two quarters (Hyatt and McEntarfer (2012) emphasize that on some

outcomes these transitions look like employer-to-employer moves). To make this

concrete, suppose that I observe a worker at firm A in quarter t− 2 and t− 1, and at

firm B in t and t+ 1. Then the definitions developed above say that in quarter t− 1

firm A is the dominant employer and in quarter t+1 firm B is the dominant employer.

But in quarter t the worker had no dominant employer because it was not the second

consecutive quarter of any employment relationship. So the transition from A to B

was an employer-to-nonemployment-to-employer transition. It might be, however,

that the worker’s last day at A was the last day of quarter t − 1 and her first day

at B was the first day of quarter t and so this was actually an employer-to-employer

transition. The way I attempt to capture these transitions is to use the stability of

earnings across quarters to suggest that a worker was probably employed for the full

quarter in both quarters. Concretely, if the earnings from firm A in quarters t−2 and

t − 1 are within 5% of eachother (using quarter t − 1 earnings as the denominator),

then this employer is the dominant employer in quarter t. This then allows me code

the transition from A to B as employer-to-employer. Table 1.13 shows that this

correction accounts for 3.5% of the employer-to-employer transitions in my dataset.

The final result is a dataset that at the quarterly level says where the person was

employed and says, if this is a new job, whether the worker came to this job directly

from another job, or had an intervening spell of nonemployment.

1.10.3 Using the quarterly dataset to construct displacement weights

I use the quarterly dataset to construct the displacement weights. I proceed in

the following steps:

54Similarly, Burgess, Lane, and Stevens (2000), when they compute job flows drop matches that
only last a single quarter.

55This definition will pick up very few recalls as employment-nonemployment-employment transi-
tions. The reason is that even if a worker is nonemployed awaiting recall for 13 weeks the probability
that I record a quarter with zero earnings from her employer is less than 10% ( 1

13 ).
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1. Using the definition of employed explained in the previous section, construct

employer size in each quarter.

2. Compute quarter-to-quarter employer growth rates—the growth rate in quarter

t is the change in employment from t to t+ 1.

3. Label worker separations from the employer in quarter t as either employer-to-

employer or employer-to-nonemployment using the definitions in the previous

section.

4. Compute the probability of each separation type (employer-to-employer and

employer-to-nonemployment) within size-demographic-growth rate bin.

5. Finally, the displacement weight is one minus the probability of the separa-

tion divided by the probability of the separation occuring at an expanding

employer.56

I use the following employer size bins: 1-4, 5-9, 10-24, 25-49, 50-99, 100-249, 250+.

I create a different number of growth bins by each employer size. Specifically, I use

the following number of growth bins per size category: 2, 3, 5, 9, 11, 16, 26. One

bin is always the expanding employers, and the remaining bins are equal-weighted by

person-quarter bins among contracting employers. I create 40 distinct group workers

by demographic characteristics denoted by d (20 equal sized age bins for men, and

20 for women).

1.10.4 Combining the quarterly and annual datasets

The goal of combining the datasets is twofold. First, to use the detail of the

quarterly dataset to label each transition between annual dominant employers as an

employer-to-employer (employer-to-employer) or an employer-to-nonemployment-to-

employertransition. Second, to find out the growth rate at the annual dominant em-

ployer in the quarter that the worker separated in order to construct the endogenous

weight as discussed in section 1.1.2.1.

To label the transition as employer-to-employer or employer-to-nonemployment-

to-employer, I proceed as follows. First, identify consecutive observations where

a worker has a different annual dominant employer; to be concrete, suppose that

56In the case where this is less than 0, I set this to 0.
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the worker’s annual dominant employer is A in 2002 and B in 2003.57 Second,

look at the quarterly dataset and find the last quarter that the worker is employed

at A (this might be in 2002 or 2003). Third, look at the quarterly dataset and

find the first quarter that the worker is employed at B (this might be in 2002 or

2003). If the last quarter at A and first quarter at B are in adjacent quarters,

then there was an overlapping quarter of earnings and I label this an employer-to-

employer transition. If not, then typically I label this an employer-to-nonemployment-

to-employer transition. The exception to labelling the transition an employer-to-

nonemployment-to-employer transition is if the worker made an employer-to-employer

move through some third (and possibly fourth or fifth) employer en route to mov-

ing from A to B. Suppose, for example, that the worker makes the following tran-

sitions: A
employer−to−employer−−−−−−−−−−−−−→ C

employer−to−employer−−−−−−−−−−−−−→ B. Because the worker only

made employer-to-employer transitions between A and B, I label this an employer-to-

employer transition between annual dominant employers. Alternatively, suppose that

I observe A
employer−to−employer−−−−−−−−−−−−−→ C

employer−to−nonemployment−to−employer−−−−−−−−−−−−−−−−−−−−−−−−−→ B. Then I label

the transition between annual dominant employers an employer-to-nonemployment-

to-employer transition.

To assign the endogenous weights, I proceed as follows. First, I use the quarterly

dataset to identify the quarter in which the worker separated from her annual dom-

inant employer. Second, I use the quarterly dataset to identify whether the worker

separated in an employer-to-employer or an employer-to-nonemployment way. Third,

I use the quarterly dataset to measure how much the employer grew in the quarter the

worker was separating; i.e. if quarter t is the last quarter the worker was employed,

then I compute the change in employment at the employer from quarter t to t + 1.

Finally, I compute the firm size in quarter t and worker demographics to merge on

the relevant endogenous weight using a) firm characteristics b) worker characteristics

c) firm growth rate and d) nature of separation (employer-to-employer or employer-

to-nonemployment) as merging variables. A transition from nonemployment always

gets an endogenous weight of 1.58

57It is possible that a worker only appears in the annual dataset in nonconsecutive years—say, 2002
and 2004. In this case the procedure ends up labelling the transition an employer-to-nonemployment-
to-employer.

58In the case of multiple transitions between annual dominant jobs, I proceed as follows. In a case

like A
employer−to−employer−−−−−−−−−−−−−−−→ C

employer−to−employer−−−−−−−−−−−−−−−→ B I compute the endogenous weight for the

A→ C and C → B transitions and take the geometric average. In a case like A
employer−to−employer−−−−−−−−−−−−−−−→

C
employer−to−nonemployment−to−employer−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ B I take the geometric average of the A → C and C →

nonemployment transitions for the endogenous weight on the separation from A to nonemployment;
I then assign an endogenous weight of 1 to the nonemployment-to-employment transition.
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If a worker never has another employer then I do not attempt to label this tran-

sition. For example, if a worker has a dominant employer in 2006 and no dominant

employer in 2007, then I do not record a separation in 2006. The reason is that this

could occur for any number of reasons: 1) a worker ages out of my age range 2) a

worker moves out of my states 3) a worker leaves the labor force. For the purposes

of computing transition probabilities I remove these observations from the denomi-

nator (that is, where the last year of a dominant employer is not the final year in the

dataset). So the denominator for separation probabilities removes the last year where

the worker has a dominant employer whether this is the last year in the dataset

or before then (e.g. for a worker I see in 2004 and 2005, I do not count the 2005

separation in my separation probabilities). Similarly, when I compute g—share of

employment—I do not include the final worker-specific year (rather than taking out

the last calendar year).

To compute δ and ρ, I compute the probability that each transition was exogenous

(one minus the endogenous weight). I then sum up the exogenous transitions over all

transitions in the annual dataset and compute the relevant probabilities.

1.10.5 Constructing model-relevant objects

Total employment (W ) and employer share of total employment (g): To

use a common notion of employer size across all calculations, in the interval 2001-2007

(inclusive), I use all data except for the final person-year observation. This is so that

I can compute separation probabilities for all person-years used to measure g. This

means I use data from 2001-2006 to create the measure of employer size, but I might

not count a particular person-year in g if this person never appears again.

Number of hires from nonemployment, and share of hires from nonem-

ployment (fno): To alleviate concerns that hires from nonemployment simply reflect

migrants or labor market entrants, I only count a worker as hired from nonemploy-

ment if I previously saw them employed in my data, and I labelled their previous

transition an employment-to-nonemployment transition. Hence, I use hiring data

from 2002-2007 (inclusive), except that I omit hires where the person was never pre-

viously employed in my data.

Exogenous job destruction and job reallocation shocks (δ, ρ): For each

transition recorded in the annual dataset, I assign it a probability of being endogenous

from the quarterly dataset (based on the worker’s age and gender, the employer

size, and whether the employer was growing or shrinking (and by how much) in the

quarter). I then take the total number of separations of each kind (employer − to−
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employer and employer − to − nonemployment) and compare it to the sum of the

endogenous transition probabilities. The total number of exogenous employer− to−
employer transitions divided by total employment (W ) is (1 − δ)ρ;59 the number of

exogenous employer − to− nonemployment transitions divided by W is δ.

1.11 Appendix: Computational details

Solving for the Abowd, Kramarz, and Margolis (1999) decomposition can only be

done in the connected set of firms. Similarly, the model can only be estimated in the

strongly connected set of firms.

To estimate the Abowd, Kramarz, and Margolis (1999) decomposition, I built

on the code provided by Card, Heining, and Kline (2013). To identify the strongly

connected set of firms, I use David Gleich’s open source Matlab implementation of

a depth-first search algorithm as part of the package Matlab BGL. To estimate the

decomposition, I use Matlab’s built-in preconditioned conjugate gradient function

(pcg), with an incomplete Cholesky preconditioner and a tolerance of 0.01. For an

extensive discussion of conjugate gradient, and the benefits of preconditioning, see

Trefethen and Bau (1997) (especially Lectures 38 and 40). Despite the fact that my

dataset is larger than that used by CHK, I do not resort to a two-step estimation

procedure of estimating the firm effects on the sample of movers. At least with my

data and resources, the computational bottleneck was computing X ′X. To get around

this, I split X into 3 pieces and computed X ′X in 9 pieces.

To estimate the eigenvector, I use Matlab’s built-in eigenvector solver that allows

the researcher to specify the number of eigenvectors to solve for (eigs, rather than eig)

(My own implementation of the power method yielded numerically identical answers.)

1.12 Appendix: Selection-correcting the earnings

I selection-correct the earnings equation by combining the proportionality assump-

tion and the results of the search model. That is, I add the expectation of the error

term from the search model to the earnings equation. In the first period of a worker’s

employment relationship, this expectation depends on the identity of her prior firm

in her first year at each firm. I.e. suppose a worker moves from firm 2 to firm 1 then

E[ι1|V e
1 + ι1 > V e

2 + ι2] = E[ι1|ι1 − ι2 > V e
2 − V e

1 ]. In second and subsequent years,

59The 1− δ appears because of timing assumptions in the model.
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this selection term for a worker at employer i is

E[ι|V e
i , not move] =

∑
E−i,n Pr(offer from j and not move)E[ι|offer from j and not move]∑

E−i,n Pr(offer from j and not move)
.

(1.68)

For a worker at i, these terms—when involving other firms—are:

Pr(offer from j and not move) = λ1fj
exp(V e

i )

exp(V e
j ) + exp(V e

i )
(1.69)

E[ι|offer from j and not move] = γ − log

(
exp(V e

i )

exp(V e
j ) + exp(V e

i )

)
. (1.70)

For a worker at i, these terms are (when involving non employment):

Pr(offer from nonemp and not move) = (1− λ1)
exp(V e

i )

exp(V n) + exp(V e
i )

(1.71)

E[ι|offer from nonemp and not move] = γ − log

(
exp(V e

i )

exp(V n) + exp(V e
i )

)
. (1.72)

In implementation there are a couple issues. First, the first year that a worker

appears in the dataset I do not know which selection correction term to apply; that

is, it might be that the worker showed up from another firm, or it might be that the

worker had already been there. To address this, I assume that all such observations

are in the second or subsequent years of the employment relationship. Second, there

are firms that I cannot estimate the revealed value of, even though I can estimate the

value of the firm in the earnings equation (these are firms in the strongly connected

set for which I cannot estimate either f or g). For the purposes of the selection

correction, I assume that g
f

= 1 and so use the mobility relevant value. Third,

to speed computation time I discretize the firms into 1000 equal-sized (in terms of

person-years) bins and use this to compute the selection correction.

1.13 Appendix: Measurement error

This appendix states formal conditions under which the grouping strategy leads to

a consistent estimate of the correlation between firm-level values and earnings. I state

results with a single grouping characteristic. The extension to grouping sequentially

is straightforward.

78



1.13.1 Preliminaries

Consider one grouping characteristic, g, which might be location, industry or size.

Formally, let {Ω1, ...ΩG} be mutually exclusive sets of firms. This grouping partitions

the set of firms. Earnings at firm i are:

Ψi = Ψg + Ψ̃i + εΨi (1.73)

where Ψg is the group-level component, Ψ̃i is the firm-level component and εΨi is mean

zero measurement error. Implicit in this notation is the fact that each firm i belong.

Similarly, the value at firm i is given by (where I suppress the e subscript from the

text for simplicity):

Vi = Vg + Ṽi + εVi . (1.74)

I now state assumptions on how the terms relate.

Assumption 1. The assumptions are about the mean value of the non-group-level

components:

1. E[Ψ̃i + εΨi |i ∈ Ωg] = 0

2. E[Ṽi + εVi |i ∈ Ωg] = 0

The economic content of this assumption is that grouping characteristics are ex-

ogenous. This assumption would be violated if firms see Ψi and then decide which

group to choose since g would be related to the error term. The statistical content of

this assumption is relatively mild. For example, it allows for the variance of the mea-

surement error to depend on the grouping characteristic (i.e. when I group by size, it

allows for the smaller firms to have higher variance). It also allows the measurement

error to be correlated with the firm-specific component.

1.13.2 Estimation with one characteristic

With one characteristic, we can estimate the group-level components by the group-

level means and then compute the relationship between the two.
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For earnings:

lim
Ng→∞

Ê[Ψg] = lim
Ng→∞

1

Ng

∑
i∈Ωg

Ψi (1.75)

= lim
Ng→∞

1

Ng

∑
i∈Ωg

[
Ψg + Ψ̃i + εΨi

]
(1.76)

= E[Ψg + Ψ̃i + εΨi |i ∈ Ωg] (1.77)

= Ψg + E[Ψ̃i + εΨi |i ∈ Ωg] (1.78)

= Ψg (1.79)

where the second line is a definition, the third line is a law of large numbers, the fourth

is because Ψg is non-stochastic once g is fixed, and the last line is by assumption.

Similarly, we can estimate Vg by the group level mean.

Then as the number of firms within each group grows large we get a consistent

estimate of Corr(Ψ, V ).

The limitation of this strategy is that if the grouping characteristics capture rel-

atively little of the variance of the Ψ and V then this is not particularly informative.

1.14 Appendix: Subgroup results

This appendix re-estimates the model on subgroups defined by age and gender.

The central finding of the paper is robust within each subgroup. The assumption of

homogeneity in the baseline results do not do too much damage to the data since

splitting the data along these dimensions of observable heterogeneity does not change

the main finding.

I split the sample by men and women, and into “young” (18-34) and “old” workers

(35-61). (I choose the age split so that each age range contains about half of the

employer-to-employer transitions in the data.) By subgroup I re-estimate the whole

model, the earnings decomposition and the comparison between them.

Table 1.17 shows that firms matter in explaining earnings inequality within each

subgroup. It reports sample sizes and variance decompositions by subgroup in the

set of firms strongly connected by employer-to-employer transitions made by that

subgroup. For ease of comparison, the first column reproduces column (3) of table

1.1, which reports the decomposition for the whole sample. The table shows that

firms explain a similar amount of the variance of earnings among men as among

women, and this is very similar to the overall number. On the hand, there are more
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interesting patterns by age: firms explain more of the variance among young workers

than among older workers.

Panel A of table 1.18 shows that compensating differentials are an important part

of the explanation for the role of firms in earnings inequality within each subgroup.

The table reports the explanatory power of compensating differentials within each

subgroup. The numbers are constructed in an identical way to the bottom panel

of table 1.5. For ease of comparison, the first row reproduces the numbers for the

overall sample. Compensating differentials are slightly more important for explaining

between-women inequality than between-men inequality. As with earnings inequal-

ity, the more striking difference is that compensating differentials are much more

important for older workers than for younger workers.60

Panel B performs a conceptually distinct robustness exercise and shows that ag-

gregating across industries and locations does not do too much damage to the data.

One might be concerned that by treating all states in my sample as an integrated la-

bor market I do important damage to the data. To assuage this concern, I re-estimate

the firm-level accepted-offer-relevant values (Ṽ ) using only accepted offers within a

particular state. State-by-state, I then compute the correlation with the benchmark

accepted-offer-relevant-firm-level values that also use the across-state moves. Finally,

I aggregate the correlations across all states weighting by the number of person-years.

Panel A of table 1.18 shows that the correlation between the two measures is 0.97.

That is, the accepted offers across states do not dramatically affect the estimates (but

using these accepted offers allows me to compare utilities across counties).

At the firm level, one might also prefer to focus on within-industry moves on the

theory that perhaps across sector moves are not well-described by a search model. The

second column of Panel F in table 1.18 reports a sector-by-sector analysis that is iden-

tical to the state-by-state analysis. I find a correlation for the within-sector accepted-

offer-relevant values and the benchmark accepted-offer-relevant-values of 0.76. Of

course, table 1.4 relies on precisely these across sector moves to value sectors.

1.15 Appendix: Additional tables and figures

60Understanding why patterns look different for younger and older workers is an interesting topic
for future research.
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Table 1.7: Constructing Sample of Dominant Jobs

Number Unique People Unique Employers
(1) (2) (3)

Person-employer-year pre-earnings test 650, 288, 000 108, 002, 000 6, 688, 000
Person-employer-year post-earnings test 613, 341, 000 105, 921, 000 6, 511, 000
Person-years 504, 945, 000 105, 921, 000 6, 155, 000

Note: All counts are rounded to the nearest thousand. Row 2 divided by row 3 is
1.215. The first row shows the total number of person-year-employer observations
that are continuous quarter or full-quarter among workers in the relevant age range.
The second row shows the number of person-year-employer observations where the
persons dominant job in the particular year passes an earnings test. The third row
goes down to the unique employer that is the workers “dominant” job, or the employer
from which the worker made the most in the calendar year.

Table 1.8: Distribution of jobs per person per year

Number of person-years
1 413, 553, 000
2 77, 735, 000
3 11, 611, 000

4+ 2, 047, 000

Note: All counts are rounded to the nearest thousand. This table deconstructs the
gap between row 2 and row 3 in Table 1.7. The column sum is row 3 in Table 1.7. This
shows among workers in the sample of workers with dominant jobs the distribution
of the number of continuous and full quarter jobs in a year.

Table 1.9: Type of earnings in the annual dominant job dataset

Type of earnings Number of person-years
Full quarter 458, 017, 000
Continuous quarter 46, 928, 000
Continuous quarter share 0.093

Note: All counts are rounded to the nearest thousand. The column sum is the number
of person-years in row 3 in Table 1.7. A worker is employed full-quarter in quarter
t if she has earnings from her employer in quarter t and quarters t− 1 and t + 1. A
worker is comployed in a continuous quarter way in quarter t if she has earnings from
her employer in quarter t and quarter t− 1 or quarter t+ 1.
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Table 1.10: Number of years per person

Number of people Share
1 14,041,000 0.133
2 11,422,000 0.108
3 9,873,000 0.093
4 9,111,000 0.086
5 8,963,000 0.085
6 10,396,000 0.098
7 42,115,000 0.398

Note: All counts are rounded to the nearest thousand. The column sum is the number
of unique people in row 3 in Table 1.7.

