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CHAPTER I

Introduction

Latent factor models are commonly used for multivariate data analysis. These

models assume that the correlation among observed variables comes from a few

shared unobserved latent factors. Latent factors and observed variables are linked

through a set of regression models termed “measurement models”. In the measure-

ment model, observed variables are regressed on the latent factors, and the regression

coefficients are termed factor loadings. Typically the number of latent factors is much

smaller than the number of observed variables, so latent factor models can also serve

as a data reduction step. After the latent factors are estimated (i.e., factor scores are

derived), they can be used as either the outcomes or predictors for further analyses.

In this thesis I develop novel approaches to estimate and test nonlinear associations

between latent factors and observed variables (i.e., non-constant factor loadings), as

well as estimate and test the nonlinear relationship between an observed continuous

predictor and multiple observed outcomes that measure a latent factor.

In Chapter II and III I develop strategies to estimate non-constant factor load-

ings. The models developed in these two chapters are aimed at taking into account

the varying correlation among multivariate exposure data (see Figure 2.1 for an ex-

ample). In the context of latent factor models, the varying correlation suggests the

1
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factor loadings should vary with certain covariates and should be estimated as non-

constant. In the literature several papers start to use splines in latent factor models

(or more generally, structural equation models). These papers develop methods that

can estimate a nonlinear mean trend of the latent factor [1, 2, 3, 4, 5], or a nonlinear

relationship between outcome latent factor and predictor latent factor [1, 4, 5, 6], or

both. But few have looked at the possibility of using splines to estimate non-constant

factor loadings [7]. A key contribution of the first two chapters is the development

of methods to estimate non-constant factor loadings.

We let the non-constant factor loadings be composed of two parts, a constant part

and a functional part. We estimate the functional part using penalized regression

splines (P-spline). Splines have been widely used as an approach to estimating non-

parametric functions [8, 9, 10, 11, 12, 13, 14]. There are several different ways of

implementing the splines [15]. In this thesis I use P-splines [16, 17] because of their

simplicity and flexibility. Other commonly used methods include cubic regression

splines [11, 18, 19] and thin plate splines [9, 11, 20]. P-splines are based on B-spline

bases [21]. They are smoothed through a difference penalty on adjacent spline coef-

ficients [16]. The order of the difference penalty determines the order of polynomial

the splines shrink toward [22].

The functional part of the non-constant factor loadings can depend on one or

more covariates. In Chapter II, the functional part is estimated as the sum of a

univariate function of time and a bivariate function of spatial coordinates. I use the

tensor product [17, 23, 24, 25, 26, 27] of B-spline bases to construct the splines for

bivariate functions. In Chapter III, the non-constant factor loadings are univariate

functions of age only. As for estimating the smoothing parameters of P-splines, I use

generalized cross-validation method (GCV) in Chapter II, and maximum likelihood
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method in Chapter III. These techniques have been widely used in generalized

additive models [15], but in the context of latent factor models, these techniques

are not directly applicable. So a large part of these two chapters is to develop new

estimating strategies.

In Chapter II, I use the EM algorithm[28] for estimation, treating the latent factor

as missing. Given the latent factor, I estimate the non-constant factor loadings using

Ridge regression under given smoothing parameters. A highlight of my algorithm is

that it optimizes a GCV-type criterion [11, 12, 29, 30, 31] during each EM iteration

so that I can estimate the smoothing parameters based on prediction error using

the estimated latent factor. I also use multiple smoothing parameters to penalize

the wiggliness of splines that are associated with each covariate (time and spatial

coordinates) and Newton’s method [15, 32] is used for the optimization. In Section 2.4

and 2.5, I also show how correctly estimating the non-constant factor loadings can

help with estimating the latent factor.

In Chapter III, I still use EM algorithm for the estimation, but I estimate the

smoothing parameter using maximum likelihood. A key contribution of this approach

is that tests of measurement invariance can be developed [33, 34]. Measurement in-

variance is important because in many studies, especially in psychometric analyses,

researchers want to make sure the observed variables measure the same latent fac-

tor for all members of the population under study [35, 36]. A non-constant factor

loading would suggest the measurement invariance assumption is violated. Usually

measurement invariance is tested by stratifying the data into different groups and

testing if the factor loadings are significantly different across groups [33, 37, 38, 39].

This method is less efficient if there is reason to suspect the factor loading changes

with a continuous variable because some information will be lost when a continuous
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variable is arbitrarily divided into categories.

To enable testing in Chapter III, I treat the spline coefficients as random [40, 41,

42, 43] and the smoothing parameter as equal to the variance of the spline coefficients

after proper transformation [22, 24, 44]. Testing measurement invariance is thus

the same as testing if the variance of the spline coefficients is zero. I develop a

likelihood ratio test (LRT) for this hypothesis. However, since both the latent factors

and the spline coefficients are unobserved, the marginal likelihood does not have a

closed form. Therefore, I use a Monte-Carlo E-step [45] based on the Gibbs sampler.

Through simulation (Section 3.4) I show that estimating the factor loading as a

continuous function improves the power for testing measurement invariance. I also

show that in practice, a pointwise confidence interval can be a simple alternative

method for testing because it can be a byproduct of the Monte-Carlo EM algorithm

and its power can be as good as the LRT.

In Chapter IV, I use P-splines to estimate an overall nonlinear exposure effect for

multiple outcomes. The exposure is only a single predictor, but I have multivariate

outcome data. I stay in the framework of a latent factor model which takes into

account the correlation among multivariate outcomes. In this chapter my focus

is not on the factor loading, but on estimating a nonlinear exposure effect on the

mean of the latent factor. Compared with the literature that also adds a nonlinear

mean trend for the latent factor using splines in a Bayesian framework, my work in

Chapter IV uses restricted maximum likelihood (REML) and linear mixed model to

estimate the P-spline. The model is also developed from the perspective of estimating

and testing an overall nonlinear exposure effect. Several papers [46, 47, 48] have

developed models that aim to improve efficiency through estimating an overall linear

exposure effect. Here I extend that idea to nonlinear exposure effects.
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In summary, in Chapter II and III I use confirmatory factor analysis to only model

multivariate exposure data. My objective is to improve the estimation of the latent

factor by introducing non-constant factor loading into the model. The estimated

latent factors can be used as predictors for health outcomes in future analyses. In

Chapter IV I develop approaches to test for nonlinear effect of observed predictors

on a latent factor. Taken together, Chapters II through IV significantly advance

the modeling approaches for multivariate data within the framework of latent factor

models.



CHAPTER II

Using a Latent Factor Model with Non-Constant Factor
Loadings to Examine the Varying Correlation among Four

PM2.5 Constituents

2.1 Introduction

Fine particulate matter PM2.5, air particles with aerodynamic diameter of 2.5

micrometers or less, is associated with adverse health effects [49, 50]. The study by

Laden et al. [51] suggests PM2.5 from different sources has different toxic effects, im-

plying the importance of the chemical profile of the constituents of PM2.5. Although

the chemical constituents of PM2.5 that determine its toxicity are not yet well under-

stood, many different studies have associated several of its constituents, for example,

nitrates, elemental carbon, organic carbon, with mortality and various other health

risks [52, 53, 54, 55, 56]. Because the constituents are typically correlated, studies

that analyze the relationship between constituents and health outcomes often use

methods that summarize the correlated constituents, for example, using clustering

[57] or latent factor models [2, 58]. In particular, widely used source apportionment

methods [59] use latent factor models to summarize constituent data in terms of their

relationship to air pollution sources, such as power plant or vehicle exhaust, that can

be potentially regulated. Since the air pollution sources are not directly observed,

source contributions are treated as latent factors and estimated from the data.

6
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However, methods to summarize PM2.5 constituents may insufficiently capture

spatial and temporal differences in the correlations among constituents when ap-

plied to large geographic areas or long time periods. Summaries depend on the

correlation among constituents, and correlations among constituents may vary with

time and space [57, 60]. For instance, my preliminary analyses of PM2.5 constituent

data issued by the EPA for the years 2008 and 2009 (see Section 2.5 for more details

on the data) suggests that the correlation among constituents related to secondary

inorganic aerosols [59, 61] varies with season and geographic location (Figure 2.1a).

Nitrate exhibits the greatest differences in terms of its correlation with other con-

stituents, both across regions and across time within region. As a result, it is not

surprising that in preliminary factor analyses of this constituent data, stratified by

time and region, factor loadings differ across time and region for some constituents

(Figure 2.1b and 2.1c). However, these differences in the factor model structure

are not specifically modeled in current literature that uses latent factor models ap-

plied to constituent data collected across large geographical areas [59]. Although

many models have been proposed to reduce data dimension and to predict outcomes

based on many constituents simultaneously [54, 57, 62], a more thorough under-

standing of how the correlations among PM2.5 constituents change with time and

space may allow us to gain further insights on the validity and interpretation of

such dimension-reduction approaches and thus potentially improve modeling of the

association between constituents and health outcomes.

In the literature multiple papers have described models that analyze air pollution

data from the perspective of time and space [63, 64, 65, 66]. However, I focus on

models utilizing latent factors, given their connection to air pollution sources [58, 67]

and because some of these models can be applied to understanding temporal and
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Figure 2.1: Preliminary analyses of four PM2.5 constituents stratified by time period and region.
(a) shows the correlation matrix of the four constituents for strata defined by region (row) and time
period (column). Data for the four constituents from 2008 to 2009 are downloaded from the EPA
Air Quality System (AQS) website. The header for time denotes the year (Yr) and quarter (Qtr)
within that year. The strength of correlation is represented with different shades of green. We can
see the differences in correlations are primarily between total nitrate and the other constituents.
(b) and (c) compare the factor loadings for a particular constituent from stratified confirmatory
factor analyses. The y-axis shows the size of the factor loading. Each dot on the plot is the factor
loading from analysis of one stratum. The Midwest, Northeast, and South regions are represented
by solid, dashed, dotted lines, respectively. These results suggest there is temporal and spatial
difference for the factor loading of total nitrate (b). In comparison, ammonium ion (c) has a rather
constant factor loading as the error bars of the different estimates mostly overlap.
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spatial patterns in the correlation of PM2.5 constituents specifically. For example,

Gryparis et al. [2] propose semiparametric latent factor models for modeling multiple

surrogates of a single pollution source. They use a penalized spline formulation to

allow nonlinear effects of covariates on the mean trend of latent factor and they also

use geoadditive models [68] to account for the temporal and spatial correlations in

the latent factor. Lopes et al. [69] use a spatial dynamic factor model to incorpo-

rate temporal and spatial correlations among observations of a single pollutant from

different monitors over a certain time period. In that model, the spatial correlation

is introduced through the factor loading matrix. That is, at a given time point,

monitors are treated as different variables. The temporal correlation is modeled by

an autoregressive structure among the latent factors. Ippoliti et al. [70] use a similar

dynamic factor model but they couple two sets of latent factors so that one latent

factor could be predicted from the other.

More generally, models using latent factors have gained much popularity in re-

search that relates environmental exposures to health outcomes because they can

reduce the dimension of the data by summarizing correlated exposure measurements

[71]. In the last decade, much work has been done to relax model assumptions,

including nonlinear relationships among latent factors [4, 72, 73, 74, 75, 76], nonlin-

ear links relating observed variables to latent factors [2, 77], as well as models with

spatial structures on the latent factors [1, 78, 79].

However, except for the model proposed by Zhang et al. [7], none of these existing

advanced models specifically address the variation in the factor loadings exhibited in

the constituent data (Figure 2.1b). Traditionally, the measurement model that links

the observed variables to the latent factors is assumed constant across the covariate

space (e.g., across time and geographic location). A constant measurement model,
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also termed measurement model invariance [33, 80], is needed for valid comparison

of differences in the latent factor means across covariate levels or groups. However,

it has been shown that allowing the measurement model to vary across values of

categorical covariates may be desirable when estimating exposure-health outcome

associations, potentially because the flexible measurement model enables better es-

timation of the latent factor itself [81, 82]. Allowing the measurement model to vary

across continuous covariates, however, is a more challenging problem.

In this paper I propose a semiparametric latent factor model with non-constant

factor loadings that change with multiple covariates, in particular time and space, as

motivated by the EPA’s PM2.5 constituents data. I use P-splines to estimate factor

loadings that change with multiple covariates. This construction for the factor load-

ings bears a resemblance to the classic varying coefficients model [83]. In Section 2.2

I propose the latent factor model that incorporates non-constant factor loadings,

while Section 2.3 explains the estimation procedure. A key feature of my estimation

algorithm is to include the GCV score within the EM iterations so that I can optimize

the smoothing parameters for P-splines in the framework of a latent factor model.

In Section 2.4 I present a simulation study to assess the algorithm, and estimation

properties for certain model parameters and the estimated factor scores. I then ana-

lyze the constituent data set and draw inferences based on bootstrap approaches in

Section 2.5. Section 2.6 ends with a discussion and future directions.

2.2 Model

Let yi be a vector of P observed variables measured at time ti and location

(ui, vi) denoted by two coordinates, typically longitude and latitude. I use a latent

factor model to summarize the information of yi. I introduce non-constant factor
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loadings in order to incorporate temporal and spatial differences in the marginal

correlations among observed variables and to enable assessment of the invariance of

the measurement model across time and space.

I assume the elements of yi are linearly related to a latent factor according to the

measurement model,

(2.1) yi = µ+ λ.iηi + εi,

where ηi is a latent factor, λ.i = (λ1i, . . . , λpi, . . . , λPi)
T is a P × 1 vector of factor

loadings, µ is a P × 1 vector of scalars, and εi is a P × 1 vector of random errors. I

let ηi be an i.i.d. random variable following the standard normal distribution. Since

the mean of the latent factor is given, the observed variable means µ are identifiable

[71]. Further, constraining the variance of the latent factor to equal one allows

the identification of the factor loadings up to an additional sum to zero constraint

(below). The errors εi are assumed to be independent of ηi, and to be i.i.d. and follow

a multivariate normal distribution, εi ∼ N(0,Σε), where Σε = diag(σ2
ε,1, . . . , σ

2
ε,P ).

Although a completely unstructured Σε would lead to identifiability problems, a

diagonal Σε is not strictly required but simplifies estimation (Section 3). In my data

application the i.i.d. assumption is tenable since I first detrend the observed data

(see Section 5 for more details).

2.2.1 Non-constant factor loadings that vary with time and space

In classical latent factor models, the factor loadings are estimated as constant

parameters, or sometimes allowed to differ across levels of a categorical variable [80].

However, in my proposed model, factor loadings are allowed to vary smoothly with

time and/or location, resembling a varying coefficients model [83].

I model the non-constant factor loadings as a smooth function of (ti, ui, vi). That
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is, the value of the p-th factor loading for sample i, λpi, is specified in the form of an

additive model,

(2.2) λpi = λp0 + fp,t(ti) + fp,uv(ui, vi) + fp,tuv(ti, ui, vi),

where fp,t, fp,uv, fp,tuv are all centered functions (i.e., the sum of the function values

across all the data points is zero), and λp0 represents the constant part of the factor

loading. The functions fp,t, fp,uv respectively capture the main effects of time and

location on factor loadings, while fp,tuv tells us whether the location effect changes

over time, or whether there is interaction between time and location. I will omit ti,

ui, vi in the following notation unless necessary.

I represent the non-constant factor loadings using P-splines. Specifically, I con-

struct univariate cubic B-spline basis functions for each covariate, t, u, v, and use

them to construct tensor product bases for the interaction terms fp,uv(ui, vi) and

fp,tuv(ti, ui, vi) (see Section 4.1.8 of the book by Wood [15]). Collecting the values of

the factor loadings corresponding to the p-th observed variable across all observations

i = 1, . . . , n into λp. = (λp1, ..., λpi, ..., λpn)T , I can express λp. = Xpβp where

(2.3) Xp = [1,Xt,Xuv,Xtuv] , β
T
p =

[
λp0,β

T
p,t,β

T
p,uv,β

T
p,tuv

]
.

