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Abstract 

	  
Genomic DNA is damaged through exposure to exogenous and endogenous 

agents as well as during cellular processes such as DNA replication. Defects in cellular 

responses to DNA damage can lead to an accumulation of unrepaired or misrepaired 

lesions and ultimately, increased genome instability. DNA replication ensures the 

accurate transmission of the information encoded in the genome to daughter cells. 

Progression of DNA replication can be impaired or blocked, which leads to replication 

fork stalling. If stalled forks are not properly restarted, they can collapse, resulting in 

chromosomal breaks, deletions, and translocations. Therefore, replication-associated 

DNA damage has been hypothesized as one important source of genome instability 

associated with cancer initiation and progression. Furthermore, mutations in DNA repair 

genes result in inherited genome instability disorders characterized by developmental 

defects and cancer predisposition. Uncovering the cellular mechanisms that repair DNA 

damage is critical for understanding how cells maintain genome stability and thereby 

prevent deleterious human diseases.  
DNA nucleases play a key role in resolving stalled and collapsed replication 

forks, but the molecular events involved in these processes are not fully defined. This 

dissertation addresses how the DNA nuclease SNM1B plays critical roles in preventing 

replication-associated DNA damage. I demonstrate that SNM1B is not required for the 

initial detection of a stalled replication fork or for initiating early signaling events. I show 

that SNM1B is instrumental in stabilizing stalled replication forks by nucleolytically 

processing aberrant DNA structures at stalled and collapsed forks which allows for the 

recruitment of key DNA repair factors, FANCD2, BRCA1, and Rad51. Furthermore, I 

found that SNM1B plays a key role in preventing stalled and collapsed replication forks 

in unperturbed cells suggesting it is critical in responding to replication-associated DNA 

damage that occurs spontaneously during cellular proliferation. I also identified a 
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residue within SNM1B that is critical for its localization to sites of stalled forks and 

established that SNM1B protein levels are modulated in the cell. Altogether, these 

findings illustrate that SNM1B has critical functions during the repair of replication-

associated DNA damage, thereby ensuring successful replication of the genome and 

preventing potentially deleterious chromosomal aberrations.  
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Chapter 1: Introduction 

	  
Summary 

The genetic information contained within our DNA is essential for the functionality 

of all cellular processes. The DNA comprising our genome is constantly under assault 

from endogenous and exogenous sources that cause many different types of damage.  

If unrepaired, DNA lesions can accumulate, thereby leading to aberrant chromosomal 

rearrangements, deletions, insertions, substitutions, and translocations.  Detrimental 

genomic alterations may result in cell death, proliferative arrest, or cellular 

transformation. Cells have evolved a multitude of DNA repair mechanisms to repair 

different types of DNA damage to maintain genome stability. Mutations in DNA repair 

genes can cause numerous inherited genome instability disorders characterized by 

phenotypes including developmental defects, immune system defects, and cancer 

predisposition. Therefore, understanding the cellular mechanisms that repair DNA 

damage is critical for understanding how defects in DNA repair mechanisms can lead to 

human disease.  
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DNA replication is critical for the survival of proliferating cells 

The genetic information contained within our DNA is essential for the functionality 

of all cellular processes. Complete replication of the genome ensures the accurate 

transmission of this genetic information from parental cells to daughter cells during 

every cell division. To prepare for cell division, a cell progresses through the following 

stages of the cell cycle: G1 (Gap1), S (Synthesis), G2 (Gap2), and M (Mitosis). In the 

G1 phase, proteins are expressed that are needed for DNA synthesis, which occurs in 

S-phase. Once the genome is replicated, the cell cycles to G2 where it prepares to 

enter into mitosis where cellular division occurs. During DNA synthesis, 3 billion base 

pairs of human DNA have to be replicated accurately and efficiently, so a series of very 

tightly controlled processes, discussed below, are employed by cells to ensure accurate 

genomic duplication 1-3. 

 Before the cell enters S-phase, origins of replication, sites on the chromosome 

where DNA replication is initiated, are recognized by the origin recognition complex 

(ORC). Replication initiation proteins load the MCM2-7 (mini-chromosome 

maintenance) helicase onto the origin thereby assembling the pre-RC (pre-replication 

complex) and ‘licensing’ these areas of the genome as origins 1,4. Additional factors are 

loaded onto this complex to form an active replication fork including GINS and Cdc45 

which together with MCM form the CMG helicase complex 5. The MCM helicase is then 

activated and the replisome, which contains the DNA polymerases, is loaded on, and 

the cell is ready for DNA synthesis in S-phase. These steps are controlled by CDKs 

(cyclin-dependent kinases) which are activated at specific times during the phases of 

the cell cycle 6,7.  

Eukaryotic cells have thousands of origins of replication which initiate replication 

bi-directionally once the cell enters S-phase 6. The two strands of the DNA double helix 

are separated by the MCM replicative helicase which allows each strand to be copied 

during the replication process 8. DNA polymerases are responsible for adding 

complementary nucleotides to the parental strand. Nucleotides can only be added to an 

available 3’-OH terminus. Therefore, once parental DNA strands are separated, 

different mechanisms are utilized to synthesize the nascent DNA strands 9. One DNA 

strand that is synthesized is the leading strand which is formed by DNA polymerase ε in 
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a single, continuous segment 10-12. The other DNA strand is termed the lagging strand 

which is synthesized by DNA polymerases δ and α in short segments called Okasaki 

fragments in a discontinuous process 13-15. These high processivity and high fidelity 

polymerases have intrinsic 3’ to 5’ exonuclease activity, which provides them 

proofreading functions allowing the chance for more accurate copying of the parental 

DNA strand 9,16. Consequently, this results in approximately one error per 109 – 1010 

nucleotides 17. Once the genome is completely replicated, the cell continues through the 

cell cycle and enters mitosis. Now that the cell contains a replicated genome, the copied 

chromosomes are separated during mitosis to allow for cell division, and the daughter 

cells each now have an intact, complete genome 2.  

Sources of replication stress 

‘Replication stress’ can result from endogenous and exogenous sources, but how 

‘replication stress’ is defined is not concrete and is continually changing. This thesis 

focuses on replication stress that results in the stalling or slowing of replication fork 

progression thereby resulting in slowed replication elongation. There are various 

endogenous sources of replication stress that occur spontaneously and cause stalling of 

replication forks during cellular proliferation (Figure 1.1). The replication fork can 

encounter unrepaired single-strand lesions in the parental DNA strand which need to be 

repaired before replication can progress 18. The replication fork can also encounter 

secondary structures in the DNA, like a hairpin loop structure, that are difficult to 

replicate and need to be unwound before replication can continue 19. Certain areas of 

the genome that are GC-rich can form secondary structures called G-quadruplexes that 

have to be unwound by specific helicases 20. Proteins tightly bound to DNA can also 

inhibit progression of the replication fork 21.  

Another endogenous source of replication fork impediment is the collision 

between DNA replication and transcription machinery, since both these critical 

processes occur simultaneously 22,23. One structure that can form is a R-loop which is a 

RNA:DNA hybrid between the DNA template strand and a nascent RNA transcript. The 

other DNA strand is then single-stranded, exposed, and unstable, which could result in 

DNA breaks 24,25. Therefore, removal of R-loops by the enzyme RNaseH1 results in 

hydrolysis of the RNA from the RNA:DNA hybrid and inhibits replication stress 26-29.  
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Figure 1.1 Sources of replication stress.  
	  
Progression of the replication fork can be blocked or stalled through various ways. This 
diagram shows some of these sources of replication stress including DNA lesions, 
secondary structures, collision with transcription machinery and RNA:DNA hybrids, 
oncogene-induced stress, common fragile sites, and nucleotide depletion. Adapted from 
Zeman, et al. 30 
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Another instigator of endogenous replication stress is oncogene-induced, which 

results in cells being abnormally driven into S-phase, although the mechanism of this 

type of replication stress is still being addressed 31-33. Overexpression of certain 

oncogenes, including c-myc, results in the dysregulation of cell cycle checkpoints, which 

are activated upon DNA damage. If the cells do not arrest at the G1 cell cycle 

checkpoint, too many cells enter S-phase 34. Hyper-proliferation of cells results in DNA 

hyper-replication which can consequently result in DNA damage 35-37.  