Table 1.11: Dominant employers per person

Number of dominant employers Number of people Share of people
1 52,938,000 0.500
2 27,228,000 0.257
3 14,945,000 0.141
4 7,157,000 0.068
5 2,764,000 0.026
6 771,000 0.007
7 118,000 0.001

Note: All counts are rounded to the nearest thousand. The column sum is the number
of unique people in row 3 in Table 1.7.

Table 1.12: Number of years per match

Years per match Matches (person-employers) Share of matches Share of person-years
1 93,327,000 0.466 0.185
2 39,176,000 0.196 0.155
3 19,842,000 0.099 0.118
4 12,295,000 0.061 0.097
5 8,573,000 0.043 0.085
6 6,745,000 0.034 0.080
7 20,175,000 0.101 0.280

Note: All counts are rounded to the nearest thousand. The column sum in the
first column is the number of matches, and is approximately 200,000,000, and so is
between the number of unique people and the number of person-years. The next
column shows the distribution by share of matches. The last column shows the
distribution of person-years.
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Table 1.13: Composition of separations in the quarterly dataset

Type of transition Definition Number
employer-to-nonemployment Standard 131,621,000
employer-to-employer Standard 76,152,000
employer-to-employer New 2,680,000
employer-to-employer transition share 0.375
New definition share 0.035
Total separations 210,453,000

Note: All counts are rounded to the nearest thousand. The dataset is the quarterly
dataset, and so includes some workers not in the annual dataset. The standard def-
inition uses overlapping quarters to measure employer-to-employer transitions. The
new definition uses stability of earnings to measure employer-to-employer transitions.

Table 1.14: Workers frequently move across industries and locations

Moves with employer-to-employer and employer-to-nonemployment employer-to-employer (endog) employer-to-employer (all) Single-Unit Only?
different...
State 0.12 0.10 0.10
County 0.65 0.64 0.63
Sector 0.65 0.61 0.60
4 digit industry 0.81 0.79 0.78
State 0.12 0.10 0.10 X
County 0.56 0.53 0.52 X
Sector 0.60 0.56 0.56 X
4 digit industry 0.77 0.74 0.73 X

This table reports the share of annual moves that cross geographic and industry
boundaries. The bottom panel reports the moves that are between single-unit em-
ployers.
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Table 1.15: Variance decompositions of earnings and utility

Dummy set Log Earnings Firm-level earnings (Ψ) Firm-level utility (V e)
State 0.03 0.06 0.02
County 0.10 0.12 0.05
Sector 0.40 0.37 0.42
3 digit industry 0.51 0.46 0.49
4 digit industry 0.57 0.52 0.56
Size groups 0.03 0.03 0.03

Single-units only
State 0.03 0.05 0.01
County 0.12 0.13 0.04
4 digit industry 0.51 0.45 0.40
Size groups 0.06 0.06 0.08

The sample is column (4) in Table 1.1.
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Table 1.17: Variance decomposition of earnings by subgroup

Strongly connected by employer-to-employer
All Men Women Old Young

(35-61) (18-34)
(1) (2) (3) (4) (5)

Sample size
People-years 470,387,000 233,475,000 223,113,000 271,736,000 181,222,000
People 100,547,000 50,474,000 47,918,000 58,402,000 49,053,000
Employers 1,971,000 1,279,000 1,237,000 1,260,000 1,353,000
Summary statistics
Mean log earnings 10.45 10.62 10.27 10.66 10.14
Variance of log earnings 0.69 0.69 0.61 0.62 0.61
Share of variance of earnings explained by each parameter set
Employers 0.22 0.22 0.23 0.20 0.27
People 0.55 0.55 0.54 0.71 0.63
Covariates 0.11 0.13 0.11 -0.01 -0.04
Overall fit of AKM decomposition
R2 0.88 0.89 0.87 0.90 0.85
Adj. R2 0.85 0.86 0.83 0.87 0.79

Sample counts are rounded to the nearest thousand. Column (1) reproduces column
(3) from table 1.1. The data is at an annual frequency. There is one observation
per person per year. The observation is the job from which a person made the most
money, but only if she made at least $3250 ($2011). The table includes person-years
in which on December 31 of the year the person was 18-61 (inclusive).

Figure 1.15: States used in analysis

Note: Figure shows the states used in analysis.
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Table 1.18: Why do some firms pay so much and some so little? Subgroups

Panel A. Compensating differentials’ share
Group All

(1) All 0.25
(2) Men 0.31
(3) Women 0.21
(4) Old (35-61) 0.10
(5) Young (18-34) 0.36

B. Correlations by firm characteristics:
State Sector

Corr(Ṽ ,Ṽ x by x) 0.97 0.76

Panel A reports results analogous to table 1.5. Row (1) reproduces results from the
first row in column (4) in table 1.5. The state-by-state exercise in Panel F contains
94.1% of the SEINs in column (3) of table 1.1, which represent 99.3% of the person-
years. The sector-by-sector exercise in Panel F contains 45.4% of the SEINs and
89.2% of the person-years.

Figure 1.16: Change in firm effect does not predict magnitude of earnings change in
a matching model
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1.16 Appendix: Simulating models using individual data

1.16.1 Hall and Mueller (2013)

I simulate using the parameter values in the κ = 0 column of Hall and Mueller

(2013, Table 2, pg. 20). To simplify matters, I remove the standard deviation of

personal productivity and the reference value of non-wage value (σx and n̄). The

only relevant equation is then the mass balance equation:

G(v) =
λF (v)u

(1− u)[λ(1− F (v)) + s]
. (1.80)

where G is the distribution of job value in the employed distribution, F is the distri-

bution of job values in the accepted offer distribution, u is the unemployment rate,

s is the job destruction rate, and λ is the arrival rate of offers on and off the job.

v = y + n, or job value is the sum of earnings and nonpecuniary characteristics. The

parameter values I use are:

Parameter Explanation Value Notes

µy mean of offers 0.37 (or 2.75-2.38)

σy stdev of wage 0.304 in F

σn stdev of non-wage value 0.882 in F

λ offer arrival rate on/off job 0.058

s job destruction rate 0.0041

u = s
λ+s

u/e rate 0.0660

The key parameters are σy and σn. The Hall and Mueller (2013) estimates imply

more variance in the value of nonpecuniary characteristics than earnings. I consider

a million draws from the offer distribution and use equation (1.80) to compute the

steady state distribution. I then compute the R2 between y and v in G.

1.16.2 Sullivan and To (2014)

The key mass balance equation in Sullivan and To (2014) is:

G(v) =
λuF (v)Pr(v > U∗)u+ λleF (v)Pr(v > U∗)(1− u)

[λe(1− F (v))Pr(v > U∗)(1− u) + (1− u)s+ λleF (v)Pr(v > U∗)(1− u)]
,

(1.81)

where Pr(v > U∗) is the probability that the offer exceeds the reservation utility, λu

is arrival probability of an offer when unemployed, and λe is the arrival probability
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of an offer when employed, λle is the reallocation shock (and I have changed some

notation). Sullivan and To (2014) allow for unobserved heterogeneity and fit three

types. The following table reports the values I use and is taken from Sullivan and To

(2014, Table 2, pg. 489, specification 1). (The bottom two rows are computed as a

function of the rest of the table.)

Parameter Explanation Type 1 Type 2 Type 3

σy stdev of wage in F 0.3435 0.3435 0.3435

σn stdev of non-wage value in F 0.3908 0.3908 0.3908

µy mean wage of offers 1.1774 1.7252 2.1766

U∗ reservation utility 1.8163 1.8948 1.9869

λu offer while unemp 0.9198 0.6299 0.1421

λe offer while emp 0.4214 0.5348 0.0365

λle reallocation 0.2545 0.0214 0.0016

s job destruction rate 0.0905 0.0529 0.0345

Pr(v > U∗) prob. of accepting an offer 0.1098 0.3726 0.6416

u = s
λuPr(v>U∗)+s

u/e rate 0.4726 0.1839 0.2745
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CHAPTER II

Why do men and women work in different firms?

Men are more likely than women to work in both high-wage firms and high-wage

industries. This sorting component accounts for 9 log points of the 36 log point

(about 25%) gender earnings gap in the United States. A core interpretive issue is

whether this sorting component reflects discrimination or differences in preferences.1

The discrimination explanation is that women would like to work at the same firms

or in the same industries as men, but are prevented from doing so. The preference

explanation is that there are nonpecuniary characteristics that differ across the low-

and high-paying firms and women value these nonpecuniary characteristics more than

men. For example, women might highly value flexibility while men do not.

In this chapter, I build on chapter 1 to shed light on these two explanations. I

begin by establishing the key fact that this paper is interested in understanding: men

are at higher-paying firms than women in the United States, and more generally, that

men and women are sorted in the labor market. Building on Card, Cardoso, and

Kline (2015), I estimate the Abowd, Kramarz, and Margolis (1999) decomposition

separately for men and women. This decomposition amounts to using the complete

set of wage changes of workers who switch firms to estimate a firm effect in earnings.

Estimating the decomposition separately for men and women allows me to construct

gender-specific earnings premia at each firm. I reproduce the finding of Card, Cardoso,

and Kline (2015) that the sorting of men and women across firms is quantitatively

important; indeed, I find that the sorting component is more important in the U.S.

than in their Portugese context.

I then turn to understanding why men and women are sorted. Following Sorkin

(2015a), I write down a partial equilibrium utility-posting search model in the spirit

1See, for example, the Council of Economic Advisers (pg. 3, 2015) https://www.whitehouse.

gov/sites/default/files/docs/equal_pay_issue_brief_final.pdf and Card, Cardoso, and
Kline (2014, pg. 30-31).
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of Burdett and Mortensen (1998) where the only nonstandard ingredient is that firms

post utility offers which combine a wage and a nonpecuniary bundle, and there is

a (transitory) idiosyncratic utility draw in each match, which explains why people

might make different choices. The model estimates revealed values of employers by

taking into account the network structure of accepted offers and rejected offers.

The model embeds versions of both the preference and discrimination explanations

for why men and women are sorted. The preference explanation in the model is that

men and women rank firms differently and so given the same set of opportunities

would end up in different firms. The discrimination explanation in the model is that

men and women receive a different set of offers, and so given the same preferences

end up in different firms.

To separate the preference and discrimination explanations, I estimate the model

separately by men and women. The implicit assumption in this exercise—as with

standard earnings decomposition exercises—is that men and women operate in sep-

arate labor markets. This allows me to estimate separate offer distributions (oppor-

tunities), values (preferences), and earnings for men and women. In particular, I am

able to estimate separate offer probabilities, values and earnings for men and women

firm-by-firm. While the model relies on numerous strong assumptions, estimation

is completely nonparametric along the dimensions that this paper is interested in.

Namely, I impose no assumptions on the shape of the offer distribution, no assump-

tions on the distribution of employer values, and no assumptions on the relationship

between men’s and women’s preferences or offer distributions.

My principal results are as follows. First, I find that men and women are system-

atically sorted in the labor market. About 60% of men’s co-workers are men, while

only about 40% of women’s co-workers are men. This finding is quantitatively consis-

tent with the results for the U.S. in Hellerstein, Neumark, and Mcinerney (2008, pg.

183). Second, I find that this sorting explains over 25% of the earnings gap (given

the nature of the data, some of this might include differences in hours). This finding

is robust to using men’s earnings or women’s earnings to compute how well-paying

firms are. This extends the finding of Card, Cardoso, and Kline (2015) (for Portugal)

that men are systematically employed in higher-paying firms than women.

I then use the model to interpret the reasons and consequences of sorting. The

model points to differences in the offer distribution rather than differences in prefer-

ences to explain why men and women are sorted. Men’s and women’s preferences over

firms are estimated to be highly correlated. For example, the overall estimated values

have a correlation of 0.89. When I aggregate to the 4-digit industry level (which
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explains 2/3s of the sorting component of the gender wage gap), the correlation is

0.98. But I estimate that women search from a lower-paying distribution. This result

should be interpreted cautiously since—as I discuss further in the conclusion—the

offer distribution is a reduced-form object that may itself contain revealed preference

information (put differently, the fact that women are less likely to receive offers from

high-paying firms may reflect the fact that they do not want to work at those firms,

rather than the fact that they do not receive offers from these firms). The model

also allows me to compare the distribution of employer values at the firms that em-

ploy men relative to the firms that employ women. Taking the model at face value,

the estimates indicate that men and women are at approximately equal-valued firms

regardless of whether it is men’s or women’s values that are used to value the firms.

2.1 Matched employer-employee data

To be able to study the extent to which men and women are sorted into firms

requires matched employer-employee data. I use the U.S. Census Bureau’s Longi-

tudinal Employer Household Dynamics (LEHD) dataset. This quarterly dataset is

constructed from employer Unemployment Insurance (UI) filings.2

This section draws on the discussion in Sorkin (2015a).

2.1.1 Data description

Being constructed from unemployment insurance records implies four features

that should be kept in mind when interpreting the results. First, the notion of an

employer in this dataset is a state-level unemployment insurance account.3 This is

desirable in the sense that a “smaller” notion of an employer means that working

conditions are probably more similar. On the other hand, it means that I will not

capture segregation within firms (i.e. men work in the executive office, and women

work in the field). Second, only employers that are covered by the UI system appear

in the dataset.4 Overall, in 1994 the UI system covered about 96% of employment

2See Abowd et al. (2009) for complete details.
3For employers that operate in multiple states, this understates true employer size. Similarly, it

is possible for a given employer to have multiple UI accounts within a state, which would also lead
to an understatement of true employer size, though this is quantitatively unimportant. Personal
communication from Henry Hyatt (dated June 12, 2014): “the employment weighted fraction of
firmids with multiple SEINs [state employer identification number] in a given state is about 1.5%,
and...this fraction is actually lower in some of the larger states.”

4This restriction results in the exclusion of certain sectors of the economy. In particular, small
nonprofits (those employing fewer than four workers), domestic, self-employed, some agricultural
workers and federal government (but not state and local government) are excluded. For more
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and 92.5% of wages and salaries (BLS (1997, pg. 42)). Third, the LEHD allows me to

measure earnings, but not hours.5 Thus, variation in these benefits as well as hours

will be included in my measure of compensating differentials. This means that to the

extent that women work in firms that tend to offer more part-time jobs, then this

will be captured in the sorting component of the gender earnings gap (in contrast,

Card, Cardoso, and Kline (2015) have hours in their Portuguese data). Finally, unlike

the Portuguese data used by Card, Cardoso, and Kline (2015), the LEHD does not

contain occupation data.

Being able to track employers over time is central to measuring employer-to-

employer flows. The LEHD contains unique longitudinally-consistent employer iden-

tifiers. Administrative errors in the longitudinal linkages would lead to an overstate-

ment of flows. In addition, business reorganizations, i.e. mergers and acquisitions

or spinoffs, might lead to measured flows that are not economically relevant. Fol-

lowing Benedetto et al. (2007) I correct the longitudinal linkages using worker flows.

I use the Successor-Predecessor File and assume that if 70% or more of employer

A’s workers moved to employer B, then either employer B is a relabelling of em-

ployer A, or else employer B acquired employer A, and so I do not count this as an

employer-to-employer transition.

Like the dataset used by Topel and Ward (1992), the LEHD contains age, race

and sex. I pool data from 27 states from the fourth quarter of 2000 to the first quarter

of 2008.6 Pooling data means that I keep track of flows between as well as within

these states.

2.1.2 Dataset construction

To define a worker’s employer, I reduce my dataset to one observation per person

per year. The observation is the worker’s dominant employer: the employer from

which the worker made the most money in the calendar year. In addition, to facilitate

coding transitions, I require that the worker had two quarters of employment at the

complete discussions see Kornfeld and Bloom (1999, pg. 173), BLS (1997, pg. 43) and http:

//workforcesecurity.doleta.gov/unemploy/pdf/uilawcompar/2012/coverage.pdf.
5The notion of earnings captured by UI records is as follows: “gross wages and salaries, bonuses,

stock options, tips and other gratuities, and the value of meals and lodging” (BLS (1997, pg. 44)).
This omits the following components of compensation: “employer contributions to Old-age, Sur-
vivors, and Disability Insurance (OASDI); health insurance; unemployment insurance; workers com-
pensation; and private pension and welfare funds” (BLS (1997, pg. 44)).

6I use the following states: CA, FL, GA, HI, ID, IL, IN, KS, MD, ME, MN, MO, MT, NC, ND,
NJ, NM, NV, PA, OR, RI, SC, SD, TN, VA, WA, and WI. See Appendix Figure 1.15 for a map.
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employer and that the second quarter occurred in the calender year.7 I also restrict

attention to workers aged 18-61 (inclusive) and, following Card, Heining, and Kline

(2013), require that the annualized earnings exceed $3250 (in 2011 dollars). With an

annualized dataset it is not possible to infer whether a change in dominant job was

an employer-to-employer transition or an employer-to-nonemployment-to-employer

transition.

See the appendices in Sorkin (2015a) for more details.

2.2 The sorting component of the gender earnings gap

This section shows how to establish the facts that this paper seeks to understand:

women and men work at different firms and women work at lower-paying firms than

men.

2.2.1 Sample and sorting

Table 2.1 describes the sample as well as the effects of various sample restrictions

I make to be able to estimate the search model. The table shows that women make

less than men, and women and men are sorted in the labor market.

Columns (1) - (3) contain information about men, while columns (4) - (6) contain

information about women. Column (1) shows that I start with about 260 million men-

years, 55 million men, and 4.7 million employers. In the set of firms strongly connected

by EE moves of men, there are 50 million men and 1.3 million firms. Column (2) shows

that firms account for about 22% of the variance of earnings between men. Column

(3) shows that when I restrict attention to the set of firms where I can estimate firm

effects and the model for both men and women, I have around 200 million men-years

and 46 million men. Looking at the summary statistics, the means and variance of

earnings do not change by very much when I restrict the sample.

For women, column (4) shows that I start with about 245 million women-years, 51

million men, and 4.6 million employers. In the set of firms strongly connected by EE

moves of men, there are 48 million women and 1.2 million firms. Column (5) shows

that firms account for about 23% of the variance of earnings between men. Column

7Reduction to one observation per person per year is common. See e.g. Abowd, Kramarz,
and Margolis (1999) (France), Abowd, Lengermann, and McKinney (2003) (US), Card, Heining,
and Kline (2013) (Germany), and Card, Cardoso, and Kline (2014) (Portugal). Even outside of
estimating AKM Bagger et al. (Forthcoming) also reduce to one such observation since in Danish
administrative data the wage is only observed for the worker’s employer in November. See Taber
and Vejlin (2013) for a discussion of this point (they use Danish data but preserve more than one
job per year, but only have one earnings observation per year).
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(6) shows that when I restrict attention to the set of firms where I can estimate firm

effects and the model for both men and women, I have around 200 million women-

years and 46 million men. Looking at the summary statistics, the means and variance

of earnings do not change by very much when I restrict the sample. It is interesting to

note that the gender wage gap slightly decreases in the overlapping set of employers:

from 0.35 log points to 0.33 log points.

