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Abstract 

 

Poly (lactic-co-glycolic) acid (PLGA) microspheres have been extensively studied for 

controlled drug delivery, and more than a dozen PLGA formulations are currently on the market. 

However, surprisingly little information is available about how the administration environment 

affects microsphere properties that result in drug release in vivo, and there is a lack of in vitro-in 

vivo correlation data for microsphere formulations. As a result, in vitro tests used to predict drug 

release during development are rarely designed to represent actual formulation behavior in vivo.  

Two microsphere formulations encapsulating a model drug, triamcinolone acetonide, 

were prepared from PLGAs of different molecular weights and end-capping (18 kDa acid-

capped, 54 kDa ester-capped). In vitro release and the corresponding mechanisms (hydrolysis, 

erosion, water uptake, and diffusion) were studied in four release media: PBST pH 7.4 (standard 

condition), PBST pH 6.5, PBS + 1.0% triethyl citrate (TC), and HBST pH 7.4. The release 

mechanism in PBST and HBST without TC was primarily polymer erosion-controlled in both 

formulations as indicated by the similarity of release and mass loss kinetics. The addition of TC 

resulted in primarily diffusion-controlled release from the low MW PLGA. By using a novel 

cage implant to restrain microspheres in the SC space, similar analyses were performed on 

microspheres administered in vivo. Drug release was much faster in vivo than in any of the in 

vitro media studied (release over 2-3 weeks vs. 4-7 weeks). Furthermore, PLGA water uptake, 

hydrolysis and mass loss were greatly augmented in the subcutaneous space. The study of 

microsphere morphology revealed an osmotically induced pore network in the higher MW 

formulation, indicating the potential for release controlled by water uptake, a mechanism 



 

xvii 

previously unseen in vitro. Therefore, in vitro tests could benefit by incorporating relevant 

components of interstitial fluid, which more closely mimic those conditions that control key 

release mechanisms in vivo.  The novel application of the cage model to uncover significant 

changes to mechanism-indicating processes of PLGA microspheres in vivo is highly significant. 

Hence, this thesis demonstrates the importance of understanding in vivo release 

mechanisms in order to design release tests, which accurately predict release upon 

administration. 
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 : Introduction 

 

1.1 Controlled Release Drug Products 

Controlled release systems have been developed as a drug delivery solution for a number 

of pharmaceuticals for which common routes of administration, e.g. oral dosage forms, are not 

possible or desirable. Modified release formulation strategies have become increasingly 

important recently, as many new drugs are poorly soluble small molecules or therapeutic 

macromolecules such as proteins and peptides [1, 2]. For these molecules, controlled-release 

products offer advantages over conventional dosage forms such as: increased half-life of rapidly 

degraded drugs, local administration and low systemic toxicity, improved efficacy, increased 

bioavailability, improved administration in under-privileged areas, and increased patient 

compliance due to comfort and less frequent dosing [3, 4]. Biodegradable polymers such as poly 

(lactic-co-glycolic acid) (PLGA) have been successfully implemented in the sustained delivery 

of small molecules and proteins [1, 2, 5]. As biodegradable polymers such as PLGA erode, the 

therapeutic molecule they carry is continuously released from polymer matrix to the body, 

resulting in sustained therapeutic plasma drug concentrations and prolonged efficacy. By 

controlling the rate of polymer degradation and erosion, one can tailor the rate of release to result 

in desired drug concentrations in blood or at the site of action [6, 7]. 

1.2 PLGA Controlled Release Formulations 

PLGA is one of the most widely used biomaterials for controlled drug delivery systems 

due to its biocompatibility, use in numerous Food and Drug Administration (FDA)-approved 

commercial products, and tunable mechanical properties. In the presence of water, the ester 
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bonds of PLGA are hydrolyzed to yield lactic and glycolic acid monomers, which are then 

further metabolized and eliminated from the body. The rate of PLGA degradation can be 

controlled by variations in molecular weight and lactic : glycolic acid ratios. Glycolic acid (GA) 

is more hydrophilic than lactic acid, thus a higher content of glycolic acid from 0-50% enhances 

water uptake and accelerates the rate of hydrolysis of the polymer. At GA contents above 50%, 

crystallites being to form, limiting the polymer solubility and making it less useful for 

controlled-release dosage forms. PLGA 50:50 with racemic lactic acid is the most commonly 

studied of the PLGAs and has the fastest degradation time, usually resulting in drug release over 

4-6 weeks [2]. Additionally, PLGA containing amorphous D,L-lactic acid degrades faster than 

PLGA containing only crystallizable L- or D-lactic acids [5]. Because of its biocompatibility and 

tunable properties, PLGA has been implemented in a variety of controlled release formulations 

such as microparticles, implants, and in situ forming depots [8]. The focus of this thesis is on the 

design and evaluation of PLGA microparticles for drug delivery. 

 Among controlled release PLGA formulations, microparticles are the most widely used 

and the most commercially successful products [9]. Microparticles can be made in a number of 

ways including emulsion-solvent evaporation, coacervation, and spray drying [2]. To form 

Figure 1.1: Molecular structure of PLGA and its monomers produced during hydrolysis, lactic and glycolic acids. 
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microparticles by emulsion-solvent evaporation, an aqueous solution of drug or solid drug 

powder is added to a solution of PLGA dissolved in an organic solvent such as methylene 

chloride. This mix is homogenized, forming either a solid/oil (S/O) suspension or water/oil 

(W/O) emulsion. An aqueous solution of emulsifier is added, then vortexed to form a complex 

emulsion (either S/O/W or W1/O/W2, depending on how the drug was added). If the drug is 

sufficiently soluble in organic solvent, the process would only involve a single O/W emulsion. 

The final emulsion is stirred in an aqueous bath to allow for organic solvent evaporation. Formed 

microspheres can be sieved to an appropriate size range and freeze-dried for storage before use.  

Microparticles are an attractive delivery strategy for a wide variety of drugs including 

proteins, peptides, water soluble small molecules and hydrophobic small molecules. Drug release 

from PLGA microspheres can be designed to suit the needs of the therapeutic molecule they 

carry by altering polymer molecular weight, polymer hydrophilicity, and particle size. PLGA 

microsphere formulations currently on the market include Vivitrol® and Lupron Depot®, which 

release naltrexone and leuprolide acetate, respectively. While Vivitrol® is formulated with 

PLGA 50:50 and needs to be administered every two weeks, Lupron Depot®  is made with 

PLGA of greater hydrophobicity (i.e. PLGA 75:25) and needs to be administered just every 1-6 

months depending on indication, dose and specific polymer formulation used. [2, 8-10] 

1.3 Mechanisms of Controlled Release 

Controlled release drug products are designed for sustained release of drugs in the human 

body for enhanced drug therapy. While designing these systems, it is important to know which 

mechanisms are responsible for causing drug release. A number of mechanisms have been 

developed to achieve custom drug release profiles desired for a particular drug product. Often, 

more than one mechanism is operative in a given formulation and different mechanisms may 
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primarily control drug release at different times. It is also important to note that these 

mechanisms, specifically in the case of PLGA microspheres, are not independent of one another 

and drug release is often the result of the interplay of more than one of these processes. The 

following provides a discussion on mechanisms of controlled release from polymeric controlled 

release systems and their applications in PLGA microspheres (Figure 1.2 [6]). 

 

Figure 1.2: Mechanisms of drug release from PLGA microspheres: (A) diffusion through aqueous pore networks, 

(B) diffusion through the polymer phase, (C) osmotic pumping and swelling induced pore formation, (D) hydrolysis 

and erosion. (Figure from [6]) 

 Osmosis and osmotic-induced drug release mechanisms 

 Osmosis is defined as the bulk flow of solvent across a semi-permeable membrane from a 

region of low solute concentration to a region of high solute concentration. If drug particles are 

coated with a semi-permeable polymer, water will cross the polymer and dissolve the 

encapsulated drug. This creates a greater driving force for water to cross the polymer and the 

continued influx of water eventually causes rupturing of the polymer coating, causing drug 

release. Another variation of controlled release governed by osmosis is porous polymer 

microparticles. An osmotic gradient will drive water into the particle pores, dissolving drug and 

allowing drug diffusion through the pore network, either initially available or created by the 

force of the flowing pore liquid, into the external environment. [7]  Alternatively, when the 

polymer swells when first in contact with water during release, new pores are created, and the 

drug may then be released by pore-diffusion as opposed to osmotic flow [11].  
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 Diffusion through Polymer Phase 

 Polymer matrices in controlled release systems present a barrier to drug diffusion from 

the polymer phase into the surrounding media. When there is no percolating network of pores 

available for the drug and the drug can partition in the polymer, the release from these particles is 

often governed by diffusion through the polymer phase. One example of this type of release are 

reservoir systems, in which drug is surrounded by polymer and diffusion through the polymer is 

the rate-limiting step in release.  In this case, release rates are governed by Fick’s first law of 

diffusion and is dependent its relative affinities for the polymer and aqueous phases, drug 

solubility and drug loading, implant geometry, and self-diffusion coefficient in the polymer 

phase [3, 4, 7].  A second example of a diffusion-controlled system are matrix systems, where 

drug can be molecularly dispersed or dissolved in the polymer matrix. Matrix systems can be 

generally classified into four categories depending on drug solubility in the polymer and the 

porosity of the matrix, and the resulting non-zero order initial release rates can predicted using 

equations [4]. Plasticization of the polymer also results in increased chain mobility, resulting in 

faster drug diffusion. Uptake of water and subsequent polymer swelling and pore formation can 

also decrease tortuosity, resulting in controlled drug release governed by diffusion through the 

polymer [3, 6]. 

 Diffusion through Pores 

 The presence of pores in a controlled-release polymeric system will allow water soluble 

drugs to diffuse to the external environment, resulting in controlled release. A prime example of 

this phenomenon is porous PLGA microparticles. Particles formed by a W/O/W double 

emulsion-solvent evaporation method result in voids in the polymer matrix owing to the removal 

of the organic solvent and the primary emulsion. These voids can result in an interconnected pore 
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network within the microparticle, through which drug may diffuse upon introduction to the 

release environment. This pore network becomes a dynamic system upon polymer hydration. 

Hydration can cause additional pore opening and lead to faster drug release, but polymer healing 

can cause these pores to close and slow drug release from the microparticle. Non-porous PLGA 

microspheres can also exhibit pore-diffusion release, as a pore network will develop upon 

polymer hydration, hydrolysis and subsequent erosion. These aqueous pores will then serve as 

channels to transport drug from the polymer matrix to the release environment. [6, 11, 12]  

 Water Uptake 

 Upon introduction to in vitro release media or administration in vivo, PLGA 

microparticles will take up water and the polymer chains will become hydrated. This results in 

depression of the glass transition temperature, causing the transition of the amorphous polymer 

into is rubber-like, mobile state. Molecules dispersed within a PLGA matrix will exhibit 

improved diffusion through a mobile polymer (above its glass transition) than through the same 

polymer in its glassy state. The resulting swelling of the microparticles causes improved mobility 

of polymer chains and an increase in volume, resulting in increased effective diffusion 

coefficient of drug as well as the exposure of more drug molecules to aqueous diffusion 

pathways.  It is important to note that typically by far most of the water molecules that enter the 

PLGA matrix distribute into the pore liquid as opposed to the polymer phase.  For example, a 

medium end-capped PLGA 50/50 is only expected to take up about 2% w/w water in the 

polymer phase [13], whereas the protein controlled release systems prepared form the same 

polymer may take up more the 100% their weight in water owing to the presence of high levels 

of encapsulated protein and salt [14].  The uptake of water can also induce pore formation due to 

polymer-chain swelling and a build-up of osmotic pressure; this opening of additional 
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interconnected pores creates a pathway for drug diffusion out of the polymeric system, as 

described above. Finally, water uptake in PLGA phase of the microspheres causes hydrolysis of 

the polymer chains, as described in detail below. [6, 11, 12] 

 Hydrolysis and Erosion 

 In the presence of water, the ester bonds in PLGA will break to yield lactic acid and 

glycolic acid monomers which are then eliminated by natural biological processes. This 

hydrolysis results in the shortening of polymer chains and a decrease in the PLGA MW. As 

hydrolysis proceeds, acidic oligomeric byproducts are produced and will further catalyze 

hydrolysis. Once the polymer chains hydrolyze to a critical chain length, overall matrix erosion 

begins. At this point, byproducts are able to escape from the polymer matrix, resulting in less 

tortuous pathways by which drug can be released from the microparticle. This also results in an 

overall erosion, or mass loss, of the polymer matrix and is associated with decreased integrity of 

the original microparticle. This process is known as bulk erosion which is in contrast to surface 

erosion, where mass loss is only observed from the surface of the formulation. 

1.4 In vitro and In vivo Controlled Release from PLGA 

 Accepted In vitro Release Conditions 

 Unlike for standard dosage forms such as oral and transdermal products, there are no 

specific guidelines set by the FDA or United States Pharmacopeia (USP) regarding in vitro 

release testing for modified release drug products [15]. As such, a wide variety of release 

conditions are used by different researchers and the methods employed often depend on drug and 

polymer characteristics. 
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 Release Methods 

 In vitro methods currently used to assess drug release from PLGA microparticles can be 

categorized into three groups: flow-through cell, dialysis, and sample-and-separate. USP 

apparatus 4, originally designed for modified release oral dosage forms, has been adapted to test 

microparticulate systems using flow-through methods. Release media is continuously circulated 

through cells packed with glass beads and microparticles, media samples are collected at pre-

determined time points and analyzed for drug content. Dialysis release tests are set up with drug-

loaded microparticles separated from bulk release media by a semi-permeable membrane. Drug 

release is assessed by measuring drug content in the bulk. The sample-and-separate method has 

been the most widely used technique for assessing drug release from microparticles. 

Microspheres are suspended in a volume of release media sufficient to ensure sink conditions for 

the duration of release, and this suspension is agitated continuously to prevent aggregation of 

microspheres. At appropriate time points, the microparticles are separated from the media by 

filtration or centrifugation and release media is either partially or completely removed then 

replenished. [16, 17] 

 Release Media 

 While release methods are fairly consistent among in vitro release tests for controlled 

release microparticles, the media used by researchers is highly dependent on the particular 

formulation and the lab. Changes in buffering system, pH, temperature, ionic strength, presence 

of surfactant, and volume are all variables that are altered depending on drug solubility and dose, 

as well as established methods of the lab [18-20]. Some researchers have attempted to model the 

in vivo environment by altering the in vitro release conditions, but these efforts have been limited 

to single formulations and the conditions used among these groups are not consistent [18, 21-24]. 
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Furthermore, while it is well understood that different media can change the rate of drug release, 

there is little understanding of how differing release media may change the underlying 

mechanisms of release.  

 Drug Release from PLGA Microparticles in vitro 

 Typical drug release profiles from PLGA 50:50 microparticles in vitro can be described 

as triphasic, controlled by a combination of erosion and diffusion. Initial drug release (the “initial 

burst”) is very fast (i.e. within 1-3 days) and is affected by a number of factors such as presence 

of initial interconnected pores, polymer swelling, polymer pore opening and closing, and 

surface-associated or poorly encapsulated drug.  For water-soluble drugs, pore opening 

associated with hydration of the polymer can cause significant drug release via pore diffusion as 

long as the pores remain interconnected.  Pores will commonly seal off by polymer healing.  The 

second phase of release, typically referred to as the “lag phase”, is controlled by polymer 

erosion. Depending on the properties of the PLGA used, the polymer will take some time to 

degrade to a critical chain length, at which point further hydrolysis causes polymer mass loss. 

During this lag time, very little drug release is seen if the molecular weight of the polymer is 

sufficiently high such that no polymer chains are water soluble. As degradation of the polymer 

proceeds past the critical chain length, erosion causes the third and final phase of drug release, 

which is often rapid and follows apparent zero-order kinetics. [2, 3, 11, 12, 25, 26] 

 Drug Release from PLGA Microparticles in vivo 

 During each stage of formulation development, in vitro assays are routinely used to 

monitor drug release from microsphere products in aqueous media.  However, there is 

surprisingly little data available to understand to what extent such a release test is predictive of 

microsphere drug product performance when injected in vivo.  Oftentimes, the release from 
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microspheres in vivo is different than the release measured during in vitro tests and yet there has 

been little discussion on the underlying causes for these discrepancies. Whereas there are 

numerous reports of pharmacokinetics (PK) of microsphere depots, few have attempted to 

understand the mechanisms of release when in vitro-in vivo differences arise [21, 22, 27-32]. In 

addition to disagreements between in vitro and in vivo drug release from microspheres of a single 

formulation, there are also differences between in vivo drug release profiles of different classes 

of therapeutic molecules [18, 28, 33-35]. For example, it has been reported in the literature that 

the small molecule dexamethasone exhibits faster release in vivo than in vitro, whereas the 

protein vascular endothelial growth factor (VEGF) releases slower in vivo (Figure 1.3) [18, 33]. 

In these reports, both dexamethasone and VEGF were extracted from microspheres following 

administration in rats by removing subcutaneous tissue at the time of animal euthanasia and then 

scraping a small sample of particles from the tissue and performing extractions.  
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 Factors Affecting in vivo Drug Release 

 In order to fully understand why there are differences in drug release profiles from PLGA 

microparticles in vitro and in vivo, we must understand the mechanisms of drug release from 

PLGA in vivo. Factors present in the subcutaneous administration environment that are not 

accurately represented by current in vitro release environments have been discussed by some 

authors, but little work to date has been done in attempt to validate their hypotheses regarding  

how these factors influence drug release [34, 36-40]. Factors present in vivo that may alter the 

mechanism and/or rate of drug release from microparticles can be divided into two major 

categories: biological and physical-chemical. 

A 

B 

C 

Figure 1.3: in vitro vs. in vivo drug release from PLGA 

microspheres. Release of dexamethasone from PLGA 

microspheres of two molecular weights in vitro (A) and in vivo 

(B) Dexamethasone release was measured by extraction of drug 

from on a small sample of microspheres recovered from the 

administration site [18]. Release of VEGF and hydrolysis of 

PLGA in vitro and in vivo (C). VEGF concentration was 

determined by separating microspheres from subcutaneous 

tissue and measuring total remaining drug at each time point 

[33]. 
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 Biological factors 

 It is clear that the subcutaneous administration of PLGA microparticles drastically 

changes the environment for drug release as compared to in vitro release conditions. Biological 

factors that may influence the way drugs are released from PLGA matrices include the 

inflammatory response and the presence of enzymes, lipids, organic amines, and other 

endogenous compounds present in the administration environment. It is well known that 

administration of any foreign material to the body will induce an inflammatory response; what is 

unknown is how this affects PLGA degradation and drug release from microparticles [34, 36, 

41]. The tissue response to PLGA microsphere administration can be divided into three phases 

(Figure 1.4 [37]). The first phase, or the acute phase of the inflammatory response, occurs within 

one week following administration and is characterized by the presence of neutrophils in the area 

of the injection or implant. The second phase, or the onset of the chronic phase of inflammation, 

is characterized by the appearance of monocytes and macrophages. The duration of this phase 

depends on the rate of biodegradation of the microspheres; PLGA 50:50 microspheres have been 

shown to result in a phase II response of 40-50 days [42].  At later stages of the inflammatory 

response, fibroblasts infiltrate the site and collagen deposition is initiated to form a fibrous 

capsule. Neo-angiogenesis is also observed during this period [37]. Neutrophils, macrophages 

and foreign body giant cells which migrate to subcutaneous sites following microparticle 

injection may release enzymes, radicals, lipids, and acids which could influence both the rate and 

the mechanism of PLGA erosion [37, 39, 40]. Chronic phases of inflammation may lead to the 

formation of a fibrous capsule which surrounds the microspheres. This “walling off” could 

entrap PLGA acidic by-products and drug molecules, increasing auto-catalyzed PLGA 

hydrolysis and also preventing drug diffusion away from the microparticles [37]. Previous work 
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has shown that release of anti-inflammatory drugs from PLGA microparticles is faster in vivo 

than in vitro, whereas release of protein is slower in vitro [18, 33, 34]. It has also been reported 

that PLGA degradation is slower in muscle than in subcutaneous tissue, where the inflammatory 

response is more robust [43]. From this information, we can hypothesize that the inflammatory 

response may be an important modulator of drug release from PLGA microparticles in vivo. 

 The presence of enzymes in vivo may influence the degradation of the polymer, as 

hydrolysis of the ester linkages in PLGA may be catalyzed by enzymes such as acid phosphatase, 

a hydrolase released from neutrophils and macrophages [36, 44]. If PLGA degradation is 

catalyzed by enzymes, microparticles undergo surface hydrolysis and erosion as well as bulk 

erosion which occurs due to autocatalysis [18]. It should be noted that the role of enzymes in 

PLGA hydrolysis is contested in the literature but has not yet been proved or disproved [45]. 