Certain regions of the genome called common fragile sites (CFSs) are prone to 

breakage under certain conditions of replication perturbation resulting in gaps and 

breaks in metaphase chromosomes 38,39. Multiple explanations of what makes these 

sites fragile have been proposed and are still being investigated. It has been suggested 

these sites are late replicating regions 40,41. Furthermore, it has been shown that CFSs 

are located in regions of very large genes that often take more than one cell cycle to 

transcribe, thereby implying that transcription and replication machinery collide at CFSs 
28,42,43. It has also been suggested that the number of origins in CFSs is lower compared 

to other regions of the genome; therefore, CFSs cannot rely on dormant origins to 

ensure complete replication of the region 44. CFSs have also been suggested to be 

intrinsically difficult to replicate regions 45,46.  

 There are also many exogenous sources of replication stress. Depletion of the 

nucleotide pool through hydroxyurea (HU) treatment results in stalling of replication fork 

progression. While stalled replication forks can be restarted, DNA lesions that block 

progression of the replication fork have to be removed. For example, interstrand 

crosslinks (ICLs), which covalently link the two strands of the DNA double helix and 

block replication, can occur spontaneously through metabolic intermediates and 

oxidized lipids and also through chemotherapeutic agents like cisplatin and mitomycin C 

(MMC) 47,48. ICLs need to be removed and then the replication fork can restart 

progression. Ultraviolet (UV) light induces pyrimidine dimers which can result in helix 

distorting lesions, and therefore the dimers need to be removed before replication can 

continue 49. Furthermore, Topoisomerase I is an enzyme that relieves torsional stress 

during DNA replication, and an inhibitor of Topoisomerase I, camptothecin, results in the 

formation of a protein adduct which inhibits replication progression 50. This thesis 
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focuses on replication stress caused by aphidicolin-induced stalled replication forks. 

Aphidicolin inhibits the replicative DNA polymerases α, δ, and ε by blocking the binding 

of cytosine leading to arrest specifically at template guanine residues 51. DNA 

polymerase inhibition results in the uncoupling of helicase and polymerase activities. 

The helicase continues unwinding the DNA double helix while the polymerase is unable 

to add nucleotides to the parental strand resulting in long stretches of ssDNA 8,52-54. As 

described above there are many diverse causes of replication stress (Figure 1.1). 

Therefore, how the cell responds to and repairs different types of replication-associated 

DNA damage through different mechanisms is still not understood completely.  

 

DNA damage response 

The DNA damage response (DDR) is comprised of all the cellular responses that 

become activated upon DNA damage (Figure 1.2). The DDR is firstly responsible for 

detecting any type of DNA damage including DNA mismatches, single-strand breaks, 

double-strand breaks (DSBs), ICLs, and replication-associated DNA damage 49. Sensor 

proteins recognize the DNA damage and then activate transducer and effector proteins, 

which activate cell cycle checkpoints so that cells stop progression through the cell 

cycle allowing time for the cell to fix the damaged DNA. Additionally, initiation of 

transcription of certain genes needed for the repair process and recruitment of DNA 

repair proteins occur. If the damage is too severe and cannot be repaired, some cells 

may be targeted for apoptosis. Defects in the DDR resulting from mutations in the 

genes involved in this cellular response can lead to decreased cellular survival 55.  

There are multiple DNA repair pathways within the cell that are activated in 

response to all the different types of DNA damage. Single-strand breaks are repaired 

through base excision repair (BER) 56. Single-strand lesions that result in more bulky 

adducts, like UV light induced dimers, are repaired through nucleotide excision repair 

(NER) 57. Any base mismatches that occur during DNA replication are repaired through 

the mismatch repair pathway. DSBs are repaired either through non-homologous end 

joining (NHEJ), which can occur throughout the cell cycle, or homologous recombination 

(HR), which acts primarily in S and G2 phases of the cell cycle once a homologous 

template is available on the sister chromatid 58-61. ICLs are repaired by the Fanconi  
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Figure 1.2 DNA Damage Response. 
Upon genomic damage, the DNA Damage Response (DDR) is activated. This cellular 
response recognizes the damage and initiates a signaling pathway which activates 
transducer and effector proteins that turn on cell cycle checkpoints, promote apoptosis, 
initiate transcription, and recruit DNA repair proteins. Adapted from Zhou et al. 62 
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anemia (FA) pathway with the help of low-fidelity translesion synthesis DNA 

polymerases 63.  

The FA pathway is comprised of 15 known complementation groups 

(A,B,C,D1,D2,E,F,G,I,J,L,M,N,O,P), which are genes that have been found mutated in 

FA patients. The FA core complex, comprised of A,B,C,E,F,G,L,M and accessory 

proteins FAAP20 and FAAP24, is activated in response to ICLs. FANCL which 

possesses ubiquitin ligase activity, monoubiquitinates FANCD2 and FANCI (ID 

complex) which localizes to the site of damage and coordinates downstream repair 

proteins 64-66. FA patient cells are not only hypersensitive to ICL agents but also ionizing 

radiation (IR), UV, HU, and aphidicolin 63,67,68. Therefore, the FA pathway clearly has 

additional roles beyond ICL repair in the cell. The role of the FA pathway in stalled 

replication fork repair is not as clear, but it is needed for replication fork stability. 

Specifically the FA-BRCA network including FANCJ (BRIP1), BRCA2 (FANCD1), and 

SLX4 (FANCP) functions after the ID monoubiquitination step 69-72. These proteins have 

critical roles in protecting stalled forks and repairing collapsed replication forks which 

are discussed in the next section. 

 

Repair of Stalled Replication Forks  

A stalled replication fork can be characterized by having long stretches of ssDNA 

which can result from the uncoupling of the replicative helicase from the DNA 

polymerase. The helicase continues unwinding the parental DNA double helix while the 

polymerase is inhibited forming long stretches of ssDNA 8,52,54. The heterotrimeric 

Replication Protein A (RPA) binds to this exposed ssDNA and recruits the ATR kinase 

(ataxia telangiectasia and Rad3 related protein) with its binding partner ATRIP (ATR-

interacting protein). A separate checkpoint clamp complex made up of Rad9-Rad1-

Hus1 (also called the (9-1-1 complex) is recruited to RPA-ssDNA 73. Subsequently, 

TOPBP1 (topoisomerase-binding protein 1) is recruited and activates ATR which 

phosphorylates downstream substrates 73-78. These steps initiate the S-phase 

checkpoint by recruiting downstream DNA repair proteins including the effector protein 

kinase CHK1 and activation of the FA pathway 21,79-83.   
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When the replication fork encounters an unrepaired or misrepaired lesion in the 

template DNA, the cell employs the DNA damage tolerance (DDT) pathway to bypass 

the damaged DNA and continue replication. One component of DDT is translesion 

synthesis, which recruits low-fidelity DNA polymerases that replicate past the damaged 

DNA. Template switching can also be activated which results in using the damaged 

sister chromatid as a template for replication. The ubiquitination of PCNA, the replicative 

sliding clamp, aids in determining if translesion synthesis or template switching will be 

activated. It has been shown that monoubiquitination of PCNA promotes recruitment of 

translesion synthesis polymerases, while it has been suggested that polyubiquitination 

of PCNA is important in facilitating template switching 84.  

One mechanism through which template switching can occur at a stalled fork to 

help in restarting DNA replication is fork regression/reversal, where the separated DNA 

strands are rewound leading to annealing of the complementary nascent DNA strands 

forming a ‘chicken-foot’ structure (Figure 1.3) 85. Various proteins have been implicated 

in initiating this regression process including PARP (poly(ADP-ribose) polymerase), 

BLM (Bloom helicase), FANCM (Fanconi anemia complementation group M), HLTF 

(human helicase-like transcription factor), and SMARCAL1 DNA translocase 86-90. Until 

recently there was not much evidence that fork regression occurs in mammalian cells. 

Therefore, the mechanism through which regression occurs is still not well understood. 

One model is that HLTF, which has DNA translocase activity, unwinds the leading and 

lagging strands of the replication fork which is followed by annealing of these nascent 

strands and rewinding the parental strands to form the ‘chicken-foot’ structure 91,92.   

