Comparative genomics of clinical isolates of *Pseudomonas fluorescens*, including the discovery of a novel disease-associated subclade.

by

Brittan Starr Scales

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Microbiology and Immunology) in The University of Michigan 2015

Doctoral Committee:

Professor Gary B. Huffnagle, Chair
Professor John Joseph LiPuma
Professor Bethany B. Moore
Professor Michele S. Swanson
DEDICATION

Twenty-five years ago a little girl told her mother that when she grew up she wanted to be a 'Know-it-all-Scientist'. This dissertation is dedicated to the single mother who didn’t tell her little girl that such a goal was impossible, but instead, did everything in her power to make it happen.
TABLE OF CONTENTS

DEDICATION ii
LIST OF FIGURES v
ABSTRACT x

CHAPTER

I. Microbiology, Genomics and Clinical Significance of the *Pseudomonas fluorescens* Species Complex, an Unappreciated Colonizer of Humans 1

 I. Figures 27
 I. References 38

II. Materials and Methods 62

 II. References 70

III. Multi-locus Sequence Analysis (MLSA) of newly sequenced clinical *Pseudomonas spp.* isolates 73

 III. Figures 82
 III. References 86
 III. Appendix 88

IV. Comparative Genomics of *Pseudomonas fluorescens* Subclade III Strains from Human Lungs 91

 IV. Figures 118
 IV. References 129
 IV. Appendix 151

V. Comparative Genomics of a Novel Human-Adapted Subclade of *P. fluorescens* Species Complex Bacteria That Contain a Yop/Ysc- like Type III Secretion System 164

 V. Figures 184
 V. References 203
 V. Appendix 211
VI. Chronic Inflammation in the Lower Airways Favors the Growth of
P. fluorescens Species Complex Bacteria 233

VI. Figures 246

VI. References 255

VI. Appendix 260

VII. Finale 269

VII. Figure 287

VII. References 288
LIST OF FIGURES

Chapter I

Figure I.1 Reported *P. fluorescens* infections 27
Figure I.2 *P. fluorescens* isolates cultured over an eleven-year period by the University of Michigan Hospital Microbiology lab. 28
Figure I.3 The functional range and environmental niches of the *Pseudomonas* genus, highlighting the broad distribution of the *P. fluorescens* species complex. 29
Figure I.4 Species diversity within the *P. fluorescens* species complex. 30
Figure I.5 Scanning electron micrograph of *P. fluorescens* (courtesy of Science Source). 31
Figure I.6 Characteristics of *P. fluorescens* complex bacteria. 32
Figure I.7 Phylogenetic tree of 38 *Pseudomonas* type strain, based on concatenated nine gene MLST analysis. 33
Figure I.8 Summary information of fully sequenced bacterial strains from the *P. fluorescens* species complex. 34
Figure I.9 Phylogenetic tree of 38 *Pseudomonas* type strains, based on the V3-V5 region sequence of the 16S rRNA gene. 35
Figure I.10 Scanning electron micrographs of *P. fluorescens* biofilms. 36
Figure I.11 Type-III secretion systems in *P. fluorescens*. 37

Chapter III

Figure III.1 Phylogenetic tree of 60 sequenced clinical *Pseudomonas spp.* strains with six-gene MLSA scheme. 82
Figure III.2 Phylogenetic tree with eight-gene MLSA scheme to characterize *P. fluorescens* subclade III. 83
Figure III.3 Phylogenetic tree with seven-gene MLSA scheme to characterize
P. fluorescens subclade IV.

Figure III.4 Phylogenetic tree of 56 sequenced clinical *Pseudomonas spp.*
strains with seven-gene MLSA scheme.

Appendix Figure III.1 Housekeeping genes used for screening and classifying
the newly sequenced *Pseudomonas spp.* strains.

Appendix Figure III.2 Housekeeping genes in the newly sequenced
Pseudomonas spp. strains.

Chapter IV

Figure IV.1 Date, location and source of *P. fluorescens* strains.

Figure IV.2 Assembly statistics of newly sequenced *P. fluorescens* strains.