Note that I use λ.i = (λ1i, . . . , λpi, . . . , λPi)
T to denote values of the P factor loadings

for the i-th observation, and λp. = (λp1, ..., λpi, ..., λpn)T as the factor loadings for

the p-th observed variable. The design matrix Xp contains the values of the basis

functions evaluated for each observation, with rows corresponding to observations i =

1, ..., n, and the columns corresponding to the components in (2.2) which have been

suitably centered and constrained to remove redundancies that arise when creating

the tensor product bases (see Section 1.8.1 of the book by [15]). Parameters βp are

the corresponding coefficients, which, except for the intercept λp0, are penalized.
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I use the squared first difference penalty [16] to control the degrees of freedom of

the smooth, which yields the desirable property of shrinking the smooth to the inter-

cept λp0. The penalty is constructed as a composite penalty that combines separate

penalties for each of the components of the smooth in (2.2), that is, the coefficients

βp,t,βp,uv, and βp,tuv are penalized separately. Furthermore, the interaction terms

use tensor product bases and have separate penalties for each covariate conditional

on the other covariates in the interaction (see Section 4.1.8 of the book by [15] for a

similar construction). In total, the penalty corresponding to each factor loading relies

on six distinct smoothing parameters. These penalties are constructed separately for

each of the P factor loadings in the model. The penalty for the spline coefficients

of the p-th factor loading is Ωp(βp,ωp) = βTp Sp(ωp)βp, where ωp denote the six

smoothing parameters, S(ωp) is constructed as a block diagonal matrix whose diag-

onal blocks are 0, and ωp,tSt, ωp,u|vSu|v+ωp,v|uSv|u, ωp,t|uvSt|uv+ωp,u|tvSu|tv+ωp,v|tuSv|tu

that correspond to the penalties of βp,t,βp,uv, and βp,tuv. I define the overall penalty

as Ω(β,ω) =
∑P

p=1 β
T
p Sp(ωp)βp where β is the vector of spline coefficients for all

the factor loadings combined and ω denotes all the penalty parameters.

2.3 Estimation

I use the EM algorithm to facilitate the estimation, where the complete data

structure includes the observed data yi augmented with unobserved variables ηi.

The penalized log-likelihood of the augmented data is

(2.4) logL(θ |y,η)− 1

2

P∑
p=1

Ωp(βp,ωp),

where y = (yT1 , . . . ,y
T
n )T , and η = (η1, . . . ηn), respectively, and θ = {µp, λp0, σ2

ε,p,βp|

p = 1, . . . , P}. The E-step computes the expected log-likelihood using the condi-

tional distribution of ηi|yi. The M-step estimates θ by maximizing the expected
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log-likelihood. The smoothing parameters ωp are selected within each iteration of

the EM.

2.3.1 EM algorithm

Using the assumption of a normal distribution and omitting the proportionality

constant, the complete data log-likelihood is

logL(θ |y,η) ∝ −
n∑
i=1

{
log |Σε|+ (yi − µ− λ.iηi)T Σ−1

ε (yi − µ− λ.iηi) + η2
i

}
.

E-step. Even though I am to maximize the penalized likelihood in (2.4), the

penalty does not affect the E-step because the penalty does not involve the missing

latent factor. The expected values of ηi and η2
i are needed in the E-step. Using

the conditional normal distribution, these expectations at the (r)-th iteration are

listed as follows. (I omit the superscripts “(r − 1)” in the formulas below, but the

calculations use parameter estimates from the (r − 1)-th iteration).

η
(r)
i = E(ηi |yi)

= E(ηi) + Cov(ηi,yi)[Cov(yi)]
−1[yi − E(yi)]

= λT.i (λ.iλ
T
.i + Σε)

−1(yi − µ),

(η2
i )

(r) = E(η2
i |yi)

= Cov(ηi |yi) + [E(ηi |yi)]2

= Cov(ηi)− Cov(ηi,yi)[Cov(yi)]
−1Cov(yi, ηi) + (η

(r)
i )2

= 1− λT.i (λ.iλT.i + Σε)
−1λ.i + (η

(r)
i )2.

M-step. The M-step estimates θ from the first part of (2.4), including the penalty.

Given the estimated latent factor at the (r)-th iteration, this step can be thought

of as fitting P varying coefficient models, one for each of the P observed variables
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(e.g., for each pollutant). In order to see this, first I rearrange the log-likelihood as

below, which is possible under the assumption that Σε is a diagonal matrix.

Let ypi denote each of the P observed variables in yi, then I can write the objective

penalized log-likelihood as

(2.5)

∑n
i=1

∑P
p=1 logL

(
µp, λpi, σ

2
ε,p; ypi | η

(r)
i

)
− 1

2

∑P
p=1 Ω(βp,ωp)

=
∑P

p=1

{
logL

(
µp,λp.(βp), σ

2
ε,p; yp. |η(r)

)
− 1

2
Ω(βp,ωp)

}
.

where yp. = (yp1, . . . , ypn)T and η = (η1, . . . , ηn)T are n × 1 column vectors. This

allows us to maximize (2.5) separately for each p, that is, for each observed variable.

If Σε is not diagonal, this step would instead be analogous to multivariate regression.

For each observed variable yp., the penalized log-likelihood given η(r) is

(2.6)

logL
(
µp,λp.(βp), σ

2
ε,p; yp. |η(r)

)
− 1

2
Ω(βp,ωp)

∝ −n log(σ2
ε,p)− σ−2

ε,p

[
yp. − 1nµp − η(r) ◦ λp.(βp)

]T [
yp. − 1nµp − η(r) ◦ λp.(βp)

]
−βTp S(ωp)βp,

where “◦” is the entry-wise Hadamard product and S(ωp) is the previously described

penalty matrix. Equation (2.6) is essentially a regression of yp. on η̃(r) with βp

penalized, where

(2.7) η̃(r) =


η

(r)
1 x1

...

η
(r)
n xn

 .

That is, I can write η(r) ◦λp.(βp) = η(r) ◦ (Xpβp) =


η

(r)
1 x1βp

...

η
(r)
n xnβp

 = η̃(r)βp. Hence, re-

placing η(r)◦λp.(βp) with η̃(r)βp in (2.6) and maximizing the penalized log-likelihood,
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I then obtain a Ridge regression solution for the coefficients

(2.8)

µ(r)
p

β(r)
p

 =


 1Tn1n 1Tn η̃

(r)

(η̃T )(r)1n (η̃T η̃)(r)

+

 0 0

0 S(ωp)



−1  1Tn

(η̃T )(r)

yp.,

and

(σ2
ε,p)

(r) = n−1
[
(yp. − 1nµ

(r)
p )T (yp. − 1nµ

(r)
p )− 2(yp. − 1nµ

(r)
p )T η̃(r)β(r)

p

+ (βTp )(r)(η̃T η̃)(r)β(r)
p

]
,

where (η̃T η̃)(r) =
∑n

i xTi (η2
i )

(r)xi = [ xT1 (η2
1)(r), . . . ,xTn (η2

n)(r)] Xp .

2.3.2 Generalized cross validation

So far I have treated the smoothing parameters ωp as given, but here I describe

how to use the GCV score to select the smoothing parameters [29, 84]. GCV is

commonly used in the selection of smoothing parameters for Generalized Additive

Models (GAM, see Section 4.5 of the book by [15]), where the response variable is

to be predicted from known covariates using a spline function. GCV penalizes the

residual sum of squares with the effective number of parameters (see (2.9) below).

The smoothing parameters that give the smallest GCV score are selected. In the

measurement model (2.1) the latent factor, though actually η̃(r) according to (2.7),

is a natural counterpart of the covariate in a GAM model, so I make use of η̃(r) and

have

(2.9) GCVp =
n‖yp. −A

(r)
p yp.‖2

[n− tr(A
(r)
p )]2

,

where

A(r)
p =

 1Tn

(η̃T )(r)


T 

 1Tn1n 1Tn η̃
(r)

(η̃T )(r)1n (η̃T η̃)(r)

+

 0 0

0 S(ωp)



−1  1Tn

(η̃T )(r)
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is the influence matrix (compare with (2.8)) and tr(Ap) represents the effective num-

ber of parameters used to estimate λp..

Since the latent factor is unknown and is itself to be computed from yp and

β(r), use of ‖y.p − η̃(r)β(r)‖2 is not valid if I evaluate GCVp after the EM algorithm

converges. This is because η̃(r) from the last iteration varies with the smoothing

parameters. Instead, I evaluate GCVp within each iteration of the EM algorithm

where η̃(r) is held as the fixed covariate in the regression-based M-step, and update

the smoothing parameters with (ωp)
(r) that gives the smallest GCVp for each M-step.

This approach of selecting smoothing parameters for each EM iteration is similar to

the performance iteration method used in GAM models (see Section 4.6 of the book

by Wood [15]).

I minimize GCVp using a numerical approach based on Newton’s method. Here

GCVp is regarded as a function of ρp = log(ωp) because ωp has to be constrained

as positive. GCVp(ρp) is approximated around the current estimate of (ρp)
(r) with

a quadratic function based on the first and second derivatives of GCVp with regard

to ρp. Then the minimum of GCVp(ρp) can be approached by successively solving

the quadratic minimum. Thus, the M-step is modified as follows. I first solve β(r)
p

with (ωp)
(r−1) = exp

(
(ρp)

(r−1)
)

plugged in (2.8). Then I evaluate ∂
∂ρp

GCVp(ρp) and

∂2

∂(ρβp )2
GCVp(ρp) at (ρp)

(r−1), obtain the critical point of the quadratic approximation

and reevaluate the derivatives of GCVp(ρp) again at the critical point. The process

is repeated until I get to the minimum of GCVp(ρp) and then (ρp)
(r−1) is updated

to (ρp)
(r).

2.3.3 Simultaneous confidence band

I use bootstrap resampling to construct a 95% confidence interval for point esti-

mates and 95% simultaneous confidence band for spline estimates [40]. I sample with
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replacement from the n observations to generate M new data sets of n observations

each. In my data application, this resampling approach is valid since detrending the

data removes spatial and temporal correlation. The same EM algorithm is repeated

on these data sets to get bootstrap estimates. This bootstrap strategy is based on

the assumption that there is little temporal and spatial correlation for the residual

error εi of the actual data.

For single point estimates, such as λp0, the 2.5% and 97.5% quantile of the boot-

strap samples is taken as the bounds of the 95% confidence interval. For spline

estimates, like f̂p,t, I first obtain C, the 95% quantile of

(2.10) sup
t∈t

∣∣∣∣∣∣ f̂ ∗p,t(t)− f̂p,t(t)√
Var[f̂ ∗p,t(t)− f̂p,t(t)]

∣∣∣∣∣∣ ,
where f̂ ∗p,t is the bootstrap estimate of fp,t and t is the support of t. Then the 95%

simultaneous confidence band is constructed as f̂p,t(t) ± C
√

Var[f̂ ∗p,t(t)− f̂p,t(t)]. I

obtain Var[f̂ ∗p,t(t)− f̂p,t(t)] also from the bootstrap samples.

2.4 Simulation

I conduct simulation studies to examine the advantages and disadvantages of this

novel estimation method, as well as verify that the estimation algorithm can recover

model parameters. I first test the algorithm through simulations where I let the

non-constant factor loadings change with three covariates in this form, λpi = λp0 +

fp,uv(ui, vi) + fp,t(ti). This model is similar to the one estimated for my motivating

example. I generate data on an 11 by 11 grid (i.e., 121 (ui, vi)), and for each point

on the grid I have 101 time points. Each simulated data set has four observed

variables and a sample size of 11× 11× 101 = 12, 221, which is a similar size to the

constituent data set I use. The simulation shows that my algorithm can correctly



19

estimate non-constant factor loadings that change with multiple covariates, although

some oversmoothing for fp,uv is observed. Estimates for the other parameters are also

unbiased.

I further investigate how using non-constant factor loadings affects the estimation

of model parameters and the factor scores through different simulation scenarios.

Examining estimation of factor scores gives insight as to how estimated source con-

tributions in air pollution studies may be influenced under various scenarios, for

instance. In this second set of simulations the model again includes one latent factor

associated with P observed variables, and I let the non-constant factor loadings vary

with one covariate, ti ∈ [0, 1]. I let λpi denote the factor loading for the p-th observed

variable evaluated at ti.

The simulations are set up with three different shapes for the true factor loadings.

I let λpi = λp0 + fp(ti), where fp is a centered function (i.e.,
∑n

i=1 fp(ti) = 0), and

the three types of fp(ti) are as follows, for p = 1, . . . , P .

Constant: fp(ti) = 0,

Non-constant, cyclic: fp(ti) = κ
[
cp + cos

(
4πt∗p,i

)]
, where t∗p,i = ti − p−1

2P
,

Non-constant, non-cyclic:

fp(ti) = κ

[
cp + 4t∗p,iI

(
−1

4
≤ t∗p,i ≤

1

4

)
+ I

(
t∗p,i >

1

4

)
− I

(
t∗p,i < −

1

4

)]
,

where t∗p,i = ti − 3
4

+ p−1
2(P−1)

.

In the formulas, cp is the constant that ensures
∑n

i=1 fp(ti) = 0 and κ is an ampli-

tude parameter that changes the magnitude by which λpi deviates from λp0. Fig-

ure 2.2 (a), (b) illustrates the shape of fp(ti) for the non-constant factor loadings.

In the context of air pollution studies, cyclic factor loadings would resemble sea-

sonal patterns, whereas the non-constant non-cyclic pattern would resemble spatial

gradients (e.g., north to south).
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(d) Non-cyclic pattern, estimated as constant
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(e) Cyclic pattern, estimated as non-constant
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(f) Non-cyclic pattern, estimated as non-constant

Figure 2.2: Bias in factor scores when non-constant factor loadings are estimated as constant. (a)-
(b): Shape of fp(ti) for the simulation study. Each plot shows three curves differentiated by line
styles when a scenario has three observed variables and the amplitude parameter κ = 1. (c)-(f):
Simulation results showing plots of η̂i against ηi when factor loadings are estimated as constant or
non-constant, when true factor loadings are non constant. The color scheme and marker symbol
distinguish ηi by tertiles of ti, where blue circle, gray diamond, pink triangle refer to the lower,
middle, upper tertile, respectively. The solid line is where (ηi, η̂i) falls if η̂i = ηi.
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For each of the three shapes of factor loadings listed above, I hold some parameters

constant, but I change the signal-to-noise ratio in the model as follows. For all the

scenarios, I set µp = 1 for all p, and make λ2
p0 + σ2

p = 8 in all cases. Within

each scenario I let λp0 take on the same value for all p, but I change the ratio,

λ2
p0/(λ

2
p0 + σ2

ε,p), among the different scenarios. This ratio, which was set at 0.3,

0.5, and 0.8, quantifies the percentage of variance for the p-th observed variable

explained by the latent factor when the factor loading is constant. For the non-

constant factor loadings, I also use different values of κ (0.75, 1.25), which also

influence the percentage of variance explained by the latent factor.

For each scenario, I generate 1000 simulated data sets, each with 1000 equally

spaced data points within the range of t. For some scenarios I vary the sample

size (500, 5000) and the number of observed variables, P=6 instead of 3. For each

dataset I estimate the factor loadings using three different approaches: (1) constant

factor loadings, (2) non-constant factor loadings using P-splines (penalized), (3) non-

constant factor loadings using unpenalized splines (all smoothing parameters equal

to zero). In all cases, I choose equally spaced knots that give 10 spline coefficients

(including λp0).

In Tables 2.1 and 2.2 I report the simulation results primarily focusing on scenarios

where (1) each simulated data set has 1000 equally spaced data points within the

range of ti, (2) λ2
p0/(λ

2
p0 + σ2

ε,p) = 0.8, (3) κ = 1.25 for the second and third types of

fp(ti). Comments on other scenarios are given further below.

I evaluate the results of my simulation study from two vantage points. First,

I compare the bias and standard error of λ̂p0, σ̂2
ε,p among different estimation ap-

proaches and simulation scenarios (Table 2.1). This comparison gives insight into

possible loss of efficiency in constant factor loadings when they are instead esti-
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Table 2.1: Bias and standard error of λ̂p0, σ̂2
ε,p for different simulation scenarios and estimating

approaches

True Factor
Loadings

Estimating
Approach

λ̂10 λ̂20 λ̂30 σ̂2
ε,1 σ̂2

ε,2 σ̂2
ε,3

Constant Constant -0.005 a (0.072) -0.003 (0.071) -0.003 (0.073) -0.002 (0.114) 0.000 (0.109) -0.004 (0.115)
Penalized -0.007 (0.072) -0.005 (0.072) -0.004 (0.073) -0.008 (0.114) -0.007 (0.110) -0.010 (0.115)

Unpenalized -0.011 (0.072) -0.009 (0.071) -0.008 (0.073) -0.018 (0.114) -0.017 (0.109) -0.020 (0.115)
Non-Constant

Cyclic
Constant -0.082 (0.082) -0.078 (0.086) -0.082 (0.084) 1.175 (0.199) 1.152 (0.197) 1.165 (0.202)

Penalized -0.018 (0.070) -0.018 (0.072) -0.018 (0.073) -0.011 (0.106) -0.021 (0.101) -0.014 (0.104)
Unpenalized -0.008 (0.071) -0.007 (0.073) -0.007 (0.073) -0.013 (0.106) -0.022 (0.101) -0.015 (0.103)

Non-Constant
Non-Cyclic

Constant 0.077 (0.077) 0.198 (0.086) 0.075 (0.082) 0.249 (0.129) -0.015 (0.121) 0.261 (0.121)

Penalized -0.058 (0.073) -0.069 (0.070) -0.063 (0.073) -0.021 (0.112) -0.014 (0.105) -0.007 (0.113)
Unpenalized -0.006 (0.073) -0.009 (0.074) -0.007 (0.073) -0.028 (0.112) -0.017 (0.105) -0.014 (0.112)

aThe bias is the top value and the standard error is the bottom value in parentheses.

mated as non-constants, as well as give insight regarding bias in residual variances,

which ultimately affect how much weight a particular observed variable is given when

estimating the latent factor. When the factor loadings are constant, the bias and ef-

ficiency of λ̂p0, σ̂2
ε,p are similar across estimation approaches, although σ̂2

ε,p is slightly

underestimated when I use unpenalized splines since without penalization the splines

overfit the data. However, when the factor loadings are non-constant and estimated

as constant, λ̂p0, σ̂2
ε,p are both biased. The bias becomes trivial when I correctly

estimate the factor loadings as non-constant.