The bottom panel of the table shows that men and women are sorted in the labor

market. In the sample that I can estimate the model in (column (3)), 60% of men’s

co-workers are men, while 40% of women’s co-workers are women. This degree of

segregation is slightly less than what I find in the overall sample.

2.2.2 Measuring high-paying firms

One candidate explanation for why men and women work in different firms is

that the firms that are high-paying for men are not high-paying for women. If high-

paying firms for women were different than for men, then based solely on comparative

advantage considerations it would not be surprising to see that men and women work

in different firms. This section describes how to measure high-paying firms separately

for men and women. The notion of a high-paying firm conditions on person fixed

effects, and so addresses the possibility that high-paying reflects differences in human

capital or other fixed characteristics.

To measure the earnings offered by firms, I use the following equation for log

earnings (known as the Abowd, Kramarz, and Margolis (1999) decomposition):

ywt︸︷︷︸
log earnings

= αw︸︷︷︸
person effect

+ ΨJ(w,t)︸ ︷︷ ︸
firm effect

+ x′wtβ︸︷︷︸
covariates

+ rwt︸︷︷︸
residual/error term

, (2.1)

where ywt is log earnings of person w at time t, αw is a person fixed effect, ΨJ(w,t) is

the firm fixed effect at the employer j where worker w is employed at time t (denoted

by J(w, t)), and r is an error term. Canonically, x is a set of covariates including

higher-order polynomial terms in age.8

By estimating equation (2.1) for men and women separately, I allow firms that

are high-paying for men to be low-paying for women. Equation (2.1) is identified by

workers who switch between firms.9 It might be that men have systematically different

8Because I only use 7 years of data, the linear terms in the age-wage profile are highly correlated
with the person fixed effects and so, following Card, Heining, and Kline (2013) are omitted.

9As in Sorkin (2015a), I can estimate equation (2.1) using EE and ENE transitions, or just EE
transitions and it turns out that I get quantitatively very similar results.
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patterns of earnings changes than women. In addition, because this is identified by

switchers, it removes the time-invariant person effects captured in the αw, which

might includes differences in human capital.

To quantify the role of sorting in the earnings gap between men and women, I can

use two sets of “prices.” Considering equation (2.1), the earnings gap is∑
w∈M

∑
t ywt

Nm

−
∑

w∈F
∑

t ywt

Nf

, (2.2)

where M is the set of male workers, F is the set of female workers, Nm is the total

number of male person-years and and similarly for Nf . I quantify the role of sorting

across firms using either the “male” or “female” prices, denoted Ψm
J(w,t) and Ψf

J(w,t)

respectively.

2.2.3 Role of sorting in gender earnings gap

Sorting explains a large share of the gender earnings gap, regardless of whether

men’s and women’s prices are used. Panel A of table 2.2 shows that regardless of

whether men’s or women’s firm-specific-pay is used, the sorting of men and women

across firms explains about 25% of the gender earnings gap documented in table

2.1. This is quantitatively larger than what Card, Cardoso, and Kline (2015) find

for Portugal (they find that the sorting component is about 15%). One plausible

explanation is that in the Portuguese data they observe hours and so part of what

the sorting component is picking up is differences in hours; that is, there are high-

and low-hours firms, and men are women are sorted on this basis. Figure 2.1 depicts

the sorting component graphically. It shows the distribution of firm-level earnings at

the firms where men and women work for two different sets of “prices:” firm effects

estimated using the earnings changes only of men, and only of women. In both

panels it is clear that the women’s distribution is left-shifted. That is, women work

at lower-paying firms.

Sorting across industry explains a large share of the sorting component. In panel

B of table 2.2, I aggregate the firm-specific earnings premia to the 4-digit industry

level (there are 312 of them). The sorting across industry explains about 75% of the

sorting component.

Sorting across locations—i.e. the relative labor supply of men and women differs

across high- and low-paying locations—is quantitatively small. Panel C shows that it

explains about 3% of the gender earnings gap, or about 10% of the sorting component.
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2.3 A model to understand sorting

The previous section established that men and women are sorted in the labor

market. A key issue is why. This section writes down a model which contains three

explanations for why men and women are at different firms. First, it might be harder

for women to climb the job ladder. Formally, the “search” parameters, {{δ}, {ρ}, λ1},
might differ by gender so that women are more likely to lose their jobs involuntarily,

or less likely to receive outside offers. Second, preferences might differ. In the model,

this is reflected in differences in the gender-specific firm-level values V e. Third, op-

portunities might differ. This is reflected in differences in the gender-specific offer

distributions, or f e.

The model is a partial equilibrium search model in the spirit of Burdett and

Mortensen (1998) where firms post utility offers. These utility offers might differ

between men and women. The utility offers consist of a combination of earnings and

amenities. Formally,

V e = ω(Ψ + a)

where V e is the firm-specific values, the Ψ is the firm-specific earnings from the

previous section and a is a bundle of amenities.

Preference differences arise in the model because men and women might have

different V e at a specific firm, which might be due gender specific differences in either

earnings or amenities. For example, if there are flexible and inflexible firms and

women value flexibility more than men, then at a firm i ai, women > ai,men and so

all else equal women would value firm i more highly. On the other hand, differences

in pay would also be included as differences in preferences. If men and women have

the same values a at firms, but different levels of earnings at firms, Ψ, then this

would also generate differences in valuations and would generate sorting in the labor

market. Because preferences are only identified up to a constant factor, it might be

women extract less “utility” from the labor market than men, but I will not be able to

identify this; for example, an important finding of Card, Cardoso, and Kline (2015) is

that in Portugal on average Ψwomen = 0.9Ψmen, but I cannot make similar statements

about the Ve.

Discrimination (or differences in opportunities) arises in the model through the

offer distribution, f ei . When employed and unemployed, men and women receive offers

drawn at random from the offer distribution. Differences in the offer distribution

naturally give rise to differences in where men and women work—even if men and

women have identical preferences.
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A final reason why men and women might be employed in different firms is that

the search parameters differ. In the model, an employed worker receives a job offer

at rate λ. If this parameter differs between men and women, then they would end up

in different firms. Intuitively, a higher draw of λ allows workers to climb the ladder

faster. The model also has various exogenous shocks—a shock that forces a worker

to make an EE transition (ρ) and one that forces a worker to go to nonemployment

(δ)—that might differ by gender. Differences in these parameters can also generate

sorting in the labor market for the same reason as differences in λ: it might be harder

for women to climb the ladder.

The remainder of this section closely follows Sorkin (2015a). While I allow for

differences in preferences between men and women, I allow for a very limited form

of preference heterogeneity among men and women. Each period a worker receives

a new idiosyncratic utility draw, which is the preference heterogeneity in the model.

This preference heterogeneity explains why two workers would make different choices

and so we would observe workers moving from A to B and B to A. This is probably

the most controversial assumption in the model. According to this assumption, all

worker choices tell us the same thing about firms, whereas in richer models decisions

of workers at different points in their careers tell us different things.

A key additional assumption in the model is what Hall and Mueller (2013) term the

proportionality-to-productivity hypothesis. The only form of persistent heterogeneity

the model accommodates among men and women is a worker-w-specific constant

which enters the flow payoff to all employers as well as nonemployment. The search

parameters are the same for all workers and so I can use the structure of the search

model to infer rejected offers.

The following Bellman equation summarizes this verbal discussion of the model (I

omit the gender specific subscripts for notational compactness). A worker at employer
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i has the following value function:10

V e(vi)︸ ︷︷ ︸
value of being at i

= vi︸︷︷︸
flow payoff

+ β︸︷︷︸
discounter

E
{

δi

∫
ι1

{V n + ι1}dI

︸ ︷︷ ︸
exogenous job destruction

+ (2.3)

ρi(1− δi)
∫

V e(v′)

∫
ι2

∫
ι3

V n + ι3︸ ︷︷ ︸
EN

dIdIdF

︸ ︷︷ ︸
exogenous employer-to-employer (reallocation)

+ (1− ρi)(1− δi)︸ ︷︷ ︸
no exogenous shocks

×
[
λ1︸︷︷︸
offer

∫
V e(v′)

∫
ι4

∫
ι5

max{V e(v′′) + ι4︸ ︷︷ ︸
accept

, V e(vi) + ι5︸ ︷︷ ︸
reject

}dIdIdF

︸ ︷︷ ︸
endogenous employer-to-employer

+ (1− λ1)︸ ︷︷ ︸
no offer

∫
ι6

∫
ι7

max{V n + ι6︸ ︷︷ ︸
accept

, V e(vi) + ι7︸ ︷︷ ︸
reject

}dIdI

︸ ︷︷ ︸
endogenous job destruction

]}
. (2.4)

Reading from left to right, a worker employed at i has value V e(vi). This value consists

of the deterministic flow payoff, vi, and the continuation value, which she discounts by

β. The flow payoff is the same for all workers at employer i and is the basis on which

the model ranks and values employers. It represents the utility-relevant combination

of pay, benefits and non-wage amenities such as working conditions, status, location

or work-life balance at employer i. In addition, in every state workers also receive an

idiosyncratic utility draw ι, which is drawn from a type I extreme value distribution.

The continuation value weights the expected value of four mutually exclusive

possibilities. Two possibilities generate EE transitions. A worker can be hit by a

reallocation shock and forced to take a random draw from the offer distribution, or

she can receive an offer and make a maximizing decision of whether to accept or

reject it. And two possibilities generate EN transitions. A worker can be hit be

a job destruction shock and forced to move to nonemployment, or she can make a

maximizing choice to quit to nonemployment.

To estimate the offer distribution, I use information in where workers who are

hired from nonemployment end up. Formally, a worker who is unemployed has the

10The value does not include the current period’s idiosyncratic draw. See Arcidiacono and Ellick-
son (2011, pg. 368) for further discussion of this point.
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Bellman equation:

V n︸︷︷︸
value of being nonemployed

= b︸︷︷︸
flow payoff

(2.5)

+ β︸︷︷︸
discounter

E{ λ0︸︷︷︸
offer

∫
V e(v′)

∫
ι8

∫
ι9

max{V e(v′) + ι8︸ ︷︷ ︸
accept

, V n + ι9︸ ︷︷ ︸
reject

}dIdIdF

︸ ︷︷ ︸
endogenous nonemployment-to-employment

+ (1− λ0)

∫
ι10

(V n + ι10)dI

︸ ︷︷ ︸
no offer

}. (2.6)

Reading from left to right, an unemployed worker receives a total value of nonem-

ployment of b, which includes both unemployment benefits as well as the value of non

market time and household production. Then each period two things might happen.

She might receive an offer from an employer, in which case she decides whether or

not to accept it. Or nothing might happen in which case she receives a new draw of

nonemployment.

2.3.1 Estimation/identification

While Sorkin (2015a) provides complete details on how I estimate the model, this

section provides an informal discussion of the features of the data that are used to

identify each of the three classes of explanations.

The preference and opportunity explanation are identified by different features

of how workers do and do not move across firms. The firm-level values take into

account all of the information in how workers move across firms (i.e. the number of

workers moving from firm A to B and from B to A), as well as how workers move

between firms and nonemployment. In addition, the firm-level values account for the

possibility of rejected offers by comparing the size of firms to their prominence in the

offer distribution.

The offer distribution is separately identified from the firm-level values because the

offer distribution is estimated mainly using the information in flows from nonemploy-

ment to each firm, whereas the firm-level values also use the flows between employers

as well as the flows from each firm to nonemployment. This does mean that there is

a mechanical tendency for the model to find that firms that are more prominent in

the estimated offer distribution have lower values.

The search parameters are identified by a variety of features of the data. To
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identify the shocks, I rely on the growth rates of firms at the time the worker was

separating. Excess probabilities of separating at contracting firms are treated as

shocks. To identify the arrival rate of offers, the model matches the level of employer-

to-employer transitions.

2.4 Explaining sorting

This section uses the model estimates to show that it is differences in the offer

distribution that explain why women work at lower-paying firms than men.

Differences in the search parameters are unlikely to explain sorting because they

are very similar by men and women. Table 2.3 shows the parameters in the search

model by men and women separately. The parameters are very similar. One notable

commonality is that women in general have “better” transitions: a slightly higher

share of their transitions are EE (recall that if a person leaves the sample, then this

is not counted as a transition—so a woman leaving the labor force would not count

as an EN), and women are also slightly less likely to be displaced.

Differences in preferences are unlikely to explain sorting. Table 2.4 displays the

correlations between men’s and women’s values. The overall correlation is 0.89, so this

does not leave a lot of room for preferences to explain sorting across firms. Recall from

table 2.2, however, that industry explains about two-thirds of the sorting component

of earnings gap between men and women. Panel C shows that at the industry level the

correlation between men’s and women’s values is 0.98. So there is not much room for

preferences to explain sorting at this level (though there might be within industry).

These similarities in preferences imply that the men and women have similar

rankings of amenities at firms. Recall that the values at firms are the sum of amenities

and earnings. The table 2.4 shows that what are high-paying firms for men, are also

high-paying firms for women with a firm-level correlation of 0.92 and an industry-

level correlation of 0.97. Since the values and earnings are similar, it must be that

the valuations attached to the amenities are also similar. Note that this result is

consistent with the findings of Card, Cardoso, and Kline (2015) in that their results

are not about men and women ranking firms differently.

Differences in the offer distribution are likely to explain sorting. The first piece of

evidence is by process of elimination: the model contains three explanations and I have

just discussed why the non-offer distribution reasons are likely to be quantitatively

unimportant in explaining sorting.

More direct evidence comes from directly considering the offer distributions. Table
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2.5 shows that the offer distribution from which women search contains lower-paying

firms. The difference is about 4 or 5 log points, which is about half of the gap overall.

Figure 2.2 shows the same result graphically that women search from a lower paying

offer distribution than men.11 An interesting additional observation is that both offer

distributions are left-shifted relative to the employed distributions depicted in 2.1,

which is a prediction of search theory and this finding is not mechanical because I do

not use the earnings data in estimation of the offer distribution.

2.5 Consequences of sorting

Unlike in earnings where it is unambiguous that women are at worse firms than

men, when measured by utility the answer is less clear. Panel A of table 2.6 shows

that when using the utilities estimated using choices of both men and women that

men are at slightly better firms (the gap is 0.01, where the units are normalized by

a type I extreme value distribution with variance 1). Using male valuations, men

are at slightly better firms than women, while using female valuations, women are at

slightly better firms than men.

The differences in the values of men and women are quantitatively very small

relative to the dispersion in the values. Figure 2.3 provides a graphical depiction of

the sorting component of the gender earnings gap, but with utilities. It shows the

distribution of firm-level utilities at the firms where men and women for two different

sets of “prices:” firm-level utilities estimated using the choices of men only, and of

women only. In both panels, the left shift of the women’s distribution that is apparent

in the earnings is not apparent in the utilities.

Panel B of table 2.6 shows that women would be made worse off by switching

industry distributions with men. According to the estimates, women would see a

slight decline in utility by switching industry locations with men, and men would

similarly be made slightly worse off by switching places with women. (Recall from

table 2.2 that sorting across industry accounted for about two-thirds of the sorting

component of the earnings gap.)

Finally panel C of 2.6 shows that women would prefer the location distribution of

where men are employed, but this effect is quantitatively very small.

A natural concern is that the result that men and women are at equal-valued firms

would be baked-in to the estimation procedure. The simplest way to demonstrate that

11Quantifying the contribution of each of these factors would require simulating the model under
various counterfactuals. Figuring out how to do so is left for future work.
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this is not the case is to observe that I can do the same subgroup analysis by young

and old workers (where young means 18-34 and old means 35-61, which approximately

divides the set of EE transitions in half). I find a result similar to men and women

in the sense that: 1) young and old workers are different firms; and 2) this explains a

large share of the earnings gap between young and old workers. But I also find that

young workers would be better off if they were employed at the firms that employ

older workers. Table 2.7 shows these results. Panel A shows that older workers are

at higher paying firms and the magnitude of this gap is similar to that for between

men and women.12 In contrast to the gender earnings gap, panel B shows that young

workers would prefer to switch places with older workers.

2.6 Discussion

This chapter uses a random search model to argue that men and women work

at different firms because of differences in opportunities, rather than differences in

preferences. The chapter interprets differences in opportunities as “search from a

different offer distribution.”

The key interpretive issue is where the different offer distribution comes from.

In a random search model, the exogenous offer distribution is a reduced-form rep-

resentation of the complicated process by which workers direct their search towards

particular firms, and firms direct their search towards particular workers.

Because the offer distribution is a reduced-form representation of worker and firm

behavior it might be possible to interpret the differences in the offer distribution as

containing revealed preference information, which might change the interpretation of

the results in this chapter. The feature of the data that estimates the offer distribution

is where men and women are hired from nonemployment. Outside the structure of

the model, this data can arise because of either supply or demand factors: it might be

that employers do not discriminate at all and men and women simply apply different

places. Then the question is whether we would still want to interpret this endogenous

decision as reflecting discrimination. To make progress on this question would require

a model in which the decision of where to apply is endogenous and arises from an

optimizing decision—i.e. a directed search model.