Another important factor to consider when studying drug release from PLGA in vivo is the 

presence of biological lipids which may act as plasticizers. Lipid chains may interact with the 

polymer and increase PLGA chain fluidity, decreasing the tortuosity of the drug diffusion 

pathway [34, 46]. It has previously been shown that plasticizers such as triethyl citrate increase 

Figure 1.4: The temporal variation in the three phases of inflammatory response 

resulting from administration of biodegradable microspheres. (Figure from [37]) 
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water uptake in PLGA and accelerate its hydrolysis and mass loss; all of which can contribute to 

accelerated drug release [47]. Finally, it is known that organic amines can strongly partition into 

PLGA and catalyze hydrolysis [48, 49]. Given the presence of amines such as monomethylamine 

and dimethylamine in the interstitial fluid (Table 1.1), it is reasonable to expect that these 

molecules may contribute to accelerated hydrolysis, erosion and subsequent release from PLGA 

microspheres in vivo.  

Table 1.1: Endogenous compounds which may affects drug release from PLGA microspheres and their expected 

concentrations in subcutaneous interstitial fluid (ISF) 

 Ion/Molecule Concentration (mM) 

M
a
jo

r 
C

o
m

p
o

n
e
n
ts

 o
f 
IS

F
 [

5
0
-5

3
] Na+ 142 

K+ 5 

Mg2+ 1 

Ca2+ 2.5 

Cl- 103 

HCO3
- 27 

HPO4
2- 1.0 

SO4
2- 0.5 

Lactate 1.2 

Glucose 5.6 

Urea 5.0 

Albumin (protein) 0.375 

Creatinine 62 

Urate 0.470 

Organic 
Amines 

Monomethylamine[54] 0.10 

Dimethylamine[54] 0.333 

Ethylamine[55] 0.013 

Trimethylamine[56] 0.0004 

Ethanolamine[57] 0.06 

Enzymes [58, 
59] 

Acid phosphatase ~5 U/L 

Alkaline phosphatase ~10 U/L 

Paraoxanase (PON1)[60] 0.021 g/L 

Lipids [57, 61, 
62] 

Phosphatidylcholine 1.4 

Phosphatidylethanolamine 0.15 

Phosphatidylinositol 0.2 

Phosphatidylserine 0.1 

Lysophosphatidylcholine 0.6 

Other 
Molecules of 

Interest 

Ammonia[63] 0.29 

Fructosamine[64] 2.3 

Dopamine[65] 0.02 

Melanin[66] 5.4 
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 Physical-chemical factors 

 Among the physical-chemical factors that may alter mechanisms of release from PLGA 

microspheres in vivo as compared to in vitro are the pH and buffering systems, fluid volume, and 

convection. While physiological pH is near 7, the interfacial pH between inflammatory cells (i.e. 

macrophages) and polymer surfaces can be as low as 3 [37, 41]. Lysosomes within inflammatory 

cells also have pH values around 3, suggesting that an inflammatory response to PLGA 

microspheres could drop the local pH lower than 7, the pH at which most drug products are 

tested for in vitro release [37]. In addition to the pH fluctuations due to the biological 

environment, the pH in the environment of the microspheres may become more acidic as PLGA 

erodes into lactic and glycolic acid. This is especially true if fibrous encapsulation occurs, which 

could potentially inhibit the diffusion of the acidic degradation products away from the polymer 

[18, 67]. The buildup of acidity in the environment surrounding microspheres may also be 

governed by physiological buffer systems and their buffering capacities. If the subcutaneous 

bicarbonate buffer system is capable of resisting changes in pH caused by the factors discussed 

here, perhaps pH changes caused by biological factors are negligible. It is also conceivable that 

components of the physiologic buffering system, i.e. carbonate-bicarbonate, may influence 

mechanisms of release differently than buffer systems used during in vitro release testing, such 

as phosphate buffers.  A crucial part of any in vitro release test is the volume of media used. In 

most cases, sink conditions are maintained throughout the release test to prevent dissolution-

controlled release and thus release volumes are determined by drug solubility [2]. Subcutaneous 

tissue, however, does not contain an excess of fluid and so it is likely that sink conditions do not 

actually apply in vivo. This is especially a concern for poorly soluble molecules, as a drug- 

concentrated external environment would inhibit further release from particles. Aggregation of 
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microspheres caused by fibrous encapsulation and low fluid volume convection will also 

decrease the volume available for drug diffusion, increase the thickness of unstirred boundary 

layers surrounding particles, and serve as a physical barrier for diffusion of drugs as well as 

acidic degradation products [36]. It has been shown that microspheres when aggregated in a gel 

to simulate in vivo aggregation will degrade faster than non-aggregated microspheres, 

presumably due to the autocatalytic effect of acidic byproducts trapped near the particles [68].  

 It is clear that the body’s reaction to the administration of PLGA microparticles is a 

complex process made up of a number of factors which could potentially affect drug release in a 

variety of ways. It is generally believed that not any one factor is solely responsible, rather the 

interplay between these processes results in in vivo drug release kinetics different from those 

observed in vitro. What is important to understand is not just how these factors may change drug 

release rates, but the underlying causes for these changes. That is, what mechanisms of release 

(i.e. water uptake, hydrolysis, erosion, diffusion) are affected by the in vivo environment and 

what the resulting contributions are to drug release rates. The complicated nature of drug release 

and the multitude of factors, which affect this process is illustrated in Figure 1.5 [6]. 
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1.5 Research Scope and Impact 

 Drug release from PLGA microparticles can range from weeks to months, making in vivo 

drug release studies during formulation development not only time consuming but also very 

expensive. For these reasons, correlation between in vitro and in vivo drug release kinetics is 

crucial for controlled release product development. Using proper in vitro tests, we can model 

drug release from controlled release products and thus predict drug pharmacokinetics based on a 

comprehensive understanding of formulation behavior in vivo, resulting in in vitro-in vivo 

correlations (IVIVCs). Generally, IVIVCs are used as surrogates for in vivo dissolution and 

release tests, to validate in vitro release methods, and for quality control during product 

development and manufacturing. IVIVC development for controlled release systems is crucial 

for the continued development of these important drug delivery products. With reliable in vitro 

release methods, in vivo drug levels will be accurately predicted and expensive in vivo tests may 

Figure 1.5: The complex nature of how different factors may affect drug release from PLGA 

matrices. (Figure from [6]) 
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not be required during development [15, 69, 70]. IVIVCs also offer the ability to modify the 

product to perform in a desired way without having to gather in vivo data upon each 

modification. Not only would this drastically reduce development costs, but it would also 

decrease the time needed for final product development. Thus, it is vital to develop in vitro tests 

that can be used as reliable surrogates for extraneous in vivo studies to predict product 

performance [15, 71-73]. The research presented here will contribute to the development of 

mechanism-based in vitro-in vivo correlations (IVIVCs) for PLGA microspheres. 

1.6 Thesis Overview 

 The preceding discussion highlights that one major difficulty in the development of 

controlled release injectable PLGA microparticles is that drug release in vivo is often different 

than what is predicted from in vitro release tests. This gap in knowledge can be linked to a lack 

of a mechanistic understanding of drug release from these dosage forms in vivo. In vitro release 

tests currently used and described in the literature are not designed to simulate the administration 

environment, resulting in poor prediction of performance. Design of in vitro test conditions 

should be performed only after the in vivo environment has been studied and in vivo drug release 

kinetics have been characterized [73]. 

 The overall goal of this thesis is to investigate the major mechanisms of release from 

PLGA microspheres in vivo and in a variety of in vitro conditions, with the overall intent of 

determining how these processes differ. This will provide insight as to why in vitro release tests 

are sometimes poor predictors of in vivo performance of PLGA controlled release products. 

Ultimately, the research described here will help to design better in vitro release tests for these 

products based on a mechanistic understanding of in vivo drug release. 
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 Chapter 2 of this thesis describes the development of PLGA microspheres encapsulating 

a model drug, triamcinolone acetonide (Tr-A), and determination of release mechanisms in a 

variety of in vitro release media. This section highlights the effects varying release conditions 

can have on drug release rate and mechanisms of release, including water uptake, hydrolysis, 

mass loss and diffusion. This work shows how in vitro release tests can be designed to 

incorporate different buffers and additives to alter release rates and mechanisms of release. 

 Chapter 3 describes the development of a system allowing the study of PLGA 

microspheres following administration in vivo. The major challenge faced during development of 

these formulations is a poor understanding of mechanisms of release in vivo. In this section, an 

implant was designed to constrain PLGA microparticles in the subcutaneous space so that the 

formulation itself can be studied following exposure to the in vivo release environment. Two 

drugs, Tr-A and leuprolide, were used to prove the utility of the cage model in a series of in vitro 

and in vivo experiments. The work discussed here shows that the cage does not strongly 

influence drug release after the initial burst and thus is a good tool to study in vivo microsphere 

performance. This cage implant is a novel system and can be used to study a number of 

injectable controlled release formulations with the ultimate goal being the development of a 

mechanistic understanding of in vivo behavior in order to better design in vitro tests. 

 Chapter 4 discusses the experiments utilizing the previously developed cage implant to 

determine kinetics of release and the relevant mechanisms in vivo. Tr-A release is shown to be 

much faster in vivo than in vitro, a result that is in good agreement with the previously discussed 

literature. Although release in vivo has been studied by a number of authors before, a 

comprehensive mechanistic analysis of PLGA microspheres during in vivo release has never 
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been published. Using two formulations of Tr-A, we were able to determine how mechanisms of 

release differ from those studied in Chapter 2. 

 The conclusions of this work and implications for future studies are discussed in Chapter 

5. There are two appendices highlighting formulation work done outside the scope of the main 

content of this dissertation work. Much of this thesis is in preparation for publication. Chapter 2 

is under review for publication in Molecular Pharmaceutics. Chapter 3 will be submitted for 

publication once additional in vivo experiments with leuprolide are completed. Chapter 4 will be 

published upon publication of Chapter 3, as it uses the cage model developed in that work. 

Finally, Appendix B, including additional in vivo data produced by collaborators, has been 

submitted to Journal of Controlled Release for review. 
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 : Mechanistic Analysis of Triamcinolone Acetonide Release from PLGA 

Microspheres as a Function of Varying in vitro Release Conditions 

 

2.1 Abstract 

In vitro tests for controlled release PLGA microspheres in their current state often do not 

accurately predict in vivo performance of these products during formulation development. In 

order to develop more predictive release tests, mechanisms of drug release from PLGA 

microparticles in vivo and in vitro must be understood. Two microsphere formulations 

encapsulating a model drug, triamcinolone acetonide, were prepared from PLGAs of different 

molecular weights and end-capping (18 kDa acid-capped and 54 kDa ester-capped). In vitro 

release kinetics and the corresponding mechanisms (hydrolysis, erosion, water uptake, and 

diffusion) were studied in four release media: PBST pH 7.4 (standard condition), PBST pH 6.5, 

PBS + 1.0% triethyl citrate (TC), and HBST pH 7.4. The release mechanism in PBST was 

primarily polymer erosion-controlled as indicated by the similarity of release and mass loss 

kinetics. Release from the low MW PLGA was accelerated at low pH due to increased rate of 

hydrolysis and in the presence of the plasticizer TC due to slightly increased hydrolysis and 

much higher diffusion in the polymer matrix. TC also increased release from the high MW 

PLGA due to increased hydrolysis, erosion, and diffusion. This work demonstrates how in vitro 

conditions can be manipulated to change not only rates of drug release from PLGA microspheres 

but also the mechanism(s) by which release occurs. This approach can in principle be applied to 

design better, more predictive in vitro release tests for these formulations and potentially lead to 

mechanism-based in vitro-in vivo correlations. 
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2.2 Introduction 

 Poly(lactic-co-glycolic) acid (PLGA) is the most commonly used biodegradable polymer 

used to achieve long-term controlled drug release over weeks to months [1]. A wide range of 

therapeutic molecules, such as peptides, proteins, and poorly soluble small molecules, have been 

encapsulated in PLGA formulations [2, 3]. During the development of these formulations, in 

vitro experiments are performed to measure drug release kinetics, which are used to predict in 

vivo release and pharmacokinetics of the encapsulated drug. Although these tests are routine, no 

formal FDA guidelines currently exist for assessing in vitro release from injectable controlled 

release (CR) formulations to establish in vitro-in vivo correlations (IVIVCs) for accurately 

predicting in vivo performance. This has resulted in inconsistencies in the methods used for in 

vitro release tests reported in the literature and in many cases, poor prediction of in vivo release. 

[4, 5] 

 Drug release rates measured during in vitro tests can change depending on the 

experimental setup and/or the media used [6-11]. Ideally in vitro release tests can be designed to 

accurately predict in vivo release by selecting both the proper setup and media, ultimately 

resulting in IVIVCs. This need has been thoroughly discussed in recent years in the literature and 

during regulatory-scientific meetings [4, 12-18]. Discussion of IVIVC development for CR 

products has focused on the need to design in vitro tests to mimic not only the rate of drug 

release in vivo, but the underlying mechanistic factors responsible for drug release in vivo. 

 To begin developing IVIVCs for PLGA microspheres, a mechanistic understanding of 

drug release in vitro and in vivo must be achieved. The purpose of this work was to study 

mechanisms of in vitro drug release from two PLGA microsphere formulations in varying bio-



 

28 

relevant media with the overall objective of understanding how to design in vitro release 

conditions to mimic mechanisms of drug release in vivo. 

 To develop our mechanistic analysis, we selected the poorly soluble corticosteroid 

triamcinolone acetonide (Tr-A) as a model drug. Tr-A was chosen for this mechanistic study for 

several reasons, including 1) its low susceptibility to polymorphism, 2) good stability, and 3) 

ease of quantitation using standard analytical techniques. It also represents poorly soluble small 

molecules in BCS classes II and IV for which traditional formulations (e.g. oral tablets or 

capsules) may be difficult to develop but represent a growing number of new chemical entities. 

Various drugs in this class have been developed in commercial PLGA controlled release 

products. These drugs also often 1) have a wide therapeutic index, 2) require a low daily dose, 

and 3) are for long-term treatment of chronic disease, all conditions favorable for a PLGA 

controlled release strategy.  

 Drug release from PLGA microspheres can be controlled principally by at least three 

rate-limiting release mechanisms or combinations thereof; 1) diffusion through the polymer 

matrix, 2) water-mediated transport processes, and 3) polymer hydrolysis and subsequent 

erosion. It is important to note that drug release is often the result of more than one of these 

mechanisms and that these mechanisms are not independent of each other. For example, water 

uptake in the polymer matrix will cause hydrolysis of the PLGA chains. The resulting monomers 

and oligomers will then diffuse out of the polymer through aqueous pores, resulting in overall 

erosion.  

It is possible to determine the major mechanisms contributing to drug release from PLGA 

microspheres at certain times by determining time scales of each mechanism and comparing to 

the kinetics of overall release. For example, if erosion dominates drug release it is expected that 
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these two processes would occur roughly on the same time scale, meaning that if 50% of the 

polymer matrix has eroded we would expect roughly 50% of drug to be released at that time. 

Similarly, drug release from a purely diffusion controlled system can be modeled using the 

appropriate matrix diffusion model [19]. These strategies, among others, were applied herein to 

determine the contributions of each mechanism to overall drug release in several types of in vitro 

release media. This discussion will highlight the need to design in vitro release tests that will 

predict not only drug release rates in vivo, but the mechanisms by which release occurs following 

administration. 

2.3 Materials 

Triamcinolone acetonide (Tr-A) and PLGA RESOMER® 502H (i.v. = 0.19 dL/g, free acid 

terminated) were purchased from Sigma-Aldrich. Poly vinyl alcohol (PVA, 88% hydrolyzed, 

MW ~ 25,000) was purchased from Polysciences, Inc. (Warrington, PA). PLGA (i.v. = 0.61 

dL/g, ester terminated) was purchased from Lactel (Birmingham, AL). BODIPY® FL (4,4-

Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Propionic Acid) was purchased from 

Life Technologies. All solvents used were HPLC grade and were purchased from Fisher 

Scientific and unless otherwise noted, all other chemicals were purchased from Sigma-Aldrich. 

2.4 Methods 

 Microsphere Preparation 

Microspheres were prepared by using solid-in-oil-in-water (s/o/w) double-emulsion solvent 

evaporation methods. Two polymers were used to encapsulate Tr-A to result in two 

formulations. The first (Tr-A_1) used a low molecular weight, free acid terminated PLGA 502H 

(18 kDa); Tr-A_2 used a moderate molecular weight, ester terminated (e.t.) PLGA (54 kDa). 

Control studies from a wide number of formulations were used to select these two formulations 
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for further evaluations (see supplementary information). Tr-A was first micronized in a cryo-mill 

(Retsch®, PA, USA) prior to formulation to obtain drug particle sizes < 10 µm. Micronized or 

unmicronized drug (5% w/w theoretical Tr-A loading) was mixed with PLGA dissolved in 

methylene chloride (Tr-A_1: 1000 mg/mL; Tr-A_2: 400 mg/mL) and homogenized at 10,000 

rpm for 1 minute to form a s/o suspension. Next, 4 mL of a 5% PVA solution was added and 

vortexed at high speed for 1 minute. This s/o/w emulsion was rapidly transferred to 100 mL 

0.5% PVA stirring bath. The methylene chloride was allowed to evaporate for 3 h and the 

hardened microspheres were collected by sieve (63-90µm) and washed thoroughly with ddH2O. 

Microspheres were then lyophilized and stored at -20°C before use. 

 Scanning Electron Microscopy 

Prior to imaging, lyophilized microspheres were mounted by using double sided carbon tape and 

coated with a thin layer of gold under vacuum. Scanning electron microcopy (SEM) was 

performed on a Hitachi S3200N scanning electron microscope (Hitachi, Japan). Images were 

captured by EDAX® software. 

 Determination of Tr-A Loading and Encapsulation Efficiency 

Prepared microspheres (~5 mg) were dissolved in 20 mL acetonitrile. The resulting solution was 

filtered and analyzed for Tr-A content by ultra-performance liquid chromatography (UPLC), as 

described below. Drug loading was calculated from the ratio of the mass of drug in the 

microspheres to the mass of the microspheres. Encapsulation efficiency was calculated by the 

measured drug loading divided by the theoretical loading. 

 Tr-A Quantification by UPLC 

Tr-A content in loading solutions and release media was determined using UPLC (Acquity 

UPLC, Waters, USA). The mobile phase was composed of either 40 : 60 v/v (acetonitrile : 
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ddH2O) or 70 : 30 v/v (methanol : water) and the flow rate was set to 0.5 mL/minute. Samples 

and standards prepared in either acetonitrile or PBST were injected onto a C18 (Acquity BEH 

C18, 1.7µm, 2.1 x 100mm) column maintained at 30°C. Tr-A was detected at 254 nm. 

 Assessment of Drug Release in vitro 

Drug release and mechanistic analyses of microspheres was carried out in four types of release 

media: PBS (137mM NaCl, 3mM KCl, 7.74 mM Na2HPO4, 2.26 mM NaH2PO4) at pH 7.4 and 

6.5; 10 mM HBS (HEPES-buffered saline) at pH 7.4; and PBS with 1.0% triethyl citrate (TC) at 

pH 7.4. PBS pH 7.4, PBS pH 6.5, and HBS all contained 0.02% Tween 80 and all media 

contained 0.05% NaN3. These media were chosen to determine the effects of various pH, 

buffering species, and presence of plasticizer expected to represent plasticizing biological species 

(e.g. lipids). Microspheres (3-5 mg) were placed in 30 ml of media and shaken mildly at 37°C 

for the duration of the experiment. At each time point (1, 3, 7 days and weekly thereafter), the 

microspheres were separated from media by centrifugation at 4,000 rpm (3200 g) for 5 min 

(Eppendorf 5810 R; Eppendorf, Hamburg, Germany)) and the media was completely removed 

and replaced. Drug content was measured by UPLC, as previously described. 

 Mass Loss and Water Uptake of Microspheres: 

During in vitro release, mass loss and water content of the PLGA microspheres was determined 

weekly. Microspheres were separated from release media by filtration and washed with ddH2O to 

remove salts. The wet weight of microspheres was recorded and then the microspheres were 

dried under vacuum to constant weight. Mass loss and water uptake were estimated as previously 

described [20]. 
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 Molecular Weight of PLGA 

During in vitro release, weight-averaged molecular weight (Mw) of degrading PLGA was 

measured by gel permeation chromatography (GPC) weekly. The Waters 1525 GPC system 

(Waters, USA) consisted of two styragel columns (HR 1 and HR 5-E columns), a binary HPLC 

pump, waters 717 plus autosampler, waters 2414 refractive index detector and Breeze software 

to obtain the molecular weight. Samples were dissolved in tetrahydrofuran (THF) at a 

concentration of ~1 mg/ml, filtered through a 0.2 μm hydrophobic filter and eluted with THF at 

0.35 ml/min. The molecular weight of each sample was calculated using monodisperse 

polystyrene standards, Mw 820-450000 Da. 