Next, I compare how estimation approaches affect the factor score (Table 2.2).

I define the factor score as η̂i = Eθ̂(ηi|yi), where θ̂ represents all the parameter

estimates. In other words, the factor score η̂i is the same as η̂
(r)
i from the E-step, but

evaluated at convergence. Note that η̂i is shrunken toward the center compared with

ηi (|E(η̂i|ηi)| = |λT.i (λ.iλT.i + Σε)
−1λ.iηi| < |ηi|). Thus, η̂i is potentially more biased

for values of ηi that are farther away from the center of its distribution. Therefore,

in addition to examining the overall bias, 1
n

∑n
i=1(η̂i − ηi) and overall mean squared

error (MSE), 1
n

∑n
i=1(η̂i − ηi)2 of the factor score (ηi is the true value of the latent

factor from a given simulated data set), I also examine bias and MSE by percentiles
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Table 2.2: Bias and MSE of the factor score for different simulation scenarios and estimating ap-
proaches

True Factor
Loadings

Estimating
Approach

Bias a MSE
Overall < 10% 10% ∼ 25% 25% ∼ 50% Overall < 10% 10% ∼ 25% 25% ∼ 50%

Constant Constant 0.001 0.134 0.073 0.026 0.079 0.092 0.078 0.073
Penalized 0.001 0.133 0.072 0.026 0.079 0.092 0.078 0.074

Unpenalized 0.001 0.142 0.068 0.024 0.082 0.101 0.080 0.075
Non-Constant Constant 0.001 0.182 0.100 0.035 0.080 0.105 0.079 0.070

Cyclic Penalized 0.001 0.117 0.058 0.020 0.072 0.086 0.071 0.068
Unpenalized 0.001 0.126 0.061 0.020 0.073 0.089 0.072 0.068

Non-Constant Constant -0.002 0.205 0.111 0.037 0.164 0.381 0.158 0.080
Non-Cyclic Penalized -0.002 0.143 0.074 0.024 0.103 0.137 0.101 0.089

Unpenalized -0.002 0.176 0.087 0.028 0.103 0.137 0.101 0.090

aSince the distribution of the factor score is symmetric, only three percentile categories are listed in this table. The
upper three categories have the same bias in negative sign (thus the overall zero bias) and the same MSE.

of ηi. To gain further insight regarding estimation of the factor score at different

covariate values, I also draw scatterplots of the estimated factor score vs. the true

latent factor, with points on the scatterplot receiving different symbols according to

tertiles of the values of the covariate t.

The overall average bias and MSE for the factor scores are similar across estima-

tion approaches; however, differences emerge when I examine bias by percentiles of

the distribution of the true latent factor and when I examine the factor scores at

different covariate values of t (Table 2 and Figure 2.2 (c)-(f). I find that when the

factor loadings are constant, the bias and MSE are similar if I estimate factor load-

ings either as constant or as non-constant using penalized splines. If I estimate the

factor loadings using unpenalized splines, the MSE is unsurprisingly larger. How-

ever, when the factor loadings are non-constant, I get the smallest bias and MSE

when I estimate the factor loadings using P-splines. Conversely, the bias and MSE is

largest when the factor loadings are estimated as constant, and this is most notable

for scenarios with the non-cyclic factor loading. In this case, η̂i has a higher MSE for

values of ηi at the two ends of its distribution (Figure 2.2 (c)-(f)). This larger MSE

at the tails of the distribution is due to different directions in the bias of the factor

score, which depends on covariate values (see scatter plot of factor scores vs. true
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latent factor in Figure 2.2 (d) marked according to the values of t).

In scenarios where the variance in the observed variables is smaller (i.e., λ2
p0/(λ

2
p0+

σ2
ε,p) and κ are smaller), I find that the advantage of correctly estimating the non-

constant factor loadings using penalized splines is less obvious. Similarly, when the

noise in the data gets larger but the true factor loadings are constant, incorrectly

estimating them as non-constant results in slightly increased bias in σ̂2
ε,p and increased

MSE among all the parameter estimates along with the increase of MSE for the factor

score.

2.5 Data Application

I apply my model to the US PM2.5 speciation data issued by EPA for years 2008

and 2009. The data set I use includes 108 monitors stationed in parts of the Midwest,

South and Northeast (see Figure 2.3). Thirty-six monitors had measurements every

three days when they were functioning, but the majority only every six days. Thus, I

only take every other observation from the thirty-six monitors that had measurements

every three days so that data from all monitors are equally spaced.

Many of the chemical constituents in the EPA data are zero-inflated and would

require special treatment beyond the scope of this thesis. Thus I select constituents

that, after taking the logarithm, have an approximate normal distribution. Based on

the exploratory factor analysis (see Section 2.1 and Figure 2.1), I decide to look at

four constituents (sulfur, ammonium ion, total nitrate, sulfate) that are associated

with secondary aerosols [58] and fit into a one factor structure.

Since the concentrations of constituents change across time and space, the mean of

each observed variable (µ in (2.1)) would need to be modeled as a smooth function.

Although this is in principle possible with my modeling approach, I opt instead to
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Table 2.3: λ̂p0, σ̂2
ε,p from the data application

Constituent

λ̂p0 Factor loadings constant Non-constant factor loadings
Sulfur 0.937 (0.890, 0.995) 0.944 (0.894, 1.110)
Ammonium Ion 0.929 (0.883, 0.982) 0.883 (0.841, 1.042)
Total Nitrate 0.606 (0.581, 0.632) 0.550 (0.526, 0.627)
Sulfate 0.976 (0.951, 1.000) 0.955 (0.925, 1.107)

σ̂2
ε,p

Sulfur 0.122 (0.068, 0.186) 0.106 (0.048, 0.153)
Ammonium Ion 0.136 (0.109, 0.163) 0.111 (0.089, 0.136)
Total Nitrate 0.633 (0.605, 0.658) 0.578 (0.544, 0.610)
Sulfate 0.047 (0.032, 0.064) 0.053 (0.033, 0.075)

detrend the data and work with residuals. That is, first I regress each constituent

on time and spatial coordinates using GAM, and then I use the residuals from these

GAMs as the observed variables. Note that this approach not only allows us to treat

µ as constant, but also effectively removes spatial and temporal correlation enabling

inference using bootstrap as described in Section 2.3.3.

The factor loadings were initially modeled according to (2.2), but the interaction

term fp,tuv was insignificant based on the bootstrap confidence band, and thus I decide

to keep only fp,t and fp,uv. I use cubic B-splines as the basis functions; I choose the

number of equally spaced knots so that βp,t and βp,uv have 10 and 25 parameters,

respectively. Altogether, βp have 34 parameters. Each component function then has

its own set of smoothing parameters, a total of three smoothing parameters.

Table 2.3 summarizes the estimates of all the parameters in the model except the

spline coefficients. (I do not list µ in the table because they are zero for the detrended

data.) Figure 2.3 shows the time and spatial components of the non-constant factor

loading for total nitrate. For the other constituents, the non-constant part is not

deemed significant since the confidence bands enclose zero entirely (not shown). From

Figure 2.3 (a) I find that the factor loading for total nitrate is significantly higher in
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Figure 2.3: f̂p,uv, f̂p,t from the data application for total nitrate. (a) is the contour plot of f̂p,uv
for the factor loading of total nitrate; black dots are the monitor locations and blue dots represent
areas that are significantly different from zero according to the 95% confidence band constructed
using bootstrap. (b) is f̂p,t, and 95% confidence band, for the factor loading of total nitrate (t = 0
is January 1 of 2008 and t = 2 is December 31 of 2009). (c) shows the factor score η̂i for the PM2.5

constituent data from the model with all constant factor loadings against η̂i from the model with all
non-constant factor loadings according to season and region: warmer regions in cold months (blue
circle), colder regions in cold months (gray diamond), warmer regions in warm months (brown
square), and colder regions in warm months (pink triangle); warm months refer to May, June, July
and August, cold months refer to November, December, January and February, warmer regions
refer to Mississippi, Georgia and Alabama, and colder regions refer to the Midwest except Missouri.
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the Midwest than in the South. Figure 2.3 (b) shows that the factor loading for total

nitrate fluctuates significantly over the two years in a periodic fashion, indicating

a strong seasonal pattern. These patterns are likely due to the fact that formation

of ammonium nitrate particles is favored in warmer environments [61]. These non-

constant factor loadings have an appreciable impact on the estimated factor scores.

In comparison to the factor scores from the model with non-constant factor loadings

(which are essentially unbiased as shown in simulations), the factor scores from the

model with constant factor loadings have systematic bias depending on season and

region (Figure 2.3 (c)).

2.6 Discussion

In this chapter I propose a latent factor model where the factor loadings are al-

lowed to vary across continuous covariate values. This modeling approach extends

classical latent factor models and can help shed light on how the relationship between

observed variables and underlying latent factors may be modified by covariates, and

thus can help improve estimation of the underlying latent factors. This model is

motivated by analysis of the EPA PM2.5 constituent data that shows a noticeable

difference for some of the factor loadings across time and region. Variations of la-

tent factor models have long been used to summarize PM2.5 constituents and gain

insight into the sources the particles arose from, a process termed source appor-

tionment. However, such data reduction methods have typically been applied to

smaller geographical areas. Factor structures that can better capture the temporally

and spatially varying correlations among constituents can help improve summaries of

PM2.5 constituents collected from a wide geographical area and a long time span. My

model allows me to capture time-and-space-varying correlations among constituents
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through the temporal and spatial pattern of factor loadings while maintaining a con-

nection to interpretable sources. This ability of the model may help shed light on

differing associations of the pollution mixture with health outcomes measured over

several years; for example, in time series studies of mortality or hospital admissions.

I use P-splines to estimate factor loadings as functions of multiple covariates and I

control the smoothness related to each covariate with its own smoothing parameter.

In order to optimize the smoothing parameters in the context of a latent factor model,

I propose the use of GCV within each iteration of the EM algorithm. This bypasses

the issue of lack of predictors for the marginal distribution of the model by using

the latent factor as the predictor in a single M-step. I also incorporate Newton’s

method into the EM iterations to facilitate the optimization of multiple smoothing

parameters at the same time. The algorithm is successfully implemented in SAS,

thus enhancing applicability of my method.

In this paper I use bootstrap to draw inference, which can be computationally

intensive. Future work can include developing methods to more efficiently test the

significance of different component functions of the non-constant factor loading. In

my model I assume the random errors in (2.1) are uncorrelated. In my data appli-

cation I detrend the data prior to applying my modeling strategy to remove spatial

and temporal autocorrelation using GAM. Conditional residuals from the model have

negligible correlation, suggesting an independent error structure may be sufficient for

the detrended data I am analyzing. Incorporating alternative correlation structures

is a desirable next step to avoid the two step approach I have used. Alternatively,

as in the model proposed by Gryparis et al. [2], the mean trend of the latent factor

could also be used to capture the temporal and spatial correlation. One could also

explore extending the model for the latent factor to include spatio-temporal trends
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as well as other covariates [67]. In my current data analysis I model every constituent

with a P-spline and then assess whether it is invariant across time and space. Esti-

mating each spline with its own set of smoothing parameters is demanding, although

feasible, computationally. It may also be less efficient to build up a model with this

much complexity when there are a considerable number of observed items. How-

ever, the non-constant factor loadings for many of the constituents may potentially

change in similar patterns, due to their common source. Therefore, one potential

extension to further improve estimation efficiency is to model multiple non-constant

factor loadings with fewer number of curves that capture the essential shape [85, 86].

The model and algorithm implemented in this paper provides a platform for devel-

oping more comprehensive measurement models that can be used to to apply flexible

dimension reduction strategies. The measurement model I propose can incorporate

known information (such as well understood sources of air pollution) while learning

from the data by allowing for non-constant factor loadings.



CHAPTER III

Testing Measurement Invariance in a Latent Factor Model
Using P-Splines

3.1 Introduction

Latent factor models are typically used to summarize multivariate data for the

purpose of deriving or relating factor scores to other covariates [87]. These models

relate observed variables that reflect the underlying latent factors through a system

of regression equations termed as the measurement model. However, in order to

maintain a consistent and valid interpretation of the latent factors, certain measure-

ment invariance conditions need to be satisfied [33]. Measurement invariance means

the parameters in the measurement model are the same regardless of how the data is

grouped in terms of covariates. Otherwise, measurement bias is introduced because

the effect of variables other than the latent factor on the observed variables is not

accounted for [35]. If bias is introduced, then the factor scores will be biased esti-

mates of the underlying latent factor. The two most critical invariance conditions

are invariance of the intercept and factor loadings in the measurement model. Simu-

lation studies have shown that it is harder to detect bias coming from non-constant

factor loadings [37, 38, 39, 88].

Assessing the measurement invariance assumption is an established step for scale

development and validation in social and behavioral studies, where measurement

30
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invariance is traditionally studied through multi-group factor analysis [87]. Multi-

group factor analysis divides the data into groups according to covariates, for exam-

ple, age, gender. Then a different measurement model is fitted for each group, and

differences in parameters across groups are tested. The main disadvantage of this

approach is its less satisfactory bias detection rate, especially for the factor loadings

when the measurement bias is related to a continuous covariate, due to arbitrary

group membership assignment that results in less accuracy and efficiency of param-

eter estimates [39, 88].

Novel models that allow factor loadings to vary as continuous functions of some co-

variates offer alternative strategies for addressing the issue of measurement invariance

[89, 90, 7]. Zhang et al. [7] uses bootstrap simulations to construct confidence in-

tervals for non-constant factor loadings and examine whether a factor loading varies

across covariate values. Barendse et al. [88] compares restricted factor analysis

(RFA) with multi-group models with respect to their ability to detect measurement

bias; they compare the fit of models with and without a non-constant factor loading

using LRT. Their simulation study shows RFA models have better bias detection

rates than multi-group models. However, the Type I error for testing one of the

factor loading as being non-constant is higher than nominal when measurement bias

for the other observed variables is not taken into account in the model.

In this chapter I propose a modeling strategy that can be used to estimate factor

loadings that vary smoothly across covariate values and to test if the factor loadings

deviate significantly from a constant. I use P-splines to model the factor loadings as

varying coefficients [83], where the spline coefficients are treated as random. In this

way the smoothing process is incorporated into the likelihood [40, 91]. I then test

whether a factor loading is constant using LRT of whether the variance of the spline
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coefficients differs from zero.

However, because the value of the parameter of interest is at the boundary of

the parameter space, the asymptotic distribution of this test statistic is not easy to

derive. This test for non-zero variance components related to observed covariates

in the mixed model framework has been extensively studied [92, 93, 94, 95, 96, 97].

Except for the paper by Stoel et al. [98], I am not aware of this type of testing problem

within the framework of latent factor models. Following the method proposed by

Greven et al. [96], I use a parametric bootstrap method to approximate the null

distribution of the LRT statistic and compare the power of LRT in my model to

the multi-group model. I investigate how the performance of the test for one factor

loading changes with the estimation of other factor loadings. Even though the finite

sample null distribution proposed in [94] is a faster method, it is less straightforward

for my model because of the unobserved latent factor.

This work is motivated by research conducted as part of the Early Life Exposure in

Mexico to Environmental Toxicants (ELEMENT) project. The ELEMENT project

collected an array of lead (Pb) exposure biomarkers and several health outcomes in

three pregnancy cohorts in Mexico City. In particular, latent factor models have

been used to summarize lead exposure biomarkers collected from the mother and

or infant near the time of birth [81]. In this model the latent factor represents the

underlying but unobserved true exposure. However, the factor loadings may vary by

age of the mother, because the biological processes involved in lead metabolism of

lead in the body vary by age. If the factor loadings do vary by age, the estimated

factors would be a biased measure of the latent exposure.

In Section 3.2 I present the model and the hypothesis test of interest. Section 3.3

details the estimation method and some technical aspects of the nested-Monte-Carlo
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EM (MCEM) algorithm in the context of my proposed method [99]. I also talk

about computing the likelihood using Monte-Carlo integration and the construction

of confidence intervals for the non-constant factor loadings. In Section 3.4 I carry

out simulation studies to investigate Type I error and power of testing using LRT

and confidence intervals. I also evaluate the use of parametric bootstrap in obtaining

the critical value for LRT. In Section 3.5 I apply the proposed methods to data from

the ELEMENT project. Section 3.6 ends with a discussion and future directions.