12Admittedly, the earnings gap between young and old workers is larger than between men and
women. It is 51 log points, as opposed to 33 log points for the gender gap.
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Table 2.2: Decomposing the earnings gap

Men Women Gap (pct. of overall gap)
(1) (2) (3) (4)

Mean log wage 10.63 10.30 0.33

A. Overall
Firm earnings overall 0.09 0.01 0.09 (27)
Firm earnings for men 0.10 0.01 0.09 (27)
Firm earnings for women 0.09 0.00 0.09 (27)

B. Industry-level
Industry earnings overall 0.08 0.02 0.07 (21)
Industry earnings for men 0.10 0.03 0.07 (21)
Industry earnings for women 0.06 0.000 0.06 (18)

C. County-level
County earnings overall 0.05 0.05 0.01 (3)
County earnings for men 0.10 0.09 0.01 (3)
County earnings for women 0.01 0.000 0.01 (3)

In panel’s A - C, the men column weights the prices given in the row name by where
men are employed, while the women column weights the prices given in the row name
by where women are employed. Column (3) then takes the difference between column
(1) and (2).
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Table 2.3: Transition probabilities and model parameters

Symbol Description Men Women
Overall EE Transition Probability 0.10 0.10
Overall EN Transition Probability 0.15 0.14
EE Share of Transitions 0.39 0.41

Pr(displacement | EE) 0.28 0.25
Pr(displacement | EN) 0.36 0.33

δ Exogenous EN probability 0.05 0.05
ρ Exogenous EE probability 0.03 0.03
λ1 Probability of offer on-the-job 0.25 0.25

All probabilities and parameters are annual. The sample for the transition probabil-
ities is column (1) of Table 2.1). A worker only counts as separating if she appears
again in the dataset. The sample for estimating λ1 and below is column (4) of Ta-
ble 2.1. The ρ is related to the calculated probability of making an exogenous EE
transition by (1− δ)ρ. λ1 is estimated from the model.
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Table 2.4: Relationship between men’s and women’s values and earnings

A. Overall Values (V e)
All Men Women

All 1 0.97 0.96
Men 1 0.89
Women 1

B. Overall Earnings (Ψ)
All Men Women

All 1 0.98 0.97
Men 1 0.92
Women 1

C. Industry Values (V e)
All Men Women

All 1 0.99 0.99
Men 1 0.98
Women 1

D. Industry Earnings (Ψ)
All Men Women

All 1 0.99 0.99
Men 1 0.97
Women 1

E. County Values (V e)
All Men Women

All 1 0.97 0.96
Men 1 0.86
Women 1

F. County Earnings (Ψ)
All Men Women

All 1 0.97 0.96
Men 1 0.87
Women 1

Industry is 4-digit industry (there are 312 of them).
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Table 2.5: Comparing the offer distributions

Men Women Gap
(1) (2) (3) (4)

A. Overall
Firm earnings overall -0.07 -0.11 0.05
Firm earnings for men -0.07 -0.11 0.04
Firm earnings for women -0.06 -0.12 0.05

B. Industry-level
Industry earnings overall -0.02 -0.06 0.04
Industry earnings for men -0.01 -0.05 0.04
Industry earnings for women -0.03 -0.08 0.04

C. County-level
County earnings overall 0.04 0.04 0.00
County earnings for men 0.09 0.08 0.01
County earnings for women 0.00 0.00 0.00

In panel’s A - C, the men column weights the prices given in the row name by the
offers that men are estimated to receive, while the women column weights the prices
given in the row name by the offers that women are estimated to receive. Column
(3) then takes the difference between column (1) and (2).
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Table 2.6: Welfare consequences of sorting

Men Women Gap
(1) (2) (3)

A. Overall
Firm utility overall 1.25 1.23 0.01
Firm utility for men 1.22 1.15 0.07
Firm utility for women 1.41 1.42 - 0.01

B. Industry-level
Industry utility overall 1.24 1.25 -0.01
Industry utility for men 1.22 1.20 0.02
Industry utility for women 1.40 1.42 -0.02

C. County-level
County utility overall 1.24 1.24 0.00
County utility for men 1.22 1.21 0.01
County utility for women 1.42 1.42 0.00

In panel’s A - C, the men column weights the prices given in the row name by where
men are employed, while the women column weights the prices given in the row name
by where women are employed. Column (3) then takes the difference between column
(1) and (2).
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Table 2.7: Age decomposition results

Old Young Gap
(1) (2) (3)

A. Earnings
Firm earnings overall 0.09 0.00 0.09
Firm earnings for old 0.06 -0.02 0.08
Firm earnings for young 0.11 0.01 0.09

B. Utility
Firm utility overall 1.44 0.95 0.49
Firm utility for old 1.08 0.67 0.41
Firm utility for young 1.27 0.89 0.38

In panel’s A - B, the old column weights the prices given in the row name by where
older workers are employed, while the young column weights the prices given in the
row name by where the younger workers are employed. Column (3) then takes the
difference between column (1) and (2).
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Figure 2.1: Women are at lower-paying firms no matter how measured

(a) Men’s earnings changes

(b) Women’s earnings changes

These figures show distribution of firm-level earnings, when these earnings are com-
puted using the earnings changes of different groups of workers. The sample of firms
is the same in all three pictures: columns (3) and (6) in table 2.1. The earnings are
normalized so that median value in the male distribution is 0.
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Figure 2.2: Women search from a lower-paying offer distribution, no matter how mea-
sured

(a) Men’s earnings changes

(b) Women’s earnings changes

These figures show the offer distribution facing men and women, where the offer
distribution is parameterized using the firm-level earnings estimated on men and
women separately. The sample of firms is the same in both pictures: columns (3)
and (6) in table 2.1. The earnings are normalized so that 0 is the median in the male
employed distribution (i.e. the male distribution in figure 2.1).
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Figure 2.3: Women are at similarly-valued firms as men, no matter how measured
(a) Men’s choices

(b) Women’s choices

These figures show distribution of firm-level utility, when these utilities are computed
using the choices of different groups of workers. The sample of firms is the same in
both pictures: columns (3) and (6) in table 2.1. The utilities are first all relative to
a common firm, and then normalized so that median value in the male distribution
is 0.
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CHAPTER III

Are there long-run effects of the minimum-wage?

Inflation and rising real wages make most minimum wage increases temporary.1 As

such, the empirical minimum wage literature has made substantial progress estimating

the short-run employment effects of minimum wage increases. This effect appears to

be small.2 Despite apparent consensus, the profession remains divided about the

employment effects of minimum wage increases.3

A reasonable reading of this divide is that there are some questions about the

effects of minimum wage increases for which the empirical consensus provides the

answer. For other questions, however, economists extrapolate differently depending

on whether they think that the relevant short- and long-run employment elasticities

differ.4 To the question: “what is the employment effect of a temporary nominal

minimum wage increase likely to be?”, the empirical consensus suggests that there

are unlikely to be significant employment effects because similar increases have not

1This observation is not new. Stigler (1946, pg. 358) opens with: “The minimum wage provisions
of the Fair Labor Standards act of 1938 have been repealed by inflation.” Baker, Benjamin, and
Stanger (1999) also emphasize the temporary nature of minimum wage increases in the United
States. Of course, there might still be persistent shocks. See the end of this introduction and section
3.6 for more discussion.

2Card and Krueger (1995), Brown (1999) and Neumark and Wascher (2008) survey the vast
minimum wage literature. Autor, Manning, and Smith (2010, pg. 4, n 6)write “We assume no
disemployment effects at the modest minimum wage levels mandated in the US, an assumption that
is supported by a large recent literature.” Such literature includes Card and Krueger (1994) and
Dube, Lester, and Reich (2010). There exist papers that find larger elasticities (e.g. Baskaya and
Rubinstein (2012)).

3An IGM Expert Panel question on February 26, 2013 asked for responses to the statement:
“Raising the federal minimum wage to $9 per hour would make it noticeably harder for low-
skilled workers to find employment.” In the certainty-weighted responses 40% agreed and 38%
disagreed with 22% uncertain. See http://www.igmchicago.org/igm-economic-experts-panel/

poll-results?SurveyID=SV_br0IEq5a9E77NMV .
4Indeed, Brown (1995) and Hamermesh (1995) discuss the possibility of the short- and long-run

differing as an important limitation of the results in Card and Krueger (1995). And Neumark and
Wascher (2008, pg. 65) emphasize the importance of considering long-run impacts.
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resulted in significant employment effects. To the question: “what is the employment

effect—after a few years—of a permanent minimum wage increase?,” the empirical

consensus suggests an answer only if the short- and long-run elasticities of minimum

wage increases are the same. In the United States, this latter question is of immediate

policy relevance: President Obama’s 2013 State of the Union address contained a

proposal to index the Federal minimum wage to inflation, which would be a more

permanent increase.

To contribute to this important debate, this paper studies the empirical implica-

tions of a model that has a distinction between the short- and long-run employment

elasticities. The model is based on the putty-clay nature of capital. It was first infor-

mally discussed in the minimum wage context by Card and Krueger (1995, pg. 366-8)

and I build on the Gourio (2011) version.5 In the model, when firms pay the entry cost

of building a machine, they can freely substitute between capital and labor. Once cap-

ital is installed, a firm cannot change its labor demand. The key features of the model

are that the labor demand choice of an entering firm is a forward-looking, dynamic,

decision that depends on the (expected) stochastic process for minimum wages. And

because only some firms adjust each period, the industry-level labor demand response

to a minimum wage increase is slow, and also depends on the stochastic process for

minimum wages.

The model has two main empirical implications. The first empirical implication

is that the reduced-form long-run effects estimated in the literature are essentially

uninformative about the true long-run elasticity. I simulate employment data from

the model to replicate the dataset used in Dube, Lester, and Reich (2010).6 They find

very small short-run employment effects and, using a common reduced-form long-

run regression, no distinction between the short- and long-run employment effects

of minimum wages in the United States. They interpret these results as evidence

5Putty-clay technology was originally developed in Johansen (1959). The main contribution
relative to Gourio (2011) is to place the model in industry equilibrium by adding a product demand
curve to endogenize product prices and study the dynamics of labor demand. Previously putty-clay
technology has been used to study the effect of energy price changes on the economy (e.g. Atkeson
and Kehoe (1999)), business cycles (Gilchrist and Williams (2000)) and asset pricing (Gourio (2011)).
By deriving dynamic labor demand from dynamic industry equilibrium, the model in this paper
is similar to the dynamic labor demand model based on embodied technology in Caballero and
Hammour (1994). Aaronson and French (2007) also discuss putty-clay technology in the minimum
wage context.

6Neumark, Salas, and Wascher (2013) argue that the identification strategy in Dube, Lester, and
Reich (2010) is problematic because border counties are not a good control group. In simulated
data, the border counties are an appropriate control group for the empirical exercise the literature
has focused on.
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against the view that short- and long-run elasticities differ.7 On the simulated data,

however, the reduced-form regression recovers a long-run employment effect that is

barely different than the short-run employment effect.8

The second empirical implication is that the putty-clay model is consistent with

the pass-through of minimum wage increases to product prices commonly found in the

literature, even though minimum wage increases are relatively temporary. Card and

Krueger (1994, pg. 792) emphasize that their finding of product price rises in response

to minimum wage increases are inconsistent “with models in which employers face

supply constraints (e.g., monopsony or equilibrium search models).” Despite this, the

minimum wage literature has focused on models of search frictions to rationalize the

small employment effects, without focusing on the price results.9

Figure 3.1 suggests why the stochastic process apparently generating US Federal

minimum wage variation is unpromising for finding long-run effects: the variation in

the real value of the Federal minimum wage follows a “sawtooth” pattern of regular

nominal increases that are temporary because they are eroded by inflation and rising

real wages. Meer and West (2013, pg. 10) provide evidence that state-level variation is

similar.10 As such, other countries might present promising opportunities for finding

long-run effects. Unfortunately, the literature suggests that such opportunities are

few and far between (or difficult to exploit). For example, in Dolado et al. (1996)’s

comprehensive survey of minimum wages in Europe, they do not distinguish between

short- and long-run responses. Pereira (2003) studies an interesting coverage change

7This interpretation has entered the policy discussion. Greenstone (2013) writes: “The empirical
evidence now pretty decisively shows no employment effect, even a few year later. See Dube, Lester
and Reich in the REStat.”

8These panel regressions are a generalization of difference-in-diferences. An important challenge
in implementing difference-in-differences is to identify a suitable “control” group for the “treated”
location. Difference-in-difference faces an equally important challenge to identify the “after” period
that contains the treatment effect of interest. In the minimum wage case, the treatment effect of
interest is the long-run employment response, which is confounded both by the presence of dynamics
in the response, and by the time-varying treatment.Keane and Wolpin (2002) highlight a similar
challenge with measuring the behavioral response to welfare.

9Examples include Rebitzer and Taylor (1995),Burdett and Mortensen (1998), Flinn (2006), and
Ahn, Arcidiacono, and Wessels (2011). Bhaskar and To (1999) is an exception. They demonstrate in
a monopsony model with entry and exit that if a minimum wage increase induces enough exit, there
is enough substitution towards capital, and product market power increases rapidly enough in exit,
then it is possible to have both product price increases and employment increases. The theoretical
contribution of this paper relative to Bhaskar and To (1999) is to offer a way of reconciling price
and employment results in a model with perfect competition in both the product and employment
markets.

10In the 2000s, 10 states started indexing their minimum wages to the CPI. Seven states did so in
2007 and one in 2006. Because of the comparatively small number of changes, the Federal minimum
wage increase in mid-2007 and a recession starting in late 2007 , this does not provide a compelling
source of variation to study the long-run effects of indexed changes.
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in Portugal, and finds slightly larger effects at a two year horizon than a one year

horizon, but does not study longer-run effects. And Lemos (2007) emphasizes that

in Brazil minimum wage increases are similarly temporary due to high inflation.

The main exception—also emphasized by Neumark and Wascher (2008)—is Baker,

Benjamin, and Stanger (1999). They find larger long-run effects of minimum wage

increases in Canada than in the US and suggest that this is due to the variation in the

US being less permanent than that in Canada.11 Their long-run elasticity is around

−0.6, which is similar to the long-run elasticity in my model.

My paper complements the work in Baker, Benjamin, and Stanger (1999) by

developing an economic model which formalizes when the nature of the variation

might matter, develops conditions under which the common reduced-form approach

to estimating long-run effects is valid, and shows via simulation how quantitatively

important the temporariness of the variation might be in masking the long-run effect

of minimum wage increases.12

This paper proceeds as follows. Section 3.1 discusses evidence on adjustment

costs, and other mechanisms in the model. Section 3.2 develops the putty-clay model

of labor demand. Section 3.3 analyzes the implications of the model for the inter-

pretation of empirical work. Section 3.4 discusses the calibration and Section 3.5

develops stylized simulations of the model. Section 3.6 shows that given US variation

in minimum wages, the estimated short- and long-run employment effects on data

simulated from the model do not differ. Section 3.7 concludes.

3.1 Model assumptions

3.1.1 Adjustment costs on labor

There is a difference between the short- and long-run elasticities if there are adjust-

ment costs for labor. There is a tradition in the minimum wage literature of arguing

that high turnover among workers in minimum wage industries means that adjust-

11Similarly, Meer and West (2013) argue that temporariness of minimum wage increases means
that it is easier to find effects in flows (hiring and separation rates) rather than stocks (employment
levels) and find some effects on flows consistent with negative employment effects. Dube, Lester, and
Reich (2011), Brochu and Green (2013) and Gittings and Schmutte (2013) present related analyses
of labor market flows following minimum wage increases.

12Two papers present alternative mechanisms in search models to make “masking” arguments.
Pinoli (2010) suggests that anticipation of minimum wage increases might make it difficult to find
effects by altering the timing of the treatment. Gorry (2011) shows in a search model that minimum
wages can have a nonlinear effect in their level and so the relatively low level of minimum wages in
the US might have a relatively smaller effect.
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ment costs are likely small.13 High turnover, however, is evidence against adjustment

costs for changing the identity of workers rather than for changing the number of

jobs.14

There is substantial evidence that establishments incur significant and lumpy costs

to adjust the number of jobs. Hamermesh (1989) documents that establishments ad-

just their number of jobs infrequently, while Hamermesh, Hassink, and van Ours

(1996) documents that even without adjusting the number of jobs the identity of

workers changes. These findings have been confirmed and amplified in other data.15

Under the assumption that the underlying shock process is relatively smooth, the

infrequency of adjustment of the number of jobs points to the importance of lumpy

or fixed adjustment costs at the level of the job. Similarly, empirical models of estab-

lishment level employment dynamics study lumpy adjustment costs on the number of

jobs (e.g. Cooper and Willis (2009)). Finally, companies think about labor demand

in terms of jobs. Lazear (1995, pg. 77) (quoted in Campbell and Fisher (2000))

writes: “Human resource managers think in terms of slots or jobs, and think of these

slots or jobs as being fundamental to the organization of the firm.”

3.1.2 Entry and exit

The price dynamics in the model derive from the empirical feature of the product

market that there is always entry and exit of firms. Aggregate statistics suggest that

there is always entry and exit. For example, 9% of fast food restaurants that existed

in March 2009 exited by March 2010.16 And there is evidence, for example Campbell

and Lapham (2004), that entry and exit among restaurants is responsive to economic

shocks.

3.1.3 Capital heterogeneity

The model formalizes the following idea. If adopting new machines is the way that

firms substitute between capital and labor, then such substitution is unlikely to be

caused by minimum wage increases when these increases are (perceived as) sufficiently

13E.g. Brown, Gilroy, and Kohen (1982, pg. 496) and Card and Krueger (1995, pg. 63).
14Identically, Hamermesh (1993, pg. 207) distinguishes between adjustment costs on gross and

net employment changes.
15The lumpiness of employment adjustment is not confined to manufacturing (e.g. Davis, Faber-

man, and Haltiwanger (2006, pg. 10)). The high flows of workers at firms that are not adjusting
employment is also not unique to manufacturing ( Davis, Faberman, and Haltiwanger (2012)).

16This statistic comes from the Statistics of U.S. Businesses. See http://www2.census.gov/

econ/susb/data/2010/us_naicssector_small_emplsize_2010.xls.
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temporary. Sufficiently temporary increases have little impact on the relative price of

capital and labor over the life of the capital. On the other hand, if the change in labor

costs is permanent, or the differences in labor costs across locations is permanent, then

these technologies will be adopted, or adopted more quickly.

A few examples highlight the idea that labor demand is embodied in the firm’s

choice of capital.17 McDonald’s in Europe plans on replacing many of its cashiers

and their registers with touchscreen terminals so that customers do not interact with

cashiers.18 To do so it needs to purchase new registers that embody the labor-saving

capital. Similarly, in the grocery store industry, self-checkout scanners represent a

labor-saving technology that requires a new capital stock. And self-service gas stations

required new gas pumps.

A similar kind of evidence comes from Seltzer (1997). He studies the seamless

hosiery—sock—industry in the US in the 1930s, which was hit by the implementation

of Federal minimum wages. The fundamental technological choice facing the seamless

hosiery industry was whether to use machines where the top of the stocking was

knit on a different machine than the stocking itself, or machines where the top was

knit on the same machine as the stocking. The most labor-intensive process used

the hand-transfer machine, where the top of the stocking was knit on a separate

machine and then carried by hand to the knitting machine. What is striking in

Seltzer (1997)’s data is that while the lower-wage plants adjusted their capital stock

towards the labor-saving technology, the speed of adjustment was relatively slow:

two years after the change in relative labor costs, the use of the most labor-intensive

machines declined by less than a quarter. Similarly, Lewis (2011) shows how an

influx of low-skilled immigrants slowed the adoption of more technologically intensive

(labor-saving) capital stocks.

These examples are in line with the model because two choices of K
L

require differ-

17Of historical interest, Lester (1946)’s pioneering study cited this mechanism as a reason why the
standard competitive model was misleading for studying the employment effects of minimum wage
increases. Lester (1946, pg. 72-73) writes:

Most industrial plants are designed and equipped for a certain output, requiring a
certain work force. Often effective operation of the plant involves a work force of a
given size...Under such circumstances, management does not and cannot think in terms
of adding or subtracting increments of labor except perhaps when it is a question
of expanding the plant and equipment, changing the equipment, or redesigning the
plant...the decision to shift a manufacturing plant to a method of production requiring
less or more labor per unit of output because of a variation in wages is not one that
the management would make frequently or lightly.

18See Louise Lucas. “McDonalds to shake up food ordering system,” The Financial Times, May
15, 2011.
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ent machines, rather than being able to vary K
L

while using the same machines. Over

the long-term, these new kinds of capital are adopted because their price relative to

labor falls. Minimum wages also affect the relative price of capital and labor. In the

examples, the change in the relative price of capital and labor is permanent and so

the substitution occurs. The idea of the model is that the change in the relative price

of capital and labor induced by a minimum wage increase is temporary and so the

substitution is unlikely to occur.