 BODIPY uptake and Laser Scanning Confocal Microscopy (LSCM): 

At certain time points during in vitro release, a small aliquot of microspheres was removed from 

release media and incubated in a solution of BODIPY FL (5 µg/mL) in the same media at 37°C 

for 10 min or 3 h under mild agitation. This dye was used due to its preferential partitioning into 

the polymer phase, making it a suitable marker for solid-state diffusion, as previously described 

by our lab [20, 21]. BODIPY distribution in degrading microspheres and subsequent image 

analysis was determined as previously described [21]. Briefly, microspheres were imaged using a 

Nikon A1 spectral confocal microscope (Nikon, Tokyo, Japan) to observe dye distribution and 

microsphere morphology. The images were then analyzed using ImageJ software (National 

Institutes of Health, USA). Normalized dye intensity (I/I0) – position (r/a) pairs were then fit to 

the solution of Fick’s second law of diffusion using DataFit software (Oakdale Engineering, 

USA) to determine the effective solid-state diffusion coefficient of bodipy (Dbodipy), as described 

previously [21].  
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 Modelling Tr-A diffusion-controlled release 

Blank_1 (free acid terminated PLGA, 18 kDa) and Blank_2 (ester terminated PLGA, 54 kDa) 

microspheres were prepared using the same methods as described above, omitting the addition of 

the Tr-A during formation of the first emulsion. These microspheres were suspended in PBST 

pH 7.4 for one day, at which time the release media was replaced with a supersaturated Tr-A 

suspension in PBST pH 7.4. Microspheres were then separated and washed thoroughly on a 45 

µm sieve with cold ddH2O at 2, 4, 6, 8, 12, 24 and 48h. Tr-A content in microspheres following 

uptake was determined by extraction with acetonitrile followed by analysis by UPLC. The 

uptake of Tr-A was fit using DataFit software to Crank’s solution using for uptake into or release 

from particles of spherical morphology to determine an effective solid state diffusion coefficient 

[22]. This diffusion coefficient (DTr-A) was then compared to Dbodipy in blank microspheres at the 

same time point to determine DTr-A/Dbodipy so that drug diffusion coefficients at each time point 

could be estimated from the bodipy uptake experiments described above. The resulting DTr-A 

values were then used to develop corresponding theoretical release profiles using the Higuchi 

equation for spherical systems [23]. See supplementary information for more details. 

 Statistical and Regression Analysis 

Statistical analyses and regressions were performed using Prism (Graphpad, San Diego, CA). 

Rate constants, t50 values, and diffusion coefficients in various media were compared to standard 

conditions (PBST pH 7.4) using unpaired student t-tests to determine two-tailed P-values. The 

level of significance was established at the 95% confidence interval (α < 0.05). 

2.5 Results and Discussion 

PLGA microspheres encapsulating Tr-A were successfully prepared using micronized 

API powder in two types of PLGAs: a low molecular weight free-acid terminated PLGA and a 
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moderate molecular weight ester-end capped PLGA. As Tr-A is poorly soluble in methylene 

chloride, the drug was encapsulated as a solid during formulation. In an effort to optimize 

encapsulation and release, the drug powder was micronized to obtain a small particle size which 

can be efficiently encapsulated by the polymer during formation of the first emulsion. Initially, 

Tr-A was micronized by grinding with mortar and pestle and sieving through a 20 µm sieve. 

However, this process resulted in heterogeneous powder size (Figure 2.1A) and the resulting 

microsphere formulations exhibited poor and variable drug loading and encapsulation efficiency 

(Table 2.1). Therefore, a cryo-mill (Retsch®, PA, USA) was used to obtain a homogenous 

powder size less than 10 µm (Figure 2.1B). The encapsulation of this milled powder greatly 

improved encapsulation efficiency, decreased variability in drug loading, and lowered initial 

burst in PBST pH 7.4 (Table 2.1).  The incorporation of homogenously sized Tr-A powder into 

microspheres resulted in encapsulation efficiencies slightly higher than 100%. This slight excess 

loading was likely caused by discarding the fine fraction below 63µm sieve size, which are 

expected to contain a lower drug loading. Accordingly, microspheres formulated using the cryo-

milled Tr-A were used for all studies discussed herein. 

 

Figure 2.1 SEM micrographs of Tr-A micronized by mortar and pestle (A) and after by Retsch® cryo-mill (B). 

Micronized Tr-A powder was then encapsulated in Tr-A_1 (C) and Tr-A_2 (D) microspheres. 
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Table 2.1: Characterization of microsphere formulations prepared using unmilled and milled Tr-A. All values are 

reported as mean ± SEM, n=3. 

 Unmilled Tr-A Milled Tr-A 

 Tr-A_1 Tr-A_2 Tr-A_1 Tr-A_2 

Tr-A loading (w/w %) 3.2 ± 0.3 4.2 ± 0.1 5.4 ± 0.2 5.2 ± 0.1 

Encapsulation Efficiency (%) 64 ± 6  84 ± 3 108 ± 4 104 ± 1 

Initial Burst in PBST pH 7.4 (%) 9.8 ± 2.2 6.6 ± 0.4 1.9 ± 0.3 2.8 ± 0.4 

 

Following successful microsphere preparation and characterization, Tr-A release was 

determined in several types of release media to determine the effect of media composition on 

release kinetics. Release in each media was compared to what was observed in PBST pH 7.4, as 

this condition is commonly used throughout the literature for conducting in vitro release tests. 

Release from Tr-A_1 was generally continuous over 35 days, with a slight lag observed in the 

first 7 days in 3 of the 4 media. Release from Tr-A_2 was slower and could be described as tri-

phasic. A low initial burst was observed in the first day, followed by a lag phase in all four 

media. Following the lag phase, drug release was continuous in the third phase and lasted 

approximately 63 days in 3 of the 4 media. As seen in Figure 2.2A, release from Tr-A_1 

microspheres was accelerated in two media: PBST pH 6.5 and PBS + 1.0% TC. Release from 

this formulation in PBST pH 7.4 and 6.5 and in HBST pH 7.4 followed a typical tri-phasic 

profile with low initial burst on day one followed by a short lag phase corresponding to polymer 

degradation. Following the lag phase, which lasted approximately 7 days, a secondary apparent 

zero order release occurred faster at the slightly lower pH with complete release occurring after 

one month. This result is expected, as a more acidic pH is may catalyze hydrolysis of the 

polymer to cause accelerated release [11, 24, 25]. In the presence of the plasticizer triethyl citrate 

(TC) a slightly higher initial burst (%) was followed by no apparent lag phase and complete 
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release in just 3 weeks. The presence of TC also resulted in accelerated release from Tr-A_2 

(Figure 2.2B). Release from this microsphere formulation prepared from a higher MW ester end-

capped PLGA (54 kDa) showed slower overall release than Tr-A_1 and a lag phase was 

noticeable in all four media, though it lasted only approximately 14 days in PBS + 1.0% TC 

versus approximately 21 days in the other three media. 

Figure 2.2: In vitro release from Tr-A_1 (A) and Tr-A_2 (B) microspheres in various media. Data represent mean ± 

SEM, n=3. Note: in some cases, release average release was slightly greater than 100% due to slight error in 

measurement. 

 

After the initial burst, drug release of poorly soluble small molecules such as Tr-A from 

low molecular weight PLGAs is expected to be dominated by erosion, while release from 

moderate molecular weight PLGAs is expected to occur via erosion and/or diffusion through the 

polymer matrix, though erosion is expected to be the predominant mechanism [2, 26]. Erosion-

controlled release from PLGA microspheres typically exhibits a tri-phasic release. An initial 

burst of drug (usually due to surface-associated drug particles) is followed by a lag phase, during 

which the polymer chains degrade by hydrolysis until a critical chain length is reached. 

Following the lag phase, the duration of which is dependent on polymer characteristics (e.g. 



 

37 

MW, lactic acid : glycolic acid ratio, etc.), an erosion controlled, continuous release phase 

continues until all encapsulated drug has been released. [2, 3, 26-31] 

In order to understand the underlying factors which cause accelerated release in some in 

vitro conditions, mechanisms of drug release from each formulation in all four media were 

studied and the major mechanism(s) of release in each condition was determined. Kinetics of 

PLGA hydrolysis during in vitro release is shown in Figure 2.3 and the associated initial first 

order rate constants over 14 d are reported in Table 2.2. As expected, the slightly acidic pH 

caused significantly faster degradation than standard conditions (0.163 ± 0.003 versus 0.125 ± 

0.018 day-1) in PLGA 502H (Tr-A_1). Degradation of the higher molecular weight, ester 

terminated polymer (Tr-A_2) was significantly faster in PBS + 1.0% TC than in other media 

(0.121 ± 0.012 vs. 0.034 ± 0.001 day-1). PLGA hydrolysis results in the formation of water-

soluble low molecular weight monomers and oligomers which are expected to diffuse out of the 

polymer matrix into the bulk media. The result of this process is overall erosion of the solid 

microspheres which can be measured by mass loss. As expected due to the accelerated 

hydrolysis, Tr-A_2 microsphere mass loss was accelerated in PBS + 1.0% TC (Figure 2.4). The 

plasticizer can increase the mobility of the polymer chains, allowing for increased mobility of 

water, which can lead to accelerated hydrolysis. The increased chain mobility can also cause 

increased diffusion of the low molecular weight degradation products out of the microspheres, 

causing the observed increase in overall mass loss [7]. 
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*p < 0.05 compared to PBST pH 7.4 

 

Figure 2.3: Decline of molecular weight of PLGA in Tr-A_1 (A) and Tr-A_2 (B) microspheres in various in vitro 

release media. Data represent mean ± SEM, n=3. 

 

Table 2.2: Initial first order rate constants (day-1) of PLGA hydrolysis in Tr-A_1 and Tr-A_2 microspheres as 

determined by linear regression analysis of data shown in Figure 2.3. Values were taken from regression over the 

first 14 days. 

  PBST pH 7.4 PBST pH 6.5 PBS + 1.0% TC HBST pH 7.4 
Tr-A_1 0.125 ± 0.018 0.163 ± 0.003* 0.151 ± 0.009 0.095 ± 0.013 
Tr-A_2 0.034 ± 0.001 0.037 ± 0.003 0.121 ± 0.012* 0.037 ± 0.004 

 

 

Figure 2.4: Mass loss of Tr-A_1 (A) and Tr-A_2 (B) microspheres in various in vitro release media. Data represent 

mean ± SEM, n=3. 
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Erosion (i.e. polymer mass loss), one of the major mechanisms of drug release from 

PLGA microspheres, can be further described by determining the time-scale over which mass 

loss of the polymer matrix occurs. Mass loss curves shown in Figure 2.4 were fit using four-

parameter logistic nonlinear or linear regressions (Figures S2.6 and S2.7), and the time to 50% 

mass loss (t50,erosion) was determined in each media. The same process was also applied to release 

curves to determine the 50% release time (t50,release) (Figures S2.4 and S2.5). The contribution of 

this mechanism to overall drug release can be estimated by comparing these two defining 

parameters of the time scales of erosion and release. For example, if t50,release/t50,erosion ≈ 1, one 

can conclude that erosion is the dominant mechanism responsible for drug release in a given 

condition, as erosion and release happen over the same time scale. These values are reported in 

Table 2.3, and the same trends are shown in Figure 2.5, where release in each media was plotted 

vs. mass loss and compared to the line plotted to represent release = mass loss. In the standard 

conditions (PBST pH 7.4), erosion-controlled drug release was observed in both formulations. In 

the case of Tr-A_1, release occurred faster than erosion in PBS + 1.0% TC (t50,release/t50,erosion = 

0.52), indicating that another mechanism was contributing to, and likely controlled, accelerated 

Tr-A release in that media. Although release was slightly accelerated in PBST pH 6.5, this 

appeared to be due to accelerated erosion and the predominant mechanism of release in this 

instance was unchanged. As discussed, the only media which caused a significant increase in the 

rate of Tr-A release from Tr-A_2 microspheres was PBS + 1.0% TC and erosion was increased 

in this media as well (t50,erosion= 8 ± 0.4 days).  
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*p < 0.05 compared to PBST pH 7.4 
† linear regression was used 

Table 2.3: Characteristic times (in days) of release and erosion from Tr-A_1 and Tr-A_2 microspheres. Values 

represent mean ± SEM, n=3.T50 ratios were calculated from mean values of t50,release and t50,erosion in each media. 

 PBST pH 7.4 PBST pH 6.5 PBS + 1.0% TC HBST pH 7.4 

Tr-A_1 

t
50,release

 19.0 ± 0.4 16.6 ± 0.4 8.0 ± 0.4* 17.6 ± 0.2 

t
50,erosion

 25 ± 8 18.6 ± 0.8 15 ± 1 18 ± 2 

t
50,release

 / 

t
50,erosion

 
0.77 0.89 0.52 0.96 

Tr-A_2 

t
50,release

 46.8 ± 0.6 50.1 ± 0.8 25.0 ± 0.3* 46.1 ± 0.3 

t
50,erosion

 46 ± 3 39 ± 2 18 ± 2*† 43 ± 2 

t
50,release 

/ 

t
50,erosion

 
1.02 1.28 1.43 1.06 

 

 

 

Figure 2.5: Release vs. mass loss of Tr-A_1 (A) and Tr-A_2 (B) microspheres. Dashed line represents release = 

mass loss, indicating pure erosion controlled release. X and Y data represent mean ± SEM, n=3. 

 

Further investigation into the mechanisms of release of Tr-A from PLGA microspheres 

included measurement of water uptake into the polymer matrix (Figure 2.6). HBST pH 7.4 

caused noticeably more water uptake than the other three media in Tr-A_1 and Tr-A_2 at later 

time points. This may be due to the potential interaction between the cationic species of the 
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zwitterionic HEPES molecule interacting with free carboxylic acids present in Tr-A_1 at all 

times during release, and in Tr-A_2 as degradation causes production of acidic oligomers. The 

electrostatic interaction would presumably increase osmotic pressure, resulting in increased 

water uptake and microsphere swelling. However, given no clear trend in these data as related to 

the release kinetics of either formulation suggest that water-mediated processes likely do not 

play a significant role in Tr-A release.  

 

Figure 2.6: Water uptake Tr-A_1 (A) and Tr-A_2 (B) microspheres in various in vitro release media. Data represent 

mean ± SEM, n=3. 

 

Finally, degrading particle morphology and diffusion through the polymer matrix, 

controlled primarily by the solid polymer phase, was studied using the fluorescent probe, bodipy. 

This small, pH insensitive dye partitions preferentially into the polymer phase and thus is a 

suitable marker for solid state diffusion [21]. As the probe is also water soluble, it can be used to 

view the larger pore structure in the polymer as well. Representative images of Tr-A_1 and Tr-

A_2 particles during release can be seen in Figure 2.7 (additional images are shown in Figures 

S2.8 and S2.9). These confocal micrographs show the morphology of degrading microspheres 

and provide visual evidence of the previously discussed mechanisms of drug release. 
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Micrographs of particles incubated in PBST pH 6.5, PBS + 1.0% TC, and HBST pH 7.4 were 

compared to those incubated in PBST pH 7.4 to determine the effects of these non-standard 

conditions on particle morphology. Incubation in PBST pH 6.5 caused a noticeable increase in 

the penetration of the dye from the surface of Tr-A_1 microspheres. This effect can be explained 

by the slightly reduced pH of the buffer and thus a reduced pH at the surface of the 

microspheres. As previously mentioned, this increases the hydrolysis of PLGA and thus allows 

for increased penetration of molecules such as bodipy into the regions of degraded polymer. The 

presence of TC increased mobility of the polymer in Tr-A_1 microspheres, resulting in a loss of 

spherical morphology and formation of larges pores on the surface at early time points and 

swelling and dye saturation at later time points.  This increase in polymer chain mobility resulted 

in a significant increase in the effective diffusion coefficient in the polymer matrix (Figure 2.8A) 

following 3 days in release media, though this was the latest time point diffusion could be 

measured at the uptake time point selected in three of the four in vitro conditions due to rapid 

polymer degradation in this low molecular weight PLGA. Tr-A_1 microspheres swelled 

dramatically in HBST pH 7.4 as early as three days. 

 
Figure 2.7: Representative images of Tr-A_1 (A) and Tr-A_2 (B) microspheres following 3 days release in PBST pH 

7.4 and 3 hours in 5µg/mL bodipy in PBST pH 7.4 and resulting bodipy concentration gradient plots shown at right. 
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Figure 2.8: BODIPY diffusion coefficients in degrading Tr-A_1 (A) and Tr-A_2 (B) microspheres in varying release 

media. Data represent mean ± SEM, n=6. X indicates no diffusion coefficient could be determined due to 

agglomeration and/or saturation of microspheres. 

 

The PLGA used for formulation of Tr-A_2 microspheres was a higher molecular weight 

(54 kDa) with ester end capping and thus, these particles bioeroded at a slower rate than was 

observed in Tr-A_1 particles. Particles incubated in PBST pH 6.5 exhibited some preferential 

surface erosion similar to what was observed in Tr-A_1. The presence of triethyl citrate also 

created a visible bodipy diffusion front as a result of polymer chain flexibility caused by 

plasticization. This mobilization also had a significant impact on bodipy diffusion after 7 and 14 

days, while PBST pH 6.5 and HBST pH 7.4 buffer solutions exhibited no effect on solid state 

diffusion as compared to PBST pH 7.4 at any measurable time point (Figure 2.8B). 

In order to estimate the overall contribution of diffusion to release, we estimated Tr-A 

diffusion coefficients using a DTr-A/Dbodipy ratio determined experimentally as described in the 

supplementary information. Tr-A uptake data and models are shown in Figure S2.10.  

Representative DTr-A values were chosen for both formulations and release profiles were 

modeled, shown in Figure 2.9. Given the distinct differences in Dbodipy values in the presence and 

absence of plasticizer, we chose to use these values at early times and at later times during 
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release to develop release models to comprehensively represent the range of conditions studied 

herein. Theoretical t50,diffusion values were then estimated for purely diffusion-controlled release 

processes (Table 2.4). Note that the effective diffusion coefficients estimated, as indicated by 

their very low order of magnitude (~10-12 – 10-11 cm2/s), are primarily based on solid-state 

diffusion, although isolated pores are also important by instantaneously advancing the diffusion 

front (see Kang and Schwendeman [21] for discussion).  It is also known that steroids can diffuse 

through membranes of PLGA [32]. The calculated t50 values resulting from DTr-A values 

representative of plasticizer-containing media conditions in both formulations suggest that 

diffusion contributes to the overall release, as these values correspond to the accelerated release 

times observed in this media. In other media not containing the plasticizer, diffusion at early 

times during release (i.e. 1-3 days) is very slow and thus this process does not likely contribute to 

release which is slow and controlled by hydrolysis and erosion. Following the lag phase, 

however, diffusion increases and the resulting models suggest diffusion occurring at times 

similar to release, as the polymer chains have become more flexible.  

 

Figure 2.9: Theoretical Tr-A release profiles from Tr-A_1 (A) and Tr-A_2 (B) microspheres for diffusion-controlled 

release. Profiles were generated using representative diffusion coefficients with and without the plasticizer triethyl 

citrate that were determined at early (1-3 days) and late times (7+ days) during the release incubation. 
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Table 2.4: T50,diffusion estimated using diffusion-controlled release models shown in Figure 2.9. 