3.2 Model

I model the factor loadings as non-constant functions of covariate zi so that the

measurement model can differ across covariate values. For exposition, suppose there

is only one latent factor. Let ypi be the p-th observed variable measured on subject

i and ηi
iid∼ N(0, 1) be the latent factor underlying the P observed variables. The

observed variables are related to the latent factor as

(3.1) ypi = λpiηi + εpi, p = 1, . . . , P, i = 1, . . . , n.

The factor loading λpi for the p-th observed variable includes a subscript for subjects,

i, because it depends on the covariate value zi for the ith subject, as shown below.

I assume the residual error εpi
iid∼ N(0,Σε) is independent of ηi. Without loss of

generality, I omit the mean for ypi as ypi can easily be centered to have zero mean;

centering observed variables ypi is common data pre-processing practice in factor

analysis [87]. In this modeling strategy, further detrending to remove covariate effects

on the mean on ypi (e.g., see Section 3.5) ensures that non-constant values of λpi are

due to differences in the correlation among observed values, above and beyond any

potential differences in the average relationship between ypi and zi.

I use P-splines to estimate λpi: λpi = λp0 + fp(zi) = λp0 + xiβp, where fp(zi) has



34

mean zero across the covariate values (i.e.,
∑n

i=1 fp(zi) = 0). Mean zero for fp(zi) is

needed for identifiability, and also helps interpretation since, when fp(zi) is zero, the

model simplifies to standard factor analysis. In other words, fp(zi) represents the

non-constant component of the factor loading. I use cubic B-spline basis functions

to model fp(zi), and let xi be the spline basis based on zi; i.e., xi contains the value

of each basis function evaluated at zi [15]. The spline coefficients, which differ across

the P observed variables, are βp.

I rewrite (3.1) as a regression model. First, I collect data from all subjects as:

yp. = [yp1, . . . , ypn]T , εp. = [εp1, . . . , εpn]T , Xη = [xT1 η1, . . . ,x
T
nηn]T , η = [η1, . . . , ηn]T .

Then (3.1) becomes

(3.2) yp. = ηλp0 + Xηβp + εp..

I aim to test if, for a particular observed variable yp., its factor loading is constant,

i.e.,

(3.3) H0 : λpi = λp0 for all i vs. Ha : λpi 6= λp0 for some i.

This is equivalent to testing H0 : βp = 0 vs. Ha : βp 6= 0.

In Section 3.3, I penalize the spline by setting βp as random variables; specifically,

βp ∼ N(0, σ2
p,bIK). This approach is related to representing a regression spline model

in a mixed model setting [40]. In this way, σ2
b,p takes the role of the smoothing

parameter for fp(zi): a smaller σ2
b,p leads to smaller βp and smoother splines, and

when σ2
b,p → 0, fp → 0, which makes λpi → λp0. Note that in this model the

covariance structure of βp corresponds to setting the penalty matrix Sp as IK in the

quadratic penalty βTp Spβp of a penalized regression spline model. Even though the

identity penalty matrix is mostly used when a truncated polynomial basis is used

[40], I use the first difference penalty matrix Sp [16], and transform it to an identity
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by modifying Xη according to the spectral decomposition of Sp [24]. The test in

(3.3) then becomes

(3.4) H0 : σ2
b,p = 0 vs. Ha : σ2

b,p > 0.

3.3 Estimation

3.3.1 Likelihood

I use the EM algorithm for estimation, and treat ηi, βp as the augmented missing

data. The log-likelihood given the augmented data is logL(θ|y,η,βp) ∝

(3.5) −1

2

P∑
p=1

{
n log(σ2

ε,p) +
‖yp. − ηλp0 −Xηβp‖2

σ2
ε,p

+K log(σ2
b,p) +

‖βp‖2

σ2
b,p

}
,

where θ represents all the parameters. In writing (3.5) I assume all factor loadings

are non-constant. However, if the factor loading for the p-th observed variable is

instead assumed as constant a priori, I only need to remove σ2
b,p from the likelihood

and set βp = 0.

3.3.2 E-Step

The E-step evaluates Q
(
θ
∣∣∣θ̂(r−1)

)
= E

{
logL(θ|y;η,βp)

∣∣∣y, θ̂(r−1)
}

at the r-th

iteration, where θ̂
(r−1)

represents the parameter estimates from the previous itera-

tion. Because η and β are the missing data the conditional expectation of all terms

involving these quantities needs to be calculated. This essentially means computing

η(r), (ηTη)(r), (Xηβp)
(r), (ηTXηβp)

(r), (βTp XT
η Xηβp)

(r), and (βTpβp)
(r), where, for

example, η(r) = E
(
η
∣∣∣y; θ̂

(r−1)
)

.

The conditional distribution of (η,βp|y;θ) has no analytical form, thus I use

Monte-Carlo EM (MCEM) for estimation. I draw samples from the conditional

distribution (η,βp|y;θ(r−1)) through Gibbs sampler to alternatively sample from

the two conditional distributions:



36

ηi|(y.i,β1, . . . ,βP ) ∼ N(ΛT
i Biy.i, 1−ΛT

i BiΛi),

where for simplicity of notation I have collected terms as y.i = [y1i, . . . , yPi]
T , Λi =

[λ1i, . . . , λPi]
T , Bi = (ΛiΛ

T
i + Σε)

−1, and

βp|(yp.,η) ∼ N
(
β̂p(η), σ2

b,p(IK −DpX
T
η Xη)

)
,

where β̂p(η) = DpX
T
η (yp.−λp0η), Dp = (XT

η Xη+ρpIK)−1, ρp = σ2
ε,p/σ

2
b,p. If I assume

the factor loadings for some observed variables are constant, then I replace λpi with

λp0 for all the constant factor loadings in the first conditional distribution.

After sampling (η(m),β(m)
p ),m = 1, . . . ,M (r), using the Gibbs sampler, I can

evaluate Q
(
θ
∣∣∣θ̂(r−1)

)
by setting the expectation of all the statistics as an average

of those calculated using each sample. For example,

(ηTXηβp)
(r) ≈ 1

M (r)

M(r)∑
m=1

(η(m))TX(m)
η β(m)

p .

3.3.3 M-Step

The M-step then updates the parameter estimates as

θ̂
(r)

= arg max
θ

Q
(
θ
∣∣∣θ̂(r−1)

)
.

The computation is similar to obtaining estimates from a linear regression model:

λ
(r)
p0 =

{
(ηTη)(r)

}−1
(ηT )(r)

{
yp. − (Xηβp)

(r)
}
,

(σ2
ε,p)

(r) =
1

n

{
yTp.yp. − 2λ

(r)
p0 yTp.η

(r) + (λ
(r)
p0 )2(ηTη)(r)

−2yTp.(Xηβp)
(r) + 2λ

(r)
p0 (ηTXηβp)

(r) + (βTp XT
η Xηβp)

(r)
}
,

(σ2
b,p)

(r) =
1

K
(βTpβp)

(r).
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Since the Monte-Carlo E-step is computationally intensive, I implement a nested

MCEM to more efficiently use the (η(m),β(m)
p ) samples from the E-step. Specifically,

because the conditional distribution of (βp|y,η) has an analytical form, within each

iteration I nest a few additional EM cycles to get better estimates of βp by treating

η(m) as known variables. In this way, the whole algorithm converges faster and thus

saving the computational cost of the E-step [99]. (see Appendix A)

3.3.4 Likelihood Ratio Test (LRT)

Since I use random spline coefficients to incorporate the smoothing of splines into

the likelihood, I can use LRT to test my hypothesis of interest, that is, whether the

p-th variable has a constant factor loading. Note that I am only testing for the factor

loading of one variable, that is, σ2
b,p for a particular p according to the test in (3.4).

I let other variables not being tested have either constant or non-constant factor

loadings under both the null and alternative hypotheses. The LRT test statistic

is constructed as 2
{

logL(θ̂a|y)− logL(θ̂0|y)
}

, where θ̂a represents the parameter

estimates from the model where σ2
b,p is estimated and θ̂0 represents the parameter

estimates from the model where σ2
b,p = 0.

The asymptotic theory about the LRT statistic says that if the parameter in

the null hypothesis is on the boundary of the parameter space, then the asymptotic

distribution for the null LRT statistic does not follow a simple chi-square distribution.

For instance, the seminal paper by Stram et al. [93] says that in a linear mixed

model setting, the asymptotic null distribution of LRT statistic for the test of a

single variance component, similar to (3.4) follows 1
2
χ2

0 + 1
2
χ2

1.

However, Crainiceanu et al. [94] argues that using 1
2
χ2

0 + 1
2
χ2

1 gives a conservative

test, because the asymptotic assumption is rarely reached in real cases and also is

not directly applicable to penalized spline models. They propose an approach to
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find the exact distribution when there is only one variance component in the model.

Greven et al. [96] generalizes the technique proposed by Crainiceanu et al. [94] to

models where only one variance component is being tested. But this method cannot

be immediately applied to my model because it would be based on the eigenvalues of

Xη in (3.2), but in my model η is unobserved. They also suggest using parametric

bootstrap to derive the 95-th percentile of the LRT statistic under the null hypothesis.

This approach can be implemented either using full-scale bootstrap or through the

use of a parametric family of chi-square mixture distributions proposed in the paper

by Greven et al. [96]. This mixture distribution takes the form of pχ2
0 + (1− p)aχ2

1,

where p is the probability of the statistic being zero, and a is a scaling factor that

provides more flexibility for the distribution.

For a given data set, deriving the null distribution using this chi-square mixture

distributions is straightforward. First, M∗ parametric bootstrap data sets are gen-

erated using the parameters from the null model. LRT statistics are computed for

each of the M∗ data sets and are used to estimate p and a using the method of

moments as described by the paper by Greven et al. [96]. Since the 95-th percentile

of the null LRT is derived from a fitted parametric family of distributions, a fewer

number of bootstrap samples M∗ is needed to obtain equally precise estimates of

the tail quantiles compared to a full parametric bootstrap. After estimating p̂ and

â, I set the 95-th percentile of the null LRT statistic as âF−1
χ2
1

(0.95−p̂
1−p̂ ), where Fχ2

1

represents the cumulative density function of a χ2
1 distribution. P-values can also be

derived using (1 − p̂)F−1
χ2
1

[
1
â
{LRT statistic}

]
. I use this distribution for hypothesis

testing. As a comparison, I also examine the use of 1
2
χ2

0 + 1
2
χ2

1 since it would lead to

substantial computational savings.
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3.3.5 Monte-Carlo Integration

In order to form the LRT statistic, I need to calculate the likelihood. How-

ever, since the likelihood given the observed data is analytically intractable, I use

Monte-Carlo integration with importance sampling to simulate the likelihood. The

numerical integration is achieved by averaging the integrand evaluated at each sam-

pled β(s). In the following equations, I let β = [βT1 , . . . ,β
T
P ]T , where g represents the

probability density function (pdf) associated with the model, h represents the pdf of

the importance sampling distribution. The likelihood is given by:

(3.6)

L(θ̂|y) =
∫
gy|β,θ̂ gβ|θ̂ dβ

=
∫
gy|β,θ̂ · (gβ|θ̂/hβ) · hβ dβ

≈ 1
Ms

∑Ms

s=1

{
gy|β(s),θ̂ · (gβ(s)|θ̂/hβ(s))

}
,

where I can obtain gy|β,θ̂ =
∏n

i=1 gy.i|β,θ̂ and gβ|θ̂ =
∏P

p=1 gβp|θ̂ based on

y.,i|β, θ̂ ∼ N
(
0, Λ̂i(β)Λ̂i(β)T + Σ̂ε

)
, and βp|θ̂ ∼ N(0, σ̂2

b,pIK).

The optimal choice of hβ is the unknown gβ|y,θ̂, because the summand in (3.6)

would become gy and is thus unrelated to the sampling. Instead, I take the mean and

covariance matrix of the βp samples drawn from the distribution of βp|y at E-step

and construct a multivariate normal distribution to draw samples of β(s)
p .

3.3.6 Confidence Intervals

Since the construction of LRT statistic and the ensuing parametric bootstrap is

computationally intensive, I also examine the use of confidence intervals for testing

purposes. Confidence intervals can be directly derived using samples obtained at

the E-step. Then I can construct pointwise confidence intervals or simultaneous
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confidence bands, each with advantages and disadvantages. For each β(m)
p drawn

using the Gibbs sampler (see Section 3.3.2) at convergence of the EM algorithm, I

evaluate fp at zj (zj can be different from the covariate values zi in the data) using

f
(m)
p (zj) = xjβ

(m)
p , m = 1, 2, . . . ,M (∞) (∞ is used to denote convergence).

The 95% pointwise confidence intervals for fp(zj) are constructed using the 2.5-th

and 97.5-th percentiles of the M (∞) f
(m)
p (zj) samples. I then test whether fp(zj) = 0

by looking at whether the pointwise confidence intervals covers zero or not. The

null hypothesis in (3.3) is rejected if the pointwise confidence intervals for any fp(zj)

fails to cover zero (that is, fp(zj) = λpj − λp0 6= 0 for some j, provided the zj being

examined are dense enough).

However, since the pointwise confidence intervals are typically too narrow for

function estimates, this testing procedure has the potential to be liberal. It may also

have a low coverage of the true fp because 95% coverage for each fp(zi) does not

guarantee simultaneous 95% coverage. Therefore, I also construct the simultaneous

confidence bands according to [40]. I first obtain C, the 95-th percentile of

C(m) = sup
i

∣∣∣∣∣∣∣∣
f

(m)
p (zi)− f̂p(zi)√

Var
{
f

(m)
p (zi)− f̂p(zi)

}
∣∣∣∣∣∣∣∣ ,

where f̂p(zi) = 1
M(∞)

∑M(∞)

i=1 f
(m)
p (zi). Then the 95% simultaneous confidence band is

constructed as f̂p,t(t)±C
√

Var
{
f

(m)
p (zi)− f̂p(zi)

}
. I obtain Var

{
f

(m)
p (zi)− f̂p(zi)

}
using the same set of f

(m)
p (zi). Again, testing proceeds by rejecting the null hypoth-

esis if the simultaneous confidence band for any fp(zj) fails to cover zero.

3.4 Simulation

My simulation studies have two objectives. First, I examine whether using the

approximations 1
2
χ2

0 + 1
2
χ2

1 and pχ2
0 + (1 − p)aχ2

1 adequately control Type I error,
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compared to a full parametric bootstrap. Second, I address the Type I error and

power of the LRT (including using 1
2
χ2

0 + 1
2
χ2

1 as the null distribution), as well as

using tests based on confidence intervals described in Section 3.3.6.

For all the data-generating scenarios (further described below), I let each of 10000

simulated data sets have three observed variables, yp., p = 1, 2, 3, and 2000 data

points with values of zi equally spaced within the range of [0, 1]. I set λ2
p0 + σ2

ε,p, the

total variance of the observed variables, as 8 and let λ2
p0/(λ

2
p0 + σ2

ε,p) = 0.5 so that I

have a medium signal-to-noise ratio, which is also in the middle of the range of the

signal-to-noise ratio in my data example.

I vary the shapes of f1, f2 for different simulation scenarios, organized in two

groups. In the first group of scenarios (Figure 3.1 and Table 3.1 rows 1, 2, 3), I set

the first factor loading as non-constant, that is, f1 6= 0, but set f2 = 0, f3 = 0. I let

f1 take on two different shapes,

(1) f1(zi) = κ{−0.1 cos(6πzi)},

(2) f1(zi) = κ{c+ (1.6zi − 0.8z2
i )− 0.1 cos(6πzi)}.

The first shape has a cyclic pattern, while the second shape adds a monotone trend.

In the formulas, c is the constant that ensures
∑n

i=1 f1(zi) = 0 and κ is an am-

plitude parameter that changes the magnitude of f1. In the second group of sce-

narios (Table 3.1 rows 4, 5, 6) I let f1 be the same as in the first group, but I let

f2(zi) = 0.6(zi − 0.5) (f3 still remains zero).