3.2 The putty-clay model

This section develops a dynamic labor demand model in industry equilibrium (e.g.

Hopenhayn (1992)). The model has three features that make it well-suited to study

minimum wages. First, it models industry-level variables such as prices. Industry

equilibrium means that employment is industry-wide employment as in Dube, Lester,

and Reich (2010), rather than employment within a continuing set of firms as in

Card and Krueger (1994). Second, it explicitly parameterizes the transition path

between the short- and long-run elasticities. Third, the model is sufficiently tractable

that it is possible to derive analytic results both about steady state to steady state

comparative statics, as well as about the response of the model to temporary shocks.

Because minimum wage increases are mostly temporary, the data are dominated by

temporary shocks, so understanding these is essential.

The model is based on the putty-clay model in Gourio (2011), which he uses to

study asset pricing. Putty-clay technology is putty and flexible when firms make their

investment decisions. After installation, the capital hardens to clay and firms can no

longer adjust the labor needs of the capital. Only a small share of firms have their

capital stock expire each period, so market-level labor demand takes time to adjust

to a wage increase.

The model has an alternate interpretation as a time-dependent adjustment cost

model. The Poisson machine expiration process is a stand-in for the endogenous

decision of firms to pay an adjustment cost to change their labor demand. Section

3.2.1.2 discusses why this is not a (particularly) restrictive assumption.

3.2.1 The model

Since this paper is concerned with minimum wages, wages are set exogenous to

the industry. Firms in the industry face a sequence of expected wages given by

Et
[
(wt+j)

∞
j=0

]
, where time is discrete. Minimum wages are always binding. The un-
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certainty in the wage path reflects only uncertainty about minimum wage policy. The

labor market is frictionless and there is an infinite supply of labor at each minimum

wage.

The model is closed with a downward-sloping product demand curve and an entry

condition. The entry condition is that the expected profits of newly entering firms

(or machines) are always zero, though of course firms have to pay an entry fee by

building machines. Firm entry and exit drives the product price responses.

3.2.1.1 Production technology

The continuum of firms produce from a Cobb-Douglas production function, y =

kαl1−α, where k is the amount of capital in the machine, and l is the amount of labor.

Ex-post, production is Leontief so that k and l are chosen when the machine is built,

and are then fixed for the life of the machine.19 Because of constant returns to scale,

normalize to one worker per machine. Setting l = 1, y = kα, where k is the size

of the machine (the capital intensity of production). Machines fail with probability

δ ∈ (0, 1) each time period.

3.2.1.2 Firm maximization

A firm’s entry cost is the cost of building a machine. When a firm builds a

machine at time t, it chooses the capital intensity of a machine and then is stuck

with that choice for the life of the machine. The capital choice takes into account

the present discounted value of product prices and wage, where the discount rate is

the combination of failure probability of the machine and the market discount rate,

β. The price of a unit of capital is normalized to 1.

Let

qt ≡ Et

∞∑
j=0

βj(1− δ)jPt+j (3.1)

be the expected effective present discounted value of product prices (Pt) and let

qw,t ≡ Et

∞∑
j=0

βj(1− δ)jwt+j (3.2)

be the expected effective present discounted value of wages. These quantities are

referred to as present discounted values of product prices and wages. The relative

19In order to make the Leontief assumption binding, capital is industry-specific so that the resale
price of capital reflects the shocks facing that industry.
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prices that the firm faces reflect time-varying prices and wages, but capital intensity

is fixed and the capital cost is paid once.

A firm chooses kt to maximize

Πt = qtk
α
t − qw,t − kt. (3.3)

kt is the capital choice of firms that enter in time t, while k is all active capital in the

industry. Writing the maximization problem in terms of present discounted values of

product prices and wages reflects a no-shutdown assumption. Once capital is in place,

a firm’s shutdown decision treats capital costs as sunk. A firm that invested in period

t′ operates in period t > t′ if Ptk
α
t′ − wt ≥ 0. Following Gourio (2011) a machine,

once installed, is always operated. This no-shutdown assumption never binds in the

simulations below, which means that the Poisson adjustment is not too restrictive.20

There is good economic reason for the no-shutdown assumption to never bind.

In the model, the only shock facing firms is a minimum wage increase. Following a

minimum wage increase, incumbent firms see their flow profits change for two rea-

sons: wages rise and the product price rises. For local changes from steady state

these two effects exactly cancel, which limits how quantitatively important endoge-

nous exit would be in speeding up adjustment.21 For larger changes these effects do

not exactly cancel and incumbents see their flow profits fall. That incumbents are

(partially) protected by equilibrium responses is the “insulation effect” of Caballero

and Hammour (1994).

3.2.1.3 Product price determination

Two features of the model together pin down the product price: a free entry

condition and a product demand curve. The free entry condition does not mean that

entry is free: firms need to construct their capital stock when they enter.

Denote gross entry (investment) by ht, the number of machines built at time t.

Free entry implies that

htΠt = 0 (3.4)

for all t. If there is gross entry, then there are zero expected profits—net of the cost

of constructing the capital stock—from entering. Following Gourio (2011), there is

positive gross entry for all time t so that there are zero expected profits from entering

20See 3.8.2 for details.
21See 3.8.2 for a formal derivation. This results does not hold for non-local changes and if the

elasticity of substitution between capital and labor is less than one.
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(Πt = 0∀t). As with the no-shutdown assumption, this assumption is never binding

in the simulations.22

The industry faces an isoelastic product demand curve

Qt = θP−γt , (3.5)

where Q is market quantity and P is the product price. This demand curve is consis-

tent with the industry making up a small portion of the economy, and the exogenous

product demand and factor prices are standard in models of industry equilibrium

(e.g. Hopenhayn (1992)). It does rule out general equilibrium explanations for small

employment effects of minimum wages such as the argument caricatured by Kennan

(1995, pg. 1961) as “teenagers like cheeseburgers.”

3.2.1.4 Aggregation and laws of motion

Employment evolves as machines expire with probability δ each time period and

the new investment is implemented. The law of motion for machines (and employ-

ment) is

Nt = (1− δ)Nt−1 + ht. (3.6)

Aggregate output is given by integrating over the distribution of the capital stock

of all ages at time t, Gt (recall that kt is the capital chosen by entering firms at time

t and k represents all active capital in the industry):

Qt =

∞∫
0

kαdGt(k).

Identical to employment, output evolves as machines expire and new investment is

implemented:

Qt = (1− δ)Qt−1 + htk
α
t . (3.7)

3.2.1.5 Equilibrium

An equilibrium in the model is a sequence of endogenous variables {kt, ht, Pt, Qt, Nt}+∞
t=−∞

that takes the sequence of realized {wt}+∞
t=−∞ and expected, {Et

[
(wt+j)

∞
j=0

]
}+∞
t=−∞,

minimum wages as given such that in every time period:

22See 3.8.2 for details.
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• Firm’s choose kt to maximize profits subject to their production technology

(equation (3.3));

• The entry condition is satisfied (equation 3.4));

• The product market clears (equation (3.5)); and

• The laws of motion for employment and output hold (equations (3.6) and (3.7)).

A steady state equilibrium is an equilibrium in which the the sequence of realized

and expected minimum wages are constant. The resulting endogenous variables are

all constant as well.

3.2.1.6 Equilibrium computation

Equilibrium computation is straightforward when there is entry in every period

and the no-shutdown assumption holds. The core of the model can be reduced to

three equations in three unknowns:

• The firm’s first order condition of equation (3.3) implies one equation in three

unknowns (qw,t, kt, qt).

• The sequence of expectations of minimum wages provides a second equation

through the sequences of present discounted value of minimum wages: qw,t, qw,t+1...

• The entry condition with entry (3.4) implies that the firm’s profit in equation

(3.3) is equal to zero, providing the third equation.

The resulting capital intensity is:

kt =
α

1− α
qw,t. (3.8)

A firm considers the present discounted value of future relative prices when making

its investment decision, unlike in a static model where a firm only considers time t

relative prices.

Solving for the expectation of next time period’s present discounted value of prod-

uct prices is straightforward. The sequence of equilibrium present discounted value

of product prices can be rewritten as the current product price:

Pt = qt − β(1− δ)Et[qt+1]. (3.9)
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A minor complication arises in computing the equilibrium when there is uncer-

tainty in the wage path because the present discounted value of prices, qt, is a non-

linear function of the present discounted value of wages, qw,t.

3.2.2 Comparison to long-run elasticities

The putty-clay model is a dynamic version of the textbook static labor demand

elasticities. In particular, the long-run (steady state) elasticities in the model match

the long-run textbook results exactly.23

3.8.1 derives expressions for the number of workers and the product price in steady

state in the putty-clay model. Differentiating these expressions with respect to the

present discounted value of wages gives the long-run elasticities for employment

∂N

∂qw

qw
N

= − γ(1− α)︸ ︷︷ ︸
scale

− α︸︷︷︸
substitution

(3.10)

and for prices
∂P

∂qw

qw
P

= 1− α. (3.11)

These elasticities are identical to the long-run textbook elasticities with respect to

the wage and imply complete pass-through of the minimum wage increase to prod-

uct prices. The employment effect operates through two channels. The scale effect

measures the reduction in employment because of the contraction in the size of the

product market from the product price increase. The substitution effect measures the

reduction in employment because of substitution between capital and labor.

The difference between the putty-clay model and the textbook framework emerges

in the short-run and in the transition to the long-run. In the textbook model, the

capital-labor ratio can adjust for all firms in the short-run, while in the putty-clay

model only some firms adjust the capital-labor ratio. In the textbook model, no firms

can acquire capital in the short-run, while in the putty-clay model all firms have the

option of doing so. Unlike the textbook model, the putty-clay model explicitly param-

eterizes the transition from the short- to long-run. As the rate of capital expiration,

δ, increases the long-run arrives more quickly.

23See Hamermesh (1993, pg. 24) for the long-run elasticities and Cahuc and Zylberberg (2004,
pg. 172) for the distinction between the short- and long-run used here.
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3.3 Interpreting empirical work in light of the model

This section analytically shows how employment and product prices move in re-

sponse to temporary and permanent minimum wage increases. Surprisingly, product

prices move even in response to temporary minimum wage increases.

In this section, a temporary minimum wage increase is an increase that lasts

for a single time period. This is a stylized way of capturing what happens if the

minimum wage is increased in nominal terms and then eroded by inflation. Section

3.5 numerically studies environments where temporary minimum wage increases are

more persistent than one period and where real minimum wages follow a sawtooth

pattern. The perfect foresight assumption implicit in this section is relaxed in section

3.6.

3.3.1 Short-run employment response to temporary increase is through

the change in output

The minimum wage literature has focused on estimating short-run employment

response to minimum wage increases. Card and Krueger (1994) look at a 9 month

window around a minimum wage increase, while in the panel data literature, e.g.

Neumark and Wascher (1992) and Dube, Lester, and Reich (2010) the focus is on the

response within a quarter. These estimates are interpreted as testing “[t]he prediction

from conventional economic theory” (Card and Krueger (1994, pg. 772)) about the

employment effects of minimum wage increases. In the model, these very short-run

employment responses capture the part of the employment response that operates

through the change in output (the scale effect), and very little of the substitution of

labor for capital (the substitution effect). This second effect is quantitatively much

larger in my simulations.

The following result shows how these two effects are reflected in the contempo-

raneous employment response to a temporary minimum wage increase. The proof of

this and all other results are in 3.8.3.

Result 4. The elasticity of contemporaneous employment with respect to a temporary

minimum wage hike from steady state is:

∂Nt

∂wt

wt
Nt

= − γ(1− α)︸ ︷︷ ︸
scale

−αδ(1− β(1− δ))︸ ︷︷ ︸
substitution

.

The first term shows that the full scale effect occurs contemporaneously, which
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follows from the result in a subsequent subsection that prices move with wages. Unlike

the scale effect, the substitution effect is dramatically attenuated relative to the long-

run benchmark of α displayed in Equation (3.10). The attenuation occurs because

each period only δ share of firms adjust and because the capital decision is forward-

looking and the increase is temporary, the firms that adjust engage in very little

capital-labor substitution. This second form of attenuation is captured by the 1 −
β(1− δ) term, which can be very small.

3.3.2 Long-run observed employment response depends on how perma-

nent the increase is

While the literature has focused on the short-run employment response, as a ro-

bustness exercise some papers include lags of the minimum wage to capture any

potential long-run effects (e.g. Neumark and Wascher (1992, Table 5), Baker, Ben-

jamin, and Stanger (1999, Table 7) and Dube, Lester, and Reich (2010, Equation 7)).

That the coefficients on these lags are often quite small is interpreted as evidence

that the long-run employment effects of a minimum wage increase are the same as

the short-run employment effects (Dube, Lester, and Reich (2010, pg. 956)).24

Formally, the standard robustness exercise builds on the following distributed lag

form:

lnNi,t = αi + αt + β0 lnwi,t +
J∑
j=1

βj lnwi,t−j + εi,t, (3.12)

where N is employment in location i at time t, wi,t is the measure of minimum wages

at location i at time t and wi,t−j is lags of the minimum wage. The model provides

a “structural” interpretation of this robustness exercise. Equation (3.34) shows that

employment in time t is a function of past, current and expected minimum wages and

parameters of the model. A first-order expansion of equation (3.34) with respect to a

minimum wage increase in a given time period provides a justification for estimating

equation (3.12) since it contains employment on the left hand side and functions of

the minimum wage and parameters of the model on the right hand side.

When is the structural interpretation warranted? When there is a distinction

between the short- and long-run elasticities (δ 6= 1), two conditions jointly imply

that the coefficients of the regression in equation (3.12) are structural parameters

24Greenstone (2013) echoes this interpretation: “The empirical evidence now pretty decisively
shows no employment effect, even a few years later. See Dube, Lester and Reich in the REStat.”
Similarly, Card and Krueger (1995, pg. 366-8) cite the absence of evidence on long-run employment
effects as an argument against the importance of dynamic models such as putty-clay.
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and do not depend on the nature of minimum wage variation. First, the minimum

wage increase is one-time and permanent and is perceived as permanent. Second,

employment was initially in steady state. The following result provides the explicit

time-path that such a regression would return.

Result 5. If qw,j = Ej[qw,j+1] = qw ∀j ≤ t and the change in wages at time t is

unexpected and permanent (and perceived as such), then

β0 =
∂Nt

∂qw,t

qw,t
Nt

= −γ(1− α)− δα (3.13)

βj =
∂Nt+j

∂qw,t

qw,t
Nt+j

= −(1− δ)jδα, ∀j > 0. (3.14)

Moreover,
∑∞

j=0
∂Nt+j
∂qw,t

qw,t
Nt+j

= −γ(1− α)− α, which is the elasticity given in (3.10).25

The temporary nature of the mininum wage hike mutes the observed long-run

effects of the minimum wage hike for two reasons. First, the contemporaneous re-

sponse is smaller when firms expect the hike to be temporary because the extent of

firms’ adjustment depends on the increase in the expected present discounted value

of wages. Formally, ∂qw,t
∂wt

wt
qw,t

< 1. Second, the subsequent adjustments are made to

smaller and smaller minimum wage increases. Formally,
∂qw,t+j
∂qw,t

qw,t
qw,t+j

< 1. Hence, if

the short- and long-run elasticities to permanent minimum wage hikes differ, then

both the short- and long-run reduced-form estimates would be biased down relative

to the structure for temporary minimum wage hikes.

Being out of steady state can also induce bias. The bias is ambiguous in sign. If

the capital stock was on average installed when the minimum wage was expected to

be higher than it is after the increase, then employment can actually rise following

a minimum wage increase. Conversely, the employment decline can be larger if the

capital stock was installed when the minimum wage was expected to be lower than it

is after the increase.

3.3.3 Short- and long-run observed price response: Product prices move

with the wage

While much of the minimum wage literature since Card and Krueger (1994) has

focused on their employment results, they also document some evidence of an in-

crease in the product price following minimum wage increases. Subsequent work by

Aaronson (2001) and Aaronson, French, and Macdonald (2008) has extended and

25Since this is an elasticity, it is for local changes so that Nt+j = Nt for all j.
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confirmed this finding. Card and Krueger (1994), Aaronson and French (2007) and

Aaronson, French, and Macdonald (2008) emphasize that these price increases are

consistent with full pass-through of the minimum wage increase to product prices

and inconsistent with employment increases. In most models, if prices go up then

output falls so inputs, including labor, have fallen.

The putty-clay model is consistent with full pass-through of the minimum wage

increase to product prices in the short-run because there is always entry (and exit).

With entry, the market price is set by the marginal entrant and so it is responsive to

changes in market conditions. Consider an increase in minimum wages that is known

to last only one quarter. To see what has to happen to prices in the quarter of the

increase, let us examine what happens after the minimum wage has fallen again. In

quarters after the minimum wage has fallen, new entrants face the same expected

costs as before the increase. So free entry implies that the product price immediately

returns to its pre-increase level. Now let us return to the quarter of the increase.

Potential entrants in the quarter of the minimum wage increase face higher costs that

quarter, but know that prices will fall immediately. To compensate entrants in the

quarter of the minimum wage increase, there must be complete pass-through of the

minimum wage increase to the product price. There is an additional channel that

generates more than complete pass-through. If entrants adjust their input mix so

that it is suboptimal in later periods, then to compensate firms for this distortion the

contemporaneous product price response is larger following a temporary minimum

wage increase than a permanent increase.

The following result shows that the contemporaneous price response to a tempo-

rary minimum wage increase is very similar to the response to a permanent increase

documented in Equation (3.11). When firms are “myopic” and assume that the cur-

rent wage lasts forever, they do not need to be compensated for having a suboptimal

input mix in later periods. In this case, the contemporaneous response is the same

to temporary and permanent increases.

Result 6. Under perfect foresight, the elasticity of the product price with respect to

the contemporaneous wage is:

∂Pt
∂wt

wt
Pt

= (1− α)︸ ︷︷ ︸
long-run

wt
w̃t

1− β(1− δ)

1− β(1− δ)
(
w̃t+1

w̃t

)1−α

︸ ︷︷ ︸
adjustment term

where w̃t = (1 − β(1 − δ))qw,t is the flow equivalent of period t’s present discounted
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value of wages and w̃t+1 = (1− β(1− δ))qw,t+1 is the flow equivalent of period t+ 1’s

present discounted value of wage.

Under myopic expectations (β = 0):

∂Pt
∂wt

wt
Pt

= 1− α.

The additional increase in the product price from a temporary increase due to

a suboptimal input mix can be seen by considering the two components of the ad-

justment term separately. Consider first the wt
w̃t

term. This term is the ratio of the

contemporaneous wage to the flow equivalent of wages. If wages fall over time, then

the contemporaneous wage is bigger than the flow equivalent. Consider second the
1−β(1−δ)

1−β(1−δ)
(
w̃t+1
w̃t

)1−α term. Its magnitude relative to one depends on whether w̃t+1

w̃t
is big-

ger or less than one. If wages do not fall too rapidly, then this term will be close to

one. Hence, the wt
w̃t

term will dominate and the adjustment term can be greater than

one.