 -TC early times -TC late times +TC early times +TC late times 

Tr-A_1 45 days 17 days 15 days 2.8 days 

Tr-A_2 110 days 35 days 22 days 3.7 days 

 

2.6 Conclusions 

In closing, this study shows how in vitro release conditions affect not only the release rate 

of Tr-A, but also the mechanisms by which these microsphere formulations release the 

encapsulated drug. Release from low molecular weight acid-capped PLGA 50/50 microspheres 

(Tr-A_1) was accelerated at slightly acidic pH 6.5 and in media containing the plasticizer triethyl 

citrate. Drug release from this formulation was dominated by erosion in three of the four 

conditions studied, including PBST pH 6.5, where the rate of polymer hydrolysis was faster than 

in standard conditions. In the presence of TC, however, release was triggered not only by 

accelerated erosion, but also by increased diffusion in the polymer matrix with the latter as the 

principal controlling mechanism. Triethyl citrate also caused accelerated release from moderate 

molecular weight ester-capped PLGA 50/50 microspheres (Tr-A_2) by accelerating PLGA 

hydrolysis and causing accelerated erosion. Solid state diffusion was also increased in this 

media, indicating that polymer plasticization caused by TC decreases tortuosity and allows for 

increased drug diffusion. This effect increases the contribution of diffusion to overall release of 

drug from both formulations.  These data further lay the foundation for comparing the release 

mechanism in vivo and developing mechanistic strategies for IVIVCs.  
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2.8 Supplementary Information 

 Selection of Tr-A/PLGA Microspheres 

Initial control studies were performed with various PLGA microsphere formulations 

encapsulating Tr-A to select two formulations for extensive mechanistic analysis. Microspheres 

were formulating using un-milled Tr-A incorporated as a solid (s/o/w, discussed in detail in 

section 2.4.1) or co-dissolved with PLGA in the oil phase using dimethylformamide as a co-

solvent. As shown in Table S 2.1, other formulation parameters were varied, such as the initial 

polymer concentration and the theoretical loading. In these initial selection experiments, the 

effect of these formulation variables was studied by measuring in vitro release in PBST pH 7.4 

(Figure S 2.1). One microsphere formulation of each type of PLGA was selected for the studies 

discussed in this chapter: G (Tr-A_1) and I (Tr-A_2), although cryo-milling to reduced drug 

particle size was performed for the encapsulation of Tr-A_1 and Tr-A_2 formulations in the 

main text. Both of these formulations were prepared using s/o/w methods, which generally 

exhibited a more controlled release profile than the microspheres prepared using DMF as a co-

solvent. Both formulations selected had moderate drug loading, as high drug loading was not the 

focus of this mechanistic analysis, and good encapsulation efficiency. 
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Formulation 
Solvent 

DMF:CH2Cl2 
polymer 

Polymer 
conc. 

(mg/ml) 
LT (%) LA (%) EE (%) method 

A 1:3 502H 800 5% 2.8±0.1 57±1 O/W 

B 1:3 502H 1000 5% 3.1±0.2 63±3 O/W 

C 1:3 
Ester-end 
capped 
PLGA 

400 10% 4.2±0.2 42±2 O/W 

D 1:3 
Ester-end 
capped 
PLGA 

400 20% 
13.4±0.

4 
67±2 

 
O/W 

E 1:3 PLA 320 20% 8.2±1.2 41±6 O/W 

F CH2Cl2 502H 800 5% 3.6±0.2 71±5 S/O/W 

G CH2Cl2 502H 1000 5% 3.4±0.1 67±2 S/O/W 

H CH2Cl2 502H 1000 10% 7.3±0.3 73±3 S/O/W 

I CH2Cl2 
Ester-end 
capped 
PLGA 

400 5% 3.4±0.4 68±7 S/O/W 

J CH2Cl2 
Ester-end 
capped 
PLGA 

400 10% 7.8±0.4 78±4 S/O/W 

K CH2Cl2 
Ester-end 
capped 
PLGA 

400 20% 19±3 96±14 S/O/W 

Table S 2.1: Initial Tr-A/PLGA microsphere formulation parameters and characterization. 
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Figure S 2.1: In vitro release of initial Tr-A/PLGA microsphere formulations using PLGA 502H (A) and ester end-capped, 

moderate molecular weight PLGA (B). Data represent mean ± SEM, n=3. 
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 Regression Analysis 

Figure S 2.2: Linear regression fits of Tr-A_1 hydrolysis data. Rate constants shown in 

Table 2.2 were determined from these regressions. 

Figure S 2.3: Linear regression fits of Tr-A_2 hydrolysis data. Rate constants shown in 

Table 2.2 were determined from these regressions. 
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 Figure S 2.5: Four parameter logistic nonlinear fits of Tr-A_2 release data. T50,release values and associated errors 

were determined from the associated equations. 

Figure S 2.4: Four parameter logistic nonlinear fits of Tr-A_1 release data. T50,release values and associated errors 

were determined from the associated equations. 
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Figure S 2.6: Four parameter logistic nonlinear fits of Tr-A_1 mass loss data. T50,erosion values and associated errors 

were determined from the associated equations. 

 

Figure S 2.7: Four parameter logistic nonlinear fits of Tr-A_2 mass loss data. T50,erosion values and associated errors 

were determined from the associated equations. 
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 Additional LCSM images of Tr-A_1 and Tr-A_2 microspheres 

 

Figure S 2.8: Confocal images of Tr-A_1 microspheres following 1, 3, and 7 days incubation in various release 

media. Microspheres incubated in PBST pH 6.5, PBS + 1.0% TC and HBST pH 7.4 are not pictured at 7 days due to 

complete dye saturation and/or agglomeration at this and future time points. 
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Figure S 2.9: Confocal images of Tr-A_2 microspheres following 1, 3, 7, 14, and 21 days incubation in various 

release media. Microspheres incubated in PBS + 1.0% TC are not pictured at 21 days due to complete dye 

saturation and/or agglomeration at this and future time points. 
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 Development of diffusion-controlled release models 

Tr-A uptake was measured in blank PLGA microspheres as described in the main paper. The 

data was then fit to Crank’s solution for uptake into particles of spherical morphology to 

determine a diffusion coefficient (D): 

 

Then, blank PLGA microspheres (Blank_1 and Blank_2) were suspended in PBST pH 7.4 for 

one day, then incubated in bodipy solution for 3 hours before imaging using confocal 

microscopy. The images were then analyzed as previously described to determine Dbodipy.  

Figure S 2.11: Representative confocal images of Blank_1 (A) and Blank_2 (B) 

microspheres following 1 day incubation in PBST pH 7.4 and 3 hours in bodipy solution. 
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Figure S 2.10:Tr-A uptake in blank PLGA microspheres and resulting fits to Crank's 

solution (shown). Estimated diffusion coefficients resulting from these fits are shown in the 

legend.  



 

56 

Table S 2.2:  Estimated diffusion coefficients of Tr-A and bodipy in blank microspheres. 

Polymer DTr-A Dbodipy DTr-A/Dbodipy 

502H (18 kDa) 

Blank_1 
6.30E-11 3.30E-12 19.1 

e.t. PLGA (54 kDa) 

Blank_2 
3.95E-11 6.07E-13 65.1 

 

Using the DTr-A/Dbodipy ratios, DTr-A values were estimated at each time point in each media from 

Dbodipy ratios shown in Figure 2.8. Representative diffusion coefficients were then chosen (with 

or without TC at early and late times during release) to build diffusion-controlled release models 

using the Higuchi equation solved for spherical systems: 

 

 

 

The solubility of Tr-A in the two types of PLGA was determined experimentally. At the end of 

the Tr-A uptake study described above, a partition coefficient for the drug in polymer was 

determined [(Tr-APLGA,final / PLGA) / (Tr-APBST,final / H2O)]. Then, the polymer solubility was 

estimated from the solubility of Tr-A in PBST (25.9µg/mL) and the experimentally determined 

partition coefficients. 

Table S 2.3: Estimated partition coefficients and solubilities of Tr-A in PLGA. 

Polymer Partition coefficient Cs (µg/mL) 

502H (18 kDa) 

Blank_1 
0.84 21.8 

e.t. PLGA (54 kDa) 

Blank_2 
0.22 5.7 

A  = area of the microsphere 

D  = estimated DTr-A 

Cs = Tr-A solubility in PLGA 

C0 = Tr-A loading in microsphere 

t = time 

𝑀𝑡 = 𝐴 2𝐷𝐶𝑠𝐶0𝑡 
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 : Cage Implant System for Assessing in vivo Controlled Release Performance of 

Long-acting Release PLGA Microspheres 

 

3.1 Abstract 

 Here we describe development of a silicone rubber/stainless steel mesh cage implant 

system, much like that used to assess biocompatibility of biomaterials [1] for easy removal of 

microspheres in vivo.  The cage has a stainless steel mesh size (38 µm) large enough for cell 

penetration and free fluid flow in vivo but small enough for microsphere retention, and a silicone 

rubber shell for injection of the microspheres. Two model drugs, the poorly soluble small 

molecule triamcinolone acetonide and the short peptide leuprolide, were encapsulated in PLGA 

microspheres large enough to be restrained by the cage implant in vivo. The in vitro release from 

both formulations was followed with and without the cage in PBS + 0.02% Tween 80 + 0.05% 

sodium azide at 37 °C by UPLC. Pharmacokinetics in rats was assessed after SC injection or SC 

in-cage implantation of microspheres with plasma analysis by LC-MS/MS or EIA.  Tr-A and 

leuprolide in vitro release was equivalent irrespective of the cage or test tube incubation vessel 

and release was much slower than observed in vivo for both drugs.  Moreover, Tr-A and 

leuprolide pharmacokinetics (PK) with and without the cage were highly similar during the 2-3 

week release duration before a significant inflammatory response was caused by the cage 

implant.  Hence, the PK-validated cage implant provides a simple means to recover and evaluate 

the microsphere drug carriers in vivo during a time window of at least a few weeks in order to 

characterize the polymer microspheres and release mechanisms of microspheres in vivo.  This 

approach may facilitate development of mechanism-based in vitro/in vivo correlations and enable 

development of more accurate and useful in vitro release tests.    
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3.2 Introduction 

 Currently, no FDA guideline exists for establishing in vitro-in vivo correlation (IVIVC) 

models to predict in vivo performance of controlled release poly(lactic-co-glycolic acid) (PLGA) 

microparticles [2-4]. For these formulations, in vitro release tests often do not accurately predict 

drug release in vivo [5-14]. The lack of predictive release testing methods creates a significant 

challenge during development of these drug products and related generics, an issue which has 

persisted even now more than 25 years after the first commercial microsphere products were 

approved. The environment at the site of microparticle administration in vivo is complex and its 

effects on polymer degradation and drug release are poorly understood [15]. Without a clear 

understanding of the mechanisms of release from these formulations in vivo, it is difficult to 

design in vitro release systems to accurately predict the rate and mechanism(s) of drug release 

following administration. In fact, most recent discussion on the need for developing IVIVCs for 

CR products has focused on developing a mechanistic understanding of drug release in vivo [3, 

16-18].   

 At least three principal mechanisms contribute to drug release from PLGA microspheres: 

water uptake-related phenomena, hydrolysis and bioerosion of the polymer, and pore- and solid-

state diffusion [19, 20]. Methods have been developed to study these mechanisms and their 

contribution to drug release in vitro, but a mechanistic understanding of release from 

microspheres in vivo is still lacking [15, 19, 21]. This is mainly due to the difficulty of retrieving 

micro-scale biodegradable formulations following administration. Microspheres are typically 

suspended in an injection medium then administered either intramuscularly (IM) or 

subcutaneously (SC) using a needle with sufficiently large inner diameter to freely inject 

microspheres. The particles are then free to migrate away from the injection site, making it 
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extremely difficult to then retrieve them after even just one day. Drug release can be quantified 

by measuring drug concentrations in blood samples, but without retrieval of the formulation 

itself there is no simple way to determine exactly what mechanisms are at play over the time 

course of drug release. 

 A portion of microspheres has been recovered from tissue during in vivo evaluation to 

allow measurement of biodegradation kinetics [15] although removal from tissue causes damage 

to the microspheres to limit the useful analysis of the polymer matrix.  Similarly, 

pharmacokinetics can be used to estimate drug release in vivo, but this method again does not 

allow analysis of the release mechanism.  Previous authors have used a cage implant to restrain 

polymer implants and films while concurrently studying the inflammatory response resulting 

from the administration of these materials [1, 22-25]. A similar approach was used to study SC 

and IM degradation and release of PLGA microspheres in rats [26]. Using these devices as a 

framework, we have designed a cage implant using stainless steel wire mesh with openings small 

enough to restrain microspheres of a certain size, yet large enough to allow free contact with 

fluids and cells at the administration site. This cage will allow for the retrieval of microparticles 

from the subcutaneous site for a more detailed analysis of the intact microspheres in the in vivo 

environment. 

 The purpose of this work was to design and construct a cage implant for microsphere 

retrieval, and to study the effect of the cage on the release of drugs in vitro and in vivo in order to 

understand the utility of the cage for in vivo microsphere evaluation.  The inflammatory response 

of the cage was also evaluated. Two model drugs were chosen to demonstrate the utility of this 

system; the small hydrophobic molecule corticosteroid triamcinolone acetonide (Tr-A) and the 

peptide leuprolide. Tr-A has previously been successfully encapsulated and studied extensively 
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in vitro and has very few if any drug instability issues, has low susceptibility to polymorphism 

and solubility changes upon microencapsulation, can be measured easily using conventional 

release methods and analytical techniques, and exhibits anti-inflammatory properties. Leuprolide 

was chosen to be used as a model peptide because the hydrophilic LHRH agonist is well 

characterized in PLGA microspheres, is used in one of the most successful long-term controlled 

release products, the Lupron Depot, and has very few instability issues [27-32].  

3.3 Materials 

PLGA RESOMER® 503H (i.v. = 0.37 dL/g, free acid terminated), triamcinolone acetonide (Tr-

A), betamethasone (BMZ), carboxymethyl cellulose (CMC), and polyvinyl alcohol (PVA, 80% 

hydrolyzed, MW ~ 10,000) were purchased from Sigma Aldrich. Polyvinyl alcohol (PVA, 88% 

hydrolyzed, MW ~ 25,000) was purchased from Polysciences, Inc. (Warrington, PA).  PLGA 

(i.v. = 0.61 dL/g, ester terminated) was purchased from Lactel. Leuprolide was purchased from 

SHJNJ Pharmaceuticals (Shanghai, China) and leuprolide EIA kits were purchased from AB 

Biolabs (Ballwin, MO). Stainless steel wire cloth (type 316 , 400 mesh; 38 µm openings) was 

purchased from Grainger Industrial Supply (Lake Forest, IL). Dow Corning Pharma-80 FDA 

compliant silicone tubing (0.95 cm outer diameter x 0.64 cm inner diameter, MFR# 3257177) 

was purchased from Cole Parmer (Vernon Hills, IL). Medical grade liquid silicone rubber 

(MED-4940) was purchased from NuSil Technology (Carpinteria, CA). 7-9 week old male 

Sprague-Dawley (SD) rats were purchased from Charles River Laboratories (Wilmington, MA). 

All solvents used were HPLC grade and were purchased from Fisher Scientific and unless 

otherwise noted, all other chemicals were purchased from Sigma-Aldrich.  
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3.4 Methods 

 Microsphere Preparation 

PLGA microspheres encapsulating Tr-A were prepared as previously described (Tr-A_2; see 

Chapter 2.4.1). Leuprolide microspheres were prepared from PLGA 503H using a double-

emulsion-solvent evaporation technique. Briefly, PLGA was dissolved in methylene chloride 

(400 mg in 1.75 mL) and an aqueous solution containing leuprolide (55 mg in 170 µL) at 60 °C 

was added and homogenized at 10,000 rpm for 1 min (Tempest IQ2, VirTis, Warminster, PA) to 

form a w/o emulsion. Then, this emulsion was cooled to 15 C, to increase encapsulation 

efficiency and reduce initial burst [33] and then 5% PVA (80% hydrolyzed) was added and 

vortexed to form a w/o/w emulsion. The complex emulsion was stirred in 0.5% PVA bath for 3 h 

to allow methylene chloride evaporation. Particles were screened to 63-90 m and then freeze-

dried with approximately 13%  w/w mannitol to prevent aggregation [33]. Microspheres were 

stored at -20°C until use. 

 Determination of Loading and Encapsulation Efficiency 

Tr-A microspheres (~5 mg) were dissolved in 20 mL acetonitrile. The resulting solution was 

filtered and analyzed for Tr-A content by ultra-performance liquid chromatography (UPLC), as 

described below. Loading of leuprolide was determined by two-phase extraction. Leuprolide 

microspheres (~5 mg) were dissolved in 750 µL of methylene chloride and then 750 µL of 50 

mM sodium acetate buffer at pH 4.0 was added and vortexed for 1 min. After centrifugation at 

3,400 g for 4 minutes, 500 µL of the aqueous phase was collected and replaced with the same 

volume of the buffer. This extraction was repeated with 50 mM sodium acetate buffer 5 times 

and then with 50 mM sodium acetate buffer containing 1 M sodium chloride 6 times [28]. The 

amount of leuprolide was determined by UPLC as described below. Drug loading was calculated 
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from the ratio of the mass of drug in the microspheres to the mass of the microspheres. 

Encapsulation efficiency was calculated by the measured drug loading divided by theoretical 

loading. 

 Cage Construction and Preparation 

Silicone tubing was cut into segments 0.5 cm in height and stainless steel wire mesh (38 µm 

openings) was cut to form circles of the same dimensions as the tubing segments (outer diameter 

= 1.59 cm) (see Figure 3.1A) for schematic). The mesh was then applied to both sides of the 

tubing using silicone elastomer spread on the edges of the tubing, which was vulcanized by 

autoclaving at 121°C to seal the cage shut. Microspheres were loaded into the cage following 

construction. Microspheres were suspended in a sterile injection medium (0.9% saline + 3.0% 

CMC) and injected through the silicone tubing into the cage using a 20 g needle. The tubing 

resealed following needle withdrawal, confining the microspheres to the cage. Cages were then 

filled with sterile saline until the time of implantation (< 1 h) with little escape of fluid before 

placing in the animal. 

 In vitro Release 

In vitro release of Tr-A and leuprolide was measured in phosphate buffer + 0.02% Tween 80 + 

0.05% sodium azide pH 7.4 (PBST pH 7.4). Microspheres were suspended freely in buffer or 

loaded into cages as described above, and then the cages were suspended in the same volume of 

buffer (1 mL for leuprolide, 30 mL for Tr-A). At each time point, the media was completely 

removed and replaced. Tr-A or leuprolide content was measured by ultra-performance liquid 

chromatography (UPLC), as detailed below. 
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 Quantification of Tr-A and Leuprolide in vitro 

Tr-A concentration in release media was determined by UPLC (Acquity UPLC, Waters, USA). 

The mobile phase was composed of 70 : 30 v/v (methanol : water) and the flow rate was set to 

0.5 mL/minute. Samples and standards prepared in PBST were injected onto a C18 (Acquity 

BEH C18, 1.7 µm, 2.1 x 100 mm) column maintained at 30 °C. Tr-A was detected at 254 nm. 

Leuprolide was detected using the same UPLC column. The initial mobile phase composition 

was 25 : 75 v/v (0.1% triflouroacetic acid in acetonitrile : 0.1% triflouroacetic acid in ddH2O) 

and a linear gradient was used to achieve final composition of 35 : 65 over 2 min. Leuprolide 

was detected and quantified at 280 nm.  

 Surgical Procedures 

The treatment of experimental animals was in accordance with the terms of the University 

Committee on Use and Care of Animals (University of Michigan UCUCA). Male SD rats were 

housed in cages and given free access to food and water, and were allowed 1-2 weeks to 

acclimate prior to study initiation. Rats were anesthetized with 2-4% isoflurane gas administered 

by a vaporizer (Midmark, Orchard Park, NY) before surgical preparation including shaving and 

sterilizing the surgical area using repeated, alternating swabs of alcohol and betadine solutions. 

An incision approximately 2 cm in length was made across the back of each rat and a pocket was 

formed in the subcutaneous space using surgical scissors. The cage was placed into this pocket, 

then the incision was closed using ETHILON® nylon sutures. Animals were allowed to recover 

from anesthesia on a heated water pad then returned to their cages where they were monitored 

until suture removal 7 days after surgery. At each time point, animals were euthanized using CO2 

overdose prior to cage retrieval and tissue excision. 
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 Pharmacokinetic Studies 

SD Rats were separated into two groups per microsphere formulation: SC injection or cage 

implant. The SC injection groups received a total dose of 4.5 mg/kg Tr-A or 5.6 mg/kg 

leuprolide as a suspension in 500-800 µL injection medium (0.9% normal saline + 3.0% CMC) 

injected subcutaneously with a 20 g needle. The cage implant groups received the same total 

dose of microspheres using the surgical procedures described above. At each time point, the rats 

were anesthetized and 500 µL whole blood was drawn via the jugular vein and transferred to a 

BD Microtainer® tube coated with EDTA. Following centrifugation at 1500 g at 4 °C for 10 

minutes, plasma was aspirated and immediately frozen at -80 °C for storage. 