For each scenario in both groups, I estimate two random coefficient models: one

where only f1 is estimated (left of Table 3.1) and one where both f1 and f2 are

estimated (right of Table 3.1). This allows me to assess any potential bias in tests

when the fitted model is correct or misspecified, as well as potential loss in power

when the models used are more flexible than necessary. As a comparison, I also fit
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multi-group models that allow the factor loadings to be different across groups of

data points. This is a commonly used approach in psychological and social studies

when the research question is whether the underlying latent factor represents the

observed variables in the same way for different sub-groups of the population. Since

the factor loading within each group is still assumed constant, this approach can

overlook important differences in the factor loadings and the estimation also depends

on how the group is assigned [88]. In this study I use tertiles and quartiles of zi to

group the data, and I jointly model the different groups. The non-constant factor

loadings take the following form (if I use tertiles of zi), λpi = λp0 + α1I(zi <=

Q1) + α2I(Q1 < zi <= Q2) + α3I(zi > Q2), where Q1, Q2 represent the first and

second tertiles of zi, respectively. Since I am interested in the factor loadings, which

are the main sources of measurement bias, all groups are constrained to share the

same residual variances, σ2
ε,p. I use LRT for testing in the multi-group models. The

LRT statistic asymptotically follows a chi-square distribution with degrees of freedom

equal to 2 and 3 for tertile and quartile models, respectively.

I first focus on Type I error (κ = 0). Using LRT, I find that 1
2
χ2

0 + 1
2
χ2

1 gives about

a 2.8 - 3.0% rejection rate (first row of Table 3.1). The simulation suggests that

more than half the time the spline estimate shrinks to zero, which makes 1
2
χ2

0 + 1
2
χ2

1

a conservative null distribution. Since a conservative null distribution lowers the

power of the test, in practice a better approximation for the null distribution is

needed. Options for such approximation can be a full-scale parametric bootstrap

or using a mixture pχ2
0 + (1 − p)aχ2

1 (see Section 3.3.4). I evaluate in this same

scenario the performance of pχ2
0 + (1− p)aχ2

1, compared to the full-scale bootstrap,

following the same procedure in [96]. The results show that this approximation

can perform as well as the full-scale bootstrap approach (see Appendix B of the
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Figure 3.1: Power curve of LRT for testing H0: f1 = 0 vs. f1 6= 0, for two shapes of f1 in models
where only f1 is non-zero (first group of scenarios) and being estimated. The curves are based
on simulation scenarios from the first group where κ = 0, 0.2, 0.5, 0.75, 1, 1.5 for the cyclic shape
and κ = 0, 0.3, 0.75, 0.85, 1, 1.5 for the monotone trend added. For random coefficient models, we
use either the 95-th percentile of the LRT statistic from the scenario where f1 = 0 (referred to as
‘Exact’) or the 95-th percentile of 1

2χ
2
0 + 1

2χ
2
1 (referred to as ‘Asymptotic’) as the critical value. We

also plot the rejection rate when we use pointwise confidence intervals (referred to as ‘Pointwise’) or
simultaneous confidence band (referred to as ‘Simultaneous’) for testing. For multi-group models,
we plot the rejection rate when tertiles or quartiles of zi are used to group the data. The horizontal
dotted line near the bottom indicates the 5% rejection rate.

Supplementary Materials), even with bootstrap sample size M∗ as low as 500. I will

use pχ2
0 + (1 − p)aχ2

1 to derive the 95-th percentile of the true null distribution for

the data analysis in Section 3.5. Nevertheless, to conserve computation cost, in the

following scenarios where κ 6= 0, I use the 95-th percentile of the simulated LRT

statistic from the null scenario, which is similar to the full-scale bootstrap, as the

critical value.

I also examine the rejection rate of the pointwise confidence intervals and simulta-

neous confidence band described in Section 3.3.6. For each of the 10000 simulations,

I construct two types of confidence intervals using M (∞) = 1000 Monte-Carlo sam-

ples for β(m)
p . I examine the confidence intervals at 500 different values of zj equally

spaced within the range of [0, 1] to determine whether they fail to cover zero (re-

jection rate) or whether they cover the true fp (coverage rate). I find that the test

based on pointwise confidence intervals is conservative: its rejection rate is 5.2% (also
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Figure 3.2: Comparison of f̂1 from different scenarios in Table 3.1. The dotted line is the true f1.
The solid line is f̂1 from the scenario where f2 = 0 and f2 is not estimated. The long dashed line is
f̂1 from the scenario where f2 6= 0 but f2 is incorrectly fixed at zero during estimation. The short
dashed line is f̂1 from the scenario where f2 6= 0 and f2 is estimated.

when λ2
p0/(λ

2
p0 + σ2

ε,p) = 0.3 or 0.8). However, the simultaneous confidence band only

rejects 0.2%. Pointwise confidence intervals eliminate the need for a wider simulta-

neous confidence band when testing is the main purpose. The pointwise confidence

intervals perform well because my model gives a smooth estimate of f̂1 and this

makes the coverage of zero among neighboring f1(zj) highly associated. In order to

make sure my results are not influenced by the sample size M (∞) of β(m)
p and zj,

I have also let M (∞) = 10000 when constructing the confidence intervals and have

also used 1000 zj (vs. 500) values when assessing the coverage, and the results do

not change. Tests from multi-group analyses preserve their nominal rate since the

distributions are known.

Next I use increasing values of κ so that f1 is non-zero, and the rejection rate

reflects the power of the test. The larger κ is, the more f1 deviates from zero, and

thus the power should increase. Figure 3.1 shows a comparison of the different testing

approaches when data are generated with f1 6= 0, f2 = 0 and the correct model is

estimated. Since 1
2
χ2

0+ 1
2
χ2

1 is conservative for LRT, it also lowers the power of the test
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Table 3.1: Rejection rate for testing H0: f1 = 0 vs. f1 6= 0 using the random coefficient model and
the multi-group model. For f1, null, cyclic, and monotone refer to the three shapes f1 takes. The
amplitude parameter for the cyclic and monotone shapes are 0.85 and 0.75, respectively. For f2,
null, non refer to whether the true f2 is set as constant or not. For random coefficient models in
both groups, we use either the 95-th percentile of the LRT statistic from the scenario where f1 and
f2 are both null (referred to as ‘Exact’) or the 95-th percentile of 1

2χ
2
0 + 1

2χ
2
1 as the critical value

for the other scenarios in the group. For multi-group models, we examine the rejection rate when
tertiles or quantiles of zi are used to group the data.

Only f1 is estimated f1 and f2 are both estimated
f1 f2 Random Coefficient Multi-Group Random Coefficient Multi-Group

Exact 1
2
χ2
0 + 1

2
χ2
1 Quartile Tertile Exact 1

2
χ2
0 + 1

2
χ2
1 Quartile Tertile

Null Null 5.0 3.0 5.1 5.3 5.0 2.8 5.0 5.0
Cyclic Null 82.5 78.7 23.2 5.3 82.6 78.8 23.0 5.3
Monotone Null 85.3 79.7 72.9 77.3 85.2 79.0 71.2 75.6
Null Non 8.0 5.1 7.0 7.7 5.0 3.0 5.0 5.0
Cyclic Non 83.5 80.1 26.3 7.9 82.6 78.7 23.1 5.3
Monotone Non 67.3 59.2 52.2 58.0 81.0 74.1 71.0 75.4

compared with using the 95-th percentile of the true null distribution. In comparison,

the power of using pointwise confidence intervals for testing is better than the true

power of LRT when f1 has the cyclic shape and almost as good as the true power when

f1 has the monotonic trend (Figure 3.1), while the simultaneous confidence band has

very low power. Thus the computationally efficient pointwise confidence intervals can

be a preferable approach to estimating whether a factor loading is constant, although

I can obtain a P-value using LRT. However, if I want to use confidence intervals to

know the plausible range for the true curve, then the simultaneous confidence band

has much better coverage than the pointwise confidence intervals (see Appendix C of

the Supplementary Materials). The multi-group models have lower power than my

model because they cannot capture the shape of f1, especially when f1 has the cyclic

pattern. For example, in scenarios where f1 is cyclic, I cannot detect a non-zero f1

when I use tertiles because f1 has a three-fold repeated pattern. When I unnecessarily

estimate two non-constant factor loadings, I do not lose power (compare in Table 3.1

the two groups of scenarios when f2 is null). This is because my model gives a

stable estimate of f1 whether f2 is also estimated or not. The rejection rate of using

confidence intervals when f2 is estimated and the true f2 is null is similar to when
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f2 is null and not estimated.

In the second group of simulation scenarios I investigate how estimating or ignor-

ing f2 in the model affects the estimation and testing of f1. If I do not estimate f2,

f̂1 is biased (Figure 3.2). This is because the factor loading is associated with the

scale of the observed variable, and the relative scale between two observed variables

is related to the relative magnitude of their factor loadings. If I assume f2(zi) = 0

for all zi, then, with the parameter settings I have, λ̂2i will be positively biased for

zi < 0.5 and negatively biased for zi > 0.5. This will in turn influence λ̂1i in the same

direction because the relative scale between y1,i and y2,i does not change. Therefore,

f̂1(zi) will be positively biased for zi < 0.5 and negatively biased for zi > 0.5, which

inflates Type I error and increases power when f1 is cyclic because the estimated

amplitude of f̂1 is positively biased. However, power is lower when f1 has a mono-

tonic trend because the amplitude is instead attenuated. The multi-group approach

suffers similar consequences when the model is misspecified. When I estimate both

f1 and f2, the bias in f̂1 nearly disappears. However, since a small amount of bias

remains if f1 has a monotone trend (Figure 3.2), the power is still smaller than that

from the scenario where f2 is actually zero (81.0% compared to 85.2% in Table 3.1).

3.5 Data Application

I use data collected from 880 mother-child pairs from the ELEMENT project.

Mothers were between 18-44 years old at recruitment (mean=25.8, SD=5.0) The

ELEMENT project recruited pregnant women in Mexico City between 1994 and

2003 to investigate the long-term consequences of lead exposure on child develop-

ment. The project took prenatal and postnatal measurements from mothers and

also followed the children longitudinally [100, 101]. The four observed variables I am
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Figure 3.3: The non-constant component for the factor loadings of cord blood lead and tibia bone
lead. The solid line shows f̂p(zi) from Model A. The dashed line and the dotted line show the the
95% pointwise confidence intervals and the simultaneous confidence band, respectively.

interested in are cord blood lead, blood lead one month after delivery, patella bone

lead, and tibia bone lead of the mothers. These lead biomarkers can be conceptual-

ized as manifestations of latent lead exposure during pregnancy [81]; hence, I use a

one factor model to summarize them. I am interested in looking at whether and how

the factor loadings for each observed variable differ with maternal age. Maternal

age has the potential to modify the factor loadings because the biological processes

involved in lead metabolism in the body (e.g. bone resorption rate [101]) depend on

maternal age. Because of this, the correlation between blood and bone lead measures

may depend on maternal age as well. In turn, the factor loadings, which rely on cor-

relations among observed variables, would also vary with maternal age. As described

in Section 3.2, I first detrend the lead biomarkers to remove any potential covariate

effects on the mean. To detrend the data (i.e., center lead biomarkers at zero), for

each biomarker, I use an additive model [15] with indicators for participant’s cohort

membership and a smooth term of maternal age (recall three pregnancy cohorts are

included in the ELEMENT project). I take the residuals from these models as the

input to my latent factor model.
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Theoretically some factor loadings can be shrunk exactly to a constant in my

model when the variance of the random spline coefficients, σ̂2
b,p, is zero. However, the

estimation is built on the normal distribution of βp, so even when σ̂2
b,p approaches

zero as the algorithm converges, it will not be exactly zero since a distribution to

sample βp from is needed. Thus, in an initial exploratory analyses where all four

factor loadings were estimated as non-constant, I examined convergence of σ2
b,p for

all four variables. I decide to set the factor loading for blood lead after delivery

and patella bone lead factor loadings as constant and proceed to model the factor

loadings of cord blood lead and tibia bone lead as varying with maternal age.

Next I conduct analyses in two models to illustrate the testing approaches previ-

ously described. In Model A the factor loadings of both cord blood lead and tibia

bone lead are modeled as non-constant, while in Model B only one of the two ob-

served variables, either cord blood lead (Model B1) or tibia bone lead (Model B2),

has a non-constant factor loading. In both models, and for both biomarkers, I find

that the factor loadings deviate from a constant, although the deviation for cord

blood lead’s factor loading is much stronger (Figure 3.3).

The patterns of the two factor loadings are similar between Model A and Model B.

However, as in the simulations, if a truly non-constant factor loading is estimated as

constant, the estimation for the other non-constant factor loadings can be affected.

In this data analysis I find that the amplitudes of f̂p for both cord blood lead and

tibia bone lead are attenuated when the other factor loading is estimated as constant;

that is, Model B1 and Model B2 compared with Model A (figure not shown). This

attenuation can also be seen numerically by examining σ̂2
p,b, the variance of the

random spline coefficients (Table 3.2). A bigger σ̂2
b,p is related to a more pronounced

deviation of f̂p from zero. I find that σ̂2
b,p from Model B is smaller than Model A.
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Table 3.2: Parameter estimates for the model fitted under the alternative hypothesis, and LRT
p-values for the ELEMENT study data. The P-values are obtained using the 50:50 mixture: 1

2χ
2
0 +

1
2χ

2
1; the parametric boostrap distribution (PBoot): p̂χ2

0 + (1− p̂)âχ2
1; and the multi-group analysis

with maternal age in tertiles [MG(Tert)] or in quartiles [MG(Quart)]. M∗ = 1000 parametric
bootstrap samples are used to fit p̂χ2

0+(1− p̂)âχ2
1. The parametric bootstrap samples are generated

from parameters obtained by fitting the model under the null hypothesis, i.e., the factor loading
being tested is estimated as constant, but the other factor loadings are constant (Models B1 and
B2) or not (Model A).

Model or
Observed Variable

Estimates P-values

λ̂p,0 σ̂2
p,ε σ̂2

p,b 50:50 Mix PBoot MG(Tert) MG(Quart)

Model A
Cord Blood Lead 0.68 0.52 0.049 0.005 0.0035 0.0001 0.027
Tibia Bone Lead 0.32 0.89 0.0023 0.29 0.18 0.42 0.19
Blood Lead After Delivery 0.82 0.32 - - - - -
Patella Bone Lead 0.41 0.83 - - - - -

Model B1
Cord Blood Lead 0.68 0.52 0.044 0.006 0.004 0.00011 0.029
Tibia Bone Lead 0.32 0.9 - - - - -
Blood Lead After Delivery 0.83 0.31 - - - - -
Patella Bone Lead 0.4 0.84 - - - - -

Model B2
Cord Blood Lead 0.68 0.53 - - - - -
Tibia Bone Lead 0.32 0.89 0.0012 0.37 0.23 0.48 0.2
Blood Lead After Delivery 0.83 0.31 - - - - -
Patella Bone Lead 0.4 0.84 - - - - -

The pointwise confidence intervals in both Model A and B suggest that the factor

loading of cord blood lead is significantly non-constant, while there is no significant

evidence that the factor loading for tibia bone lead is non-constant (Figure 3.3). This

conclusion agrees with LRT using critical values from either 1
2
χ2

0 + 1
2
χ2

1 or pχ2
0 + (1−

p)aχ2
1 (Table 3.2). In both Model A and B, p̂ ≈ 0.7 and â ≈ 0.9. The P-value based

on p̂χ2
0 +(1− p̂)âχ2

1 is smaller than the P-value based on 1
2
χ2

0 + 1
2
χ2

1, as expected. The

P-values obtained through the multiple group analyses depend on whether tertiles

or quartiles of the maternal age distribution are used to group the observations. In

particular, the P-value obtained when using tertiles is smaller for cord blood lead,

which makes sense because the pattern of the factor loading is U-shaped, and thus

age tertiles capture the difference of middle tertile compared to the other two more

accurately. In contrast, the P-value for the tibia lead factor loading, which follows a

linear pattern, is smaller when using quartiles than tertiles.
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In these data, the factor loading of cord blood lead differs depending on maternal

age. The non-linear pattern in the non-constant component of the factor loading for

cord blood implies that the factor loading among the youngest and oldest mothers

is lower compared to mothers in the center of the age distribution. This implies

that the use of a latent factor model with constant factor loadings may introduce

measurement bias into summaries created from it. In other words, the factor scores

created from a model assuming constant factor loadings may not correctly rank

overall exposure levels among study participants, and the bias in rankings would be

related to maternal age. The impact of this bias on estimated associations between

this latent factor is out of the scope of this chapter and will be investigated in future

work.

3.6 Discussion

In this paper I propose a latent factor model that estimates non-constant factor

loadings using random spline coefficients. This type of model is important because it

allows the measurement model to differ across values of another covariate, and thus

enables assessment of measurement bias. Compared with multi-group models that

also allow factor loadings to differ across covariate values, my model is not subject

to power loss due to poor choices of group assignment for categorizing continuous

covariates. It also provides me with more flexibility in capturing the shape of the

non-constant pattern. I apply my methods to data collected as part of the ELE-

MENT project, where a one factor model is used to summarize four lead exposure

biomarkers, and I show that there are significant differences in the measurement

model across maternal age.

I implement the model using the EM algorithm. Because the random spline
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coefficients are unobserved in addition to the latent factor, the algorithm calls for

more involved EM approaches. I use Monte-Carlo sampling method to facilitate

the E-step. More advanced data augmentation techniques can be used to make the

algorithm more efficient [102].