3.4 Parameter values

Much empirical work in the minimum wage literature, including Dube, Lester, and

Reich (2010), has focused on the restaurant industry. Hence, I calibrate the model to

the restaurant industry. Table 3.1 displays the parameter values.

A key parameter is the share of minimum wage workers in firms’ expenses, which

is set to 0.1. This number is arrived at as follows. Aaronson and French (2007) report

that the labor share is 0.3 and the minimum wage worker share in the wage bill is

0.17. They report that about one-third of workers are minimum wage workers, but

about two-thirds of workers are low-skill. They attribute the fact that not all low-skill

workers are paid the minimum wage to wage dispersion across labor markets, rather

than to skill dispersion among low-skill labor workers (pg. 181). Since in the model

the minimum wage is binding in all labor markets (and Dube, Lester, and Reich

(2010) treat all labor markets identically), I assume that all low-skill workers earn

the minimum wage. Hence, low-skill workers account for 0.3 × 0.17 × 2 ≈ 0.1 share

of firms’ expenses.

The choice of capital pins down materials use as well as high and low-skill labor

use. As a result, materials and high-skill labor adjusts with the capital stock and so

they can be combined. This assumption means the short-run substitutability between

minimum wage labor and intermediate inputs and high-skill labor is zero, which is
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the same as that between minimum wage labor and capital.26 Aaronson and French

(2007) report a land, structure and machines share of 0.3, material share of 0.4 and

my calculations above leave high-skill workers with a share of 0.2. Hence, α, the

non-minimum-wage-worker share of inputs, is 0.9. The long-run price elasticity in

the model is thus 1 − α = 0.1, and Aaronson (2001) finds a price elasticity of 0.07.

Setting α = 0.9 represents a low estimate of the importance of the non-minimum

wage worker inputs.

I report elasticities of the combination of high-skill and low-skill employment, not

just employment of workers subject to the minimum wage. This choice aligns with

Dube, Lester, and Reich (2010) who use total employment in the restaurant industry

as their measure of employment. It is also similar to other studies of minimum wages

where researchers have not been able to directly identify minimum wage workers

(see for example the discussion of studies of teenagers in Brown (1999, pg. 2114)).

Letting a bar over a variable represent steady state, define employment in time t,

Et = Nt + nh
N̄
K̄
Kt, where Kt is the aggregate capital stock and nh is a constant.

The quantity nh
N̄
K̄
Kt represents high-skill employment, which moves with the capital

stock. Set nh = 1
2

so that in steady state low-skill employment, Nt, is two-thirds of

total employment. Set the price elasticity of demand for output to γ = 0.6, which is

within the range reported by Aaronson and French. Set the market discount rate, β,

to (0.95)
1
4 ≈ 0.987 on a quarterly basis, which is standard.

The final parameter is the machine expiration rate, δ. Unfortunately, there is not

detailed evidence as to the value of δ in the restaurant industry, though the main

result turns out not to be particularly sensitive to δ. Since I build on his model, I

use the value in Gourio (2011), 0.08 on an annual basis (0.0206 on a quarterly basis),

which he chooses as a high estimate of capital depreciation rates. Two alternative

approaches yield similar values of δ. First, δ could be thought of as the exit probabil-

ity of a fast food restaurant. In 2009-2010, this rate was 0.09.27 Second, δ could be

thought of as the rate at which existing fast food restaurants are remodeled. Some

anecdotal evidence on this point comes from McDonald’s. As of 2003, many McDon-

ald’s restaurants looked “as they did during the Reagan administration.” And a plan

launched in 2003 to renovate all McDonald’s had resulted in only half being renovated

26The hours margin of minimum wage labor can be ignored without loss of generality. Redefine
L to be total minimum wage labor input and then a firm with no reason to adjust total minimum
wage labor input also has no reason to adjust hours.

27See the U.S. Census Statistics of U.S. Businesses among limited service eating places for 2009-
2010 at
http://www2.census.gov/econ/susb/data/2010/us_naicssector_small_emplsize_2010.xls.
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by 2010.28 The first anecdote suggests that McDonald’s are updated less frequently

than once every 15 years (or δ smaller than 0.08), while the second suggests a half-life

of 6 years (or δ of about 0.08). In section 3.6.7 I show that the main result of this

paper is quite robust to varying δ, even to using δ = 0.33 as suggested in Card and

Krueger (1995).

3.5 Quantitative implications of the model with stylized min-

imum wage variation

To illustrate the quantitative implications of the calibrated version of model, I per-

form three minimum wage experiments. The first experiment considers a one-time

and permanent increase. This experiment corresponds to the ceteris paribus condi-

tion implicit in interpreting reduced-form long-run regression coefficients as long-run

elasticities. The second experiment considers a one-time increase that is eroded by

inflation. This experiment shows how the observed long-run response differs dramat-

ically depending on the nature of the variation. The third experiment considers a

stylized version of the sawtooth pattern that characterizes US data of repeated tem-

porary increases. This experiment shows how sawtooth variation is expected to affect

estimates.

This section and the next section reports reduced-form elasticities of employment

with respect to the magnitude of the minimum wage hike. This practice is in keeping

with the convention in the empirical literature. One point that this paper makes is

that these elasticities are not structural objects, and in fact depend on the nature of

the policy change.

To starkly display the quantitative implications of the model, in this section firms

have perfect foresight about the minimum wage process. In section 3.6, firms expect

that minimum wages follow a stochastic process that is estimated from the data.

3.5.1 One-time changes

I report results of a one-time and permanent 15% increase in the minimum wage

from steady state that is permanent, and such an increase that is eroded by 2.2%

annual inflation and so is temporary. Consistent with the industry being small relative

to the economy, the product price does not feed back into the inflation rate. 3.9

describes the simulation algorithm.

28Both anecdotes come from: Daniel Smith. “The Renovation Rush.” May 2010. QSR Magazine.
http://www.qsrmagazine.com/competition/renovation-rush.
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Figure 3.2 displays the response of employment, product prices and the aggre-

gate capital-labor ratio to the permanent and temporary minimum wage increase.

The product price moves with the minimum wage, while the capital-labor ratio and

employment are slower moving variables.

Table 3.2 displays the arc elasticities of employment, defined as the percent change

in employment divided by the percent change in wages. Column (1) shows that the

long-run elasticities of a permanent minimum wage increase are substantial. The

contemporaneous elasticity is about −0.06, which is within the range of elasticities

discussed by, for example, Brown (1999) and Dube, Lester, and Reich (2010). After six

years the employment elasticity with respect to the initial minimum wage increase is

−0.25. Once all adjustment is complete, the elasticity is −0.55, which is larger than

elasticities discussed in Brown (1999). Column (2) shows that when the increase

is temporary the contemporaneous employment effect is similar, but over time the

employment effect fades as the minimum wage erodes.

Table 3.3 displays the arc elasticities of prices. Column (1) shows that all of the

price response occurs immediately. Column (2) shows that even when the minimum

wage hike is temporary, the contemporaneous price response is not muted. In fact, the

price response is slightly larger because the firms that enter have to be compensated

for the fact that their capital-labor ratio will be suboptimal in all periods. The price

response fades as the minimum wage erodes.

3.5.2 Repeated temporary increases: a sawtooth equilibrium

A message of Figure 3.1 is that all minimum wage increases are not permanent

and in fact follow a sawtooth pattern of regular temporary increases that are eroded.

I simulate the model in a sawtooth equilibrium. The shape of the sawtooth is chosen

as an approximation to Federal minimum wages, where the minimum wage has been

raised once every 7 years on average.29 In the sawtooth equilibrium, minimum wages

increase every seven years by 15% and the inflation rate of 2.2% annually is chosen

so that the minimum wage does not have a trend.30

29I count phased increases as one increase. Hence, the initial years of the 11 increases in 74 years
since minimum wages were implemented in 1938: 1939, 1945, 1950, 1956, 1961, 1967, 1974, 1978,
1990, 1996, 2007.

30The model is simulated using the algorithm described in 3.9, where the model is started in the
steady state defined by the minimum value of the wage.
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Results

Column (3) of Table 3.3 shows that the contemporaneous price response in the

sawtooth equilibrium is basically identical to that from even the permanent minimum

wage increase. The contemporaneous price response is insensitive to the nature of

the variation: it is similar across permanent, temporary and repeated and predictable

temporary minimum wage increases.

Column (3) of Table 3.2 displays the cumulative time path of the employment

response to a minimum wage increase in the sawtooth equilibrium and makes two

points. The first message of the table is that repeated temporary increases are not

well-suited to to finding large employment effects of minimum wage increases even in

a model that embodies large long-run elasticities. The contemporaneous employment

effect is −0.06 and there are no observed long-run effects.

A second message of Table 3.2 is that long-run elasticities explain the employment

consequences of a policy of repeated temporary minimum wage increases. On average,

employment is about 3% lower than if wages were always at their lowest level in

the simulation, and real minimum wages are about 6% above the lowest level. The

implied “policy elasticity” of the average employment level with respect to the average

minimum wage is −0.58, which is identical to the long-run elasticity of −0.55. Why

is this? Firms choose a capital-intensity well-suited to the long-run average level of

the minimum wage. Employment fluctuates around this lower steady state level, but

these fluctuations are small relative to the lower steady state. These level difference in

employment would not be easy to measure in empirical work. In standard empirical

approaches, such level differences would be absorbed in the location fixed effects. The

location fixed effects contain many other differences across places that are probably

not solely due to the average level of minimum wages.

3.6 Quantitative implications of the model with actual min-

imum wage variation

So far I have studied a dynamic model embodying an important distinction be-

tween short- and long-run elasticities. If minimum wage increases are sufficiently

temporary, I have shown that there would be little difference in the observed short-

and long-run employment responses.

The model emphasizes two channels through which temporariness matters. First,

temporariness matters because of how many firms adjust to the realized minimum
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wage increase: if in realization the minimum wage increase is temporary, then few

firms adjust and the long-run effects are small. Second, temporariness matters be-

cause of firms’ expectations: if firms expect minimum wage increases to be temporary,

then the firms that adjust do so by less and the long-run effects are small.

To address whether minimum wages used in empirical work are sufficiently tempo-

rary to make inference from standard empirical approaches misleading, I simulate the

model to replicate the dataset used by Dube, Lester, and Reich (2010). In the simu-

lation, expectations are pinned down by estimating a stochastic process for minimum

wages in-sample.

Replicating a dataset that contains actual minimum wages directly addresses the

first channel through which temporariness matters: the simulation uses realized vari-

ation, which might contain a mix of temporary and permanent changes. Estimating

a stochastic process on the data partially addresses the second channel: in the model,

the extent to which firms expect increases to be temporary is tied to the data. Of

course, the estimated stochastic process may be misspecified.

Simulating the model using realized minimum wages directly addresses another

concern: the use of counties also subject to inflation as the control group renders the

main mechanism for temporariness moot. In the simulations, the control counties are

also subject to inflation.

3.6.1 Data description

Dube, Lester, and Reich (2010) use county-level variation in the minimum wage

in the US from 1990-2006. Their research design generalizes the Card and Krueger

(1994) case study approach by pairing bordering counties with different minimum

wages to control for local economic shocks. They study employment in the restaurant

industry using data from the Quarterly Census of Employment and Wages.

Figure 3.3 shows both the real value of the Federal minimum wage and the 95th

percentile of the effective county-level minimum for the sample used by Dube, Lester,

and Reich (2010). The 95th percentile of the effective minimum wage is often above

the Federal minimum wage because many states set a minimum wage above the

Federal minimum.31

31My sample ends up slightly smaller than Dube, Lester and Reich’s, with very little effect on
point estimates, because some of their estimation sample is sometimes missing the measure of total
employment and so they do not have a balanced panel of counties, whereas the text of their paper
suggests that this is their goal.
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3.6.2 Expectations: the stochastic process of wages

An important input to the simulation is firms’ expectations about the path of

minimum wages. A minimum wage process with two features attempts to capture

the sawtooth pattern. First, a minimum wage increase is more likely the lower is the

minimum wage relative to its long-run average. Second, conditional on an increase

occurring, there is still some uncertainty about the size.

Formally, the minimum wage evolves according to the following process:

wi,t+1|wi,t =

(1− inf)wi,t with probability (1− h(wi,t − w̄i))

wi,t(1 + g) with probability h(wi,t − w̄i),

where I now define notation. The location-time invariant inflation rate is inf . The

long-run location-specific average minimum wage is w̄i. The current minimum wage

is wi,t. The realization of the size of a minimum wage increase is g, which is drawn

from a location-time invariant distribution G. Finally, h : R → [0, 1] is the function

that captures the idea that minimum wage increases are more likely the lower is the

minimum wage relative to its long-run average. In particular, this is true when h′ < 0.

I estimate all parameters of this process, except for inf , in-sample on the pooled

contiguous border county sample of Dube, Lester, and Reich (2010). The inf param-

eter is chosen so that the estimated stochastic process does not have a trend. 3.9.2

provides details. Figure 3.4a shows that the estimated quarterly probabilities of a

minimum wage hike are consistent with sawtooth dynamics. The probability of an

increase becomes very small (below 5%) when the current minimum wage is above

the long-run average and rises rapidly when the current minimum wage falls below

the long-run average—when the current minimum wage is 30% below the long-run

average the per period probability of an increase exceeds 50%. Figure 3.4b shows

that the empirical distribution of minimum wage hikes places the most mass between

15% and 25% hikes.

An important assumption in estimating the stochastic process that governs firms’

expectations on the pooled sample is that the process—which reflects a particular

form of temporariness of minimum wage increases—is common across locations. To

explore the validity of this assumption, 3.9.2.1 specifies an auxiliary statistical model

of the persistence of minimum wages and shows that the dispersion across locations

in the data is similar to that in data simulated from the stochastic process. Using

only in-sample information, firms would be unlikely to reject the null that observed

minimum wages are consistent with the estimated stochastic process, rather than

137



there being place specific minimum wage processes. Because I do not horserace the

fit of auxiliary statistical models with and without permanent shocks, this exercise

does not shed light on whether or not there are permanent shocks in the minimum

wage process.

3.6.3 Simulated data

3.9 describes both the simulation algorithm and construction of the minimum

wage series in detail. Firms’ expectations about the minimum wage are given by the

stochastic process described in subsection 3.6.2. The county-level employment series

is generated using the realized minimum wage histories at the county-level. I use 9

runs through the realized minimum wage histories as a burn-in period and store the

10th run. Visual inspection reveals that 9 runs are more than adequate to ensure

convergence. The resulting dataset is exactly the same size as the Dube, Lester, and

Reich (2010) dataset and includes the measures of employment and population from

the Dube, Lester, and Reich (2010) dataset.

3.6.4 Specification

I estimate a distributed lag specification on the actual dataset and the simulated

dataset. Following Dube, Lester, and Reich (2010) I use logs and their preferred

specification (equation (7)).32 The unit of observation is county-level restaurant em-

ployment (restemp) in county i, border-pair p, and at time t. A county enters the

dataset if it has a bordering county with a different minimum wage at any point

between 1990:I-2006:II. A county can be in the dataset multiple times if it borders

multiple counties with different minimum wages. There are two additional data se-

ries total employment (totemp) and population (pop). To control for local economic

shocks the regression includes a border-pair time period specific fixed effect, τpt.
33

The estimating equation is:

ln(restemp)ipt = a1 +
23∑
j=0

η−j∆ ln(MWi,t−j) + η−24 ln(MWi,t−24)

+a2ln(totemp)it + a3ln(pop)it + φi + τpt + εipt

(3.15)

32Neumark and Wascher (1992) and Baker, Benjamin, and Stanger (1999) use specifications in
levels rather than logs. I have estimated the below specification in levels, and converted the level
specification to elasticities at the mean of the sample. On the simulated data the specifications in
levels yields elasticities slightly smaller in magnitude than the specifications in logs, so in “clean”
data this specification choice is not important.

33See Dube, Lester, and Reich (2010, pg. 951-2) for details on how this is estimated.
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where φi is a county fixed effect and εipt is an error term. Equation 3.15 follows

Baker, Benjamin, and Stanger (1999) and examines six year (24 quarters) of lagged

responses, rather than two years of leads and four years of lags as in Dube, Lester, and

Reich (2010). This choice allows comparison to other Baker, Benjamin, and Stanger

(1999) specifications discussed in Section 3.6.6.

Equation 3.15 uses differenced minimum wages, which means that η−j is the aver-

age employment effect of the jth lag of minimum wages. The η’s are identified based

on periods when within a given county-border pair the two counties have different

minimum wages; in periods when the county-border pair have the same minimum

wages the fixed effect absorbs the common component of restaurant employment.

Following Dube, Lester, and Reich I report Cameron, Gelbach, and Miller (2011)

standard errors clustered at the state and border segment separately, and corrected

for certain forms of heteroskedasticity.34

3.6.5 Employment results

Figure 3.5 shows that because minimum wage increases are temporary there are

not large estimated employment effects of minimum wage changes. The figure plots

the elasticities estimated on the actual data and the simulated data.35 The estimates

on simulated data are very small negative elasiticities in the first quarters—about

−0.05—and in subsequent periods the employment response barely grows, reaching

−0.09 after 24 quarters. At all horizons the simulated data lies within the confidence

bands of the actual data, though these bands are very wide.

3.6.6 Additional specifications

3.10 reports the results of the two additional long-run specifications used by Baker,

Benjamin, and Stanger (1999). These results are consistent with small employment

effects of minimum wage changes. Neither of these specifications yield an elasticity

after six years that exceeds −0.07 on the simulated data.

3.6.7 Robustness

It might seem like the results should be very sensitive to the rate at which firms

adjust, δ. To provide intuition as to why this is not the case, Table 3.4 reproduces

34There are standard errors on the simulated data because the simulated dataset is the same size
as the actual dataset, and so in principle there is sampling variability. In practice, the standard
errors from regressions estimated on simulated data are very small.

35The coefficients are in Table 3.7.
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the calculations of employment elasticities with respect to permanent, temporary and

sawtooth minimum wage increases presented in Table 3.2 and discussed in Section

3.5 for many of values of δ. For sawtooth increases, the interaction of the erosion

of the minimum wage and the expectation of future increases limits the sensitivity

to δ. Indeed, as in the more complex simulations described immediately below, the

elasticities with δ = 0.08 and δ = 0.16 are basically the same. On the other hand,

the Table shows that the response to permanent increases is very sensitive to δ.36

Consistent with the main themes of this paper, results for permanent increases provide

a misleading guide to increases in a sawtooth environment.

For the robustness exercise, I replicate the Dube, Lester, and Reich (2010) data

using δ ∈ {0.16, 0.33, 0.5}. Table 3.5 reports the point estimates from the distributed

lag specification for the contemporaneous elasticity and the “long-run” (at 24 quar-

ters) elasticity. The contemporaneous and long-run elasticities are basically identical

for 0.08 and 0.16. This indicates that raising δ in this range increases the extent of

attenuation, since Table 3.4 shows the employment effect of a permanent increase at

24 quarters is 50% larger with the higher value of δ. With δ = 0.33, the long-run

elasticity grows to −0.16. Similar to δ = 0.08, this estimate is about one-third of

the long-run elasticity implied by the model, because the response to a permanent

increase grows with δ.37 With δ = 0.5, the contemporaneous elasticity is −0.08 and

the long-run elasticity is −0.24. Again, this exhibits substantial attenuation relative

to a permanent minimum wage increase (in Table 3.4 it is −0.54).