 Tr-A Quantification in Plasma 

Twenty µL internal standard solution (2 µg/mL) was added to 200 µL plasma and vortexed for 

10 s. Then, 10 µL of acetonitrile was added and vortexed for an additional 10 s. Three mL of an 

extraction solvent (4 : 3 : 3 ethyl acetate : methylene chloride : methylene chloride) was added, 

vortexed for 60 s and then centrifuged at 4°C for 6 minutes at 3400 rpm. 2.4 mL of the organic 

layer was then removed and dried at 40°C under nitrogen stream. Standards and QC samples 

were prepared by spiking blank plasma with 10 µL of the appropriate Tr-A solution prepared in 

acetonitrile and then extracting according to the procedure above. The dried extracts were 

reconstituted in 1 : 1 acetonitrile : mobile phase (55 : 45 acetonitrile : 2 mM ammonium acetate 

pH 3.2 adjusted with formic acid) and analyzed by LC-MS/MS. Mobile phase consisted of 2 mM 

ammonium acetate (pH 3.2) adjusted with formic acid : acetonitrile (55:45). Flow rate was set to 

1.0 mL/min and samples were injected onto a C18 column (Xbridge, 50mm x 4.6 mm, 3 µm 

particle size) maintained at 35°C. Mass spectrometer was set at positive mode for data 

acquisition; collision energy was 13.4eV for Tr-A and 12eV for BMZ. 
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 Leuprolide Quantification in Plasma 

Plasma samples were diluted with 4 times volume of assay buffer included in the EIA kit and 

then was incubated in a 96-well plate in the presence of competitive biotinylated leuprolide and 

anti-leuprolide antibody at 4°C for 48 h. After washing wells, the samples were incubated with 

streptavidin-conjugated horseradish peroxidase at room temperature for 1 h, followed by color 

development using tetramethylbenzidine (TMB) solution. Absorbance of the samples was read at 

450 nm. Leuprolide standards were prepared at 0, 0.3, 1, 3, 10, 30, 100 and 300 ng/mL in the 

presence of plasma. 

 In vivo release from Microspheres 

Following cage removal from the subcutaneous space, the cage was opened using fine scissors 

and the microspheres were collected onto a 20-µm sieve. The particles were washed thoroughly 

with ddH2O to remove cellular debris and exudate then dried to constant weight under vacuum. 

Remaining Tr-A or leuprolide was then determined using the extraction procedures used to 

determine loading, described above. 

 Histology 

At the time of euthanasia, tissue surrounding the cage implant was removed and fixed in 10% 

neutral buffered formalin for 24 h. For the SC injection groups, the injection site was marked at 

the time of administration and the surrounding tissue was excised at each time point. The fixed 

tissue was stored in 70% ethanol until time of paraffin embedding. Sections were then cut and 

stained with hematoxylin and eosin (H&E) stain. Images were taken by a Canon Rebel XS 

DSLR camera (Canon, Melville, NY) affixed to a Zeiss AxioLab.A1 light microscope (Zeiss, 

Oberkochen, Germany) using EOS utility software (Canon, Melville, NY).  
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3.5 Results and Discussion 

 Drug release from PLGA microspheres can occur due to a number of mechanisms such as 

hydrolysis, erosion, water uptake, diffusion, and combinations thereof. These processes have 

been studied extensively and are well understood in vitro, but the same comprehensive analysis 

has not been performed in vivo. To determine the overall contribution of each of these processes 

to overall drug release, the microspheres need to be retrievable for analysis. Hence, we designed 

a cage implant to restrain microspheres during release in vivo. Similar devices were first 

designed for studying the inflammatory response resulting from implantation of polymer films 

and implants, and were constructed to have openings large enough for aspiration of fluid out of 

the cage via 22 g needles. Thus, the openings and the implant itself was very large and not 

suitable for study with microspheres [1, 22-24, 34]. The cage described and used herein was 

designed to be able to prevent microspheres from migrating far from the site of administration 

but still allow for contact with fluids and cells present in the subcutaneous space. The cages are 

loaded with microspheres of a larger size than the openings in the material and then implanted in 

the backs of rats, which tolerate these implants well. As shown Figure 3.1E, once the cage is 

removed the microspheres can be collected, washed, and then subjected to mechanistic analysis. 

  



 

67 

 In order for this cage model to be used as a tool for studying mechanisms of release in 

vivo, it needed to be evaluated in a series of experiments to ensure the cage itself does not have a 

significant impact on drug release. One may expect that the cage could be a physical barrier for 

drug diffusion, slowing the release, or for diffusion of PLGA degradation products, potentially 

increasing autocatalysis to result in increased hydrolysis and subsequent release. Additionally, 

the introduction of a large implant may alter the microsphere contacts with incoming cells and/or 

induce a severe inflammatory response, the latter of which could affect not only the rate of 

release but also the release mechanisms. For example, it has been suggested that inflammation 

would cause a slightly acidic pH in the local administration environment, which catalyzes 

hydrolysis [15, 21, 35-37]. To address these and other concerns over use of this system to study 

PLGA microspheres in vivo, several in vitro and in vivo experiments were performed. 

 Microspheres encapsulating Tr-A or leuprolide were successfully prepared and 

characterized prior to the following in vitro and in vivo studies. Tr-A loading in microspheres 

was 5.2 ± 0.1 w/w % and leuprolide loading was 5.79  0.1 w/w % with corresponding 104 ± 1 

Figure 3.1: Cage implant design and use in rats. (A) Schematic of cage design and dimensions. (B) Top view (left) 

and side view (right) of a cage implant. Cages are implanted in the subcutaneous space in rats (C and D). 

Following euthanasia, cages are retrieved and the microspheres are retrieved and rinsed on a sieve prior to 

analysis (E). 
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% and 56 ± 1 % encapsulation efficiency. First, to ensure that the presence of the cage does not 

affect drug release from microspheres, drug release was quantified in vitro from microspheres 

freely suspended in buffer and from microspheres restrained in cages that were then incubated in 

the same volume of buffer.   

 As shown in Figure 3.2, there were no differences in the caged microspheres as compared 

to the suspended microspheres for both formulations. Similarity between the two in vitro release 

profiles for each formulation was determined by calculating the F2 value, a metric used to 

compare the dissolution profiles of the test and reference formulations and suggested by the Food 

and Drug Administration (FDA) [38-41]. The F2 value is a logarithmic reciprocal square root 

transformation of the sum of the squared error between reference and test data at each time point 

during dissolution, or in this case, release. These values were found to be 76.9 and 64.4 for Tr-A 

and leuprolide, respectively; both above the F2 value threshold of 50, which indicates similarity 

of the two curves. This result suggests that the presence of the cage does not strongly change the 

release rate of the small molecule or the peptide. To confirm this data and demonstrate the in 

vivo utility of this system, the plasma concentration of Tr-A and leuprolide following the 

administration of microspheres as a subcutaneous injection of suspended particles and as an 

implant in the cage model was measured (Figure 3.3). Other than a delayed burst in the case of 

Tr-A microspheres and a decreased burst in the case of leuprolide microspheres, no apparent 

differences were observed between the groups. The AUCs of both drugs were similar between 

groups, as shown in Table 3.1. This analysis shows that the presence of the cage in vivo does not 

result in a significant change in the release kinetics. It also suggests that although some 

inflammatory response may occur as a result of implantation, it does not cause an observable 

change in drug release over the release window studied. 
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A                B  

Figure 3.2: Release of Tr-A (A) and leuprolide (B) in vitro in PBST pH 7.4. Solid symbols represent release from 

suspended microspheres, open symbols represent release from microspheres restrained in cages. Data represent mean ± 

SEM, n=3. 

A               B 

Figure 3.3: Pharmacokinetics of of Tr-A (A) and leuprolide (B) following administration in rats as a suspension (open 

symbols) or in a cage implant (solid symbols). Inset in panel B shows leuprolide concentrations in plasma for the first 24 

hours after administration, units are the same as the parent graph. Data represent mean ± SEM, n=2-4.  
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Table 3.1: AUC and F2 similarity factor values for Tr-A and leuprolide following microspheres administration in 

rats. 

 
Tr-A microspheres Leuprolide microspheres 

SC injection cage implant SC injection Cage implant 

AUC (0-28d) 
(ng/ml/day) 

374.04 374.52 60.82 88.81 

SD 7.95 75.87 12.62 9.09 

F2 (0-24h) 66.0 78.4 

f2 (0-28d) 84.5 90.2 

 

 Using the cage, drug release from both microsphere formulations was directly assessed in 

vivo by extraction at time points following administration. Faster drug release was observed 

from PLGA microspheres encapsulating Tr-A and leuprolide in vivo than was expected 

following in vitro release tests (Figure 3.4). This phenomenon has been reported in the literature 

and raises concerns over what causes these discrepancies. Tr-A release from PLGA microspheres 

in vitro was controlled over 10 weeks, with a low initial burst occurring during the first day of 

release followed by a lag phase, which lasted through 5 weeks. PLGA erosion began at the end 

of this lag phase and Tr-A release was slow and continuous for the remainder of the study 

through 7-8 weeks. Leuprolide release occurred in a similar fashion, though the lag phase was 

less obvious in this case. Leuprolide was released continuously until completion after 

approximately 7-8 weeks. In vivo release directly measured from both Tr-A and leuprolide 

microspheres occurred much faster than was predicted from the in vitro results. Tr-A release was 

complete after just 2 weeks and leuprolide release was complete after 30 days. These results are 

supported by the PK data, as plasma concentrations of leuprolide were very low after 30 days 

and Tr-A plasma concentrations were low after 14 days. As previously mentioned, these 

differences have been shown previously but a definitive mechanistic analysis of drug release in 

vitro and in vivo has not been reported in an effort to determine the underlying causes for the 
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observed changes in release rate. The cage model described and validated here will be used in 

future studies to perform these analyses. 

  

 To further examine the inflammation that occurs due to the introduction of the cage in the 

subcutaneous site, tissue surrounding the cage was removed at the time of euthanasia and 

retrieval then fixed and treated with H&E stains (Figure 3.5). Implantation of empty cages 

resulted in an obvious inflammatory response, with infiltration of lymphocytes occurring in the 

first three days as part of the acute inflammatory response. Leuprolide-containing cages 

exhibited a similar inflammatory response to the empty cages, and fibroblasts and 

neovascularization was observed on day 7. Macrophage infiltration was observed at day 14 and 

further evidence of the chronic phase of inflammation was seen at days 21 where there was 

deposition of collagenous fibers. Decreased leukocyte presence at later time points indicated the 

remission of inflammation. It is also important to note that at late times (56 d), there was some 

purulent in response to the prolonged presence of the cage. However, at such late time points it is 

unlikely that this component of the inflammatory response affects the implanted microspheres, as 

A               B  

 
Figure 3.4: Release of Tr-A (A) and leuprolide (B) in vitro in PBST pH 7.4 and in vivo. Data represent mean ± SEM, n=3. 
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the release data indicate complete release after 35 d. The presence of Tr-A microspheres 

ameliorated the inflammatory response, as very little inflammatory cell infiltration was seen at 

any point during the study. This is due to the anti-inflammatory properties of the steroid. There 

was no obvious acute inflammation through 3 days. There is evidence of very slight fibrogenesis 

at day 7 followed by collagenase deposition at days 14 and 21, part of the chronic phase of 

inflammation occurring due to the near complete release of Tr-A at these time points. The pus 

observed in leuprolide-containing cages was not evident in any cages containing Tr-A 

microspheres, though these studies were not extended to time points past 21 days due to the rapid 

release of this drug. 
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 One of the reasons Tr-A was selected as a model drug to use during this initial cage 

implant development and validation study was because it exhibits anti-inflammatory properties. 

As was just discussed, the release of this steroidal molecule from PLGA microspheres greatly 

diminished any sign of inflammation caused due to the implantation of the cage. Leuprolide, 

however, does not have the same effect and the inflammatory response is still evident. The 

results discussed earlier show that release of both drugs was faster in vivo than in vitro, as 

determined by using the cage. The lack of inflammation resulting from Tr-A cage implantation 

shows that this faster release is not likely due to inflammation, but some other biological 

components accelerating release. This also suggests that although initial implantation may cause 

Figure 3.5: H&E stained images of tissue samples taken from the site of cage implantation or SC injection. Tissue was 

removed at the time of euthanasia. Scale bar represents 50µm.  
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an inflammatory response, it is unlikely that this has an effect on overall drug release and thus 

the cage serves as a good tool for studying release and the release mechanisms in vivo. Further 

studies may employ the use of anti-inflammatory compounds to ameliorate the inflammatory 

response when evaluating microspheres containing drugs which do not exhibit these properties. 

Additionally, the presence of pus and tissue infiltration in the cage may need to be considered in 

these studies and strategies such as microsphere treatment with collagenases following cage 

excision could be employed if deemed necessary and if validated through a series of in vitro 

experiments to ensure there is no effect on the formulation. 

 To date, two other implantable devices have been discussed in the literature for restraint 

of polymeric implants in vivo. Our cage implant was modelled after a cage designed by Marchant 

et al. for studying the biocompatibility of polymeric films, hydrogels and implants [1, 22, 23, 

34]. In these studies, large samples were loaded into cages made of stainless steel type 316, 

similar to the mesh we have used in the previously described experiments. These cages, 

however, were much larger than ours (3.5 cm in length, 1 cm in diameter) with openings large 

enough to allow penetration of a 22 g needle (0.8 mm x 0.8 mm). The authors implanted the 

cages in SD rats, aspirated exudate from inside the cage during the study, and then analyzed the 

fluid for concentrations of enzymes known to be released from inflammatory cells. Cell 

infiltration was also quantified and used as a marker for inflammation. Empty cages did result in 

a noticeable inflammatory response, including elevated counts of inflammatory cells and enzyme 

activity [22]. The morphology and cellular adhesion of the biomaterial was also studied in an 

effort to understand the effects the SC environment has on the material, which is our intent for 

future studies using our cage implant. In later studies, the corticosteroid hydrocortisone was 

included in a polymer film then implanted using the same cage, which resulted in decreased 
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inflammation, similar to our results with the steroid Tr-A [1]. The cage originally described was 

later modified by other authors to have smaller openings for the study of smaller poly (lactic 

acid) particles, though these studies focused only on exudate analysis and did not contain 

information on the effects of implantation on the polymer [25]. It is important to note that these 

initial cage implants were designed to study biocompatibility of polymeric implants and not drug 

release or release mechanisms, as is our overall goal. 

 More recently, another device was designed for the study of PLGA and poly(fumaric-co-

sebacic acid) (P(FASA)) microspheres following SC, intramuscular (IM) and intraperitoneal (IP) 

administration [26]. This study is a more similar application to the studies discussed herein as the 

focus was on microsphere degradation rather than biocompatibility, although the device itself 

was a pouch made of porous polyethylene rather than surgical grade stainless steel. The major 

findings from the use of the pouch were that polymer degradation in vivo was accelerated in the 

IM site, and that the inflammatory response at the other two sites (SC and IP) was more robust 

than IM.  Several in vitro experiments were also described wherein hydrolysis, mass loss and 

drug release were measured in PLGA microspheres with and without the pouch in an effort to 

show the effect of the pouch itself on these processes independent from the different 

administration environments. The results indicated that the pouch slightly increased mass loss, 

hydrolysis, and drug release in vitro as compared to microspheres tested without the pouch. Our 

cage implant, however, has been shown to not impede drug release in two highly different PLGA 

formulations. By using two drugs, the water-soluble peptide leuprolide and the hydrophobic 

small molecule Tr-A (log P ≈ 2.4 [42]), and two PLGAs (i.v. = 0.37 dL/g, free acid terminated 

and i.v. = 0.61 dL/g, ester terminated) we have successfully validated the use of this cage with 

two very different microspheres, suggesting its utility for a wide range of formulations. 
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Furthermore, we were able to confirm the accelerated release of both drugs in vivo measured by 

direct extraction following implantation by performing PK studies which also suggest complete 

release over 3 weeks in the case of Tr-A and 5 weeks in the case of leuprolide both with and 

without the cage. These data suggest that even in vivo, the cage does not significantly affect the 

release of either drug. 

 Hence, although previous authors have employed similar devices for studying 

biocompatibility and bio-erosion of implantable polymeric devices, we have presented a rigorous 

evaluation and validation of a cage designed to study polymeric formulation behavior in vivo. 

These experiments will serve as the framework for future studies involving more detailed 

analysis of implanted microspheres. 

3.6 Conclusions 

 The cage implant designed here serves as a useful tool to study PLGA microspheres in 

vivo. This novel system allows for free contact with the administration space, while restraining 

the microspheres so they can be recovered at any time. This is especially important for the study 

of release mechanisms in vivo. Future studies will employ the cage implant to determine what 

mechanisms of release control drug release from polymeric microspheres in vivo. These studies 

will ultimately lead to a better understanding of in vivo microsphere behavior, and thus will help 

to design better in vitro release systems for testing these formulations to develop IVIVCs. 
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3.8 Supplementary Information 

 Tr-A release in vivo (Tr-A_1) 

A second PLGA microsphere formulation encapsulating Tr-A (Tr-A_1) was prepared as 

described previously (Chapter 2.4.1). These microspheres were prepared using a lower molecular 

weight, acid terminated PLGA. Preliminary studies showed that drug release from this 

formulation was much faster in vivo than in vitro, as was reported for the other Tr-A microsphere 

formulation (Tr-A_2; data reported in the main body of this chapter). Release from Tr-A_1 in 

vivo reached 99.1% by day 21, however, only 52.9% of drug had been release in vitro at the 

same time point. This, in conjunction with the data previously discussed, highlights the need to 

study release mechanisms which cause accelerated drug release in vivo. 
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Figure S 3.1: Release of Tr-A from Tr-A_1 microspheres in 

vitro in PBST pH 7.4 and in vivo. Data represent mean ± 

SEM, n=3. 
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 In vitro release and Pharmacokinetics (Tr-A_1) 

Tr-A release from Tr-A_1 was measured in vitro in PBST pH 7.4, as described in detail in the 

main text of this chapter. Release was similar from suspended and caged microspheres (F2 value 

of similarity = 94.9). The pharmacokinetics of Tr-A was also measured in male SD rats over one 

month   following administration as a either SC injection or in the cage implant. Again, the 

plasma concentration vs. time curves were similar in the two treatment groups, F2 = 88.6. This 

provides further validation that the cage can be used to study release and release mechanisms, as 

the cage does not affect drug release in vitro nor in vivo. 
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Figure S 3.2: Pharmacokinetics of of Tr-A_1 following Tr-A_1 administration in rats as a suspension 

(open symbols) or in a cage implant (solid symbols). Data represent mean ± SEM, n=2-4. 
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Figure S 3.3: Release of Tr-A from Tr-A_1 microspheres restrained in cages or 

suspended in PBST pH 7.4. Data represent mean ± SEM, n=3. 
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 Bodipy Diffusion in vitro 

There is some concern that restraining microspheres in a cage during in vivo release will affect 

release and release mechanisms. The previously discussed in vitro and in vivo experiments show 

that there is no impact on drug release, but there is still the possibility that the cage will cause a 

change in the formulation that will not result in a significant change in release rate. For example, 

the restraint of the microspheres may also restrain low molecular weight acidic byproducts, 

leading to increase autocatalysis, degradation and subsequent erosion. To determine whether our 

cage model has a significant impact on degradation of microspheres and mechanisms of release, 

we studied the morphology of both Tr-A_1 and Tr-A_2 microspheres during in vitro release 

either suspended or caged in PBST pH 7.4. Using these confocal images, we calculated diffusion 

coefficients of bodipy in the degrading Tr-A_2 microparticles as previously described (Chapter 

2.4.8). These experiments showed no significant difference between drug diffusion in 

microspheres suspended in PBST pH 7.4 and microspheres caged in PBST pH 7.4 (Figure S 3.4 

and Figure S 3.5). This is further evidence that the presence of the cage itself does not affect 

formulation behavior. In particular, there is no evidence that the cage causes accumulation of 

acidic byproducts which cause increased particle degradation, and has no effect on drug diffusion 

in the polymer matrix.  
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Figure S 3.4: LCSM images of microspheres following 

one week incubation in PBST. 
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 : Mechanisms of Release of Triamcinolone Acetonide from PLGA Microspheres 

in vivo 

 

4.1 Abstract 

 In vitro-in vivo correlations for PLGA microspheres have been extremely limited in the 

literature due to a lack of a mechanistic understanding of drug release in vivo. Most reports of 

IVIVC are empirical in nature, typically based on a mathematical relationship between in vitro 

drug release and in vivo drug release, which is often estimated using deconvolution from 

pharmacokinetic data. In order to improve in vitro release tests to better predict microsphere 

behavior in vivo, the in vivo release mechanisms must be elucidated. Here, two PLGA 

microsphere formulations encapsulating the model drug triamcinolone acetonide (Tr-A) were 

implanted subcutaneously in rats using a previously validated cage model to allow for 

microsphere retrieval during in vivo release. Release of Tr-A from both formulations was greatly 

accelerated in vivo compared to in vitro (PBST pH 7.4), including rate of PLGA hydrolysis, mass 

loss and water uptake. Both microsphere formulations exhibited erosion-controlled release in 

vitro, but only Tr-A_1 exhibited the same mechanism in vivo. The release of Tr-A_2 in vivo 

displayed an osmotically induced/pore diffusion mechanism not previously observed in vitro. 