I am able to carry out LRT by using Monte-Carlo integration to calculate the

likelihood and parametric bootstrap to approximate the null distribution of the LRT

statistic. As stated in the paper by Crainiceanu et al. [94], the classical 1
2
χ2

0 + 1
2
χ2

1

for testing one variance component is conservative. But a more general alternative

pχ2
0+(1−p)aχ2

1 proposed in [96] can approximate well the null distribution of the LRT

statistic in my model. The method of moments used in the paper by Greven et al. [96]

also proves to be a robust method for avoiding the numerical imprecision when the

variance component is shrunk to zero. My model also allows me to easily construct

confidence intervals for the non-constant component of the factor loading using the

posterior distribution of the spline coefficients. I find that the pointwise confidence

interval is as powerful as using the LRT. This can be the preferred method in practice

because it avoids the computational burden associated with LRT, although it does

not yield a p-value.

In summary, I propose novel approaches to estimate factor loadings that vary

smoothly as functions of covariates and to test for measurement invariance. Future

studies should investigate the impact of measurement bias when examining associa-

tions between covariates and the latent factor, or when the latent factor is a predictor

of other outcomes.



CHAPTER IV

Estimating an Overall Nonlinear Exposure Effect for
Multiple Continuous Outcomes in a Latent Factor Model

4.1 Introduction

Most epidemiological studies collect measurements on multiple outcomes in order

to assess the potential hazard of a particular exposure. Such a study design is based

either on the nature of the outcome, for example, a psychometric test battery, or

on concerns that the exposure effect is typically small and hard to detect from an

observational study using a single outcome. Regressions of multiple outcomes on

the exposure may provide higher power to detect the association between exposure

and outcomes. Since the multivariate outcomes are usually related to the same

trait and thus correlated, modeling the correlation among them may help avoid

loss of power when correcting for multiple testing [103]. This chapter is motivated

by a study examining the effect of lead (Pb) exposure in the ELEMENT study,

measured as the concentration of lead in children’s blood, on children’s behavioral

development assessed with the Behavior Assessment System for Children (BASC)

rating scales. The BASC battery includes 14 subscores, each capturing a specific

aspect of development. In addition to modeling the effect of exposure on multiple

outcomes, one of the main interests in this chapter is to assess the non-linear effect

of lead on behavioral development. Previous studies have shown some evidence for

52
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the low-dose effect of lead which reaches a ceiling when blood lead concentration is

high [104].

A number of papers have developed models that incorporate multivariate out-

comes to assess the association with a given exposure. Generally these models ac-

count for the correlation among the outcomes and estimate a linear exposure effect

on different outcomes in a single model, thereby allowing a joint test for the overall

exposure effect [103]. Some models directly estimate an overall exposure effect and

use various scaling approaches to obtain outcome-specific exposure effects. Jia et

al. [105] scale the whole linear predictor including covariate effects and estimate the

scaling parameters. In the paper by Sammel et al. [46], the approach is to model

the correlation among outcomes through a latent factor model and scales the overall

exposure effect with the factor loadings of each outcome. By contrast, Lin et al. [47]

first model the covariance among outcomes using random effects and use the residual

variance for scaling the exposure effects. In the paper by Roy et al. [48], however,

the scaling is based on the total standard deviation of the outcomes, including their

covariance. In comparison, several papers model outcome-specific exposure effects by

first assuming a common overall effect (termed ’domain effect’), and model outcome-

specific effects as random deviations from the domain effect [106, 107]. In general,

the aim of these available approaches is to reduce the dimension of the model and to

improve estimation efficiency.

I use a latent factor model to summarize the correlation among the BASC sub-

scores, and I estimate the exposure effect on the latent factors. Under this model

construction, the outcome-specific exposure effect is the factor-specific exposure ef-

fect scaled by the factor loadings. My model is similar to that developed by Sammel

et al. [46] but it also borrows the idea of ‘domain effect’ from the paper by Thurston
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et al. [106]. However, a key innovation is that I also develop an approach to estimate

an overall nonlinear lead exposure effect (Section 4.2, 4.3), and develop an approach

to test the deviation from a linear exposure effect (Section 4.4). Through simulation

studies (4.5) I show the relative advantages and disadvantages of modeling an overall

nonlinear exposure effect using my proposed approach compared to two other mod-

eling approaches. I use the proposed model, and alternative models, to estimate the

effect of lead exposure on the developmental domains captured by the BASC battery.

The discussion in Section 4.7 ends with my conclusions and potential directions for

future work.

4.2 Model

I consider three models that estimate the nonlinear exposure effect of xi on mul-

tiple continuous outcomes yp,i. I let i = 1, . . . , n denote different subjects and

p = 1, . . . , P denote different outcomes. These three models can all be viewed as

special cases of a model with the following general form:

(4.1) yp,i = Ziαp + fp(xi) + ζp,i,

where Zi is a 1×M vector of adjusting covariates (for ease of notation intercept is

also included here as a column of 1) and αp is the vector of related coefficients, xi

is a scalar measure of the exposure, fp(xi) is an unspecified function that captures

the nonlinear relationship between yp,i and xi, ζp,i is a residual error; a model on

the covariance matrix of ζ = ζ1,i, . . . , ζP,i may be used to account for the correlation

among the P outcomes measured for one subject.

It is of interest to test whether fp(xi) deviates from a simple linear exposure effect;

under the null hypothesis I have

(4.2) H0 : fp(xi) = xiβp.
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Under the alternative hypothesis,

Ha : fp(xi) = xiβp + Xiγp,

where Xi is a 1×K vector of spline bases, γp is a K × 1 vector of spline coefficients.

Here, Xiγp captures the deviation of the fitted exposure effect from being a linear

effect. The term Xiγp is parameterized as cubic P-splines, with the coefficients pe-

nalized such that the spline shrinks toward a first-degree polynomial, that is, a linear

term [16, 22]. The penalty is implemented using a restricted maximum likelihood

(REML) approach, where the coefficients γp are treated as random. Therefore, the

smoothing parameter becomes the variance of the random coefficients (see Section

4.9 in the book by Ruppert et al. [40], for example).

Model A considers separate regressions for each outcome. This approach is the

most straightforward, but does not capitalize on the potential correlation among

outcomes to gain efficiency:

(4.3) yp,i = Ziαp + xiβp +Xiγp + εp,i,

where εp,i
iid∼ N(0, σ2

ε,p). Since I model each outcome separately, I disregard the

correlation among outcomes. Using matrix form, I then write (4.3) as

(4.4) yp = Zαp + xβp + Xγp + εp,

where yp = [yp,1, . . . , yp,n]T , Z = [ZT
1 , . . . , Z

T
n ]T , x = [x1, . . . , xn]T , X = [XT

1 , . . . ,

XT
n ]T , εp = [εp,1, . . . , εp,n]T . This approach requires estimation of P smoothing pa-

rameters, and independently tests the P exposure effects.

Model B considers modeling the correlation among outcomes and jointly es-

timating a separate exposure effect for each outcome. Many potential correlation

structures can be chosen for the outcomes. Given that in the case of the BASC
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the multiple scores are nested into four domains, I consider using a factor analytic

structure for the residual errors. This factor analytic structure is also supported by

initial exploratory analysis. I first modify (4.3) by adding the latent factor ηi to

impose the factor analytic structure,

(4.5) yp,i = Ziαp + xiβp +Xiγp + λpηi + εp,i,

where ηi
iid∼ N(0, 1), λp is the factor loading. The variance of ηi is fixed at 1 to ensure

identifiability. If I compare (4.5) with (4.1), I can see that ζp,i = λpηi + εp,i and is

correlated for different p within same subject i. Using Kronecker product, I rewrite

this model in matrix form as follows,

(4.6) Y = (IP ⊗ Z)α+ (IP ⊗ x)β + (IP ⊗X)γ + (λ⊗ η) + ε,

where Y = [yT1 , . . . ,y
T
P ]T , α = [αT1 , . . . ,α

T
P ]T , β = [β1, . . . , βP ]T , γ = [γT1 , . . . ,γ

T
P ]T ,

λ = [λ1, . . . , λP ]T , η = [η1, . . . , ηn]T . Compared to Model A, Model B can take into

account the correlation among multiple outcomes to gain efficiency, although it still

estimates P exposure effects. However, Model B also has the advantage of allowing

for a joint test of whether exposure affects any of the outcomes (e.g., in the case of

a linear effect only, this model enables testing of H0 : β1 = β2 = · · · = βP = 0 vs.

Ha : at least one differs from 0).

Model C assumes an overall exposure effect; the model takes the form

(4.7) Y = (IP ⊗ Z)α+ (λ⊗ x)β̃ + (λ⊗X)γ̃ + (λ⊗ η) + ε.

Compared with (4.6), I only estimate an overall exposure effect. The linear effect

is captured by β̃, and the deviation from linearity is captured by γ̃. The overall

exposure effect is scaled with the factor loadings, λ, so that the magnitude of the

exposure effect for each outcome is different.
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This model can be more appealing than Model B (4.6) when the nonlinear expo-

sure effect for each outcome is similar and when it is plausible to think the exposure

affects the multivariate outcomes through certain underlying traits which in turn can

be well represented by the latent factor. If I switch the order of Kronecker product

and matrix multiplication in (4.7), e.g., (λ⊗X)γ̃ = (λ⊗X)(1⊗γ̃) = (λ×1)⊗(Xγ̃) =

λ⊗ (Xγ̃), then I can rewrite (4.7) as

(4.8) Y = (IP ⊗ Z)α+ λ⊗ (xβ̃ + Xγ̃ + η) + ε.

In (4.8) it is apparent that the individual exposure effect comes from an overall effect

on the mean of the latent factor. Model C is advantageous because it enables testing

for a single exposure effect, and a single test of deviation from linearity.

4.3 Estimation

As I stated in Section 4.2, I use P-splines to estimate the nonlinear exposure effects

and I estimate the P-splines using REML. For Model A and B, I model the spline

coefficients as γp
iid∼ N(0, σ2

γ,pIK) (after proper matrix transformation, see Appendix

and also these papers [40, 16, 22]). The computation can be directly carried out

using standard software; I use PROC MIXED in SAS.

Since Model C involves scaling the exposure effect using factor loadings, I develop

an iterative procedure similar to that used by Lin et al. [47]. Given the factor

loadings, I estimate the nonlinear exposure effect and the other parameters using

PROC MIXED. Then I use Newton’s method to update the factor loadings.

Specifically, I run PROC MIXED for the following model,

(4.9) Ỹ = (Λ−1 ⊗ In)Y = (IP ⊗ Z)α̃+ (1P ⊗ x)β̃ + (1P ⊗X)γ̃ + (1P ⊗ η) + ε̃,

where Λ = diag(λ1, . . . , λP ) so that Λ−1λ = 1P , α̃ = (Λ−1 ⊗ IM)α, ε̃ = (Λ−1 ⊗

In)ε, γ̃ ∼ N(0, σ̃2
γIK). In (4.9), the outcomes are ‘standardized’ by the given factor
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loadings. In this step of the fitting procedure, a factor analytic correlation structure

is being used for the multivariate outcome, but the factor loadings are fixed at 1. (I

use ‘standardize’ to refer to multiplication by Λ−1 and ‘scale’ refers to multiplication

by Λ.)

I can justify this iterative approach by examining the likelihood for the original

model (see 4.7). For notational purposes, I let µ = E(Y), µ̃ = E(Ỹ) = (Λ−1⊗ In)µ,

V = Cov(Y), Ṽ = Cov(Ỹ) = (Λ−1⊗In)V(Λ−1⊗In). I replace µ, V in the following

REML criterion with Y = (Λ⊗ In)Ỹ, µ = (Λ⊗ In)µ̃, V = (Λ⊗ In)Ṽ(Λ⊗ In), and

get the following identity,

1√
(2π)n|V|

exp

[
−1

2
(Y − µ)TV−1(Y − µ)

]
=

|Λ|−n√
(2π)n|Ṽ|

exp

[
−1

2
(Ỹ − µ̃)T (Ṽ)−1(Ỹ − µ̃)

]
.

Therefore, given Λ, the likelihood is maximized by solving the MLE for Model (4.9).

If I define the REML criterion for the original model (4.7) as

LR =
1√

(2π)n|V|

∫∫
exp

[
−1

2
(Y − µ)TV−1(Y − µ)

]
dα̃dβ̃,

then I can also use REML to estimate the variance components in model (4.9),

following the same reasoning as in the MLE case. The definition of the REML

criterion also follows that of a linear mixed model, where the likelihood is integrated

over the fixed effects. But for Model C I integrate over the standardized fixed effects.

I carry out the iterative algorithm as follows.

(1) Given λ̂
(r−1)

, I standardize Y and get Ỹ(r).

(2) I run model (4.9) in PROC MIXED using Ỹ(r) as the outcome and estimate µ̃,

Ṽ, denoted as ̂̃µ(r)
, ̂̃V(r)

.

(3) Then I update λ̂ as

λ̂
(r)

= λ̂
(r−1)

−U−1u,
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where the p-th entry of the P × 1 vector u is ∂
∂λp

logLR, and the (p, p′)-th entry of

the P × P matrix U is ∂2

∂λp∂λp′
logLR. u, U can be computed as follows.

Let r
(r)
p = ∆p

( ̂̃V(r)
)−1 (

ỹ
(r)
p − µ̃(r)

p

)
, W

(r)
p,p′ = ∆p

( ̂̃V(r)
)−1

∆p, where ∆p =

In ⊗ δp and the (p, p′)-th entry of the P × P matrix δp is 1 and otherwise all zero,

then

∂

∂λp
logLR =

1

λ
(r)
p

[
(ỹ(r)

p )T r(r)
p − n

]

∂2

∂λp∂λp′
logLR =

1

λ
(r)
p λ

(r)
p′

{
I(p′ = p)

[
2(ỹ(r)

p )T r(r)
p − n

]
+ (ỹ(r)

p )TW
(r)
p,p′ỹ

(r)
p

}

4.4 Hypothesis Testing

For Model A, I test (4.2) for each outcome as testing

(4.10) H0 : σ2
γ,p = 0 vs. Ha : σ2

γ,p > 0.

For Model B, I perform a joint test of whether any exposure effect deviates from

linearity. The test is equivalent to

(4.11) H0 : σ2
γ,p = 0 for all p vs. Ha : σ2

γ,p > 0 for some p.

For Model C, the test is equivalent to

(4.12) H0 : σ̃2
γ = 0 vs. Ha : σ̃2

γ > 0.

It is not straightforward to derive the null distribution of the LRT statistic because

the parameter under the null is on the boundary of the parameter space. As stated

also in Section 3.1, Stram et al. [93] derived an asymptotic distribution for testing

variance components in a linear mixed model. Crainiceanu et al. [94], however,

argued against the use of the asymptotic distribution, especially for cases like using
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REML for the estimation of penalized splines. Since then, some methods [108, 109]

have been developed for testing one variance component, but those methods cannot

be directly applied to my test of interest. The test in (4.10) involves multiple variance

components, so only the questionable asymptotic distribution from the paper by

Stram et al. [93] can be used for this testing purpose. Even though the test in (4.12)

only examines one variance component, the existing methods would be applied to

the model in (4.9), where I do not take into account of the degrees of freedom lost

through estimating λ.

Therefore, I use parametric bootstrap to obtain the null distribution of the LRT

statistic and use the 95-th percentile of the simulated LRT statistic as the cutoff

value for testing. However, for Model A, I test each outcome in a separate regression

and reject H0 of (4.10) if the LRT test statistic is larger than the cutoff in any of the

P regressions. Since this approach is subject to multiple testing, I use Bonferroni

adjustment. Note that for Model A, I can also derive the exact null distribution of

the LRT statistic by using the approach developed in these two papers [94, 97].

In the data application of Section 4.6, I also first use LRT to test whether the

linear exposure effect is significant while not assuming a nonlinear exposure effect in

the model (Table 4.5). For Model A, I test for each p,

(4.13) H0 : βp = 0 vs. Ha : βp 6= 0.

For Model B, I jointly test whether there is a linear exposure effect for any outcome,

which is

(4.14) H0 : βp = 0 for all p vs. Ha : βp 6= 0 for some p.

In Model B I can also carry out the test in (4.13) and obtain a P-value for the linear

exposure effect of each outcome, but the estimates and P-value will be the same as
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in Model A (see Appendix D).

For Model C, I test the overall linear exposure effect,

(4.15) H0 : β̃ = 0 vs. Ha : β̃ 6= 0.

I also use LRT to compare Model B and C so that I can assess whether the more

parsimonious Model C can adequately represent each individual exposure effect. For

this purpose, I test if the exposure effects scaled by the corresponding factor loadings

are the same across all P outcomes:

(4.16)

H0 : βp/βp′ = λp/λp′ for all (p, p′) pairs

vs.