Once fork regression occurs, this intermediate ‘chicken-foot’ structure has to be 

resolved, and this occurs through various ways (Figure 1.3). One process is through 

digestion of the nascent annealed strands. The nucleases Mre11 (a component of the 

MRN (Mre11/Rad50/Nbs1) complex), FAN1 (FANCD2/FANCI-associated nuclease1), 

and DNA2 (human nuclease/helicase 2) have been implicated in this step 93-98. Another 

way to resolve this structure is through template switching as previously mentioned, by 

extension of these strands using the complementary nascent strand as a template. A 

DNA polymerase extends the 3’OH end of the leading nascent strand by copying from 

the nascent lagging strand 30.  
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Figure 1.3: Resolution of Stalled Replication Forks 
Once the helicase and polymerase uncouples, the helicase continues unwinding the 
DNA double helix resulting in long stretches of ssDNA. One mechanism through which 
stalled forks are restarted is fork regression, which forms a ‘chicken-foot’ structure. This 
aberrant DNA intermediate either undergoes nuclease digestion or extension followed 
by reverse branch migration to restart replication. If a stalled fork cannot be restarted, it 
can collapse resulting in a double-strand break. This break is then repaired through 
homologous recombination.  
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The regressed fork then needs to be restructured back to a normal replication 

fork in a process called reverse branch migration, and BLM helicase has been shown to 

be important in restoring replication forks. BLM is a RECQ-like 3’ to 5’ DNA helicase 

known to unwind bubble structures, forked duplexes, G-quadruplex structures, and 

resolve Holliday junctions. BLM localizes to aberrant fork structures and works to inhibit 

formation of breaks at the stalled fork. It has been shown that FANCD2 plays a role in 

recruiting BLM to chromatin where it helps to restart stalled replication forks 99. FANCD2 

has also been shown to recruit FAN1 and SLX4/FANCP, a scaffold protein that will be 

discussed in a later section 100-103.  

If a stalled fork cannot be restarted efficiently it can collapse resulting in a DSB at 

the fork (Figure 1.3). A break in the ssDNA region at a stalled fork, and further digestion 

by a nuclease results in a one-ended DSB. This is accompanied by dissolution of 

components of the replisome 104. This DSB is then sensed by DDR proteins (including 

the MRN complex) which recruit and activate the ATM (ataxia telangiectasia mutated) 

kinase, which then activates further downstream repair proteins. The DSB is processed 

so that a 3’ overhang is generated. RPA binds to this exposed ssDNA and is then 

displaced by Rad51 which eventually forms filaments on this overhang 105. This results 

in strand invasion to the homologous template to initiate HR-mediated repair. 

Components of the FA/BRCA network including BRCA2, PALB2, and FANCJ have 

functions during this HR step 106. It is known that BRCA2 has a critical role in this HR 

step of repairing a collapsed fork, but it has also been shown that BRCA2 works with 

FANCD2 in protecting stalled forks from extensive degradation by Mre11, which 

processes regressed forks. Therefore, BRCA2 is important beyond its role in the DSB 

response 95,96,98. It has also been demonstrated that FANCD2 may play a role in Rad51 

filament stabilization during this process 96.  

BRCA2 and Mre11 are clear examples of how DNA repair proteins can have 

multiple roles at different stages during the DDR. This also highlights that there are still 

many unanswered questions as to the precise steps that occur in repairing stalled forks, 

what pathways and proteins are involved, how they collaborate, and how these 

processes are all regulated. Understanding how cells respond to and restart stalled 

replication forks and repair collapsed forks is important in determining how cells  
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maintain genome stability.  

 

Consequences of incomplete replication 

DNA damage that results from incomplete replication and inefficient repair of 

stalled replication forks results in an overall increase in genome instability. The DSB at 

a collapsed fork can engage in deleterious rearrangements resulting in copy number 

variants (CNVs) in the genome or chromosomal anomalies like harmful translocations 

that may lead to cancer. Faulty template switching events during repair processes at 

stalled forks or inefficient DSB repair at these collapsed forks can also cause CNVs 107. 

Many neurodevelopmental diseases including autism and schizophrenia have been 

linked to CNVs 107,108. CNVs are also seen at a high frequency in cancer cells 109,110. 

These genomic alterations can be detrimental by resulting in cell death, proliferative 

arrest, or cellular transformation, which can manifest as disease phenotypes, including 

developmental delay, immune system defects, and cancer predisposition 26,41,111,112.  

 CFSs, as previously mentioned, are regions of the genome prone to breakage 

especially upon aphidicolin treatment 39. Two of the most broken CFSs (FRA3B and 

FRA16D) are located within tumor suppressor genes (FHIT, WWOX, respectively). 

Therefore, a break at this loci can inactivate expression of the tumor suppressor gene, 

which can ultimately lead to tumor formation 113. CFSs are hot spots for chromosomal 

rearrangements, deletions, gaps, and breaks 38,114,115. 

 Mutations in genes involved in the cellular response to replication stress and 

repairing stalled replication forks can ultimately manifest as inherited genome instability 

disorders in humans. For example, mutations in the ATR kinase leads to Seckel 

syndrome characterized by growth retardation and microcephaly. Werner syndrome and 

Bloom syndrome result from mutations in those respective helicases (WRN, BLM) and 

have phenotypes including premature ageing, growth retardation, and cancer 

predisposition 63.  FA which is caused by mutations in any one of the 15 known FA 

genes results in developmental defects, abnormal skeletal features, bone marrow 

failure, and cancer predisposition 68. By further studying the cellular mechanisms of 

repairing stalled replication forks we can gain a better understanding of how defects in 

these processes lead to human disease.  
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Role of nucleases in repairing stalled replication forks 

DNA nucleases clearly have a significant role in the repair processes involved in 

restarting and repairing stalled replication forks as described above. Nucleases are 

needed in multiple stages during this cellular response, and the activity of the nuclease 

also needs to be tightly regulated so that it does not act inappropriately through hyper-

degradation of the DNA which can lead to fork instability. 

DNA nucleases are needed at regressed forks to digest the annealed nascent 

strands resulting in a formation of a normal fork (Figure 1.3). The nuclease Mre11 may 

be involved in this digestion process through its 3’-5’ exonuclease activity, although this 

activity needs to be tightly regulated to prevent hyper-degradation of the DNA 95,96,98. 

FAN1, in a complex with FANCD2 and BLM, has also been shown to digest nascent 

DNA strands, but again this digestion seems to be tightly regulated by FANCD2 and 

Mre11 94,99. Furthermore, DNA2, which possesses 5’-3’ exonuclease activity, has been 

shown to be important in degrading reversed forks with the aid of the WRN helicase 97. 

If a stalled fork cannot be efficiently restarted, the fork is persistently stalled, and 

the fork may collapse (Figure 1.3). To form a collapsed fork, an endonuclease is first 

needed to generate the break on the ssDNA, and Mus81-Eme1 has been shown to be 

important in this step 116,117. An exonuclease can then digest the DNA to form a one-

ended DSB. To initiate HR this DSB then needs to be processed through end resection 

where Mre11 and CtIP may act. DNA2 and EXO1 (exonuclease 1) have also been 

implicated in this resection step, but the nucleases involved are not well-characterized 
118,119. After a 3’ overhang is generated, RPA binds to this ssDNA, is displaced, and 

Rad51 forms filaments and recruits HR factors as described above to initiate strand 

invasion into the homologous template. Moreover, during HR, structure-specific 

endonucleases (Mus81-Eme1, SLX1) bound to SLX4 engage in Holliday junction 

resolution. SLX4 is a scaffold protein for these endonucleases (Mus81, SLX1, XPF).  

 As discussed above, many nucleases are known to be involved in resolving 

stalled replication forks, but how they collaborate, what other nucleases are needed, 

and how their functions are regulated is not well characterized. This thesis seeks to 

determine how the DNA nuclease SNM1B/Apollo (described below) plays a role in 

resolving stalled replication forks and maintaining genome integrity.  
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Identification of the SNM1B gene 

The SNM1 (sensitivity to nitrogen mustard) gene family was first found in 

Saccharomyces cerevisiae as the gene SNM1/Pso2 which when mutated led to 

hypersensitivity to two agents that induce ICLs: nitrogen mustard and psolaren 120-122. 