This research indicates the need to develop in vitro release tests which cause these same 

mechanisms to be operative in causing drug release. In this way, mechanistic IVIVCs can be 

developed by accurately predicting and simulating in vivo performance.  
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4.2 Introduction 

 Although biodegradable polymers such as poly (lactic-co-glycolic acid) (PLGA) are 

widely used in the literature to achieve controlled drug release, and are even used in several 

FDA-approved controlled release (CR) drug products, very little is known about the behavior of 

these formulations in vivo [1-4][1-4]. Typical analysis of these products includes extensive 

characterization and in vitro release, followed by in vivo pharmacokinetic and efficacy studies. 

Surprisingly, in vivo analysis of the polymer during drug release is rarely reported and instead, 

only plasma drug concentrations and therapeutic endpoint markers are discussed [5-14][5-14]. 

This is an issue especially because the in vitro tests used to estimate kinetics of in vivo release 

from CR formulations rarely result in accurate predictions. Thus, to date, no FDA guideline 

exists for establishing in vitro-in vivo correlation (IVIVC) models to predict in vivo performance 

of CR PLGA formulations, and in particular, microspheres [15, 16][15, 16]. 

 An IVIVC has been defined by the FDA as a “predictive mathematical model describing 

the relationship between an in vitro property of dosage form and a relevant in vivo response” [17, 

18][17, 18]. Generally, the in vitro property is the rate or extent of drug dissolution or release 

while the in vivo response is the plasma drug concentration or amount of drug absorbed. Five 

levels of IVIVC are described in the FDA guidelines: A, B, C, multiple level C, and D [19]. 

Level A correlates point-by-point an in vitro dissolution profile with an in vivo plasma drug level 

pharmacokinetics profile. This most stringent correlation defines that measurement of dissolution 

rate alone is sufficient to assure in vivo bioequivalence. There have been some attempts in the 

literature to establish IVIVCs for polymeric CR formulations, but many of these studies have 

been based on building mathematical relationships between drug release in vitro and the in vivo 

pharmacokinetics, not a direct measurement of drug release in vivo [5, 7-11, 14, 20][5, 7-11, 14, 
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20]. Therefore, while claiming that these are level A IVIVCs, there is still some deconvolution of 

the data to estimate release rates, making these attempts to establish IVIVC for CR products 

empirical in nature. Furthermore, there has been little attempt to date to understand not only rates 

of drug release in vivo, but how the in vivo environment affects release mechanisms from CR 

formulations [2, 15, 21, 22][2, 15, 21, 22]. 

 Release from PLGA microspheres can be controlled by at least three major mechanisms, 

or combinations thereof: 1) diffusion through the polymer matrix, 2) water-mediated transport 

processes, and 3) polymer hydrolysis and erosion. While these processes are well studied and 

understood in the context of in vitro systems, it is unknown whether the same mechanisms are 

responsible for release in vivo. Given the reported discrepancies between in vitro and in vivo 

release data, it is likely the in vivo environment changes the rates of the mechanistic processes, 

resulting in differences in release rates. From the data presented in Chapter 2 of this thesis, it is 

clear that in vitro tests can be designed to alter release mechanisms and release rates. Thus, a 

mechanistic understanding of drug release in vivo can lead to the design of in vitro tests which 

will accurately predict in vivo performance, resulting in mechanism-based IVIVC. 

 One of the major reasons the in vivo release mechanisms of PLGA microspheres are not 

well understood is due to the difficulty of retrieving the particles following administration, as 

they are required for mechanistic analyses. Thus, we previously developed a cage implant to 

restrain PLGA microspheres during in vivo release. The cage system was validated both by the 

similar release and in vivo pharmacokinetics in the presence and absence of the cage. Using this 

system, discussed in detail in Chapter 3, microspheres can be readily retrieved and analyzed at 

any point during the window of release before significant inflammation results from the presence 

of the cage, and such inflammation is strongly inhibited by the presence of released steroid. This 
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chapter discusses the mechanisms of release from PLGA microspheres encapsulating the model 

drug triamcinolone acetonide (Tr-A). These microspheres have been extensively characterized in 

vitro (Chapter 2) and here were subjected to the same mechanistic analyses during in vivo release 

to understand the reason for the previously reported accelerated in vivo release. 

4.3 Materials 

Triamcinolone acetonide (Tr-A), PLGA RESOMER® 502H (i.v. = 0.19 dL/g, free acid 

terminated), and carboxymethyl cellulose (CMC) were purchased from Sigma-Aldrich. Poly 

vinyl alcohol (PVA, 88% hydrolyzed, MW ~ 25,000) was purchased from Polysciences, Inc. 

(Warrington, PA). PLGA (i.v. = 0.61 dL/g, ester terminated) was purchased from Lactel. 

BODIPY® FL (4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Propionic Acid) 

was purchased from Life Technologies. Stainless steel wire cloth (type 316 , 400 mesh; 38 µm 

openings) was purchased from Grainger Industrial Supply (Lake Forest, IL). Dow Corning 

Pharma-80 FDA compliant silicone tubing (1.9 cm outer diameter x 1.3 cm inner diameter, 

MFR# 4008433) was purchased from Cole Parmer (Vernon Hills, IL). Medical grade liquid 

silicone rubber (MED-4940) was purchased from NuSil Technology (Carpinteria, CA). 7-9 week 

old male Sprague-Dawley (SD) rats were purchased from Charles River Laboratories 

(Wilmington, MA). All solvents used were HPLC grade and were purchased from Fisher 

Scientific and unless otherwise noted, all other chemicals were purchased from Sigma-Aldrich. 

4.4 Methods 

Methods for microsphere preparation (Section 2.4.1), cage construction/microsphere loading 

(Section 3.4.3), and in vitro release and mechanistic analyses (Sections 2.4.5-2.4.9) are 

described in detail in Chapters 2 and 3. 
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 Surgical Procedures 

The treatment of experimental animals was in accordance with the terms of the University 

Committee on Use and Care of Animals (University of Michigan UCUCA). Male SD rats were 

housed in cages and given free access to food and water, and were allowed 1-2 weeks to 

acclimate prior to study initiation. Rats were anesthetized with 2-4% isoflurane gas administered 

by a vaporizer (Midmark, Orchard Park, NY) before surgical preparation including shaving and 

sterilizing the surgical area using repeated swabs of alcohol and betadine solutions. An incision 

approximately 2 cm in length was made across the back of each rat and a pocket was formed in 

the subcutaneous space using surgical scissors. The cage was placed into this pocket, then the 

incision was closed using ETHILON® nylon sutures. Animals were allowed to recover from 

anesthesia on a heated water pad then returned to their cages where they were monitored until 

suture removal 7 days after surgery. At each time point, animals were euthanized by CO2 

overdose prior to cage retrieval. 

 Assessment of Drug Release in vitro from Cage Implant 

In vitro drug release and mechanistic analyses of Tr-A_1 and Tr-A_2 microspheres was carried 

out in PBS (137mM NaCl, 3mM KCl, 7.74 mM Na2HPO4, 2.26 mM NaH2PO4) + 0.02% Tween 

80 + 0.05% NaN3 (PBST pH 7.4). Microspheres (~50 mg) were loaded in cage implant as 

previously described (see Chapter 3.4.3) and the cage was then placed in 30 ml of media and 

shaken mildly at 37°C for the duration of the experiment. At each time point (1, 3, 7 days and 

weekly thereafter), the cage was transferred into fresh media and drug content in the media was 

measured by UPLC, as previously described. 
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 Release and Mechanistic Analyses in vivo 

During in vitro release; PLGA molecular weight, mass loss, water content, and bodipy diffusion 

were determined weekly. These methods were previously developed and reported in Chapter 2 of 

this thesis. Following cage removal from the subcutaneous space, the cage was opened using fine 

scissors and the microspheres were collected onto a 20 µm sieve. The particles were washed 

thoroughly to remove cellular debris and exudate then dried to constant weight under vacuum. A 

small aliquot of dried microparticles (3-5 mg) was then dissolved in 20 mL acetonitrile to 

determine the remaining Tr-A content, measured by UPLC. Mechanistic analyses were also 

performed on the particles retrieved by the cage using the methods previously described (see 

Chapter 2.4.6-2.4.9). 

 Statistical and Regression Analysis 

Statistical analyses and regressions were performed using Prism (Graphpad, San Diego, CA). 

Rate constants, t50 values, and diffusion coefficients in vivo were compared to in vitro results 

(PBST pH 7.4) using unpaired student t-tests to determine two-tailed P-values. The level of 

significance was established at the 95% confidence interval (α < 0.05). 

4.5 Results and Discussion 

 Tr-A release from both PLGA microsphere formulations was much faster in vivo than in 

vitro (Figure 4.1). In vitro, Tr-A_1 exhibited mostly continuous release lasting approximately 35 

days. Release in vivo was also continuous, but release was 99.1 ± 0.4 % complete after just 21 

days. Release was similarly fast from Tr-A_2 in vivo, with 95.1 ± 2.4% drug released in 21 days 

vs just 7.4 ± 1.0 % release at the same time point in PBST pH 7.4. The lag phase observed in this 

formulation in vitro was absent in vivo, resulting in continuous release until completion. It is also 

interesting to note that although there were distinct differences in the release rate and profile 
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between the two formulations in vitro, in vivo release was very similar from the low molecular 

weight, acid-terminated PLGA and the moderate molecular weight, ester end-capped PLGA. 

Given the drastic differences observed between in vitro and in vivo release kinetics for both of 

these microsphere formulations, it is important to understand what mechanisms of release are 

responsible for the accelerated release and how these may be different from the operative 

mechanisms in vitro.  

  

 Using the cage model previously developed and validated, mechanistic analyses were 

performed on microspheres during in vivo release. First, the degradation kinetics were 

determined by measuring the PLGA molecular weight at each time point. Hydrolysis was 

significantly faster in vivo than in vitro (Figure 4.2), as seen by the first order degradation rate 

constants listed in Table 4.1. Total erosion of microspheres was also accelerated in vivo (Figure 

4.3). Erosion was found the be the major mechanism of release from microspheres in vitro as 

release and mass loss occurred generally on the same time scale. This was determined by 

performing nonlinear regression analysis on release and mass loss data to determine t50 values, or 

A                B 

Figure 4.1: in vitro and in vivo release from Tr-A_1 (A) and Tr-A_2 (B) microspheres. Release was measured using cage 

model. Data represent mean ± SEM, n=3-4. 
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the time taken to reach 50% release (t50,release) and 50% mass loss (t50,erosion). As previously 

discussed, if these two processes occur generally on the same time scale (t50,release/t50,erosion ≈ 1), 

erosion is likely the dominant mechanism of release. Table 4.2 shows the estimated t50 values as 

well as the ratios of these values both in PBST pH 7.4 and in vivo. In the case of Tr-A_1, both 

the t50,release and the t50,erosion are both significantly lower in vivo than in vitro, but the ratio does 

not change (0.77 vs. 0.72). This suggests that although release is accelerated in vivo, erosion is 

likely still the major cause of release and this process is also accelerated. This is supported by the 

degradation kinetics, as the rate of hydrolysis in vivo is nearly double that in vitro. The rapid 

production of shorter, lower molecular PLGA chains leads to faster transport of these oligomers 

out of the microsphere, causing overall erosion of the polymer matrix. Tr-A release from Tr-A_2 

microspheres was greatly accelerated in vivo (t50,release ≈ 7 d vs. 47 d), as was erosion (t50,erosion ≈ 

15 d vs. 46 d). In this formulation, however, the t50,release/t50,erosion did not stay the same in vivo 

1.01 vs. 0.46), as release occurred on a faster time scale than erosion in vivo. This suggested that 

some other mechanism was contributing to release in vivo more prominently than in vitro.  

 

A             B 

Figure 4.2: in vitro and in vivo PLGA hydrolysis kinetics in Tr-A_1 (A) and Tr-A_2 (B) microspheres. Data represent 

mean ± SEM, n=3-5. 
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Table 4.1: Initial first order rate constants (day-1) of PLGA hydrolysis in Tr-A_1 and Tr-A_2 microspheres as 

determined by linear regression analysis of data shown in Figure 4.2. Values were taken from regression over the 

first 14 days. 

  in vitro in vivo 

Tr-A_1 0.125 ± 0.018 0.301 ± 0.022† 

Tr-A_2 0.034 ± 0.001 0.065 ± 0.010* 

 

 

Table 4.2: Characteristic times (in days) of release and erosion from Tr-A_1 and Tr-A_2 microspheres. Values 

represent mean ± SEM, n=3.T50 ratios were calculated from mean values of t50,release and t50,erosion. 

 

  

 Tr-A_1 Tr-A_2 

 in vitro in vivo in vitro in vivo 

t50,release 19.0 ± 0.4 7.9 ± 0.8* 46.8 ± 0.6 6.8 ± 4.4* 

t50,erosion 25 ± 8 11 ± 1* 46 ± 3 15 ± 2* 

t50,release / 
t50,erosion 

0.77 0.72 1.01 0.46 

A             B 

Figure 4.3: in vitro and in vivo mass loss of Tr-A_1 (A) and Tr-A_2 (B) microspheres. Data represent mean ± SEM, n=3-5. 

*p < 0.05 ; 
†
p < 0.0001 

*p < 0.05  
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 Further investigation into the mechanisms causing accelerated Tr-A release in vivo 

included measurement of water content in the microspheres. Water content was dramatically 

increased at each time point in vivo relative to that observed in vitro (Figure 4.4). Increased water 

uptake into the microspheres likely facilitates PLGA hydrolysis and subsequent erosion, and so 

these data fit the previously reported hydrolysis kinetics and mass loss data.  

 Finally, for a more complete understanding of how the in vivo environment affects the 

Tr-A/PLGA microspheres, we studied their morphology during release by imaging using 

confocal microscopy (Figure 4.5). Overall, no major changes in morphology were observed in 

Tr-A_1 microspheres over 2 weeks. However, one major observation was seen in the Tr-A_2 

microspheres implanted subcutaneously for 14 days. These microspheres appear to have 

developed an internal pore network not evident in microspheres incubated in in vitro release 

media. This pore network suggests higher water penetration in the polymer matrix and the 

potential for increased aqueous diffusion of Tr-A. This evidence also suggests that Tr-A may 

also be released by osmotically induced aqueous pore diffusion in vivo in this formulation. This 

hypothesis is supported by the release and erosion kinetics, as t50,release << t50,erosion, suggesting a 

A             B 

Figure 4.4: in vitro and in vivo water uptake in Tr-A_1 (A) and Tr-A_2 (B) microspheres. Data represent mean ± SEM, n=3-5. 
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second mechanism causing rapid drug release in vivo. The much higher water uptake observed in 

Tr-A_2 microspheres in vivo also supports a water-mediated mechanism causing accelerated 

release as compared to what was observed in vitro. 

  

  

  

Figure 4.5: Representative confocal images of Tr-A_1 and Tr-A_2 microspheres during in vitro and in vivo release. 

Images were taken following incubation in aqueous solution of BODIPY FL for 10 min or 3 h. 

Figure 4.6: BODIPY diffusion coefficients in degrading Tr-A_1 (A) and Tr-A_2 (B) microspheres in vitro and in vivo. 

Data represent mean ± SEM, n=6. *p < 0.05. 

A                B 
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 Solid state diffusion was measured through one week in Tr-A_1 microspheres and two 

weeks in Tr-A_2 microspheres by analyzing the confocal images, as previously described 

(Figure 4.6). In Tr-A_1, diffusion was slightly increased in vivo at 7 days but the difference was 

not significant. A significant increase (p < 0.05) was observed at 7 days in Tr-A_2 microspheres 

but not at any other time points. Using the Dbodipy values estimated using image analysis, DTr-A 

values were estimated from DTr-A/Dbodipy ratios determined in each polymer (see section 2.8.4). 

These estimated DTr-A values were used to model theoretical release curves of Tr-A from Tr-A_1 

and Tr-A_2 microspheres if diffusion through the polymer matrix were the sole mechanism 

responsible for release. This process was described in detail in Chapter 2. The theoretical in vivo 

release profiles are shown in Figure 4.7 along with the comparable models developed in vitro, in 

the presence and absence of the plasticizer triethyl citrate. From the equations derived using the 

Higuchi equation for spherical systems, t50,diffusion values were estimated to represent the time to 

reach 50% drug release if diffusion was the primary release mechanism (Table 4.3). The 

resulting release profiles and estimated t50,diffusion values fell within the range of conditions tested 

in vitro. Theoretical diffusion-controlled release in vivo followed a similar profile to PBST pH 

7.4 in vivo at times later than 3 days, at which time the polymer is sufficiently wetted and the 

polymer chains are mobile. The profiles and estimated t50,diffusions were also similar to those 

generated from DTr-A values at early times (1-3 days) in PBS containing the plasticizer triethyl 

citrate (TC), which increases polymer chain mobility at early time points relative to microspheres 

incubated in standard release media without plasticizer. These data suggest that water uptake in 

the polymer phase is faster and more extensive in vivo than in vitro, potentially due to some 

plasticizing lipids and/or osmotlytic polymer-penetrating species in the subcutaneous space. 

Given the previously discussed hydrolysis and mass loss kinetics, however, it is unlikely solid 
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state diffusion plays a major role in the long-term release of Tr-A from either of these two PLGA 

microsphere formulations. Nevertheless, the effect of a plasticizing agent is still important to 

consider. Such an agent could increase PLGA chain mobility, facilitating water transport into the 

polymer matrix, causing increased hydrolysis, as well as increased transport of monomeric and 

oligomeric degradation byproducts out of the microsphere, resulting in mass loss.  

 

 

Table 4.3: T50,diffusion values estimated using diffusion-controlled release models shown in Figure 4.7 

 
-TC early 

times 
-TC late times 

+TC early 
times 

+TC late times in vivo 

Tr-A_1 45 days 17 days 15 days 2.8 days 11 days 

Tr-A_2 110 days 35 days 22 days 3.7 days 37 days 

 

4.6 Conclusions 

 In accordance with other literature reports on steroid release from PLGA, Tr-A 

microspheres exhibited accelerated release from PLGA microspheres in vivo as compared to 

results from standard in vitro release tests. Employing a novel cage implant system for 

Figure 4.7: Theoretical Tr-A release profiles from Tr-A_1 (A) and Tr-A_2 (B) microspheres for diffusion-controlled release. 

In vitro profiles (in grey) were generated using representative diffusion coefficients with and without the plasticizer triethyl 

citrate that were determined at early (1-3 days) and late times (7+ days) during the release incubation.   

A              B 
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microsphere retrieval, we were able to determine the major mechanisms of release in vivo and 

compare these results directly with data from previously performed analyses of microspheres 

during in vitro release. Rate of PLGA hydrolysis, mass loss and water uptake were all increased 

in vivo compared to in PBST pH 7.4. Both microsphere formulations studied here exhibited 

erosion-controlled release in vitro, but only Tr-A_1 exhibited the same mechanism in vivo. The 

release of Tr-A_2 in vivo displayed primarily an osmotically induced/pore diffusion mechanism 

as indicated by bodipy uptake and polymer mass loss kinetics. Future studies will screen in vitro 

release media including biological components discussed in Chapter 1 to elucidate which of 

these molecules is/are capable of causing the shifts in release rates and mechanisms shown here. 

Ultimately, comparison of these data with data gained from further in vitro tests will result in the 

design of a predictive in vitro release test from PLGA microspheres. 
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4.8 Supplementary Information 

 Regression Analysis 

 

 

  

Figure S 4.1: Four parameter logistic nonlinear fits of Tr-A_1 release (A) and mass loss data (B); linear regression 

fits of Tr-A_1 hydrolysis data (C). Fits were used to estimate relevant t50 values and first order rate constant of 

PLGA hydrolysis. 

A      B  
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A      B  
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Figure S 4.2: Four parameter logistic nonlinear fits of Tr-A_2 release (A) and mass loss data (B); linear regression 

fits of Tr-A_2 hydrolysis data (C). Fits were used to estimate relevant t50 values and first order rate constant of 

PLGA hydrolysis. 
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 In vitro release under various mixing conditions 

One of the potential differences between in vitro release tests and actual in vivo conditions is 

mixing/fluid convection. While most release tests are performed with constant agitation, the 

administration environment (SC or IM) presumably has a much lower degree of mixing. There 

are several potential effects of low or no mixing during in vitro release, specifically: decreased 

diffusion of drug and decreased diffusion of acidic degradation byproducts, resulting in increased 

autocatalysis of PLGA hydrolysis. The increase in hydrolysis would be expected to cause 

increased drug release rates, and could offer a potential explanation for this phenomena observed 

in vivo. To test this hypothesis, release from Tr-A microspheres was measured with and without 

the cage under varying mixing conditions. It should be noted that the shaker was set to 240 rpm 

for release measured under “standard conditions”, i.e. those reported in Chapter 2. Somewhat 

surprisingly, release from both formulations was slower under low (80 rpm) or no mixing 

(Figure S 4.3 and Figure S 4.4), indicating that the potentially lower agitation the microspheres 

experience in the SC space is not a factor in causing accelerated release. 