Ha : βp/βp′ 6= λp/λp′ for some (p, p′) pair .

Since I am testing fixed effects and not estimating random coefficients, I use maxi-

mum likelihood instead of REML for these tests, and I also assume the LRT statistic

under the null follows the asymptotic chi-square distribution. The degree of freedom

for the tests in (4.13) and (4.16) is one. It is P for the test in (4.14) and P − 1 for

the test in (4.16).

4.5 Simulation

This simulation study compares how well the three different models in Section

(4.2) can detect and estimate the nonlinear exposure effect. This section includes

two simulations. I let Model C be correct in the first one and incorrect in the second

one.

4.5.1 Simulation 1

Data Generation

First, I generate data where the true exposure effect agrees with Model C. For con-

venience I omit covariates in this simulation study. I let P = 3, and generate data
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Table 4.1: Prediction error and power of LRT for all three models from Simulation 1

MSE of the Predicted Values
λ2p/(λ

2
p + σ2

ε,p) Model κ = 0 κ = 0.5 κ = 0.75

0.3 A 0.74 1.31 1.68
B 0.72 1.33 1.96
C 0.59 1.09 1.18

0.5 A 0.44 0.94 1.07
B 0.42 1.05 1.73
C 0.37 0.77 0.79

0.8 A 0.28 0.65 0.65
B 0.24 0.91 1.75
C 0.26 0.58 0.58

Rejection Rate of LRT
λ2p/(λ

2
p + σ2

ε,p) Model κ = 0 κ = 0.5 κ = 0.75

0.3 A 4.8 20.5 50.8
B - 9.1 21.9
C - 36.2 67.8

0.5 A 4.6 33.0 70.9
B - 7.6 19.3
C - 41.8 80.5

0.8 A 3.7 43.0 83.0
B - 5.9 8.7
C - 52.4 89.5

from the model:

(4.17) yp,i = µp + λp [0.25xi + κ sin(πxi) + ηi] + εp,i,

where µp = 2, λp = 3, εp,i
iid∼ N(0, σ2

ε ) for all three outcomes. I change λ2
p/(λ

2
p + σ2

ε,p)

so that the signal-to-noise ratio varies across scenarios. I also change the size of the

nonlinear exposure effect by letting κ take on three different values: 0, 0.5, 0.75. For

all the simulations I generate data for a fixed set of 100 xi randomly chosen from

N(0, 0.52). The number of simulations is 10,000 for the null scenario (κ = 0) and

1,000 for the other two.

Results regarding mean squared error

To assess estimation, I first look at the prediction error of ŷp,i = µ̂p + f̂p(xi), where

fp(xi) is the nonlinear exposure effect in (4.1). In Table (4.1) the prediction error
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is given as the mean squared error (MSE), 1
nP

∑P
p=1

∑n
i=1(ŷp,i − yp,i)

2. I use the

average MSE across all outcomes because they have the same magnitude in my

simulation scenarios. My results show that Model C has the smallest MSE because

it uses information from all the outcomes to estimate an overall effect rather than a

separate exposure effect for each outcome. The difference between the MSE of Model

A and Model C gets larger as λ2
p/(λ

2
p+σ2

ε,p) increases, showing the loss of precision in

Model A due to estimating a similar nonlinear exposure effect separately. However,

even though Model B jointly estimates the separate exposure effects in a framework

that takes into account the correlation among outcomes, it has larger MSE than

Model A. This is because when I use REML to estimate P-splines, the information

about the splines lies in the correlation among outcomes conditioned on the fixed

effects (the linear exposure effect), and the correlation structure implied by Model

B differs greatly from the simulation scenario where the overall nonlinear exposure

effect also contributes to the correlation among outcomes (see detailed explanation

below).

Results regarding power

Since one of my objectives is to test the nonlinear exposure effect using LRT, I

also examine the power of the LRT in this simulation study. In order to make this

simulation study computationally feasible, I obtain the null distribution of the LRT

statistic using the generated data sets only, instead of carrying out a parametric

bootstrap for each data set, similar to the approach proposed by Greven et al. [96].

The results I obtain this way will be similar to the full parametric bootstrap, but

with less noise since this approach is the same as carrying out a parametric bootstrap

based on the true parameters.

I find that Model C has higher power than Model A, but Model B has very
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Table 4.2: Prediction error and power of LRT for all three models from Simulation 2

MSE of the Predicted Values
λ2p/(λ

2
p + σ2

ε,p) Model ŷ1 ŷ2 ŷ3

0.5 A 1.10 1.13 0.43
B 1.26 1.26 0.56
C 1.17 1.16 1.19

Rejection Rate of LRT
λ2p/(λ

2
p + σ2

ε,p)

0.5 A 59.2
B 61.9
C 56.4

low power compared with Model A and C. The reason why Model B performs worse

than the other two is because the data generated from this simulation scenario follows

Model C. This means the nonlinear exposure effects for different outcomes are similar,

or “correlated”. Since I use P-splines and REML to estimate the nonlinear exposure

effects, the linear component of the exposure effect is treated as a fixed effect and the

coefficients that capture the nonlinear component are treated as random effects. So,

essentially the estimation of the nonlinear component is determined by the correlation

structure of the Y conditioned on the linear fixed effect. In this simulation scenario,

the correlations among outcomes conditional on the linear fixed effect come not only

from the shared latent factor, but also from the similar nonlinear exposure effects.

In Model C, Cov(Y) = (σ̃2
γλλ

T ) ⊗ (XXT ) + (λλT ) ⊗ In + Σε ⊗ In, where Σε =

diag(σ2
ε,1, . . . , σ

2
ε,P ), so the correlation among different outcomes (indicated by the

left-hand side of the Kronecker product) comes from both the random coefficients and

the latent factor. However, in Model B, Cov(Y) = Σγ⊗(XXT )+(λλT )⊗In+Σε⊗In,

where Σγ = diag(σ2
γ,1, . . . , σ

2
γ,P ). This means the correlation among different out-

comes only comes from the latent factor and the nonlinear exposure effects are in-

dependent from each other. Therefore, this correlation structure does not fit the

simulation scenario and the extra correlation induced by the overall nonlinear expo-
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sure effect will be estimated by the latent factor. As a result, the factor loadings will

be inflated and the diagonal of (λλT ) ⊗ In will also be inflated. This in turn will

reduce the diagonal of Σγ ⊗ (XXT ), which means the variance of the random coeffi-

cients (the diagonal of Σγ) will be underestimated. In other words, the information

of the nonlinear exposure effect is taken away by the latent factor in Model B. One

way to improve Model B might be to let Σγ be unstructured, which would imply

the P different splines are correlated with each other. But it is not straightforward

to implement and may bring about additional issues, for example, how to ensure

Cov(Y) is positive definite.

4.5.2 Simulation 2

In practice, even though the data does not necessarily follow Model C as in Simu-

lation 1, some correlation among outcomes will be related to the nonlinear exposure

effect if the effects are similar across outcomes. So, Model C has a more general

appeal than Model B. At the same time, however, Model C is built on a stronger

assumption about how the overall exposure effect relates to the individual exposure

effect for each outcome. Therefore, if the exposure effect for a particular outcome

differs greatly from the scaled overall exposure effect, Model C may not be the best

model. In order to illustrate this, I conduct a second simulation where I remove the

exposure effect in (4.17) for the third outcome variable, y3 when generating the data.

As a result, the scale for this outcome variable is not λ3, but zero. I then repeat the

same simulation study under κ = 0.75, and the results are listed in Table (4.2).

I find that Model C cannot properly estimate y3, compared with the other two

models, since the MSE for ŷ3 is largest in Model C. However, the MSE for ŷ1

and ŷ2 are not much worse than the other two models, even though they become

larger compared to Table (4.1). As for the power of LRT in detecting any nonlinear
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exposure effect, all three models are similar. Model B performs much better than

in the scenarios of Table (4.1). This is because the relative scale of the correlation

that is induced by the overall exposure effect now differs greatly from the relative

scale of the factor loadings. Therefore, in this scenario, the latent factor cannot cover

the correlation related to the overall exposure effect. As a result, I can get a better

estimate of Σγ in Model B.

4.6 Data Application

I examine the potential nonlinear relationship between lead (Pb) exposure and

children’s behavior. Behavior is measured with the Behavior Assessment System for

Children, Second Edition (BASC-2) on 516 children from The Early Life Exposure in

Mexico to Environmental Toxicants (ELEMENT) project. The children’s concurrent

blood lead levels are taken as their lead exposure measurements (see Table 4.3 for a

summary of the descriptive statistics for all the covariates and the outcomes).

BASC-2 scales consist of 14 subscores divided into four categories: internalizing

problems, externalizing problems, behavioral symptoms index, adaptive skills. I also

let the outcomes that are under the same category be related to the same latent

factor. Then for each category I run the three models described in Section 4.2. For

outcomes from the first three categories, except anxiety and attention problems, I

use the logarithmic scale because the distribution under the original scale is highly

skewed. I select covariates to adjust for based on prior knowledge [104]; all analyses

are adjusted for child’s age, gender, birth weight, and mother’s age at delivery,

education, socioeconomic level. Since the blood lead level is highly skewed, I use

the logarithmic scale. Using the nonlinearity tests detailed in Section 4.4, I want to

test whether the lead exposure effect significantly deviates from log-linearity. (Below
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Table 4.3: Participant Characteristics

Characteristics Mean(SD) Range
Behavioral Assessment
Internalizing Problems

Anxiey 53.3 (10.0) 29 – 89
Depression 51.5 (10.6) 37 – 103
Somatization 49.8 (10.3) 36 – 91

Externalizing Problems
Aggression 47.8 (8.6) 36 – 86
Conduct Problems 50.5 (9.8) 34 – 97
Hyperactivity 49.3 (9.7) 31 – 87

Behavioral Symptoms Index
Attention Problems 51.7 (10.7) 33 – 81
Atypicality 50.9 (9.1) 41 – 97
Withdrawl 49.2 (10.5) 34 – 92

Adaptive Skills
Adaptability 49.4 (9.8) 19 – 69
Activities of Daily Living 46.9 (10.7) 19 – 70
Functional Communication 47.9 (10.2) 10 – 68
Leadership 48.7 (10.7) 22 – 73
Social Skills 46.2 (10.6) 20 – 70

Participant’s Characteristics
Blood Lead Level, µg/dL 3.4 (2.9) 0.4 – 34.8
Age (Years) 10.8 (2.6) 7 – 15.5
Sex (Female%) 50.4
Birth Weight (kg) 3.1 (0.4) 1.2 – 4.5

Maternal Characteristics
Maternal Age at Delivery (Years) 26.3 (5.1) 18 – 44
Maternal Education (Years) 10.7 (2.9) 1 – 20
Mothers’ Marital Status (%) 77.3
Smoking During Pregnancy (%) 3.7
Paternal Education (Years) 10.4 (3.5) 0 – 22
SES Level Index 8.7 (3.3) 1.0 – 18.5
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‘linear’ lead exposure effect refers to log-linear effect, and ‘nonlinear’ means the

exposure effect is non log-linear.)

Fig 4.1 and Table 4.4 show the results. Based on the exposure effects from Model

A, I find the lead exposure effects are nonlinear for several outcomes. In general, the

nonlinear patterns indicate the exposure effect reaches a plateau at around 5 µg/dL

of blood lead level. The directions of the estimated nonlinear exposure effects are the

same for test items from the category of externalizing problems, behavioral symptoms

index, adaptive skills. But for internalizing problems, the directions are opposite for

anxiety and depression.

This suggests Model C, which estimates an overall exposure effect, would not be

appropriate for the category of internalizing problems because the positive correlation

among the test items make the factor loadings all positive. However, the relative

scale of the nonlinear exposure effects for anxiety and depression imply the signs

of the factor loadings should be opposite. Therefore, in this case Model B would

be a better choice than Model C because the patterns of nonlinear exposure effects

are very different across test items. Model A does not detect any deviation from

linearity due to its lower power (Table 4.4), but the LRT that jointly tests all items

(P-value = 0.046) indicates there is a nonlinear exposure effect for at least one of

the test item. This in turn suggests that a model assuming linear exposure effects

(Table 4.5) would not be appropriate (alse see Figure 4.2).

Figure 4.1 also shows the estimated nonlinear exposure effects for Model C, and

Table 4.4 lists the P-values for the LRT testing lack of linearity. Since for the

category of internalizing problems, the effects of anxiety and depression have opposite

patterns, Model C averages the effects and gives an essentially null association for

this category. For the other three categories, the nonlinear exposure effects have more
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Figure 4.1: Nonlinear exposure effects of concurrent blood lead for each of the BASC-2 outcomes.
The blood lead level is transformed to the logarithmic scale, and all the outcomes are standardized
with their respective mean and standard deviation. Other model settings are the same as Table 4.5.
Each row represents outcomes from different categories. Two outcomes from the fourth category
that have similar exposure effects to adaptability, leadership, social skills are eliminated from the
graph for a uniform layout. The confidence intervals are constructed using the covariance matrix
of the fixed and random effects from Model C.
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Figure 4.2: Nonlinear exposure effect for test items of internalizing problems under Model B. The
plot is similar to that of Figure 4.1, except that the confidence intervals are constructed using the
covariance matrix of the fixed and random effects from Model B.

Table 4.4: P-values for the LRT of whether the exposure effects deviate from linearity. I carry out
the tests as described in Section 4.4.

Outcome Model A Model B Model C
Internalizing Problems 0.046 1.00

Anxiey 0.15
Depression 0.17
Somatization 1.00

Externalizing Problems 0.61 0.13
Aggression 0.28
Conduct Problems 0.17
Hyperactivity 0.09

Behavioral Symptoms Index 0.50 0.29
Attention Problems 0.16
Atypicality 1.00
Withdrawl 1.00

Adaptive Skills 0.59 0.15
Adaptability 0.06
Activities of Daily Living 0.23
Functional Communication 0.31
Leadership 0.32
Social Skills 0.16
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Table 4.5: Estimates and P-values of the linear lead exposure effects on BASC-2 scales. All the
estimates are obtained from models where I only include the linear component of the exposure
effect. The other model settings are the same as in Figure 4.1. The P-values are obtained using
LRT described in Section 4.4. The italic numbers under Model B (the original numbers are the same
as Model A, for reasons stated in Appendix D) are estimates standardized by the factor loadings.
They are comparable to the italic numbers under Model C, where β̃ in (4.9) is also standardized by
the factor loadings. ‘B vs. C’ under Model C refers to the P-values for LRT testing whether Model
B fits significantly better than Model C (4.16)

Model A Model B Model C
Outcome Estimate P-value Estimate P-value Estimate P-value B vs. C
Internalizing Problems 0.46 -0.015 0.87 0.28

Anxiey -0.064 0.38 -0.118
Depression 0.041 0.57 0.058
Somatization -0.052 0.46 -0.096

Externalizing Problems 0.23 0.072 0.36 0.17
Aggression 0.105 0.15 0.132
Conduct Problems 0.003 0.96 0.004
Hyperactivity 0.074 0.29 0.098

Behavioral Symptoms Index 0.87 0.033 0.71 0.75
Attention Problems 0.033 0.65 0.055
Atypicality 0.033 0.64 0.048
Withdrawl -0.027 0.71 -0.054

Adaptive Skills 0.41 -0.138 0.078 0.75
Adaptability -0.055 0.44 -0.080
Activities of Daily Living -0.065 0.37 -0.090
Functional Communication -0.102 0.16 -0.130
Leadership -0.135 0.052 -0.172
Social Skills -0.129 0.070 -0.169

similar patterns. Thus, as exemplified in the simulation study, it is more appropriate

and powerful to use Model C for testing lack of linearity. The P-values of LRT

under Model C are smaller than Model B and also smaller than Model A in general.

Nonetheless, they are still all non-significant and suggest that linear models would be

sufficient to describe the associations for these three categories in the current data.

Table 4.5 shows the estimates from linear models. It also includes the P-values of

LRT for testing whether Model B (Ha) fits significantly better than Model C (H0)

(see (4.16) in Section 4.4). For all the three categories where the linear models are

of interest, LRT suggests Model B does not give a significantly better fit than Model

C. So I base my conclusions on the more powerful Model C. There is a marginally

significant lead exposure effect for the category of adaptive skills (P-value = 0.078).
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I find that higher lead exposure is overall associated with lower scores for test items

related to adaptive skills. This overall association is likely driven by the association

between lead exposure and the two test items for leadership ad social skills (see the

P-values for individual items under Model A and B).