Mammalian homologs of SNM1/Pso2 were then identified and named SNM1A, 

SNM1B/Apollo, SNM1C/Artemis, CPSF73, and ELAC2 123-125. SNM1A, SNM1B, and 

Artemis are involved in DNA processing while CPSF73 and ELAC2 are involved in RNA 

processing 126-128. These proteins are part of the metallo-β-lactamase (MBL)/βCASP 

(CPSF-Artemis-SNM1-PSO2) superfamily of proteins, and these two domains possess 

nucleolytic function 129. The MBL fold has four conserved motifs where metal zinc ions 

can bind 130. One motif (HxHxDH) is the nuclease active site 129,131. The βCASP domain 

is unique to the family and has a nucleic acid binding domain. There are three motifs 

with conserved amino acids predicted to be located near the catalytic center of the MBL 

fold 129. These two domains are conserved between the three members but the rest of 

the sequence is distinct (Figure 1.4) 132,133.  It has been shown that SNM1A is involved 

in ICL repair 125. Artemis is important in processing intermediates that form during V(D)J 

recombination and in repairing DSBs within the NHEJ pathway 134,135. SNM1B has roles 

in ICL repair, DSB repair, and telomere maintenance as discussed below.  

SNM1B possesses 5’ to 3’ exonuclease activity on both double-stranded and 

single-stranded DNA 136. Moreover, our lab has unpublished data that shows SNM1B 

also has endonuclease activity and it can specifically digest a flap-like structure and 

hairpin structure. SNM1B depleted human and chicken DT40 cells have been shown to 

be sensitive to ICL agents including MMC and cisplatin 137-140. There is conflicting data 

about if SNM1B depleted cells are sensitive to IR 137,138. Two studies used siRNA 

depletion of SNM1B in either U2OS cells or HeLa cells and found hypersensitivity to IR 
138,141. On the contrary, another study found shRNA stable knockdown of SNM1B in 

293T cells had no difference in cellular survival upon IR 137. However, in this experiment 

the control cells decreased in survival substantially with 4Gy of IR suggesting these 

cells may not be the best controls. Therefore, the results are hard to interpret and the 

conclusion the authors come to is not concrete. This same study also found that 

SNM1B depletion does not render cells sensitive to UV damage 137. These studies  
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Figure 1.4: SNM1B is a DNA nuclease that is comprised of a highly conserved 
catalytic domain.  
A. Schematic showing the location of the metallo-β-lactamase (MBL) fold and the β-
CASP domain in SNM1B.  
B. Alignment of the SNM1 proteins. The four conserved motifs of the MBL fold are 
numbered (1-4) with emphasis on motif 2, which contains the HxHxDH nuclease active 
site. The three conserved motifs in the β-CASP domain are labeled A-C. Black: 
conserved amino acids; Boxed: similar amino acids. Adapted from de Villartay et al. 142 
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implicate SNM1B in having important roles in the DDR and cellular survival in response 

to damage, which will be further discussed in a later section. 

In studies where SNM1B knockout mice were generated, it was found that 

homozygous SNM1B null mice are perinatal lethal. Double null embryos were analyzed 

and were found to be smaller and have hypocellularity in multiple organs (brains, lungs, 

thymus) compared to wildtype or heterozygous embryos. All these embryos died at 

postnatal stage PO 143. Primary mouse embryonic fibroblasts (MEFs) from E13.5 were 

generated and found to exhibit increased apoptosis, proliferation defects, and aberrant 

metaphase chromosomes, including telomere fusions 144. A double knockout mice with 

Ku70, a factor involved in NHEJ, rescued the embryonic lethality phenotype, showing 

that the telomere fusions resulted from unprotected telomeres activating the DDR and 

being ‘repaired’ by NHEJ. This study also found that double knockout mice of SNM1B 

and p53 or SNM1B and ATM did not rescue the perinatal lethality phenotype, 

suggesting that these phenotypes are not a result of activation of p53-dependent 

apoptosis or ATM activated DNA repair pathways 143,144.  

 

The role of SNM1B in protecting telomeres 

Telomeres, the ends of chromosomes, are bound by the shelterin complex which 

protects telomeres from being recognized as broken DNA and activating the DDR. G-

rich 3’ overhangs are present at telomeres and is necessary for loading of the shelterin 

complex 145,146. One component of this complex is TRF2 147. Through mass 

spectrometry, SNM1B was found to associate with TRF2 and the shelterin complex 148. 

Co-immunoprecipitation experiments found that TRF2 interacts with the C-terminus of 

SNM1B 136,148-150. Specifically, it was found that SNM1B 5’ to 3’ exonuclease activity is 

involved in the resection of leading strand telomeres forming the 3’ overhangs 144,151,152. 

Knockdown of SNM1B therefore results in unprotected telomeres which are therefore 

recognized by the DDR as a DNA break that needs to be repaired resulting in telomere 

fusions 136,153. By associating with the shelterin complex and protecting telomeres, 

SNM1B prevents these NHEJ mediated chromosome end-to-end telomere fusions. 

The clear lethality of SNM1B knockout mice shows the importance of SNM1B on 

survival. Interestingly, a mutant allele of SNM1B was identified in a patient with 
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Hoyeraal-Hreidarsson syndrome, a severe form of dyskeratosis congenita, who 

exhibited phenotypes including aplastic anemia, pre-mature aging, microcephaly, bone 

marrow failure, and immunodeficiency; features similar to many genome instability 

disorders, including FA. This patient possessed a splice variant of SNM1B that led to a 

truncation mutant which disrupted the interaction of SNM1B with TRF2 in the C-

terminus. This mutant however was found to not be hypersensitive to ICL agents 

suggesting that SNM1B may have distinct and separate roles in telomere maintenance 

and the DNA damage response 154.  

 

SNM1B protein interactions 

In understanding how SNM1B functions in DNA repair it is imperative to look at 

what proteins it interacts with to determine what pathways it may be involved in. SNM1B 

was found to interact with the nuclease Mre11, which is a component of the MRN 

complex that is involved in the recruitment of the ATM kinase to DSBs to initiate 

checkpoint signaling and repair through HR 137,155,156. Mre11 has also been implicated in 

alternative-NHEJ and replication stress, and it may be acting at different stages of the 

repair process as described earlier 95,96,157. SNM1B was also found to interact with the 

FA protein FANCD2 which is involved in repairing stalled forks as described above 137. 

The specific role of FANCD2 in the response to replication stress may be different than 

its role in ICL repair, which is more clearly defined. It was also found that SNM1B 

interacts with Mus81, a nuclease that also has roles in ICL repair which are distinct from 

its roles in repairing stalled forks 137. Mus81 has specifically been implicated in 

generating the break that results in a DSB which forms a collapsed fork as explained 

previously 116,117. 

SLX4, another FA protein, was previously mentioned as a scaffold protein that 

binds to Mus81, SLX1, and XPF, and it was also found to interact with SNM1B 141. No 

studies were performed that showed direct interaction, so more investigation into the 

functionality of this interaction needs to be done. Interestingly, SNM1B was also found 

to interact with PSF2 in a yeast two hybrid screen 158. PSF2 is part of the CMG helicase 

complex 159. It is known that PSF2, as part of the GINS complex, accumulates on 

chromatin and forms a complex with Cdc45 and MCM2-7. Interestingly, FA proteins 
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FANCA, FANCB, and FANCF also interact with PSF2 and have all been shown to 

associate with the replication fork independent of the DDR 160. The function of this 

specific interaction of SNM1B is still unknown although it suggests SNM1B may be at 

the replication fork during both normal and aberrant replication.  

 

Roles of SNM1B in DNA repair 

As mentioned above SNM1B has a role in ICL repair. We have previously shown 

that SNM1B functions epistatically to FANCD2 and FANCI in ICL repair. Specifically 

depletion of both SNM1B and FANCD2 did not increase hypersensitivity to MMC when 

compared to cells depleted of either SNM1B or FANCD2. Similar results were found 

when analyzing MMC induced chromosomal anomalies. SNM1B is also important for 

the efficient recruitment of HR factors BRCA1 and Rad51 to sites of MMC induced ICLs 
140. These data suggest that SNM1B functions within the FA pathway to repair ICLs. 