 

 

 

 

 

 

 
Figure S 4.3: In vitro release from Tr-A_1 microspheres caged (A) or suspended freely (B) in PBST pH 7.4 under varying 

mixing conditions. Data represent mean ± SEM, n=3. 

A              B  
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 Subcutaneous pH 

As discussed in Chapter 1.4.2, there is the potential for the pH at the subcutaneous administration 

environment to be slightly acidic. The inflammatory response as well as the buildup of acidic 

degradation byproducts may potentially decrease the pH lower than 7.4, value at which most in 

vitro release tests are performed. At the time of euthanasia, subcutaneous pH was measured 

directly by microelectrode at the area of the cage implant. There was no significant deviation 

from the untreated SC pH at any time point in any of the treatment groups, indicating that pH is 

not a contributing factor to the observed accelerated release from Tr-A microspheres in vivo. 

Table S 4.1: Subcutaneous pH values measured during release. 

 1 day 3 day 7 day 

No treatment 7.38 ± 0.13 7.47 ± 0.04 7.45 ± 0.08 

Blank Cage 7.27 ± 0.14 7.31 ± 0.16 7.42 ± 0.03 

Tr-A_1 cage 7.32 ± 0.06 7.35 ± 0.06 7.31 ± 0.11 

Tr-A_2 cage 7.41 ± 0.11 7.43 ± 0.02 7.37 ± 0.09 

 

Figure S 4.4: In vitro release from Tr-A_2 microspheres caged (A) or suspended freely (B) in PBST pH 7.4 under varying 

mixing conditions. Data represent mean ± SEM, n=3. 

A              B 
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 : Conclusions, Implications, and Future Directions 

  

 The work presented in this thesis has shown that PLGA microspheres behave differently 

in vivo than in release media typically used during the development of these formulations. A 

thorough mechanistic analysis of drug release from PLGA microspheres following in vivo 

administration had not been reported prior to this research, which offers an explanation for why 

drugs, are often released faster than expected based on in vitro release tests. In this case, 

accelerated hydrolysis and subsequent erosion of PLGA microspheres were found to be 

responsible for the observed increase in release rate of the model drug triamcinolone acetonide. 

Increased water uptake also resulted in the formation of an aqueous pore network in vivo, which 

was not observed in any of the investigated in vitro conditions. 

 Future studies will investigate the potential causes for the observed changes in water 

penetration, hydrolysis, and erosion. As was discussed in Chapter 1, there is a plethora of 

compounds found in the interstitial fluid in the administration space that are not included in 

currently used in vitro release tests. These compounds should be added to standard release media 

both alone and in combination with others in an effort to find which of these molecules may 

cause the observed changes in release rates and corresponding release mechanisms. Following 

this screening process to determine the necessary makeup of predictive in vitro release media, 

the chosen molecules should be validated through in vivo studies. Using the cage implant, 

microspheres can be retrieved and endogenous molecules such as amines and lipids can be 

extracted and identified. These studies should be performed to prove the relevance and 
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applicability of the results of the in vitro media screening experiments. Once in vitro test 

conditions have been finalized, mechanism-based level A IVIVCs for these formulations. This 

approach should also be validated by using the newly designed in vitro release conditions to test 

release of a commercial PLGA product, such as Lupron Depot®, to determine the capabilities of 

predicting the release and pharmacokinetics reported in the literature. 

 This research has important implications for future development of PLGA microspheres 

and can also be applied to other biodegradable CR formulations. Specifically, the cage model 

that was developed in Chapter 3 could be used to study release mechanisms of any biodegradable 

implant or injectable. As more and more formulations are thoroughly studied in vivo, we can 

begin to develop an understanding of how exactly the administration environment affects any 

given CR formulation. Using all of these datasets from many formulations encapsulating a 

variety of drug molecules, generalized IVIVCs can be developed for a range of CR products. 

This would greatly cut down on product production time and cost, as animal studies would be 

greatly reduced. IVIVCs will also facilitate generic development for CR products, as 

mechanism-based IVIVCs can accurately predict drug release and pharmacokinetics without the 

need to perform large, costly animal studies. 

 This thesis will provide the framework for other researchers to investigate polymeric 

formulations in vivo to determine the ways in which drug release occurs following 

administration. By developing a comprehensive understanding of these processes, optimal in 

vitro conditions can be designed to better predict product performance. Future studies which will 

build on the research presented in this thesis will lead to the development of robust IVIVCs for 

CR drug formulations. 
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Appendix A: Remote Loading of Liraglutide in PLGA Microspheres for Controlled 

Release 

 

A.1 Introduction 

 Type 2 diabetes (T2D) is a metabolic disease which affects approximately 9% of adults 

worldwide, and is expected to become the seventh leading cause of death by 2030 [1]. The global 

market for T2D treatments is estimated to be approximately $30 billion and growing each year 

with more diagnoses and the introduction of new products [2-4]. 

 T2D is characterized by hyperglycemia caused by insulin resistance and relative lack of 

insulin (i.e. insulin production is not sufficient to manage blood glucose) [2]. The current first 

line of treatment recommended by the International Diabetes Federation (IDF) is metformin, a 

biguanide taken orally twice a day to inhibit the production of glucose [5]. Other common 

treatment options include sulfonylureas which increase insulin secretion, thiazolidinediones and 

PPARγ agonists which both work increase insulin sensitivity, and α-glucosidase inhibitors which 

inhibit absorption of glucose from the GI tract [6]. Combination therapy of more than one drug 

and more than one class of drug is typically used to manage blood sugar levels in T2D patients 

and after several years on a certain regiment, patients often stop responding and must find a new 

combination of drugs to manage the disease [2, 6]. 

 In recent years, glucagon-like peptide 1 (GLP-1) has become an area of interest for 

developing new, more effective T2D treatments. GLP-1 is an endogenous incretin hormone 

which promotes insulin secretion from pancreatic beta cells and inhibits glucagon release from 

alpha cells. It is normally secreted following a meal to control blood sugar levels [7]. GLP-1 is 
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quickly degraded by dipeptidyl peptidase-4 (DPP4) and has a circulating half-life of only 2-3 

minutes in humans [7, 8]. Due to this short half-life, additional GLP-1 cannot simply be 

administered to T2D patients to control blood glucose and thus GLP-1 analogs have been 

developed by several drug companies. The first to market was the peptide exenatide, which 

shares approximately 50% sequence homology to GLP-1 and has a half-life of 2.4 hours [9]. 

Exenatide was first marketed by Amylin (now AstraZeneca) as the twice daily subcutaneous 

injection Byetta® and later formulated using poly (lactic-co-glycolic) acid (PLGA) to create the 

once weekly injection Bydureon®. Following the launch of Byetta®, Novo Nordisk released 

their GLP-1 analog, liraglutide (Victoza®) which is a once daily subcutaneous injection [10-12]. 

This product was quick to capture the majority of the GLP-1 market and has continued to 

dominate, with its sales representing 70% of $3 billion annual sales [4]. Although Bydureon® is 

a once weekly injection rather than daily, the increase in patient comfort  has not resulted in an 

increase in sales and Victoza® continues to hold the majority of the market share [3, 4]. Given 

the popularity of Victoza®, a controlled release formulation of this peptide that increases patient 

compliance and comfort could theoretically corner the GLP-1 market for the foreseeable future. 

Thus, the intent of this work was to develop a once-monthly liraglutide formulation using PLGA. 

 Based on our group’s discovery that peptides can rapidly partition into low molecular 

weight acid end group PLGAs for later controlled release, we sought to test a remote loading 

strategy for loading liraglutide into PLGA microspheres [13].  We employed a novel salt-

treatment technique to induce electrostatic interaction between PLGA and liraglutide to result in 

high loading and encapsulation efficiency in microspheres which exhibit controlled release in 

vitro and in vivo. 
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A.2 Materials 

PLGA RESOMER® 502H (i.v. = 0.19 dL/g, free acid terminated) and RESOMER® 503H (i.v. 

= 0.19 dL/g, free acid terminated) were purchased from Sigma Aldrich. Liraglutide was 

purchased from SHJNJ Pharmaceuticals (Shanghai, China) and liraglutide ELISA kits were 

purchased from AB Biolabs (Ballwin, MO). Polyvinyl alcohol (PVA, 80% hydrolyzed, MW 

~9,000-10,000) was purchased from Sigma Aldrich (MO, USA). 7-9 week old male Sprague-

Dawley (SD) rats were purchased from Charles River Laboratories (Wilmington, MA). All 

solvents used were HPLC grade and were purchased from Fisher Scientific and unless otherwise 

noted, all other salts and chemicals were purchased from Sigma Aldrich. 

A.3 Methods 

A.3.1 Salt Treatment of PLGA 

PLGA Resomer 502H or Resomer 503H (approximately 1g) was suspended in 25mL of a 1M 

salt solution (NaCl, CaCl2, ZnCl2, MgCl2) and shaken at room temperature for 24 hours. The 

resulting polymer was then washed thoroughly with ddH2O, dried under vacuum, and stored at -

20°C for future use. 

A.3.2 Liraglutide Sorption to salt-treated PLGA 502H 

Liraglutide solution (0.5 mg/mL) was prepared in 10 mM HEPES buffer (pH 7.4). 

Approximately 10mg of salt-treated PLGA powder was suspended in 1mL liraglutide solution 

and rotated constantly at 37°C for 24 h. Sorption was determined by total peptide loss from 

solution, quantified by ultra-performance liquid chromatography (UPLC) as described below. 

A.3.3 Liraglutide Release from salt-treated PLGA 502H 

Salt-treated PLGA loaded with liraglutide was incubated in 1 mL release media (HEPES-

buffered saline pH 7.4) at 37°C and shaken mildly. At each time point, polymer was separated 
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from media by centrifugation and the media was completely removed and replaced. Media 

samples were analyzed for liraglutide content by UPLC (see below). 

A.3.4 Sorption Isotherm of Liraglutide to salt-treated PLGA 502H 

MgCl2-treated PLGA 502H (Mg-502H). Was incubated in liraglutide solution (0.2, 0.5, 1.0, 5.0 

mg/mL in HEPES pH 7.4) and rotated at 37°C for 24 h. Solution samples (10 µL) were taken at 

1, 2, 3, 4, 6, 8, 10, 12, 18, and 24 h and concentration was determined by UPLC. Total loss of 

volume and peptide were corrected for in determining the kinetics of peptide sorption. 

A.3.5 Microsphere Formulation 

Polymer was dissolved in 1 mL CH2Cl2 (800 mg/mL) with or without 3% MgCO3. An inner 

water phase containing trehalose (500 mg/mL in ddH2O) was added to the polymer solution and 

homogenized for one minute at 10,000 rpm, resulting in an w/o emulsion. An outer water phase 

of 5% polyvinyl alcohol (PVA) was added and vortexed for one minute to create a w/o/w double 

emulsion. The resulting porous microspheres were hardened by stirring in 0.5% PVA for three 

hours, then screened to 20-63 µm and freeze dried. In the cases where Mg-treated PLGAs were 

used to make microspheres, PVA solutions were prepared in 1M MgCl2. 

A.3.6 Microsphere Imaging 

Lyophilized microspheres were mounted by using double sided carbon tape and then coated with 

a thin layer of gold under vacuum. Scanning electron microcopy (SEM) was performed on a 

Hitachi S3200N scanning electron microscope (Hitachi, Japan). Images were captured by 

EDAX® software. 
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A.3.7 Liraglutide Loading in Microspheres 

Blank, porous microspheres were incubated in 1 mL liraglutide solution (5.0 mg/mL in HEPES 

pH 7.4) and rotated at 37°C for 24 h. Following loading, the microspheres were washed with 1 

mL ddH2O then freeze dried.  

A.3.8 Determination of Peptide Loading in Microspheres (mass loss, extraction) 

Peptide loading in microspheres was determined using two methods: mass loss and extraction. 

Total liraglutide loss was measured by determining the concentration of loading solution 

following loading and subtracting this value from the original concentration. Peptide removed by 

washing was corrected for during this calculation. For a direct measurement of peptide content in 

the microspheres, extraction was performed. Freeze-dried, liraglutide-loaded microspheres were 

dissolved in 1mL acetonitrile. Peptide was then extracted into an aqueous phase by adding 8 mL 

ddH2O and vortexing for 1 min. Centrifugation resulted in phase separation, then total peptide 

content was determined by UPLC analysis of the aqueous phase, as described below. Loading 

and encapsulation efficiency were determined by the following two equations: 

% 𝑤 𝑤⁄ 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (𝐿𝐴) = (
[𝑙𝑖𝑟𝑎𝑔𝑙𝑢𝑡𝑖𝑑𝑒]𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − [𝑙𝑖𝑟𝑎𝑔𝑙𝑢𝑡𝑖𝑑𝑒]𝑓𝑖𝑛𝑎𝑙 + [𝑙𝑖𝑟𝑎𝑔𝑙𝑢𝑡𝑖𝑑𝑒]𝑤𝑎𝑠ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑚𝑖𝑐𝑟𝑜𝑠𝑝ℎ𝑒𝑟𝑒𝑠
) × 100 % 

𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =  (
𝑎𝑐𝑡𝑢𝑎𝑙 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (𝐿𝐴)

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (𝐿𝑇)
) × 100 % 

A.3.9 Ultra Performance Liquid Chromatography (UPLC): 

Liraglutide concentrations in solutions previously mentioned were determined using an 

ultraperformance liquid chromatography system (Acquity UPLC, Waters, USA). The mobile 

phase consisted of 0.1% TFA in acetonitrile (solvent A) and 0.1% TFA in ddH2O (solvent B). 

Initial conditions were 35:65 (A:B) and a linear gradient was used to achieve final conditions of 

95:5 over 3.5 min. The flow rate was set to 0.5 mL/min. Samples and standards in various 
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aqueous media were injected (5 µL) onto a C18 (Acquity BEH C18, 1.7µm, 2.1 x 100mm) 

column maintained at 30°C. Liraglutide was detected at 215 and 280 nm. 

A.3.10 Loading optimization 

In these experiments liraglutide loading solutions were prepared at 1.0 mg/mL in 3.75 mM 

Na2HPO4 at pH 8.1. These conditions were designed using the commercial product, Victoza®, 

injection medium as a model in order to ensure stability and solubility of the peptide [14]. 

A.3.11 Liraglutide Release from Microspheres 

Loaded microspheres were suspended in release medium (HEPES-buffered saline or phosphate-

buffered saline + 0.2% Tween 80 at pH 7.4) at 37°C with mild agitation. At each time point, 

microspheres were separated from solution by centrifugation and the release media was 

completely removed and replaced. Liraglutide release was measured by UPLC. 

A.3.12 Stability of Liraglutide in Release Media—appendix? 

The stability of liraglutide was measured in three release media: HEPES-buffered saline (HBS), 

HBS + 0.02% Tween 80 (HBST) and HBS + 1.4% propylene glycol. Liraglutide was dissolved 

in each medium at relevant concentrations (100 µg/mL and 50 µg/mL) which were determined 

from media samples taken during in vitro release tests. The solution was analyzed by UPLC at 1, 

3, 7, and 14 days to monitor peptide loss. 

A.3.13 Amino Acid Analysis 

At time points during release, microspheres were removed from release media, rinsed with 

ddH2O and freeze-dried. Amino acid analysis was then performed at UC Davis Molecular 

Structure Facility (Davis, California). Briefly, microspheres were hydrolyzed at 110°C using 6N 
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HCl and 1% phenol. The amino acids were derivatized using phenylisothiocyanate and analyzed 

by HPLC using norleucine as an internal standard. 

A.3.14 Pharmacokinetics 

The treatment of experimental animals was in accordance with the terms of the University 

Committee on Use and Care of Animals (University of Michigan UCUCA). Healthy, male 

Sprague-Dawley (SD) rats were administered a single dose of liraglutide-loaded Mg-503H + 

MgCO3 microspheres. The microspheres were suspended in 500 µL of a sterile injection 

medium of PBS + 3% CMC and injected subcutaneously via a 20g needle. Rats were divided 

into two groups (n=5 each group): high dose and low dose. The low dose rats were given 1.96 

mg/kg liraglutide and high dose rats were given 4.0 mg/kg [15-17]. Whole blood samples were 

taken from the jugular vein before dosing, 24 hours following the dose and weekly thereafter. 

Whole blood was collected in EDTA-coated tubes and centrifuged at 4°C for 6 min. Plasma was 

then aspirated and stored at -80°C. Liraglutide was extracted from plasma using solid phase 

extraction. Peptide was eluted from the column using 60% acetonitrile in water + 1% TFA which 

was then dried. The resulting extract was reconstituted in assay buffer and liraglutide 

concentration was determined by ELISA according to the manufacturer instructions.  
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A.4 Results and Discussion 

 Liraglutide is an acylated GLP-1 analog which contains a C16 fatty acid conjugated to a 

lysine at position 26 (Figure A. 1). It contains 8 amino acids charged at neutral pH resulting in a 

net negative charge and has a calculated isoelectric point (pI) of 4.35 [18]. Although the peptide 

has a very similar sequence to endogenous GLP-1(7-37), the acylation promotes protein binding 

in the blood and results in a half-life of approximately 11 hours in humans [11, 12, 19]. 

 Previous work in our lab has demonstrated that peptides can partition into moderate 

molecular weight (MW) PLGAs to result in high loading in microspheres for later controlled 

release. This phenomenon was demonstrated using the short peptide leuprolide and the 

electrostatic interaction between the cationic peptide and the free-acid end groups of PLGA 

Resomer® 502H likely contributed to the high absorption into the polymer [13]. Liraglutide, 

however, carries an overall net negative charge and thus has very little interaction with the free 

carboxylic acid end groups of PLGA. In order to induce electrostatic interaction, PLGA 502H 

was treated with concentrated solutions of salts to create a cationic charge associated with the 

end groups of the PLGA (Figure A. 2). The salt treatment resulted in increased liraglutide 

sorption, though there was no difference in sorption among the four salts tested in this 

preliminary experiment (Figure A. 3). 

Figure A. 1: Primary structure of liraglutide. Modifications from GLP-

1(7-37) are highlighted: K34R and C16 fatty acid conjugated to K20 via 

a glutamate linker. (Figure from [18]) 



 

114 

 

 

Figure A. 2: Schematic showing salt treatment of PLGA-COOH resulting in electrostatic interaction with liraglutide. 
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Figure A. 3: Liraglutide sorption to untreated and salt-treated PLGA 502H 

following 24 hours incubation with peptide solution. Data represent mean ± 

SEM, n=3.  
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 Based on the promising results from the preliminary sorption experiments, peptide 

release from the four different salt-treated PLGAs was measured in vitro in a low ionic strength 

buffer, HBS. Controlled release of liraglutide from the treated polymer powder lasted for 

approximately one week (Figure A. 4), suggesting that upon formulation into microspheres 

controlled release for longer times could be achieved. 

 To determine the time-dependent and concentration-dependent nature of liraglutide 

sorption to PLGA, a sorption isotherm experiment was performed using PLGA 502H treated 

with 1M MgCl2 (Mg-502H). Liraglutide sorption plateaued following approximately 12 hours of 

incubation at all four peptide concentrations used (Figure A. 5A), suggesting that this is the time 

needed for liraglutide content in the polymer to reach equilibrium. Additionally, this experiment 

showed the concentration-dependent nature of liraglutide sorption (Figure A. 5B). High 

concentration of the loading solution (5.0 mg/mL) resulted in 8.0 ± 0.6 % w/w peptide content in 
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Figure A. 4: Liraglutide release from salt-treated PLGA 502H in HBS pH 7.4. Data 

represent mean ± SEM, n=3. 
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Mg-502H. Drawing from these data, liraglutide solutions of 5 mg/mL were used for future 

loading studies which were carried out for 24 hours. 

 Given these preliminary results showing that high liraglutide sorption could be achieved 

in Mg-502H, microspheres using this treated polymer were prepared for loading studies. During 

formulation, all aqueous solutions (i.e. PVA solutions) were prepared using 1M MgCl2 to 

maintain high ion concentration and prevent the ionic polymer from crashing out of solution. The 

resulting microspheres were well formed and increased loading over untreated 502H 

microspheres, but following loading the particles lost their integrity (Figure A. 6). The salt 

treatment caused the polymer to become more brittle, forming some cracks in the microspheres 

prior to loading and causing their rapid disintegration over 24 hours at 37°C. 