Figure IV.3 Genomic features of newly sequenced *P. fluorescens* strains.

Figure IV.4 Phenogram based on average nucleotide identity (ANI) between
subclade III strains.

Figure IV.5 Secondary metabolite genes and gene clusters in subclade III strains.

Figure IV.6 Pan, accessory and core analysis of the eleven subclade III strains.

Figure IV.7 The czc gene cluster in environmental and clinical subclade III strains.

Figure IV.8 G+C content across the genomes of newly sequenced subclade III strains.

Figure IV.9 Alignment of the pfiT amino acid sequences from subclade III strains.

Figure IV.10 Genes involved in Type-II, III, IV, VI and WCl secretion system in
subclade III strains.

Figure IV.11 Neighbor-joining tree based on the amino acid sequence of
czcA homologues.

Appendix Figure IV.1 Coverage map of AU2989 assembled scaffolds and contigs.

Appendix Figure IV.2 The nucleotide sequence of the 16S rRNA sequences was
used to query the NCBI nucleotide collection (nr/nt).

Appendix Figure IV.3 Average nucleotide identity (ANI). 153
Appendix Figure IV.4 Secondary metabolite genes and reference organisms for blast. 154
Appendix Figure IV.5 Blast results of selected GC Islands. 157
Appendix Figure IV.6 Full annotation of genes involved in secretion systems in subclade III strains. 159
Appendix Figure IV.7 Alignment of FimA homologues. 161
Appendix Figure IV.8 Alignment of VasH homologues. 162
Appendix Figure IV.9 Phylogenetic tree of VasH homologues. 163

Chapter V

Figure V.1 Date, location and source *P. fluorescens* strains. 184
Figure V.2 Growth properties of clinical and reference *Pseudomonas* strains. 185
Figure V.3 Assembly statistics of clinical strains of *P. fluorescens* sequenced in this study. 186
Figure V.4 Subclade IV isolation across the United States 188
Figure V.5 Genome features of *P. fluorescens* strains in this study. 189
Figure V.6 Genome size of newly sequenced and reference *Pseudomonas* strains. 190
Figure V.7 % G+C content of newly sequenced and reference *Pseudomonas* strains. 191
Figure V.8a G+C content across the genomes of newly sequenced subclade IV strains. 192
Figure V.8b G+C content across the genomes of subclade I and II strains. 193
Figure V.9 Pan, accessory and core analysis of the ten subclade IV strains. 194
Figure V.10 PCA built on shared gene clusters between Pseudomonas strains. 195
Figure V.11 Alignment of the pfiT amino acid sequences from subclade I and II *P. fluorescens* strains. 196
Figure V.12 Alignment of I2 nucleotide sequence subclade I, II and III

_ P. fluorescens_ strains.

Figure V.13 Number of gene homologues annotated as part of the

Ysc/Yop- like type-III secretion system.

Figure V.14 Amplification of the ExoU protein with _P. fluorescens_

subclade IV-specific primers.

Figure V.15 ExoU and SpcU protein phylogeny in _Pseudomonas_ strains.

Figure V.16 Alignment of SpcU homologues.

Figure V.17 Model of the type III secretion system in _P. fluorescens_

subclade IV strains.

Appendix Figure V.1 Average Nucleotide Identity (ANI).

Appendix Figure V.2 Genome size of newly sequenced and reference

Pseudomonas strains.

Appendix Figure V.3 % G+C content of newly sequenced and reference

Pseudomonas strains.

Appendix Figure V.4 Nucleotide blast of selected GC Islands.

Appendix Figure V.5 Annotated type III secretion genes in _P. fluorescens_

subclades IV and _P. aeruginosa_ strains.

Appendix Figure V.6 Statistics of annotated type III secretion genes.

Appendix Figure V.7 Development of _P. fluorescens_ subclade IV-specific

ExoU primers.

Appendix Figure V.8 Blastp with ExoU Subclade IV protein.

Appendix Figure V.9 Blastp with SpcU Subclade IV protein.