During the repair of ICLs, the ICL is unhooked by endonucleases which generates a 

DSB at the fork that is then repaired through HR 161,162.  

Multiple studies have shown evidence that SNM1B has a role in DSB repair. One 

study looked at IR induced breaks and using laser micro-irradiation 

immunofluorescence experiments, found that endogenous SNM1B localizes to the laser 

stripe 10 minutes post irradiation. Using live cell imaging it was also shown that SNM1B 

localizes to regions of induced DNA breaks by 10 seconds and that this SNM1B 

localization is ATM independent. From these results they concluded that SNM1B is 

important in the early response to DSBs including autophosphorylation of ATM and 

downstream ATM targets 149. When analyzing DSBs that result from ICL inducing 

agents, one group found that SNM1B depleted cells treated with MMC are defective in 

the DSB response, but IR cells are normal, which conflicts with the previous study 137. In 

the previous study (Demuth et al.) the authors used up to 20Gy of IR where the most 

drastic differences were noticed, while in this study 2Gy was used. The amount of 

breaks produced by 20 Gy versus 2 Gy is higher, and therefore, it is difficult to directly 

compare the two experiments since the cellular response may be different in the two 

conditions. SNM1B may have a role in promoting ATM signaling when there are higher 

numbers of DNA breaks. 
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 Several studies have also found additional roles of SNM1B in maintaining 

genome integrity but the mechanisms have not been elucidated yet. One study found 

that SNM1B binds to Astrin and is important in responding to spindle stress by 

activating the prophase checkpoint which occurs in early mitosis 163. Another study 

found that SNM1B interacts with HSP70 (heat shock proteins 70) which have roles in 

the DDR but the functionality of this interaction has not been characterized 164.  

Since the FA pathway is involved in ICL repair and in resolving replication stress, 

this thesis sought to determine if SNM1B is involved within the FA pathway in replication 

restart at stalled replication forks. As described above, nucleases are critical in these 

repair processes, so specifically the nuclease properties of SNM1B may have critical 

functions. Investigation into how SNM1B is involved in repairing collapsed replication 

forks that results from stalled forks has not been elucidated. SNM1B may play several 

roles at multiple stages of repairing replication-associated damage. It is also emerging 

that the SNM1B locus is genomically altered or mutated in a variety of cancer types and 

has been mapped at a chromosomal breakpoint associated with Wilms tumor 165,166. 

Furthermore, SNM1B was found mutated in half of primary mediastinal B cell 

lymphomas 167. Thus, SNM1B could potentially function as a tumor suppressor and may 

have important roles in preventing oncogenic chromosomal events in association with 

human disease.  

 

Regulation of DNA repair processes 

The DDR and subsequent DNA repair processes are tightly monitored and 

regulated events. Specifically, some DNA repair proteins are involved in multiple 

pathways to repair different types of DNA damage. Therefore, the timely activation and 

recruitment of these proteins need to be tightly controlled to ensure maintenance of 

genome integrity. The functions of DDR and DNA repair proteins are regulated at 

multiple levels including post-translational modifications (PTMs), cell cycle regulation, 

protein stability, and proteasomal degradation.  

Post-translational modifications (PTMs) 

PTMs have a critical role in the DDR as they impact protein functions, 

interactions, enzymatic activity, and localization. Some PTMs that are commonly 
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observed during DNA repair processes are phosphorylation, ubiquitination, 

SUMOylation, acetylation, methylation, and PARylation. The critical importance of 

kinases for phosphorylation events during the DDR is exemplified by the three protein 

kinases central in DNA repair:  ATM, ATR, and DNA-PK (DNA-dependent protein 

kinase) which are members of the PIKK (phosphoinositide-3-kinase-like protein kinase) 

family 168-170. One key phosphorylation event that all three kinases perform is 

phosphorylation of the histone variant H2AX 171-175. Once H2AX is phosphorylated 

(denoted as γH2AX) further downstream events are initiated including the recruitment of 

repair proteins 173,176. These kinases also have the ability to autophosphorylate which 

affects their own activities and functions 177-180. The DDR is comprised of a complex 

signaling cascade. Therefore, ATM phosphorylates a multitude of downstream proteins 

including the effector kinase CHK2 while ATR phosphorylates another effector kinase 

CHK1. These events ultimately result in cell cycle checkpoint activation to allow time for 

the cell to repair the damage and regulation of p53-induced apoptosis pathways if the 

damage is too severe to repair 83,181-183. 

Ubiquitination is another PTM that is commonly utilized to regulate DNA repair 

proteins. Ubiquitin is a 76 amino acid polypeptide that is covalently attached to lysine 

residues on proteins through E1 (activating), E2 (conjugating), and E3 (ligase) 

enzymes, and proteins are either monoubiquitinated or polyubiquitinated 184-186. 

Ubiquitin itself has seven lysine residues and polyubiquitin chains can form 187. While 

polyubiquitination primarily targets proteins for proteasomal degradation, discussed 

later, K63 linked polyubiquitin chains have roles in DNA repair 188,189.  

Monoubiquitination of a protein can promote its localization to a specific site. For 

example, two FA proteins, FANCD2 and FANCI (ID complex), are monoubiquitinated by 

the FA core complex which possesses E3 ubiquitin ligase function. This 

monoubiquitination event results in localization of the ID complex to sites of blocked or 

stalled replication forks 190. Additionally, monoubiquitination can promote protein:protein 

interactions through ubiquitin-binding domains (UBD) which can potentially recruit a 

DNA repair protein complex to the site of damaged DNA 191,192. For example, the 

monoubiquitination of the ID complex binds to the UBD of the nuclease FAN1 resulting 

in the recruitment of FAN1 to the replication fork 100,101,193,194. Monoubiquitination also 
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plays a role in regulation of functions by activating specific repair pathways. 

Monoubiquitination of the replication sliding clamp PCNA (proliferating cell nuclear 

antigen protein) is a prominent response to blocked replication forks. This modification 

induces translesion synthesis (TLS) mediated repair by displacing high-fidelity 

replicative polymerases with low-fidelity TLS polymerases which can bypass DNA 

lesions 18,195-197.  

 Another example of a PTM is SUMOylation which adds SUMO (small ubiquitin-

like modifier) to the protein 198. For example, SUMOylation of RPA results in facilitating 

the interaction between RPA and Rad51, thereby recruiting Rad51 to DSBs to initiate 

repair through HR 199. PARylation, characterized by the addition of ADP-ribose 

polymers to proteins through PARP, is another PTM 200. PARP is known to bind to DNA 

breaks and has been shown to PARylate the catalytic subunit of DNA-PK (DNA-PKcs) 

and stimulate its kinase activity in vitro 201. Furthermore, PARylation of targets recruits 

DDR proteins to these breaks. Histone methylation and acetylation regulates opening 

up of the chromatin allowing room for localization of repair proteins 202. An example of 

PTMs affecting protein stability and turnover is the WRN helicase which is acetylated 

upon DNA damage and this stabilizes the protein and prevents protein degradation 203.  

Cross-talk between these different types of PTMs can be involved in regulating 

one protein, especially if this protein has several functions in multiple repair pathways. 

One example of this is CtIP (carboxy-terminal binding protein interacting protein) which 

plays a key role in DSB repair. CtIP is phosphorylated by CDK2 resulting in BRCA1 and 

MRN binding which promotes end resection at a DSB and initiates HR-mediated repair 
204-207. CDK2 is present mainly in S and G2 phases and since its phosphorylation of 

CtIP occurs during these phases, CtIP plays an important role in regulating which DSB 

repair process HR or NHEJ should be used 208. CtIP is also ubiquitinated by BRCA1 

and both these PTMs are critical for the localization of CtIP to sites of breaks 209.  

Removal of PTMs is just as important in the regulation of proteins. For example, 

DUBs (deubiquitylating enzymes) promote disassembly of protein complexes, 

inactivation of protein functions, and disruption of interactions that are not required 

anymore once the damage is fixed 210,211. If proteins are not properly modified, their 

functions could be impaired resulting in the persistence of damaged DNA and an overall  
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increase in genome instability.  