3.7 Conclusion

If there were differences between short- and long-run employment elasticities would

it be possible to tell? This paper has suggested that because of the nature of vari-

ation in minimum wages the answer is no. In particular, because minimum wage

increases are mostly temporary, the ceteris paribus condition implied in the long-

run elasticities—that of a permanent minimum wage increase—is unlikely to obtain.

Even without such a ceteris paribus condition, it might be the case that standard re-

gressions could overcome this challenge. In the presence of a distinction between the

short- and long-run elasticities, standard regressions in the literature do not overcome

this challenge and so have potentially been misinterpreted.

36For the smaller values of δ, the main departure from linearity is because the contemporaneous
response is dominated by the scale effect—or market quantity change—which is the same regardless
of the value of δ. Subtracting off the year 0 effect gets much closer to a linear relationship.

37See Table 3.4: 0.08/0.252 ≈ 0.16/0.505 ≈ 1/3.
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As such, the paper suggests that it would be a mistake to infer from existing empir-

ical work on the employment effects of minimum wage increases that the President’s

2013 proposal to index minimum wages to inflation would have minimal effects on

employment. Taking the model at face value shows how misleading such an inference

might be: the results in Table 3.2 show that a contemporaneous elasticity of −0.002

in response to a temporary increase is consistent with an elasticity after 6 years of

−0.252 for a permanent increase.

The putty-clay model also offers a rationalization of two divergent strands of

empirical work on effects of minimum wage increases. On the one hand, the evidence

of small short-run employment effects is inconsistent with standard static models of

labor demand; on the other hand, product price increases are inconsistent with models

of “supply side constraints” (e.g. search models). The putty-clay model is consistent

with both. In the model, observed long-run effects of temporary minimum wage

increases are also small, though the long-run effect on employment of a permanent

change in the real value of the minimum wage is large and equilibrium employment

is below what it would have been were it not for the minimum wage.

This paper suggests several avenues for future research. The putty-clay model

could be extended along a couple dimensions. First, the labor market is assumed to

be perfectly competitive, which omits potentially important mechanisms that models

of search emphasize. Second, the firm’s problem is simplified by using an exogenous

adjustment probability, rather than an endogenous adjustment process. More broadly,

it would be interesting to bring detailed evidence to bear on several mechanisms that

are emphasized by the putty-clay model: the speed with which employers of low-skill

labor adjust labor demand in response to shocks, how firms form expectations about

minimum wages, and how these expectations affect decisionmaking.
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Table 3.1: Annual parameter values

Parameter Value Description
0.3 Land, structures and machines
0.4 Materials share
0.2 High skill labor share

α 0.9 Non-minimum wage-labor share
δ 0.08 Expiration chance
γ 0.6 Price elasticity of demand
β 0.95 Discount rate

nh 0.5 high-skill labor
low-skill labor

in steady state

Source: See the discussion in Section 3.4.
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Table 3.2: Employment response to minimum wage increases

Year Permanent Temporary Sawtooth
(1) (2) (3)

0 −0.062 −0.059 −0.056
1 −0.100 −0.063 −0.049
2 −0.136 −0.061 −0.040
3 −0.169 −0.057 −0.030
4 −0.199 −0.049 −0.020
5 −0.227 −0.040 −0.010
6 −0.252 −0.029 −0.002
∞ −0.546 0 NA

Policy Elasticity
−0.584

Note: An elasticity is defined as the percent change in employment divided by the
percent change in wages. The permanent columns shows the total employment elas-
ticity after X years from a one-time and permanent 15% minimum wage increase.
The temporary column reports the total employment elasticity after X years from a
one-time 15% minimum wage increase that is eroded at 2.2% per year. The sawtooth
equilibrium is minimum wages increasing by 15% every seven years and then inflating
away at 2.2% per year. The sawtooth column shows the total employment elasticity
after X years following the minimum wage increase in the sawtooth equilibrium. The
policy elasticity is defined using the average level of employment in the sawtooth
equilibrium relative to never having a minimum wage and the wage is the average
wage in the sawtooth equilibrium relative to having wages always at the lowest level.
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Table 3.3: Price response to minimum wage increases

Year Permanent Temporary Sawtooth
(1) (2) (3)

0 +0.094 +0.096 +0.093
1 +0.094 +0.081 +0.078
2 +0.094 +0.066 +0.063
3 +0.094 +0.051 +0.049
4 +0.094 +0.036 +0.034
5 +0.094 +0.021 +0.020
6 +0.094 +0.006 +0.007
∞ +0.094 0 NA

Policy Elasticity
+0.097

Note: An elasticity is defined as the percent change in price divided by the percent
change in wages. The permanent columns shows the total price elasticity afterX years
from a one-time and permanent 15% minimum wage increase. The temporary column
reports the total employment elasticity after X years from a one-time 15% minimum
wage increase that is eroded at 2.2% per year. The sawtooth equilibrium is minimum
wages increasing by 15% every seven years and then inflating away at 2.2% per year.
The sawtooth column shows the total price elasticity after X years following the
minimum wage increase in the sawtooth equilibrium. The policy elasticity is defined
using the average level of prices in the sawtooth equilibrium relative to never having a
minimum wage and the wage is the average wage in the sawtooth equilibrium relative
to having wages always at the lowest level.
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Table 3.4: Employment response to minimum wage increases: varying δ

δ = 0.08 δ = 0.16 δ = 0.33 δ = 0.5

Year A. Permanent increase
0 -0.062 -0.073 -0.099 -0.130
1 -0.100 -0.148 -0.246 -0.338
2 -0.136 -0.212 -0.345 -0.442
3 -0.169 -0.265 -0.411 -0.494
4 -0.199 -0.310 -0.456 -0.520
5 -0.227 -0.348 -0.485 -0.533
6 -0.252 -0.379 -0.505 -0.539
∞ -0.546 -0.546 -0.546 -0.546

B. Temporary increase
0 -0.059 -0.065 -0.087 -0.117
1 -0.063 -0.090 -0.168 -0.256
2 -0.061 -0.100 -0.197 -0.284
3 -0.057 -0.099 -0.191 -0.257
4 -0.049 -0.089 -0.164 -0.203
5 -0.040 -0.075 -0.125 -0.139
6 -0.029 -0.057 -0.084 -0.077

C. Sawtooth increase
0 -0.056 -0.057 -0.066 -0.081
1 -0.049 -0.055 -0.082 -0.125
2 -0.040 -0.046 -0.071 -0.107
3 -0.030 -0.033 -0.044 -0.061
4 -0.020 -0.019 -0.013 -0.007
5 -0.010 -0.006 +0.012 +0.037
6 -0.002 +0.002 +0.018 +0.044

Policy elast. -0.584 -0.584 -0.583 -0.580

Note: see footnotes to table 3.2.
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Table 3.5: Distributed lag specification: varying δ

δ Contemporaneous Long-run
0.08 −0.051 −0.094
0.16 −0.050 −0.089
0.33 −0.062 −0.159
0.50 −0.084 −0.238

Note: This table reports the contemporaneous (quarter 0) and long-run elasticities
(24 quarters) of using the preferred Dube, Lester, and Reich (2010) specification to
estimate the employment effects of minimum wages. I estimate equation (3.15) having
simulated the model as described in section 3.6.3.
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Figure 3.1: Federal minimum wage relative to average hourly earnings in the private
sector

Source: Brown (1999) table 1 updated with the Bureau of Labor Statistics for the
nominal federal minimum wage (http://www.dol.gov/whd/minwage/chart.htm), and
then deflated using the Current Employment Statistics for average hourly wage in
the private sector among production and non-supervisory employees (historical hours
and earnings, table B-2). This figure uses annual data and plots the largest minimum
wage in each year.
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Figure 3.2: Impulse responses to temporary and permanent minimum wage increases

Note: based on simulations of the putty-clay model using the parameterization in
Table 3.1. The thick line shows the impulse response to a temporary increase: one-
time unanticipated increase of 15% that is eroded by annual inflation of 2.2% a year.
The thin line shows the impulse-response to a permanent increase of 15%.
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Figure 3.3: County-level variation in minimum wages in the US: 1984-2006

Note: Units are minimum wages deflated by average private sector hourly wage to
1984:I. The figure plots the minimum wages in the contiguous border county sample
in Dube, Lester, and Reich (2010).
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Figure 3.4: The stochastic process for minimum wages
(a) Estimated Probability of a Minimum
Wage Hike

(b) Cumulative Distribution of Minimum
Wage Hikes

Note: The left panel plots implied probabilities of minimum wage hikes at differ-
ent values relative to the long-run average of the minimum wage estimated on the
contiguous border county sample (dropping duplicate counties) from 1984:I-2007:IV.
The regression coefficients are in Table 3.6. The right panel plots the distribution of
minimum wage increases in the contiguous border county sample (dropping duplicate
counties) from 1984:I-2007:IV.
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Figure 3.5: Distributed lag specification

Note: This figure plots the coefficients from the distributed lag specification. The
regressions also include a border pair times period interaction term. The outcome
is total employment in the restaurant industry. The regressions use the contiguous
border sample. The thin line shows the pointwise 95% confidence interval from the
data, where the standard errors are clustered at the state and border segment sep-
arately. The data plot shows estimates based on actual data. The model line plots
coefficients based on data simulated from the putty-clay model. The coefficients are
in table 3.7.
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3.8 Appendix: Omitted calculations

This appendix derives the steady state relationships in the model, demonstrates

that firms never want to shutdown, that there is entry in every period, details the

insulation effect, and provides complete proofs of all results stated in the text.

3.8.1 Steady state values

Given a constant wage,

qw =
∞∑
j=0

βj(1− δ)jw =
w

1− β(1− δ)
. (3.16)

From (3.8),

k = qw
α

1− α
. (3.17)

Combining the optimal size of a machine, equation (3.17), with the zero profit con-

dition, equation (3.3) set to zero in steady state, gives

q = α−α
(

qw
1− α

)1−α

. (3.18)

From (3.9) with a constant q,

P = (1− β(1− δ)) q1−α
w

αα(1− α)1−α . (3.19)

From (3.5),

Q = θP−γ = θ

[
αγα(1− α)γ(1−α)

(1− β(1− δ))γqγ(1−α)
w

]
. (3.20)

The number of workers in steady state is

N =
Q

kα
= θ

[
αα(γ−1)(1− α)γ(1−α)+α

(1− β(1− δ))γqγ(1−α)+α
w

]
. (3.21)

3.8.2 No shutdown, entry in every period and the insulation effect

No shutdown

A machine built at time t has capital kt = α
1−αqw,t. Assume that after time t′ > t

the wage will be constant and equal to wt′ . Considering permanent movements allow
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me to derive results in closed-form. The price in period t′ is Pt′ = (1 − β(1 −
δ))

q1−α
w,t′

αα(1−α)1−α
. If in period t′ > t a firm wants to shut down a machine that was

installed in period t this implies that Pt′k
α
t −wt′ < 0 or using the expressions for kt and

Pt′
qw,t
qw,t′

< (1− α)
1
α . Then shutdown requires (using α = 0.9) qw,t < qw,t′(1 − α)

1
α =

qw,t′0.077. Shutdown requires that the present discounted value of wages to rise by

more than a factor of 10 from when the investment was made. In the dataset the real

value of wages varies by less than a factor of two, and the present discounted value

of wages is less volatile than the wage. So firms never want to shutdown.

Entry in every period

Entry in every period requires: ht > 0 ⇔ Qt − (1 − δ)(Qt−1) > 0 ⇔ P−γt − (1 −
δ)P−γt−1 > 0 ⇔

(
1

1−δ

) 1
γ > Pt

Pt−1
. Using the baseline calibration, having no entry in a

period requires one quarter increases in the present discounted value of wages of more

than 40%, while in the simulation the largest one quarter increase in the minimum

wage is 34% (and the present discounted value of wages moves by even less). So there

is always entry.

Insulation effect

This section demonstrates the insulation effect. The comparative static is an

incumbent firm’s revenue from steady state with respect to the wage, where the wage

and the price is allowed to respond, but the capital stock is not.

R = Pkα − w (3.22)

∂R

∂w

w

P
=
∂P

∂w

w

P
kα − w

P
. (3.23)

Combining equations (3.16) and (3.19), in steady state

w

P
= qαwα

α(1− α)1−α. (3.24)

Result 6 has as a special case with perfect foresight from steady state that

∂P

∂w

w

P
= 1− α. (3.25)
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Combining the previous expressions with equation (3.17) gives

∂R

∂w

w

P
= (1− α)1−αααqαw − (1− α)1−αααqαw (3.26)

= 0. (3.27)

3.8.3 Proofs

First write labor demand in terms of model parameters and the qw,t.

Writing labor demand in terms of model parameters.

Iterating equation (3.6) gives

Nt =
∞∑
j=0

(1− δ)jht−j. (3.28)

The goal is to write equation (3.28) in terms of qw,t−j. Rearrange equation (3.7):

ht =
Qt − (1− δ)Qt−1

kαt
. (3.29)

Combine equations (3.3) set to zero, (3.5), and (3.9):

Qt = θP−γt (3.30)

= θ[qt − (β(1− δ))Et[qt+1]]−γ (3.31)

= θ

(
α−α

(1− α)1−α

)−γ [
q1−α
w,t − (β(1− δ))Et[q1−α

w,t+1]
]−γ

. (3.32)

Combine equations (3.8), (3.29) and (3.32):

ht =
θ
{[
q1−α
w,t − (β(1− δ))Et[q1−α

w,t+1]
]−γ − (1− δ)

[
q1−α
w,t−1 − (β(1− δ))Et−1[q1−α

w,t ]
]−γ}

α1−αγ

(1−α)1+γ(1−α)
qw,t

.

(3.33)

154



Substitute suitably modified versions of equation (3.33) into (3.28):

Nt

=
∞∑
j=0

(1− δ)j
(

αα−αγ

(1− α)α−γ(1−α)
qαw,t−j

)−1

(3.34)

× θ
{[

q1−α
w,t−j − (β(1− δ))Et−j[q1−α

w,t+1−j]
]−γ

(3.35)

− (1− δ)
[
q1−α
w,t−1−j − (β(1− δ))Et−1−j[q

1−α
w,t−j]

]−γ }
. (3.36)

Proof of result 4.

Proof. Equation (3.6) gives

Nt = ht + (1− δ)Nt−1. (3.37)

Using equation (3.37) and converting to an elasticity at the end,

∂Nt

∂wt
=
∂ht
∂wt

(3.38)

=
∂
{
Qt−(1−δ)Qt−1

kαt

}
∂wt

(3.39)

=
∂Qt

∂wt

1

kαt
− α ∂kt

∂wt

1

kt

Qt − (1− δ)Qt−1

kαt
(3.40)

=
∂Qt

∂wt

1

kαt
− α ∂kt

∂wt

ht
kt

(3.41)

∂Nt

∂wt

wt
Nt

=
∂Qt

∂wt

1

kαt

wt
Nt

− α ∂kt
∂wt

wt
kt

ht
Nt

. (3.42)

Solve for the RHS of (3.42) in pieces. I am interested in an increase of wt from steady

state.

First, collect some useful facts about steady state. Start with equation (3.2)

qw,t = wt + β(1− δ)Et[qw,t+1] (3.43)

∂qw,t
∂wt

= 1 (3.44)

∂qw,t
∂wt

wt
qw,t

=
wt
qw,t

. (3.45)
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In steady state (equation (3.16)):

w

qw
= 1− β(1− δ). (3.46)

Rewrite equation (3.28) in steady state.

N =
∞∑
j=0

(1− δ)jh =
h

δ
⇔ δ =

h

N
. (3.47)

Rewrite equation (3.29) in steady state.

h =
Q− (1− δ)Q

kα
=
δQ

kα
. (3.48)

Combine (3.47) and (3.48):

δN =
δQ

kα
⇔ Q = Nkα. (3.49)

This completes the preliminary facts.

Now solve for terms on the RHS of equation (3.42). Substitute equation (3.49)

into the first term on the RHS of equation (3.42) and expand:

∂Qt

∂wt

wt
Qt

=
∂Qt

∂Pt

∂Pt
∂wt

wt
Qt

Pt
Pt

(3.50)

=
∂Qt

∂Pt

Pt
Qt

∂wt
∂Pt

Pt
wt

(3.51)

= −γ(1− α), (3.52)

where the last step computes an elasticity from equation (3.5) and uses the special

case of Result 6 from steady state.

Now consider part of the second term on the RHS of equation (3.42) combined

with equation (3.47).

∂kt
∂wt

wt
kt

=
∂kt
∂qw,t

∂qw,t
∂wt

wt
kt

qw,t
qw,t

(3.53)

=
∂kt
∂qw,t

qw,t
kt

∂qw,t
∂wt

wt
qw,t

(3.54)

=
wt
qw,t

(3.55)

= 1− β(1− δ), (3.56)
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where the elasticities are computed from (3.8) and (3.45) and equation (3.56) uses

(3.46).

Finally, substituting equation (3.56), (3.52), and (3.47) into the RHS of (3.42) in

steady state gives the result:

∂Nt

∂wt

wt
Nt

=
∂Qt

∂wt

1

kαt

wt
Nt

− α ∂kt
∂wt

wt
kt

ht
Nt

(3.57)

= −γ(1− α)− αδ(1− β(1− δ)). (3.58)

Proof of result 5.

Proof. I first compute the contemporaneous elasticity. I then compute the lagged

effects. Throughout, I make use of steady state facts derived in result 4.

Equation (3.6) gives

Nt = ht + (1− δ)Nt−1. (3.59)

I am interested in the effect of a change in qw,t on Nt (contemporaneous effect of a

permanent minimum wage increase on employment). Taking the relevant derivative

of (3.59)

∂Nt

∂qw,t
=

∂ht
∂qw,t

, (3.60)

since Nt−1 is predetermined. Substitute in (3.29):

∂Nt

∂qw,t
=
∂
[
Qt−(1−δ)Qt−1

kαt

]
∂qw,t

(3.61)

=
∂Qt

∂qw,t

1

kαt
− α ∂kt

∂qw,t

ht
kt
. (3.62)

Convert to an elasticity:

∂Nt

∂qw,t

qw,t
Nt

=
∂Qt

∂qw,t

1

kαt

qw,t
Nt

− α ∂kt
∂qw,t

ht
kt

qw,t
Nt

(3.63)

=
∂Qt

∂qw,t

qw,t
Qt

− αδ ∂kt
∂qw,t

qw,t
kt
, (3.64)
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where this last equation makes use of (3.49) and (3.47). From equation (3.8),

∂kt
∂qw,t

qw,t
kt

= 1. (3.65)

The last term to solve for is ∂Qt
∂qw,t

qw,t
Qt

. The assumption of permanence—and expecta-

tions thereof—is that Et[q
1−α
w,t+1] = q1−α

w,t and
∂Et[q

1−α
w,t+1]

∂qw,t
= (1 − α)q−αw,t . Using equation

(3.32) and then substituting in for the expectations:

∂Qt

∂qw,t

qw,t
Qt

= −γ
(1− α)q1−α

w,t − β(1− δ)∂Et[q
1−α
w,t+1]

∂qw,t
qw,t[

q1−α
w,t − (β(1− δ))Et[q1−α

w,t+1]
] (3.66)

= −γ
(1− α)q1−α

w,t − β(1− δ)(1− α)q1−α
w,t[

q1−α
w,t − (β(1− δ)) q1−α

w,t

] (3.67)

= −γ(1− α). (3.68)

Substituting (3.65) and (3.68) into (3.64) gives the result for the contemporaneous

elasticity:

∂Nt

∂qw,t

qw,t
Nt

= −γ(1− α)− αδ. (3.69)

Now consider the lagged response. I am interested in the effect of a change in qw,t

on Nt+n (the lagged effects of a permanent minimum wage increase on employment).