Chapter VI

Figure VI.1 Inflamed mouse lung microbiome from in-house colony.
Figure VI.2 Inflamed mouse lung microbiome from Jackson labs. 248
Figure VI.3 Inflamed mouse tongue microbiome from in-house colony. 249
Figure VI.4 Inflamed mouse tongue microbiome from Jackson labs. 250
Figure VI.5 Relative abundance of mouse lung-associated *Pseudomonas* OTUs in five treatment subsets. 251
Figure VI.6 Relative abundance of human lung-associated *Pseudomonas* OTUs in three patient subsets. 252
Figure VI.7 *Pseudomonas* abundance in COPD lung explants. 253
Figure VI.8 V3 - V5 16S rRNA phylogenetic tree. 254
Appendix Figure VI.1 Blast results of *Pseudomonas* OTUs. 260
Appendix Figure VI.2 Blast alignment of *Pseudomonas* OTUs against reference *Pseudomonas* genomes. 264
Appendix Figure VI.3 Blast and alignment of the two mouse lung-associated *Streptococcus* OTUs. 267

Chapter VII
Figure VII.1 Core, accessory and pan genomes. 287
ABSTRACT

Comparative genomics of clinical isolates of *Pseudomonas fluorescens*, including the discovery of a novel disease-associated subclade.

by

Brittan Starr Scales

Chair: Gary Huffnagle

Abstract title: Comparative genomics of clinical isolates of *Pseudomonas fluorescens*, including the discovery of a novel disease-associated subclade.

Taxonomically, there are over 52 *Pseudomonas* species that group within the *Pseudomonas fluorescens* species-complex. They are gram-negative bacteria (gammaproteobacteria) that have the ability to flourish in many different environmental niches due their metabolic adaptability. Prior to beginning the project described in this dissertation, we had identified (using culture-independent analysis) that the lung microbiome of patients with severe chronic obstructive pulmonary disease (COPD) contained abundant levels of *P. fluorescens*. This finding was highly unexpected because *P. fluorescens* colonization had not been previously reported in chronic respiratory disease (human or veterinary). Furthermore, there was no taxonomic or genome information on clinical *P. fluorescens* strains in the published literature or NCBI database. This raised the question of whether there were differences between *P. fluorescens* strains isolated from clinical vs. environmental sources. To begin to address this question, I sequenced a collection of *Pseudomonas spp.* isolates from individuals with chronic lung disease, which included 22 clinical *P. fluorescens* strains. Twelve of the 22 could be grouped within previously defined subclades I, II and III of the *P. fluorescens* species-complex. However, the other 10 strains were distinct and could be clustered as a phylogenetically unique fourth subclade, which lacked any representative genomes (clinical or environmental) in the
NCBI database. I performed additional comparative genomic analyses on all four subclades in order to identify genomic attributes that were associated with growth in humans (vs. the environment). Subclade III clinical isolates were almost indistinguishable from environmental isolates; however, the clinical isolates contained additional homologues of genes involved in metal toxicity resistance, an attribute that has been reported for chronic antibiotic exposure, such as would occur in the cystic fibrosis lung. In sharp contrast, subclade IV strains displayed marked reductions in genome size, gene diversity and GC content, as well as containing all of the elements for a Ysc family type III secretion system that was extremely similar to that found in *P. aeruginosa*. Furthermore, our subclade IV strains, collected from geographic locations across the U.S., had a very high level of shared nucleotide identity and a small accessory genome, suggesting that they may have evolved from living in multi-trophic environments to a life in a much narrower niche, perhaps human airways. We also identified that some colonies of inbred mice contained indigenous *P. fluorescens* in their lung microbiome (subclade III) and chronic inflammation was associated with an outgrowth of *P. fluorescens*. Expanding my analysis to human respiratory disease, I found an increase in *P. fluorescens* (largely subclade III) in lung samples from multiple diseases (COPD, IPF and lung transplant) but not healthy subjects. Altogether, these studies reveal that *P. fluorescens* is an under-appreciated colonizer of humans, particularly in the context of pulmonary inflammation, and lay the groundwork for future studies delineating the contribution and molecular mechanisms of this host-microbe interaction.