Mechanisms to stabilize and regulate protein levels 

The ubiquitin-proteasome system (UPS) regulates protein levels and stabilization 

of proteins which is a key component of the DDR. While monoubiquitination is involved 

in localization, protein:protein interactions, and repair functions as described above, 

polyubiquitin chains (K48 linked) target proteins to the proteasome for degradation 
212,213. Specifically, many helicases have been shown to be regulated through this UPS. 

BLM helicase is ubiquitinated by RNF8/RNF168 which affects its localization to stalled 

replication forks. When BLM is ubiquitinated by other E3 ligases like CUL3, it is targeted 

for degradation 214,215. These two types of ubiquitination work together to monitor the 

activity of BLM during the restart of stalled replication forks. Another helicase FANCM is 

known to process DNA structures found during the repair of stalled replication forks and 

also to initiate fork regression 216. Once FANCM is no longer required at the replication 

fork it is targeted for degradation by the proteasome 217.  

Having higher levels of certain proteins in normal proliferating cells may result in 

deleterious phenotypes, so the cell rapidly degrades these proteins in normal 

conditions. Upon cellular stress, which may require the protein to fix the damage, it is 

not targeted for proteasomal degradation. Furthermore, protein levels of some DNA 

repair proteins are regulated in response to DNA damage. p53 is an example of this 

form of regulation of stabilization and activation in response to cellular stress including 

DNA damage 218. ATM, ATR, and DNA-PK have all been shown to phosphorylate p53 in 

response to DNA damage 219-223. This phosphorylation of p53 interrupts its interaction 

with Mdm2, which normally is bound to p53 and targets it for degradation 224,225. Once 

activated, p53, which is a transcription factor, initiates transcription of genes needed for 

the DDR and activation of cell cycle checkpoints, or if the damage is too severe, to 

initiate apoptosis 226-230.  

As the cell progresses through the cell cycle, DNA repair protein functions are 

coordinated depending on what phase of the cell cycle the damage has occurred and 

also what specific type of lesion is present 231. Protein levels of DNA repair factors may 

be regulated by the cell cycle; for example, CtIP. CtIP protein levels are low in G1 and 

as the cell progresses though S phase the protein levels increase (with consistent 
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transcription) 232. It has also been demonstrated that an interaction of Mre11 with CDK2-

CyclinA which occurs when this complex is available (S-phase) results in the regulation 

of CtIP protein levels, and these events occur in unperturbed proliferating cells 233. 

These data provide a potential way through which CtIP plays a role in deciding between 

HR and NHEJ by promoting HR-mediated repair.  

The importance of PTM mediated protein:protein interactions was discussed 

above as being critical for the assembly of repair complexes to sites of DNA damage for 

efficient repair. The stability of a protein can also be regulated through its interaction 

with other proteins. For example, the binding of two helicases important in the 

stabilization and restart of stalled forks, FANCJ and BLM, stabilizes the BLM protein 

while this interaction does not affect protein levels of FANCJ 234-236. The MRN complex 

is another example of a protein complex where removal of one component results in 

destabilization of the complex and decreased protein levels of the other components 237-

239. 

Regulation of nucleases in DNA repair   

DNA nucleases have critical functions in repairing all types of DNA damage. 

Specifically, nucleases are absolutely necessary in repairing stalled replication forks. A 

number of nucleases including Mre11, Mus81, FAN1, DNA2, Exo1, and SNM1B have 

been implicated in this process, but how they all work together and are coordinated and 

regulated is unknown. Furthermore, nuclease activities have to be tightly controlled 

during the repair process as unregulated or uncontrolled nuclease activity can degrade 

the DNA, resulting in even more damage and increased genome instability. Mre11 is 

controlled by the FA/BRCA network during its role in processing regressed forks to 

ensure these structures are not highly degraded 95.  
The 5’ to 3’ exonuclease activity of SNM1B generates 3’ overhangs at telomeres 

which is necessary for telomere protection. TRF2, a component of the shelterin 

complex, recruits SNM1B to telomeres through this direct interaction. It has been shown 

that at telomeres another member of the shelterin complex, POT1b, inhibits hyper-

resection of leading-end telomeres by SNM1B. However, the specific mechanism 

through which POT1b regulates SNM1B functions at telomeres is not defined 151. One 

study found that the interaction of SNM1B with TRF2 stabilized SNM1B protein levels. It 
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was shown that upon TRF2 binding to SNM1B, polyubiquitination of SNM1B was 

inhibited therefore preventing degradation of SNM1B via the proteasome 150,240. In 

addition to TRF2, SNM1B has also been shown to interact with DNA repair proteins 

including Mre11, FANCD2, Mus81, SLX4 137,141. However, the functional significance of 

these interactions and how they are mediated is not known.  

It is important to recognize that the functions of proteins can be regulated at 

multiple levels, and the interplay between these different levels of regulation including 

PTMs, cell cycle regulation, protein stability, and proteasomal degradation could all be 

important in the recruitment, localization, and enzymatic functions of a protein. 

Furthermore, the specific mechanism through which a protein is regulated could vary 

depending on the type of DNA damage. 

 

Summary 

Accurate DNA replication is critical for the cellular survival of proliferating cells. 

The DNA replication machinery may encounter various endogenous and exogenous 

sources of damage many of which are still being identified. A functioning DDR resolves 

stalled replication forks; however, if stalled forks cannot be restarted, collapsed forks 

with DSBs may result. These breaks are then repaired, but if the repair mechanisms are 

defective, this could lead to deleterious chromosomal anomalies. This increase in 

genome instability can lead to diseases associated with defects in the cellular response 

to replication stress including cancer. Understanding the cellular mechanisms that repair 

DNA damage is critical for understanding how defects in DNA repair mechanisms can 

lead to human disease. There are multiple processes to resolve replication-associated 

genomic damage and what proteins are involved, how they function together, and how 

their functions are regulated is still ambiguous. DNA nucleases play critical roles in the 

restart and repair of stalled or collapsed replication forks but the specifics are not well 

characterized. In this thesis, I sought to elucidate the role of the DNA nuclease SNM1B 

in responding to stalled replication forks and maintaining genome stability.  

In Chapter 2, I show that SNM1B is critical for cellular survival upon replication 

fork stalling caused by DNA polymerase inhibition. I also provide evidence that SNM1B 

is important for the localization of key repair factors FANCD2 and BRCA1 to sites of 



	   25	  

stalled replication forks and in preventing chromosomal aberrations specifically at CFSs. 

In Chapter 3, I demonstrate that SNM1B is important in preventing the accumulation of 

ssDNA and localization of Rad51 to stalled forks. I also show that in unperturbed 

conditions SNM1B prevents the accumulation of stalled and collapsed replication forks. 

In Chapter 4, I have identified a residue that is important for efficient SNM1B localization 

to stalled replication forks. I have also found that SNM1B protein levels are regulated in 

response to DNA damage and during normal cellular proliferation. Finally, implications 

of my findings and future directions are discussed in Chapter 5.  
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Chapter 2: SNM1B has functions in the resolution of replication stress and 
maintenance of common fragile site stability 

Summary 

SNM1B/Apollo is a DNA nuclease that has important functions in telomere 

maintenance and repair of DNA interstrand crosslinks (ICLs) within the Fanconi anemia 

(FA) pathway. SNM1B is required for efficient localization of key repair proteins, such as 

the FA protein, FANCD2, to sites of ICL damage and functions epistatically to FANCD2 

in cellular survival to ICLs and homology-directed repair.  The FA pathway is also 

activated in response to replication fork stalling.  Here we sought to determine the 

importance of SNM1B in cellular responses to stalled forks in the absence of a blocking 

lesion, such as ICLs.  We found that depletion of SNM1B results in hypersensitivity to 

aphidicolin, a DNA polymerase inhibitor that causes replication stress.  We observed 

that the SNM1B nuclease is required for efficient localization of the DNA repair proteins, 

FANCD2 and BRCA1, to subnuclear foci upon aphidicolin treatment; thereby indicating 

SNM1B facilitates direct repair of stalled forks.  Consistent with a role for SNM1B 

subsequent to recognition of the lesion, we found that SNM1B is dispensable for 

upstream events, including activation of ATR-dependent signaling and localization of 