From equation (3.34), qw,t appears in two terms making up Nt+n (since we want

partial and not total derivatives). Using the representation in equation (3.28) gives

Nt+n = ht+n + ...+ (1− δ)n−1ht+1 + (1− δ)nht + ... (3.70)

Hence the direct effect of a change in qw,t on Nt+n is (substituting in (3.29)):

∂Nt+n

∂qw,t
= (1− δ)n−1∂ht+1

∂qw,t
+ (1− δ)n ∂ht

∂qw,t
(3.71)

= (1− δ)n−1
∂
[
Qt+1−(1−δ)Qt

kαt+1

]
∂qw,t

+ (1− δ)n
∂
[
Qt−(1−δ)Qt−1

kαt

]
∂qw,t

(3.72)

= −(1− δ)n 1

kαt+1

∂Qt

∂qw,t
+ (1− δ)n

[
∂Qt

∂qw,t

1

kαt
− α ∂kt

∂qw,t

ht
kt

]
. (3.73)

Since the increase is permanent, qw,t = qw,t+1 so that (using equation (3.8)) kαt+1 = kαt .

Simplifying, converting to elasticities, applying equation (3.65), using the fact that
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the change is local so that Nt = Nt+n, and finally that the economy starts in steady

state so that equation (3.47) holds gives the result:

∂Nt+n

∂qw,t
= −α(1− δ)n ∂kt

∂qw,t

ht
kt

(3.74)

∂Nt+n

∂qw,t

qw,t
Nt+n

= −α(1− δ)n ∂kt
∂qw,t

ht
kt

qw,t
Nt+n

(3.75)

= −α(1− δ)n ht
Nt+n

(3.76)

= −αδ(1− δ)n. (3.77)

Proof of result 6.

Proof. Start with equation (3.9) and substitute in the combination of equation (3.8)

and the zero profit condition, equation (3.3), set to zero. Then expand qw,t using

equation (3.2):

Pt = qt − β(1− δ)Et[qt+1] (3.78)

= α−α
[
qw,t

1− α

]1−α

− β(1− δ)α−αEt

{[
qw,t+1

1− α

]1−α
}

(3.79)

= α−α
[
wt + β(1− δ)Et[qw,t+1]

1− α

]1−α

− β(1− δ)α−αEt

{[
qw,t+1

1− α

]1−α
}
. (3.80)

Imposing perfect foresight provides a convenient alternative representation of Pt:

Pt = α−α
[
qw,t

1− α

]1−α

− β(1− δ)α−α
{[

qw,t+1

1− α

]1−α
}

(3.81)

= α−α
[
qw,t

1− α

]1−α
[

1− β(1− δ)

{[
qw,t+1

qw,t

]1−α
}]

. (3.82)

Take a derivative of equation (3.80) with respect to wt, convert to elasticity form
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and substitute in for Pt while imposing perfect foresight (equation (3.82)):

∂Pt
∂wt

= α−α
[
wt + β(1− δ)Et[qw,t+1]

1− α

]−α
(3.83)

∂Pt
∂wt

wt
Pt

= α−α
[
wt + β(1− δ)Et[qw,t+1]

1− α

]−α
wt
Pt

(3.84)

= α−α
[
qw,t

1− α

]−α
wt

α−α
[ qw,t

1−α

]1−α [
1− β(1− δ)

(
qw,t+1

qw,t

)1−α
] (3.85)

= (1− α)
1

qw,t

wt[
1− β(1− δ)

(
qw,t+1

qw,t

)1−α
] . (3.86)

Let w̃t = (1− β(1− δ))qw,t and w̃t+1 = (1− β(1− δ))qw,t+1. Then:

∂Pt
∂wt

wt
Pt

= (1− α)
wt
w̃t

1− β(1− δ)

1− β(1− δ)
(
w̃t+1

w̃t

)1−α . (3.87)

For local changes from steady state, wt = w̃t and w̃t+1 = w̃t so that

∂P

∂wt

wt
Pt

= (1− α). (3.88)

3.9 Appendix: Simulation details

3.9.1 Simulation algorithm for perfect foresight

This appendix describes how to simulate the model in section 3.5. The model is

solved under perfect foresight. There are two steps: first, initializing the model, and

second, solving the dynamics given a varying minimum wage.
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Initializing the model to steady state

Suppose that the economy is in the steady state defined by w. Then the steady

state values are computed in the following order using the formulas in 3.8.1:

qw =
w

(1− β(1− δ))
,

k = qw,t
α

1− α
,

q = α(−α)

(
qw

1− α

)(1−α)

,

P = qt(1− β(1− δ)),

Q = θP−γ,

N =
Q

kα
,

K = Nk,

where Kt is the aggregate capital stock. The employment numbers include the high-

skill workers:

E = (1 + nh)N.

Dynamics to changing minimum wages

Suppose that after time t the wage will vary. At the beginning of time t+ 1 firms

know {wt+1+j}∞j=0. Define

qw,t+1+j =
∞∑
i=0

(β(1− δ))iwt+1+j+i∀j ≥ 0.

Given the sequence of qw,t+j, the following loop shows how to simulate the model

starting from the time t steady state.
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For j = 1, 2, 3 . . . :

qt+j = α(−α)

(
qw,t+j
1− α

)(1−α)

qt+j+1 = α(−α)

(
qw,t+j+1

1− α

)(1−α)

Pt+j = qt+j − β(1− δ)qt+j+1

Qt+j = θP−γt+j

kt+j = qw,t+j
α

1− α

ht+j =
Qt+j −Qt+j−1(1− δ)

kαt+j

Nt+j = Nt+j−1(1− δ) + ht+j

Kt+j = Kt+j−1(1− δ) + ht+jkt+j

Et+j = Nt+j + nh
Nt

Kt

Kt+j.

3.9.2 The stochastic process for wages

Estimating the stochastic process requires estimating the following objects: w̄i,

inf , h(wi,t − w̄i), and G (the distribution of increases). I proceed in the following

steps:

• Recover w̄i as the location-specific fixed effect by running a regression on 1984:I

- 2007:IV data:

ln rmwit = w̄i + εit,

where rmwit is the real minimum wage in location i in period t. Store the

residuals, ε̂it, which are the deviations from long-run averages.

• Assume that the h function takes a probit form. Let Increaseit be an indicator

for a minimum wage hike in period i in location t. To account for the fact that

there are staggered increases, only count the first increase in a five quarter win-

dow as an increase, and to not count changes due to indexation an increase has

to be least 5%. To measure the size, sum together the two increases. Estimate

h based on the following regression:

Pr(Increaseit = 1|ε̂it) = Φ(α0 + α1ε̂it),

where Φ is the normal CDF.
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• Estimate the distribution of increases, G, nonparametrically by taking the dis-

tribution of increases observed in the data.

• Compute the inflation parameter, inf , so that in expectation minimum wages

do not have a trend. In practice, I use simulation to calibrate the inflation

parameter by picking the inflation parameter such that after 100, 000 runs of

the series the average wage is zero. This yields an annual inflation rate of 3.3%.

3.9.2.1 Does the minimum wage process vary across locations?

Operationalize persistence as the AR(1) coefficient of a basic time series regression

on a single location i:

ε̂it = αi + ρiε̂it−1,

Does persistence, the estimated ρi, vary across locations? It does. The appropri-

ate null hypothesis, however, is that the dispersion in ρi is equal to that from the

estimated stochastic process. To construct this null distribution, simulate 50,000 min-

imum wage series of length 96 (the same length as in the data) based on the estimated

stochastic process and estimate the same AR(1) regression.

Figure 3.6 plots the PDFs of the two distributions of ρi, where both distribu-

tions are centered at their respective medians (the median from regressions on data

simulated from the stochastic process is 0.8895, and on the data is 0.9105.). Visual

inspection of the Figure suggests that the dispersion in the estimated ρi in the data

is very similar to what the estimated stochastic process would imply.

3.9.3 Simulation algorithm for uncertainty

This appendix describes how to simulate the model in section 3.6. This simulation

takes into account the uncertainty in the wage path. Firms expect the minimum wage

process to be that described in section 3.6.2. This modifies the algorithm described in

the previous subsection in that the the present discounted values of prices and wages

are computed via simulation.

The following describes how to simulate the present discounted value of wages and

prices, and the product price, in a period given the log deviation.

• Given ε̂i,t, simulate T periods of log deviations of real minimum wages using

the stochastic process in appendix 3.9.2: {ε̂i,t+j}Tj=1.

• Convert to real levels using the long-run average in the real value of the mini-

mum wage: wi,t+j = w̄i(1 + ε̂i,t+j), where wi,t is the real minimum wage and w̄i
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is the long-run average of the real value of the minimum wage.

• Compute and store qsw,t =
∑T

x=1(β(1− δ))x−1wi,t+x.

• Repeat the previous three steps S times.

• For the present discounted value of wages: qw,t = 1
S

∑S
s=1 q

s
w,t.

• For the contemporaneous present discounted value of prices: qt = α(−α)
( qw,t

1−α

)(1−α)
.

• For next period’s expected present discounted value of prices:

Et[qt+1] =
1

S

S∑
s=1

{
α(−α)

(
qsw,t+1

1− α

)(1−α)
}
,

where the qsw,t+1 are based on simulations using the period t wage.

• Compute the price: Pt = qt − β(1− δ)Et[qt+1].

Set T = 960 and S = 100.

The remaining aspects of the simulation are identical to the simulation with perfect

foresight.

3.9.4 Dube, Lester, and Reich (2010) dataset

Construct a county-level series of real quarterly minimum wages. Take the quar-

terly nominal minimum wages at the county-level from the Dube, Lester, and Reich

(2010) dataset from 1984:I - 2007:IV (96 entries). Use as a measure of inflation the

average hourly wage of production and non-supervisory workers from the Bureau of

Labor Statistics (series code CES0500000008). This series is monthly. Convert it

to quarterly using the geometric average of the three months. Create an index with

1984:I as the base period and equal to 1. Use this index to convert the nominal

minimum wages to real minimum wages.38

Then simulate a county-level employment series using realized variation in mini-

mum wages. For each county, start with the real minimum wage series from 1984:I -

2007:IV. In particular, the regression in appendix 3.9.2 implies for each county-period

a real minimum log deviation pair: (rmwit, ε̂it). Feed through the sequence of ε̂it to

38Using a measure of wages rather than inflation to deflate nominal minimum wages to real wages
is standard in the literature: Brown (1999) table 2 uses this deflator, and Baker, Benjamin, and
Stanger (1999) deflate by the average manufacturing wage. Results are indistinguishable using the
CPI to deflate the wage series, since inflation-adjusted average wages barely moved in this period.
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the algorithm described in the previous subsection. Start with employment in the

steady state defined by average minimum wages from 1984:I-2007:IV. Use this steady

state to define the adjustment ratio for high-skill labor.

To deal with initial conditions, copy this minimum wage series and expectations

10 times. This means that the first 96 entries are 1984:I-2007:IV, and the 97th entry

is 1984:I. Run the resulting 960 periods through the algorithm and store the final 96

observations.

3.10 Appendix: Additional specifications

Baker, Benjamin, and Stanger (1999) present three long-run specifications. Two

specifications filter the minimum wage series into their high and low frequency com-

ponents. The last specification is the distributed lag specification already presented

in the text.

First, the “informal” filter splits minimum wage movements into low and high-

frequency components, where these components are defined as the two-period moving

average and the first difference of minimum wages. Baker, Benjamin, and Stanger use

annual data and so to be consistent compute the moving average four periods apart

and use fourth differences. This specification is:

ln(restemp)ipt = a1 + η1
∆4ln(MW )it

2
+ η2

(lnMWit + ln(MW )i,t−4)

2

+a2ln(totemp)ipt + a3ln(pop)it + φi + τt + τpt,

where η1 is the elasticity with respect to high-frequency movements and η2 is the

elasticity with respect to low frequency movements. Table 3.8 shows that the low-

frequency filter returns an elasticity on data simulated from the model of −0.07.

Second, the formal filter is based on a formal frequency decomposition of the

natural log of the real minimum wage series. See Baker, Benjamin, and Stanger

(1999, pg. 334) for details, or Hamilton (1994, pg. 159) for a statement of the

relevant theorem. Baker, Benjamin, and Stanger decompose the real minimum wage

series directly, I decompose the natural log. Doing the analysis in levels yields smaller

coefficients on the simulated data. Following Baker, Benjamin, and Stanger enter the

nine lowest frequencies as five sums, where adjacent frequencies are summed starting

from the lowest, except for the highest frequency. They report that they enter five

frequencies, which are each the sum of two frequencies. The 10th frequency is a
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constant. The results are identical if the frequencies are entered separately. Table 3.9

shows that the lowest frequency movements in the minimum wage estimated on data

simulated from the model yield elasticities of −0.07.
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Table 3.6: Probit model of the probability of a minimum wage increase

Increase

Deviation -6.673
(0.182)

Constant -1.991
(0.016)

N 36480

Note: The outcome variable is an indicator for a minimum wage increase. The devia-
tion is defined as the residual from a regression of log minimum wages on county fixed
effects using 1984:I-2007:IV data. The sample is a modified form of the contiguous
border county sample from Dube, Lester, and Reich (2010), where duplicate counties
are dropped.
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Table 3.7: Distributed lag specification

Data Model

∆lnMW (t) 0.082 -0.051

(0.087) (0.001)

∆lnMW (t+ 1) 0.093 -0.053

(0.102) (0.001)

∆lnMW (t+ 2) 0.087 -0.054

(0.134) (0.001)

∆lnMW (t+ 3) 0.087 -0.055

(0.121) (0.001)

∆lnMW (t+ 4) -0.013 -0.060

(0.087) (0.001)

∆lnMW (t+ 5) -0.010 -0.062

(0.093) (0.001)

∆lnMW (t+ 6) -0.063 -0.066

(0.082) (0.001)

∆lnMW (t+ 7) -0.065 -0.068

(0.087) (0.001)

∆lnMW (t+ 8) 0.029 -0.070

(0.081) (0.001)

∆lnMW (t+ 9) -0.021 -0.072

(0.091) (0.001)

∆lnMW (t+ 10) -0.003 -0.074

(0.096) (0.001)

∆lnMW (t+ 11) 0.019 -0.075

(0.103) (0.001)

∆lnMW (t+ 12) 0.012 -0.076
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Table 3.7 – continued from previous page

(0.102) (0.001)

∆lnMW (t+ 13) 0.024 -0.078

(0.099) (0.001)

∆lnMW (t+ 14) -0.027 -0.079

(0.119) (0.001)

∆lnMW (t+ 15) 0.029 -0.081

(0.121) (0.001)

∆lnMW (t+ 16) 0.010 -0.082

(0.116) (0.001)

∆lnMW (t+ 17) 0.035 -0.084

(0.141) (0.001)

∆lnMW (t+ 18) 0.020 -0.085

(0.147) (0.001)

∆lnMW (t+ 19) 0.018 -0.086

(0.134) (0.001)

∆lnMW (t+ 20) 0.024 -0.087

(0.109) (0.001)

∆lnMW (t+ 21) -0.052 -0.087

(0.112) (0.001)

∆lnMW (t+ 22) -0.048 -0.088

(0.113) (0.001)

∆lnMW (t+ 23) -0.022 -0.089

(0.138) (0.001)

lnMW (t+ 24) 0.012 -0.094

(0.172) (0.002)

N 41448 41448

169



Note: The regressions also include a border pair times period interaction term, a

measure of total employment and a measure of population. The outcome is total

employment in the restaurant industry. The regressions use the contiguous border

sample. The standard errors are clustered at the state and border segment separately.

The data column reports estimates based on the data. The model column reports

estimates based on data simulated from the putty-clay model.
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Table 3.8: “Lag operator” filtered effects of minimum wages.

Data Model
High Frequency Minimum Wage 0.166 -0.029

(0.158) (0.004)

Low Frequency Minimum Wage -0.008 -0.072
(0.076) (0.002)

N 41448 41448

Note: The high frequency minimum wage is an annual log difference. The low fre-
quency minimum wage is an annual log moving average. The other variables are
in logs. The regressions also include a border pair times period interaction term, a
measure of total employment and a measure of population. The outcome is total
employment in the restaurant industry. The regressions use the contiguous border
sample. The standard errors are clustered at the state and border segment separately.
The data column reports estimates based on actual data. The model column reports
estimates based on data simulated from the putty-clay model.
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Table 3.9: Frequency decomposition-based dynamic lagged specification.

Data Model
Lowest Frequency -0.001 -0.067

(0.122) (0.002)

Lower Frequency 0.017 -0.064
(0.122) (0.003)

Medium Frequency 0.183 -0.064
(0.135) (0.003)

Higher Frequency 0.116 -0.059
(0.203) (0.006)

Highest Frequency -0.015 -0.051
(0.206) (0.008)

N 41448 41448

Note: The frequency decomposition is based on the logged real minimum wage series
deflated using average hourly wage of private sector production and non-supervisory
workers from 1987:2-2006:2. Lowest frequency are movements at a frequency at 19.2
year and 9.6 years; lower frequency are movements at 6.4 years and 4.8 years; medium
frequency are movements at 3.85 and 3.2 years; higher is at 2.75 and 2.4; and highest
is at 2.1 years. The regressions also include a border pair times period interaction
term, a measure of total employment and a measure of population. The outcome
is total employment in the restaurant industry. The regressions use the contiguous
border sample. The standard errors are clustered at the state and border segment
separately. The data column reports estimates based on actual data. The model
column reports estimates based on data simulated from the putty-clay model.
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Figure 3.6: Persistence in the data and the estimated stochastic process

Note: This figure plots the PDF of the persistence coefficients of an AR(1) regression
of minimum wages on lags of itself within location, with their median removed. The
median from regressions on data simulated from the stochastic process is 0.8895, and
on the data is 0.9105. The minimum wage is defined as the residual from a regression
of log minimum wages on county fixed effects using 1984:I-2007:IV data. The sample
is a modified form of the contiguous border county sample from Dube, Lester, and
Reich (2010), where duplicate counties are dropped. The procedure to generate the
distribution from the stochastic process is given in 3.9.2.1.
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