 

 

A        B 

Figure A. 5: (A) Liraglutide sorption isotherm using MgCl2-treated 502H. Four concentrations of liraglutide were 

used: 0.2, 0.5, 1.0 and 5.0 mg/mL. Total sorption after 24 hours incubation in each concentration is shown in (B). Data 

represent mean ± SEM, n=3. 
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 While the low molecular weight polymer may exhibit high peptide sorption capabilities, 

the loss of microsphere integrity results in a loss in homogeneity of the formulation and so may 

not be administered with confidence of product performance. Thus, a higher molecular weight 

acid end group PLGA (Resomer 503H) was used to prepare additional microspheres. A blend of 

Mg-502H and Mg-503H was also used with the intent of maintaining the high loading 

capabilities of the low molecular weight polymer while increasing the integrity of the 

microspheres with the higher MW 503H. A fourth formulation incorporating the insoluble base 

MgCO3 in the polymer phase was also tested due to the physical-chemical properties of 

liraglutide reported by Novo Nordisk, the manufacturer or Victoza®. In the patents submitted 

during product development, stability tests were performed and it was reported that liraglutide is 

stable at high temperature and at slightly basic pH and so the final commercial product is 

formulated at pH 8.1 [20]. PLGA microspheres, however, develop an acidic microclimate during 

release due to the buildup of acidic PLGA degradation byproducts [21]. Our lab has shown that 

incorporation of insoluble bases can modulate this pH during PLGA degradation to improve 

stability of encapsulated molecules [21-24]. Microspheres prepared using Mg-treated polymers 

all exhibited higher liraglutide loading that untreated polymeric microspheres; however only the 

microspheres made of pure Mg-503H maintained their integrity during loading (Figure A. 8). 

A                                 B 

Figure A. 6: SEM images of Mg-502H microspheres before (A) and after (B) liraglutide 

loading for 24 hours at 37°C. 
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The higher Mg-503H microspheres also moderated initial burst release after one day in vitro 

(Figure A. 7). 
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Figure A. 7: Liraglutide loading in microspheres. Loading was performed using 10mg microspheres in 1 mL of 5.0 mg/mL 

liraglutide solution in HEPES buffer pH 7.4 at 37°C for 24 hours. Table at right includes loading values and initial burst 

(24-hour release) determined in HBS. Data represent mean ± SEM, n=3. 

Figure A. 8: SEM images of Mg-503H microspheres before (A) and after (B) liraglutide 

loading for 24 hours at 37°C. 
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 Based on the success of these preliminary microsphere formulations and the stability data 

reported in the patent literature previously discussed, loading conditions were optimized to 

maximize encapsulation efficiency while maintaining high loading and low initial burst during in 

vitro release. Loading solutions were made based on the solution formulation of Victoza®, 

containing 3.75mM Na2HPO4 at pH 8.1. The decrease in ionic strength of the loading solution 

and increased stability due to the slightly basic pH resulted in greater encapsulation efficiencies 

than were previously achieved by using loading solutions prepared in HEPES buffer at pH 7.4. 

The two most promising formulations from preliminary studies were chosen to move forward 

using the optimized loading conditions: Mg-503H and Mg-503H + MgCO3. Using a loading 

concentration of 1.0 mg/mL liraglutide, encapsulation in the latter formulation was almost 100% 

(Figure A. 9).  

 

 

A         B 

Figure A. 9: Liraglutide loading (A) and encapsulation efficiency (B) in PLGA 503H microspheres. Loading was performed 

using 10mg microspheres in 1 mL of 1.0 mg/mL liraglutide solution in 3.75mM Na2HPO4 pH 8.1 at 37°C for 24 hours. Data 

represent mean ± SEM, n=3. 
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 In vitro release from these microspheres was slow and continuous following initial burst 

in HBS pH 7.4 (Figure A. 10A). During quantification of release, however, a shift in the 

chromatogram peak was noticed in the release samples as compared to the standards (Figure A. 

11). This raised concerns over peptide stability in the release media, and so the concentration of 

liraglutide in HBS was measured at two concentrations relevant to release samples over time at 

37°C. The peptide concentration decreased in all three HBS-based media, indicating that 

measuring release from media concentrations alone may not be reliable (Figure A. 12). 

  Release was also measured in PBST pH 7.4, a more commonly-used release medium of 

higher ionic strength. Initial burst in this media was high from all three microsphere formulations 

and negligible release was seen after just one week (Figure A. 10B). Interestingly, however, 

release samples taken in this media did not exhibit the same peak shift as was observed in the 

HBS media. Due to the conflicting in vitro release results, amino acid analysis was employed to 

confirm controlled release. This direct measurement of peptide remaining in microspheres 

suggested slow and continuous release over two weeks, though the release rates were different 

than reported by the in vitro release tests performed in HBS and PBST (Figure A. 10C). Given 

this data suggesting controlled release, Mg503H + MgCO3 microspheres loaded with liraglutide 

were selected for in vivo studies. 
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Figure A. 10: in vitro release of liraglutide from microspheres in HBS pH 7.4 (A and C), PBST pH 7.4 (B). Release was 

quantified by UPLC of release media (A and B) or amino acid analysis of microspheres (C). Data represent mean ± SEM, 

n=3. 
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 Based on the in vitro release of liraglutide, the in vivo pharmacokinetics of liraglutide 

from microspheres were surprising. At both dose levels, high initial burst was observed in the 

first day followed by low concentrations in the plasma for two months (Figure A. 13). The 

sustained concentrations were approximately 3 ng/mL and 5 ng/mL for the low and high dose 

rats, respectively. Therapeutic concentrations fall within the range of 35-100 ng/mL [15-17]. 

With the initial burst concentrations being well above the therapeutic range and the long-term 

concentrations being far below, these microspheres in their current state would not be suitable 

Figure A. 11:  UPLC chromatograms of release from Mg503H + MgCO3 microspheres in HBS and PBST; 

and a standard prepared in loading solution. Peak shift was observed in release samples in HBS (retention 

time 1.2 minutes vs. 2.8 minutes) 
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Figure A. 12: Liraglutide content remaining in solution during incubation at 37°C. Initial concentrations were 

100 µg/mL (A) and 50 µg/mL (B). 
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for controlled release treatment of T2D. The high initial burst suggests that the majority of the 

“loaded” peptide is likely precipitated on the surface of the microspheres, rather than being well 

encapsulated and homogenously loaded in the PLGA. Therefore, more optimization is needed to 

promote further penetration of the peptide in the polymer phase for long-term controlled release. 

 

A.5 Conclusions 

 Although the PLGA microspheres developed here for encapsulation and release of 

liraglutide did not exhibit the desired controlled release in vivo, the work discussed here shows 

the utility of using free-acid terminated PLGAs for loading peptides. We have also shown that 

salt treatment of these polymers leads to electrostatic interaction with anionic peptides and thus 

this simple remote loading strategy can be exploited for encapsulation of cationic and anionic 

peptides. 

 

A                B 

Figure A. 13: Liraglutide concentrations in plasma of SD rats following a single subcutaneous injection of 

liraglutide-loaded Mg503H + MgCO3 microspheres at low (A) or high (B) dose. 
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Appendix B: : Poly (lactic acid) and Poly (lactic-co-glycolic acid) Microspheres for 

Intraocular Controlled Release of the Glaucoma Drug Brimonidine 

 

B.1 Abstract 

 Glaucoma is one of the leading causes of blindness in the United States and its treatment 

is currently plagued by poor patient adherence to common treatment options such as eye drops. 

The purpose of this work was to develop biodegradable microparticle formulations of two 

glaucoma drugs, timolol and brimonidine, using poly (lactic acid) (PLA) and poly (lactic-co-

glycolic acid) (PLGA) for supraciliary injection and subsequent controlled release and reduction 

in intraocular pressure. Sustained delivery of these molecules may decrease the need for frequent 

drug administration and therefore improve patient compliance. An initial microsphere 

formulation prepared from PLA (free acid terminated, inherent viscosity 0.20 dl/g) encapsulated 

brimonidine with an efficiency (EE) of 38 ± 1% and loading of 2.3 ± 0.1% w/w. These 

microspheres exhibited an initial burst of 16.5 ± 0.2% of loaded brimonidine. In order to 

minimize the initial burst and improve encapsulation efficiency, three different formulation 

strategies were developed. Removal of low molecular weight acids from PLA prior to 

formulation, increased PLA concentration in oil phase, and formulation using a blend of PLA 

and PLGA 75:25 (ester terminated, inherent viscosity 1.13 dl/g) decreased the initial burst to 8.0 

± 1.3%, 1.8 ± 0.3%, and 1.2 ± 0.1%, and increased EE to 85 ± 0.4%, 67 ± 6%, and 53 ± 8%, 

respectively. In vitro release from all four brimonidine formulations was slow and continuous 

over 35 days. 
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B.2 Introduction 

 Primary open angle glaucoma is a leading cause of blindness, affecting nearly 2 million 

individuals in the United States with an annual cost of $2.9 billion [1, 2]. Glaucoma is the most 

common form of optic neuropathy, where loss of retinal ganglion cell axons permanently 

disrupts transmission of visual information from the retina to the brain [1, 3, 4]. Patients with 

glaucoma experience a painless and gradual loss of vision starting from the periphery and 

eventually claiming central vision [3, 5]. Intraocular pressure (IOP) is the only modifiable risk 

factor [6, 7] and reducing IOP prevents the progression of glaucoma-related vision loss [5, 8]. 

 IOP is mediated by the balance of aqueous humor production and aqueous humor 

removal [9]. Aqueous humor is a clear nutrient-rich fluid secreted by the ciliary body that 

provides nutrients to the avascular ocular tissues of the anterior segment and pressurizes the eye. 

Clearance of aqueous humor occurs through either the trabecular meshwork into the episcleral 

veins or the uveoscleral outflow pathway into the suprachoroidal space [9, 10]. Medical and 

surgical therapy for glaucoma seek to control IOP by reducing production of aqueous humor 

and/or increasing clearance of aqueous humor [5, 11]. Since these medications only prevent the 

progression of glaucoma, patients require chronic treatment for their lifetime [11]. Topical eye 

drops, such as timolol, latanoprost, and brimonidine, are first-line medical therapies for 

glaucoma patients. Brimonidine is a α2-adrenergic agonist that both decreases aqueous humor 

secretion by the ciliary body, and increases aqueous humor clearance [12]. Because topical eye 

drops have low bioavailability through the cornea (<5%), eye drops are needed multiple times 

per day to ensure sufficient drug dosing (e.g., brimonidine eye drops are dosed three times per 

day) [11, 13]. 
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 Patient adherence to topical eye drops is low, estimated to be only 41% to 76% [11, 14-

18]. Due to the chronic nature of glaucoma and the rigorous administration schedule, it can be 

difficult for patients to administer their eye drops on a regular basis. The most common reasons 

for patients to miss a dose are being otherwise preoccupied, forgetting, cost, and motivational 

[15]. Since any loss of vision is permanent, increasing patient compliance will preserve 

functional vision and decrease progression to blindness [11].  

 Patient compliance can be increased through methods such as memory tools that remind 

patients of their required doses, and improved formulations that do not require refrigeration or 

require simpler, less frequent administration regimens [11]. Perhaps the most attractive method 

to improve patient compliance is through the use of controlled-release drug delivery systems that 

obviate the need for the patient to apply eye drops daily. Poly(lactic acid) (PLA), poly(glycolic 

acid) (PGA), and their copolymers (PLGA) are polymers which have been extensively studied 

for intraocular controlled drug release because of their safety and biodegradable nature [19]. 

 In this study, we formulated brimonidine into controlled release microspheres using poly-

lactic acid (PLA) for later sustained release in the supraciliary space of the eye adjacent to the 

drug’s site of action at the ciliary body. Brimonidine was chosen because it is an FDA-approved 

IOP-lowering agent currently prescribed to glaucoma patients [12, 13, 20]. Strategies were used 

to increase the loading and encapsulation efficiency of the microspheres while maintaining 

controlled release characteristics. One microsphere formulation was chosen for in vivo efficacy 

studies in rabbits performed by our collaborators. In these studies, PLA microspheres 

encapsulating brimonidine were injected using a microneedle for targeted administration into the 

supraciliary space and IOP was monitored. 
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B.3 Materials 

Brimonidine, poly-lactic acid (PLA) with an inherent viscosity (i.v.) of 0.20 dL/g (free acid 

terminated, RESOMER® 202H), and polyvinyl alcohol (PVA, 80% hydrolyzed, MW ~9,000-

10,000) were purchased from Sigma Aldrich (MO, USA). PLGA (75:25, i.v. = 1.13 dL/g, ester 

terminated) was purchased from Lactel (AL, USA). All solvents used were HPLC grade and 

were purchased from Fisher Scientific and unless otherwise noted, all other chemicals were 

purchased from Sigma Aldrich. 

B.4 Methods 

B.4.1 Removal of LMW acids from PLA 

In some formulations, to remove low molecular weight (LMW) acids, PLA (~5g) was dissolved 

in 10mL CH2Cl2 and added to a stirring ddH2O bath maintained at 60°C. After evaporating 

CH2Cl2 for 3 hours, the aqueous phase containing water-soluble low molecular weight acids 

(LMW) was removed [21]. The resulting polymer was dried under vacuum and stored at -20°C 

until used. 

B.4.2 Microsphere preparation 

All microspheres were prepared by using oil-in-water (o/w) emulsion solvent evaporation 

methods. First, brimonidine and the selected polymer(s) (Table B. 1) were dissolved in 1 mL 

CH2Cl2. Two mL 5.0% PVA was added and vortexed at the highest setting for 60 s to create the 

o/w emulsion, which was then poured rapidly into a stirring bath of 0.5% PVA. After 3 h, the 

hardened microspheres were screened to 20-45 µm using stainless steel sieves (Newark Wire 

Cloth Company, NJ, USA), washed thoroughly with ddH2O, and then lyophilized and stored at -

20°C for future use. 
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Table B. 1: Brimonidine Microsphere Formulation Parameters 

Polymer 
Polymer 

Concentration 
(mg/mL CH2Cl2) 

Theoretical w/w 
Loading (LT) 

Formulation 
Name 

PLA 800 6.00% 800PLA 

PLA 1000 6.25% 800PLA-T 

PLA  
hot-water treated 

800 5.00% 1000PLA 

50 : 50 Blend 
PLGA : PLA 

500 10.00% PLA/PLGA 

 

B.4.3 Scanning Electron Microscopy 

Prior to imaging, lyophilized microspheres were mounted by using double sided carbon tape and 

coated with a thin layer of gold under vacuum. Scanning electron microcopy (SEM) was 

performed on a Hitachi S3200N scanning electron microscope (Hitachi, Japan). Images were 

captured by EDAX® software. 

B.4.4 Determination of Brimonidine Loading and Encapsulation Efficiency 

Prepared microspheres (~5 mg) were dissolved in 1 mL acetonitrile. The resulting solution was 

filtered and analyzed for brimonidine content by ultraperformance liquid chromatography 

(UPLC), as described below. Drug loading and encapsulation efficiency were calculated using 

equations 1 and 2, respectively. 

% 𝑤 𝑤⁄ 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (𝐿𝐴) = (
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑏𝑟𝑖𝑚𝑜𝑛𝑖𝑑𝑖𝑛𝑒

𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑚𝑖𝑐𝑟𝑜𝑠𝑝ℎ𝑒𝑟𝑒𝑠
) × 100 %    Eq. 1 

𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =  (
𝑎𝑐𝑡𝑢𝑎𝑙 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (𝐿𝐴)

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (𝐿𝑇)
) × 100 %   Eq. 2 
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B.4.5 In vitro Release Kinetics of Brimonidine 

Microspheres (~5 mg) were suspended in 1 mL phosphate buffered saline + 0.02% Tween 80 

(PBST, pH 7.4) at 37°C under mild agitation. Release media was completely removed and 

replaced at 1, 3, 5, 7 days and weekly thereafter for 7 weeks. Release media was assayed for 

brimonidine content by UPLC. 

B.4.6 Brimonidine Quantification 

Brimonidine content in loading solutions and release media was determined using UPLC 

(Acquity UPLC, Waters, USA). The mobile phase was composed of 40 : 60 v/v (acetonitrile : 

ddH2O) and the flow rate was set to 0.5 mL/minute. Samples and standards prepared in either 

acetonitrile or PBST were injected (8 µL) onto a C18 (Acquity BEH C18, 1.7µm, 2.1 x 100mm) 

column maintained at 30°C. Brimonidine was detected at 254 nm.  

B.5 Results and Discussion 

Table B. 2: Characterization of Brimonidine Microencapsulation (Data expressed as mean ± SE, n=3) 

Formulation Loading (w/w %) 
Encapsulation 
Efficiency (%) 

Initial Burst (%) 

800 mg/mL untreated PLA 
(800PLA) 

2.3 ± 0.1 38 ± 1 16.5 ± 0.2 

800 mg/mL hot-water treated 
PLA 

(800PLA-T) 
5.3 ± 1.3 85 ± 0.4 8.0 ± 1.3 

1000 mg/mL untreated PLA 
(1000PLA) 

3.3 ± 0.3 67 ± 6 1.8 ± 0.3 

PLA / PLGA Blend 
(PLA/PLGA) 

5.3 ± 0.7 53 ± 8 1.2 ± 0.1 
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 Brimonidine was initially encapsulated in free-acid terminated PLA (800PLA) with low 

efficiency and moderate initial burst 24-h release of ~17% (Table B. 2). As brimonidine is highly 

water soluble, it is likely that the drug leaches into the aqueous phase during microsphere 

formulation [22]. This can result in poor loading and may also contribute to high burst due to any 

poorly encapsulated, surface-associated drug. Initial burst is often an undesired property of 

controlled release formulations as it may cause exposure to toxic drug levels in vivo and/or waste 

drug for later release. In order to improve loading efficiency and to decrease the initial burst 

from the microspheres, we employed three alternative formulation strategies for encapsulation of 

brimonidine. 

 As seen in Table B. 2, by using a higher concentration of PLA during preparation 

(1000PLA) and blending PLA with a high molecular weight, ester end capped PLGA 

(PLA/PLGA), both approaches increased brimonidine loading and decreased initial burst, likely 

due to a denser polymer matrix which can be more efficient in trapping the molecule during 

microsphere formulation [23]. Although these formulations were successful in improving 

loading and burst, the long-term release from these microspheres in vitro was slow incomplete 

through 7 weeks (Figure B. 2) and not desirable for our initial in vivo evaluation (see below). 

A B 

C D  

Figure B. 1: Representative SEM images of four microsphere 

formulations. A) 800PLA, B) 800PLA-T, C) 1000PLA, D) PLA/PLGA 
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 The last formulation we developed, 800PLA-T, was prepared with the same free-acid 

terminated PLA 202H as was used in our initial formulation. Prior to microsphere 

manufacturing, we stirred the dissolved polymer in a hot water bath in order to remove low 

molecular weight, water-soluble acids; this strategy has been used successfully in the past to 

encapsulate the LHRH peptide leuprolide with high efficiency and resulting in low initial burst 

[21, 24]. During storage, lactic acid monomers and oligomers formed during polymerization may 

catalyze the degradation of the polymer, leading to a decline in PLA molecular weight and a 

buildup of additional acidic byproducts. Removal of these acidic monomers and oligomers can 

markedly improve the stability of the polymer during storage and can effectively increase the 

molecular weight of the bulk PLA [24]. As previously mentioned, higher molecular weight 

polymers create a denser matrix during microparticle manufacturing, leading to more efficient 

encapsulation. Microspheres formed using hot-water treated PLA to remove LMW greatly 

improved brimonidine loading to achieve 85 ± 0.4% efficiency. As shown in Table B. 2, these 

microspheres exhibited improved initial burst (8.0% ± 1.3) as compared to the initial 800PLA 

microspheres (16.5% ± 0.2). 

 Brimonidine release from all four formulations was slow and continuous for 6-8 weeks 

(Figure B. 2) but the most favorable release profile resulted from the 800PLA-T microspheres. 

These microspheres were selected for in vivo efficacy studies performed by our collaborators in 

the Prausnitz Lab at Georgia Tech. Briefly, 800PLA-T microsphere were injected using a 

microneedle for targeted administration in the supraciliary space. IOP of treated New Zealand 

White rabbits and was reduced by as much as 6 mm Hg for approximately 30 days. 
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B.6 Conclusions 

 Four microsphere formulations of brimonidine were successfully prepared from the 

biodegradable polymers, PLA and PLGA. Removal of low-molecular weight acids from PLA 

prior to encapsulation resulted in improved loading, encapsulation efficiency, initial burst, and 

long-term controlled release in vitro. This microsphere formulation also exhibited controlled 

release and long-term efficacy in vivo (data not shown). 

 

 

 

 

**This work, including the in vivo studies, has been prepared as a manuscript and has been 

submitted for review to Journal of Controlled Release** 
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Figure B. 2 Brimonidine release from four polymer microsphere 

formulations in vitro, PBST pH 7.4. Data are expressed as mean ± 

SE, n=3. 
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