RPA, γH2AX, and the MRE11/RAD50/NBS1 complex to aphidicolin induced foci.  We 

determined that a major consequence of SNM1B depletion is a marked increase in 

spontaneous and aphidicolin-induced chromosomal gaps and breaks, including 

breakage at common fragile sites.  Thus, this study provides evidence that SNM1B 

functions in resolving replication stress and preventing accumulation of genomic 

damage. 
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maintenance of common fragile site stability. Human Molecular Genetics, 22, 4901-
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Introduction 

Replication of the genome is essential for faithful transmission of genetic 

information to daughter cells and for maintenance of genomic integrity.  The DNA 

replication machinery is highly processive and accurate; however, progression of the 

replication fork can be impeded by secondary DNA structures or physical blocks, such 

as DNA interstrand crosslinks (ICLs).  Blocked or stalled forks can be stabilized and 

restarted upon arrest; however, they may also collapse, leading to genomic damage in 

the form of DNA double strand breaks (DSBs). Replication associated DSBs have 

potential to engage in mutagenic events such as chromosomal deletions or aberrant 

rearrangements 1,2.  Replication stress represents a constant threat to the genome; 

thus, it is of importance to elucidate the cellular mechanisms that ensure efficient 

resolution of blocked or stalled replication forks. 

SNM1B/Apollo is a DNA nuclease that is comprised of a highly conserved, 

catalytic metallo-β-lactamase/β-CASP N-terminal domain and a unique C-terminus 3.   

Previous studies have demonstrated critical functions for its intrinsic 5’ to 3’ 

exonuclease activity in the processing of leading strand telomeres to protect them from 

end-to-end joining 4-6.  SNM1B also plays important roles in the repair of DNA damage.  

In this regard, depletion of SNM1B in mammalian cells results in hypersensitivity to ICL 

inducing agents such as mitomycin C (MMC) and a moderate sensitivity to ionizing 

radiation (IR) 7-10.  We demonstrated that SNM1B is required for efficient localization of 

key repair proteins, including the Fanconi anemia (FA) protein, FANCD2, and the 

homologous recombination proteins, BRCA1 and RAD51, to sites of ICL induced 

damage 10.   
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FA is an inherited genome instability disorder characterized by bone marrow 

failure, skeletal defects, cancer predisposition, and cellular hypersensitivity to ICLs 11,12.  

There are currently fifteen known FA complementation groups (FANCA, B, C, 

D1/BRCA2, D2, E, F, G, I, J, L, M, N, O, P).  A “core” complex comprised of eight FA 

proteins (FANCA, B, C, E, F, G, L and M) possesses ubiquitin ligase activity and is 

activated by the presence of ICLs.  The core complex monoubiquitinates FANCD2 and 

FANCI, which localize to chromatin and form subnuclear foci at the sites of damage 
11,12. The FA pathway plays central roles in ICL repair, and FA patient cell lines are 

hypersensitive to ICLs and exhibit spontaneous and replication stress induced 

chromosomal aberrations.  SNM1B depletion also results in increased levels of 

spontaneous and ICL induced chromosomal anomalies, including gaps, breaks, and 

radial structures.  The cellular phenotypes of SNM1B depleted cells parallel those 

observed in FA cells, and indeed, the functions of SNM1B in ICL repair and maintaining 

chromosomal stability are epistatic to FANCD2 and FANCI 10. 

 The FA pathway is also activated in response to replication fork slowing or 

stalling 13.  The mechanisms involved in resolving replication stress are distinct from 

those required for removal or bypass of ICLs and are not fully defined.  One outstanding 

question is the identification of DNA nucleases involved in processing the nascent DNA 

strands to facilitate replication restart or repair upon fork collapse 14.  SNM1B is one of 

several candidate nucleases that may participate in nucleolytic processing of replication 

intermediates.  It has been demonstrated to form complexes with proteins that localize 

to and function in repair of stalled forks.  SNM1B interacts directly with MRE11 7, an 

endo/exonuclease that facilitates replication fork restart 15,16 and localizes to stalled 

replication forks 17-19.  MRE11 also catalyzes enhanced resection of unprotected stalled 

replication forks 20-22.  In addition, SNM1B interacts with the FA proteins, FANCD2 7 and 

FANCP/SLX4 23.  Monoubiquitinated FANCD2 localizes to sites of stalled forks 13 and 

functions in stabilizing and protecting stalled forks from extensive nucleolytic 

degradation 21.  FANCP/SLX4 is a scaffold protein that interacts with several structure-

specific nucleases and regulates their activities in response to different types of DNA 

damage, including replication stress 24-28.  Like FANCD2, FANCP/SLX4 functions 

epistatically to SNM1B in repair of ICLs 23.  
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Given the evidence that SNM1B functions within the FA pathway in the repair of 

ICLs and interacts with proteins involved in resolving replication stress, we have 

examined the importance of the SNM1B nuclease in the repair of stalled forks.  We find 

that depletion of SNM1B from human cell lines results in hypersensitivity to the DNA 

polymerase inhibitor, aphidicolin, which causes replication fork slowing and stalling.   

We demonstrate that SNM1B depleted cells are not defective for sensing or signaling 

aphidicolin-induced DNA damage.  However, the SNM1B nuclease is required for 

efficient localization of key repair proteins, FANCD2 and BRCA1, to stalled replication 

forks.  We also observe that SNM1B depleted cells exhibit elevated levels of 

spontaneous and aphidicolin induced gaps and breaks, including increased instability at 

the common fragile sites, FRA3B and FRA16D.  These findings provide evidence that 

the SNM1B nuclease plays critical roles in the resolution of stalled replication forks to 

maintain genome stability.  

 

Materials/Methods 

Knockdown of SNM1B expression by siRNA.   

The HCT116 colon cancer and WT fibroblast human cell lines were cultured as 

previously described 29.  HCT116 cells were plated at a density of 1x105 cells per well of 

a 6 well dish in McCoy’s media (10% FBS, 1% Pen/Strep) 24 hours prior to siRNA 

transfection.  HeLa cells were plated at the same density in DMEM (10% FBS, 1% 

Pen/Strep).  All siRNAs (50 nM) were transfected using Lipofectamine 2000 (Invitrogen) 

as per manufacturer’s instructions.  SNM1B mRNA levels were determined via semi-

quantitative RT-PCR in every experiment to verify the extent of siRNA knockdown as 

previously described 10.  

 

Aphidicolin sensitivity assay.   

WT fibroblasts transfected with non-specific (NS) or siSnm1B-1 (SNM1B specific) 

siRNAs were plated at low density 48 hours post transfection and incubated with the 

indicated doses of aphidicolin for 24 hours.  Cells were washed with media three times 

and allowed to recover 5-7 days.  Percent survival was determined using the 

colorimetric assay for cell survival as previously described 30.  The sensitivity curve was 
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performed three independent times. HeLa cells transfected with NS, siSnm1B-1, or 

siSnm1B-2 siRNAs and HCT116 cells transfected with NS or siSnm1B-1 siRNAs were 

plated and analyzed as above.  The aphidicolin sensitivity curve was performed two 

independent times.    

 

Chromosome anomalies and FISH.    

HCT116 cells transfected with NS or siSnm1B-1 were treated with aphidicolin 

(0.3 or 0.5 µM) for 24 hours.  Cells were incubated with colcemid for 1 hr (untreated) or 

3 hours (0.3 or 0.5µM aphidicolin).  Cells were harvested and incubated in 0.075M KCl 

for 15 minutes at 37oC followed by a series of fixations in Carnoy’s fixative (3:1 

methanol:acetic acid).  Fixed cells were dropped onto slides and baked prior to Giemsa 

staining or two-color fluorescence in situ hybridization (FISH).  Giemsa stained 

chromosomes were scored for gaps and breaks.  The average gaps and breaks per 

metaphase was calculated from three independent experiments.  For two-color FISH, 

probes were generated using BAC and YAC constructs containing human genomic 

inserts that span the fragile site regions.  YAC 850A6 was used for FRA3B and 

BAC26L41 was used for FRA16D 31.  Probes were labeled by nick translation synthesis 

with digoxigenin or biotin (Roche).  Two-color FISH was done as previously described 
31.  Approximately 30 signals were examined for each sample from at least three 

independent experiments.  The gaps/breaks and common fragile site analyses were 

performed in a blinded manner.  Images were acquired using a Zeiss Axioscope 

epifluorescence microscope and Olympus DP70 digital camera system. 