4.7 Discussion

In this chapter I develop a model to estimate and test nonlinear exposure effects

for multiple continuous outcomes where the outcomes are believed to measure the

same trait and are thus correlated. I use a single latent factor to account for their

correlation and jointly estimate the nonlinear exposure effect. The idea can also be

extended to multiple latent factors. I was motivated by a study that examined the

effects of lead exposure on the psychometric test battery Conners’ Rating Scales-

Revised (CRS-R). I find that lead exposure has a similar ceiling effect across the

different subscores in BASC-2, particularly for tests within the categories of exter-

nalizing problems and adaptive skills. I estimate an overall nonlinear exposure effect

and scale it by the respective factor loadings to obtain outcome-specific effects. The

overall exposure effect can be interpreted as an effect on the mean of the latent factor.

I use P-splines and REML within the framework of latent factor models to esti-

mate the nonlinear exposure effect. In the literature of latent factor models a few

papers [1, 2, 3, 4, 5] have also included nonlinear mean trend estimated by splines,

but those approaches are not well suited for testing due to the extra complexity. I

extend the estimating strategy developed in these two papers [47, 110], which not

only estimates the linear exposure effect, but also can be used to estimate and test

the nonlinear exposure effect. The likelihood-based estimating approach can allow

me to carry out a likelihood ratio test when the objective of the analysis also includes
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testing whether the exposure effect is linear. This testing method consists of testing

a variance component, which has long been a difficult problem. Even though I only

need to test one variance component for the overall exposure effect, I cannot apply

existing methods [111, 109] directly on (4.9) because the factor loadings are also

estimated. I use parametric bootstrap for testing. Future work can include study-

ing whether existing approaches can provide an adequate answer to the hypothesis

testing question.

Besides directly estimating the nonlinear exposure effect on the shared trait that

underlies different outcomes, my model has the advantage of pooling information

from different outcomes for the estimation. Compared with models that estimate

individual exposure effects, this approach reduces prediction error and also increases

testing power. However, this strategy of using an overall nonlinear exposure effect

is also based on stronger assumptions. Our simulation study has shown that if

an individual exposure effect differs greatly from the scaled overall exposure effect,

then its estimation will be compromised. Future work can investigate strategies to

effectively select between models that estimate the overall exposure effect and the

individual exposure effects.



CHAPTER V

Conclusion

Latent factor models are useful for summarizing information among multiple out-

comes. In this thesis I apply semiparametric methods to latent factor models in order

to estimate and test non-constant factor loadings and nonlinear effects of observed

predictors on latent variable means. Compared with existing semiparametric latent

factor models in the literature that use Bayesian methods (e.g., [5]), my approaches

stay in the frequentist framework. In particular, Chapter II and III develop a new

class of models that estimate and test non-constant factor loadings using semipara-

metric methods.

I use P-splines to estimate semiparametric factor loadings and semiparametric

covariate effects on factor means, so that deviations from the classic constant factor

loadings and a linear covariate effects can be estimated in the latent factor frame-

work. P-splines use a difference penalty on adjacent spline coefficients that is easy to

implement. As for estimating the smoothing parameters for the splines, I adapt GCV

and maximum likelihood methods commonly used in GAM to latent factor models

because latent factors are unobserved. In Chapter II I optimize a GCV-type criterion

during each EM iteration. In Chapter III I use a Monte-Carlo E-step based on Gibbs

sampler to get around the computational issue that comes forth when both the la-

74
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tent factor and its factor loadings are unobserved random variables. In Chapter IV I

propose an iterative algorithm and within each iteration I fit a typical linear mixed

model using outcomes standardized by the factor loadings. My simulation studies

have shown that these novel estimation strategies can achieve desirable smoothness

for spline estimates.

The semiparametric latent factor models I develop in this thesis can help re-

searchers detect potential non-constant factor loadings and nonlinear covariate ef-

fects when they use latent factor models to summarize certain variables from the

data. In Chapter II I show that correctly modeling factor loadings as non-constant

can improve estimation of the factor score. I use a latent factor to specify the correla-

tion structure among four highly correlated PM2.5 constituents. The semiparametric

estimation strategy allows me to identify the factor loading for total nitrate as non-

constant. This not only reveals how the association between total nitrate and the

other three constituents change with season and geographical region, but it can also

reduce the measurement error of the factor score. For the four constituents I in-

vestigate, the factor score can be interpreted as an index for the level of secondary

inorganic aerosols. Therefore, my method can potentially help future analyses if

the factor score is used to study the association between health outcomes and this

pollution source.

In Chapter III I develop methods for testing whether the factor loading is non-

constant. My results show that the parametric bootstrap method from [96] for linear

mixed models can also control the Type I error of LRT for my latent factor model.

Given some of the smoothing properties of the MCEM algorithm under the null, I can

also use the pointwise confidence interval for testing purposes. I use a latent factor

model with non-constant factor loadings to estimate the underlying lead exposure
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represented by four types of lead measurements on mothers from the ELEMENT

study. Using the testing approaches I develop, I find that among older mothers

the factor loading for cord blood lead is significantly higher. This may indicate for

older mothers the latent factor measures more of the true prenatal lead exposure

for children. Also, it implies that the other lead measurements (e.g., blood lead

measured one month after delivery) can serve as better surrogate measures for cord

blood lead among older mothers. In this chapter, I have also compared the power of

LRT between the multi-group factor analysis with my semiparametric latent factor

model. My model has better estimation properties and has higher testing power.

In Chapter IV I estimate a nonlinear mean trend for the latent factor, with a

particular emphasis on estimating and testing deviations from linearity for the effects

of a covariate on a latent factor. My algorithm is based on standard linear mixed

model and is successfully implemented using PROC MIXED in SAS. This algorithm

can also be easily extended to models that have multiple independent latent factors

within the framework of confirmatory factor analysis. Even though similar models

have been developed using Bayesian approaches, I make the connection between my

semiparametric latent factor model to a class of linear mixed models that estimate

an overall exposure effect for multiple outcomes. I apply the model to studying

the potential effect of lead exposure on children’s behaviors as measured by the

psychometric battery BASC-2. My main interest is to estimate an overall nonlinear

exposure effect on the latent factor that represents the underlying trait of certain

behavioral outcomes. My results show that the negative impact of lead exhibits

a ceiling effect on items that measure externalizing problems and adaptive skills.

This also agrees with previous studies that use a segmented regression approach to

investigate the relationship between blood lead and ADHD-like behavior [104]. My
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approach, however, does not require a priori ideas about the pattern of exposure

effects and is more data-driven.

Future extensions of my thesis work can include relaxing certain model assump-

tions and further studying the potential advantage of my proposed modeling and

testing strategies. In Chapter II, I impose the strong assumption that observations

are independent from each other. Even though I can remove certain parts of the

spatiotemporal correlation by detrending the data, extensions of the model could

allow the latent factor or residuals to follow a spatiotemporal process. Bayesian

methods can be used to implement the more complicated model and investigate its

effect on the estimation and inference about the non-constant factor loadings. As

for the application of the models from Chapters II and III, the next step is to in-

clude health outcomes and study the impact of measurement bias on estimating the

association between latent factor and outcomes. In Chapter IV I have shown the

advantage of estimating an overall exposure effect, both in terms of its efficiency

and interpretation. Another advantage of this approach over directly estimating in-

dividual exposure effects in a joint model is that the testing of nonlinearity can be

potentially simpler, because I only need to test one variance component. Although

the estimation of the overall exposure effect is involved with factor loadings, existing

methods of testing one variance component may provide a good approximation and

it would be of interest to study this strategy through simulation. Also, I have ob-

served a tradeoff between the two models when I need to decide whether to estimate

an overall exposure effect or estimate each individual effect. So, it would be useful

to develop model selection approaches that can help make such a decision based on

the actual pattern of the exposure effects.

In conclusion, classical latent factor models are popular tools for analyzing mul-
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tivariate data but they are also limited by certain model assumptions. In this thesis

I have developed three semiparametric latent factor models motivated by the idea of

relaxing the assumption of constant factor loading and constant/linear mean trend.

The estimating and testing approaches from this work add to existing methods that

broaden the scope of latent factor models and can also serve as a basis for future

methodology development in modeling and especially more efficiently testing nonlin-

ear components in latent factor models.
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APPENDIX A

Nested MCEM Algorithm in Chapter III

Since the conditional distribution of (βp|y,η) has an analytical form, I nest a few

additional EM cycles within each iteration to get better estimates of βp. In this way,

the whole algorithm converges faster and thus saving the computational cost of the

E-step.

LetQη(θ|θ(r′),θ(r)) = E
{

E
(

logL(θ|y,η,βp)|y,η,θ(r′)
)∣∣∣y,θ(r)

}
, then the nested

EM algorithm repeats the following cycle T times, for t = 1, . . . , T , after sampling

η(m),m = 1, . . . ,M (∞) from (η,βp|y,θ(r)) in the preceding Monte Carlo E-step.

E-step: ComputeQη(θ|θ(r+ t−1
T

),θ(r)), which means computing the inner expecta-

tion under each η(m) and then average across all m. The inner expectation essentially

involves computing

(Xηβp)
(r+ t−1

T
)

(m) = E
(
Xηβp|y.i,η(m),θ(r+ t−1

T
)
)

,

(βTpβp)
(r+ t−1

T
)

(m) = E
(
βTpβp|y.i,η(m),θ(r+ t−1

T
)
)

.

(βTp XT
η Xηβp)

(r+ t−1
T

)

(m) = E
(
βTp XT

η Xηβp|y.i,η(m),θ(r+ t−1
T

)
)

,

Recall βp|(yp.,η) ∼ N
(
β̂p(η), σ2

b,p(IK −DpX
T
η Xη)

)
, and let β̂

(m)

p = β̂p(η
(m))

and X
(m)
η , D

(m)
p be Xη, Dp with η(m) plugged in. Then setting the parameters equal

to θ(r+ t−1
T

) we obtain

(Xηβp)
(r+ t−1

T
)

(m) = X
(m)
η β̂

(m)

p ,

(βTpβp)
(r+ t−1

T
)

(m) = tr
{
β̂

(m)

p (β̂
T

p )(m) + σ2
b,p

(
IK −D

(m)
p (XT

η )(m)X
(m)
η

)}
.



81

(βTp XT
η Xηβp)

(r+ t−1
T

)

(m)

= tr
[
(XT

η )(m)X
(m)
η

{
β̂

(m)

p (β̂
T

p )(m) + σ2
b,p

(
IK −D

(m)
p (XT

η )(m)X
(m)
η

)}]
,

M-step: Set θ(r+ t
T

) = arg maxθQη(θ|θ(r+ t−1
T

),θ(r)), which basically uses the

same M-step formulas as in the original MCEM. But the statistics involved are

averaged across all η(m). For example,

(Xηβp)
(r+ t−1

T
) =

1

M (r)

M(r)∑
m=1

(Xηβp)
(r+ t−1

T
)

(m) .
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APPENDIX B

Comparison of pχ2
0 + (1− p)aχ2

1 to the Full-Scale Bootstrap in
Chapter III

Suppose I generate M simulations and compute the LRT statistics. Then I ran-

domly pick M∗ LRT statistics from the M simulations and estimate p̂ and â using the

method of moments proposed in [96]. I use the 95-th percentile of pχ2
0 + (1− p)aχ2

1

as the critical value for deciding whether to reject the null hypothesis among the

rest M −M∗ simulations. This process is repeated 1000 times where each time I

draw a different sample of size M∗ from the same M simulations. I then obtain the

average rejection rate and its standard error. For the full-scale bootstrap approach,

I use the 95-th percentile of the M∗ LRT statistics as the critical value each time.

Although the M∗ simulations I use are not strictly parametric bootstrap samples

because the simulations use the true parameter values instead of estimates from the

model, this approach still allows us to compare pχ2
0 + (1 − p)aχ2

1 to the full-scale

bootstrap method while saving computational cost.

In the table below I list the rejection rate for testing H0: f1 = 0 vs. f1 6= 0

M∗ pχ2
0 + (1− p)aχ2

1 Full-Scale Bootstrap
100 5.58 (1.95) 5.33 (2.20)
200 5.32 (1.36) 5.16 (1.58)
500 5.15 (0.83) 5.05 (1.01)
1000 5.07 (0.60) 5.00 (0.72)
2000 5.08 (0.46) 5.02 (0.55)
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between using pχ2
0 +(1−p)aχ2

1 and the full-scale bootstrap under the scenario where

the truth is fp = 0 for all p and only f1 is estimated. The value on the left is the

average rejection rate, while the value in parentheses is the standard error of the

rejection rate. I get similar results from the scenario where I also estimate f2.
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APPENDIX C

Coverage of the Pointwise Confidence Interval and
Simultaneous Confidence Band in Chapter III

In the graph below I show the coverages of the pointwise confidence interval

and simultaneous confidence band for two shapes of f1 in models where only f1

is non-zero and being estimated. The curves are based on simulation scenarios

from the first group where κ = 0, 0.2, 0.5, 0.75, 1, 1.5 for the cyclic shape and κ =

0, 0.3, 0.75, 0.85, 1, 1.5 for the monotone trend added (f2 = 0, f3 = 0). Curves for

the pointwise confidence interval are shown with solid lines, while curves for the si-

multaneous confidence interval are shown with dashed lines. The horizontal dotted

line near the top indicates 95% coverage. The coverage is lower than nominal for

the simultaneous confidence band mainly because the over-smoothing of the splines.

This effect is especially notable when f1 has a cyclic shape and κ is close to zero.
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APPENDIX D

Proof Showing Why Model A and B Have the Same
Coefficient Estimates in Table 4.4

Since I assume multivariate normal distribution for the observations, the likelihood

can be written in the following form (omitting the part unrelated to the regression

coefficients),

(Y −Xβ)TΣ−1(Y −Xβ),

where Y is the column vector of all the observations as used in the text, X is the

design matrix, β is the column vector of all regression coefficients. Model A and

Model B differ in Σ−1, the covariance structure of Y.

The data and model structure I use satisfy the following sufficient conditions for

Model A and B to have the same coefficient estimates:

(1) The data has a balanced two-level structure, the outcome level and the subject

level. There are P outcomes and each of them has measurements for all the n

subjects. The correlations among the P outcomes are the same for all subjects, but

there is no correlation among the subjects. This implies the correlation structure of

Y can be written as Σ = Cov(Y) = ΣP ⊗ In. I use ΣP to denote the correlation

among the P outcomes for a given subject. (The order of the Kronecker product

implies the observations in Y are arranged in a subject-major order.)

(2) Each outcome has its own individual mean structure, but they all have the same
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form. This means the design matrix can be written as X = Ip⊗Xn, where I use Xn

to refer to the design matrix for one outcome.

These two sufficient conditions do not put any constraint on the actual form of

Σ. Essentially Model A and B have the same coefficient estimates because these

two conditions allow the data to be grouped into i.i.d. units, and each unit follows

a multivariate normal distribution that has an individual mean structure for each

variable but they all have the same form. If this is the case, then the estimation of

the mean and the covariance are independent.

Below I prove β̂ is not related to Σ. The solution of β̂ is the weighted least

squares, (X TΣ−1X )−1X TΣ−1Y. Then I plug in Σ = ΣP ⊗ In, X = Ip ⊗ Xn and

I can show that β̂ =
[
IP ⊗ (XT

nXn)−1XT
n

]
Y. The proof relies on the switch of

Kronecker product and matrix multiplication in the following manner,

(A⊗B)(C⊗D) = (AC)⊗ (BD),

if AC and BD are valid.

First, I have Σ−1 = Σ−1
P ⊗ In. Then, I can get

X TΣ−1X = (Ip ⊗Xn)T (Σ−1
P ⊗ In)(Ip ⊗Xn)

= (Ip ⊗XT
n )(Σ−1

P ⊗ In)(Ip ⊗Xn)

= (Σ−1
P ⊗XT

n )(Ip ⊗Xn)

= Σ−1
P ⊗ (XT

nXn)

and also

X TΣ−1Y = (Ip ⊗Xn)T (Σ−1
P ⊗ In)Y

= (Σ−1
P ⊗XT

n )Y.
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Plugging these back into β̂ = (X TΣ−1X )−1X TΣ−1Y, I then have

β̂ =
[
Σ−1
P ⊗ (XT

nXn)
]−1

(Σ−1
P ⊗XT

n )Y

=
[
ΣP ⊗ (XT

nXn)−1
]

(Σ−1
P ⊗XT

n )Y

=
[
IP ⊗ (XT

nXn)−1XT
n

]
Y.

Cov(β̂) =
[
IP ⊗ (XT

nXn)−1XT
n

]
Cov(Y)

[
IP ⊗ (XT

nXn)−1XT
n

]T
=

[
IP ⊗ (XT

nXn)−1XT
n

]
(ΣP ⊗ In)

[
IP ⊗Xn(XT

nXn)−1
]

= ΣP ⊗ (XT
nXn)−1.

The diagonal of Σ̂P is the same (the variance of residuals for each outcome) when

ΣP assumes either the unstructured, diagonal, or factor-analytic structure. So the

standard errors of the coefficient estimates are also the same under Model A and B.
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