 

Western blot analyses.   

HCT116 cells transfected with NS or siSnm1B-1 were treated with 0.3µM 

aphidicolin for 24 hours.  Cells were harvested and resuspended in protein lysis buffer 

(25 mM HEPES, pH 7.4, 10% glycerol, 200mM KCl, 0.1% NP40, 1mM DTT) containing  

phosphatase (Roche PhosSTOP) and protease inhibitors (Roche Complete Mini EDTA 

free).  For the FANCD2-Ub experiments, soluble and chromatin-bound FANCD2 

fractions were separated as previously described 32.  Protein concentration was 

determined by Bradford assay.  Lysates (100 mg) were analyzed by western blotting 
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using the appropriate primary antibodies and IRDye 800 CW secondary antibodies (Li-

Cor).  Bands were visualized using Odyssey 2.1 software.  All experiments were 

performed at least three independent times. 

HCT116 cell lines expressing wildtype and mutant SNM1B were harvested and 

resuspended in protein lysis buffer (10mM PIPES, pH 6.8, 100mM NaCl, 300mM 

sucrose, 1mM MgCl2, 0.1% Triton-X 100) containing phosphatase (Roche PhosSTOP) 

and protease inhibitors (Roche Complete Mini EDTA free), and Benzonase (Purity 

>99% Novagen).  Expression of SNM1B protein was analyzed by western blotting using 

V5 antibody (Invitrogen).  

 

Generation of HCT116 cell lines expressing siRNA-1 resistant wildtype and mutant 

SNM1B.   

An siSnm1B-1 resistant cDNA containing three silent point mutations within the 

siRNA-1 core sequence was used for the complementation experiments and to 

generate the site specific mutants 10. The wildtype and mutant siRNA resistant cDNAs 

were subcloned into the pLL IRES GFP lentiviral vector (UM vector core).  Lentiviruses 

expressing the SNM1B-IRES-GFP cassettes were generated as previously described 
10.  HCT116 cells (2.0x105) were incubated with 1 mL of virus containing media with 4 

mg/mL polybrene, 1 mL DMEM, and 10% FBS for 24 hours.  Cells were harvested 24 

hours later, and expression of the SNM1B-IRES-GFP expression cassette was 

determined by flow cytometry to determine the percentage of GFP positive cells. 

 GFP positive cells were sorted (University of Michigan Flow Cytometry Core), 

cultured, and resorted.  SNM1B expression levels were assessed by semi-quantitative 

RT-PCR using primers specific for the siRNA resistant cDNAs.  Early passage sorted 

cell lines with comparable levels of SNM1B expression were used for complementation 

experiments (Fig. 2.4B, 2.5B, Suppl. Fig. 2.4).  HCT116 cells infected with the pLL 

empty vector control were used for all experiments.  For complementation experiments, 

HCT116 cells expressing wildtype or mutant SNM1B-IRES-GFP constructs were 

transfected with the siRNAs and FANCD2 and BRCA1 foci were quantitated in a blinded 

manner.  Images were acquired at 100 X magnification at the same fluorescence 
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intensity.  Data represent three or more independent experiments.  Error bars indicate 

standard error of the mean (SEM). 

 

Immunofluorescence of subnuclear foci.   

HCT116 cells (4x104) were plated on coverslips in 12 well dishes 24 hrs prior to 

siRNA transfection.  Cells were treated with aphidicolin (0.3 µM) 48 hours post 

transfection for either 6 or 24 hours.  HeLa cells were plated the same way for NBS1, 

FANCD2, and BRCA1 foci experiments. Empty vector-IRES-GFP and WT-SNM1B-

IRES-GFP HCT116 cells were plated on coverslips in 12 well dishes and then treated 

with aphidicolin (0.3 µM) for 24 hours. For RPA, BRCA1, MRE11, NBS1, and FANCD2 

foci experiments, cells were incubated in cold extraction buffer (20mM HEPES, 50mM 

NaCl, 300mM sucrose, 3mM MgCl2, 0.5% TX-100) for 5 min followed by fixation in 3.7% 

p-formaldehyde, 2% sucrose, 0.5% TX-100 for 20 min and then washed 3x with PBS. 

For γH2AX foci, cells were fixed in 3.7% p-formaldehyde, 2% sucrose for 20 min 

followed by incubation in cold extraction buffer for 5 min and then washed 3x with PBS.  

For V5-SNM1B foci, cells were fixed with ice cold 70% methanol, 30% acetone at -20°C 

for 20 min and then air dried at room temperature. Cells were then stained with primary 

antibody for 45 min and then Alexa Fluor 488 or 594 (Invitrogen Molecular Probes) 

secondary antibodies for 45 min.  Prolong Gold antifade reagent with DAPI (Invitrogen) 

was used to mount coverslips on slides.  Images were acquired using Olympus BX61 

microscope and FISHview Software (Applied Spectral Imaging).  At least three 

independent experiments were conducted.     

 

Cell cycle analysis.   

HCT116 cells were plated in a 6 well dish (1 x 105 in each well) and then 

transfected with siRNA 24 hours later.  Cells were treated with 0.3µM aphidicolin 48 

hours post transfection. Cells were then fixed with cold 70% ethanol, stored at -20°C 

overnight, and stained with propidium iodide (PI) for 30 min at room temperature.  FACS 

analysis was performed using an Accuri C6 flow cytometer and cell cycle profiles were 

analyzed using FlowJo (TreeStar) software.  
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Antibodies.  

α-pRPA32 Ser4/8 was from Bethyl (cat# A300-245A). α-pCHK1 Ser317 was from R&D 

Systems (cat# AF2054). α-PCNA was from SantaCruz (PC10).  α-Topoisomerase I was 

from BD Biosciences (cat# 556597).  α-RPA and α-BRCA1 were from Calbiochem (cat# 

NA19L, OP92).  α-γH2AX was from Millipore (cat# 05-636). α-FANCD2, α-MRE11, and 

α-NBS1 were from Novus Biologicals (cat# 100-182, 100-142, 110-57272).  α-V5 was 

from Invitrogen (cat# R960-25).  α-Ku70 was from Abcam (cat# 10878). 

 

Results  

Impact of SNM1B depletion on cellular survival and signaling in response to aphidicolin 

treatment. 

 We examined the impact of SNM1B depletion on cellular survival upon exposure 

to the DNA polymerase inhibitor, aphidicolin.  Wildtype human fibroblasts were 

transfected with a previously characterized siRNA specific for SNM1B (siSnm1B-1) or a 

nonspecific (NS) siRNA control 10.  At 48 hours post-transfection, cultures were treated 

with 0, 0.25, 0.5, and 1 µM aphidicolin for 24 hours, and the number of surviving cells 

was quantitated.  We observed that SNM1B depleted fibroblasts exhibited significantly 

reduced survival after aphidicolin treatment when compared to controls (Figure 2.1A).  

To confirm these results, I examined aphidicolin sensitivity in HeLa cells transfected 

with siSnm1B-1 and a distinct siRNA, siSnm1B-2, that binds to a downstream sequence 

within the mRNA 10.  I observed that depletion of SNM1B with either siRNA significantly 

reduced survival of HeLa cells upon exposure to aphidicolin (Suppl. Fig. 2.1A). I further 

examined aphidicolin sensitivity in HCT116 cells transfected with siSnm1B-1 and 

observed a similar reduced survival of HCT116 cells depleted of SNM1B in response to 

aphidicolin treatment (Suppl. Fig. 2.1B).    

 The presence of long stretches of ssDNA generated upon replication fork stalling 

activates signaling pathways, and defects in DNA damage sensing or signaling can 

manifest as decreased cellular survival.  Thus, we examined the cellular responses to 

inhibition of DNA polymerase activity in SNM1B depleted cells.  The ATR protein kinase 

plays a central role in initiating the cellular responses to replication stress.  The 

canonical signaling pathway is initiated upon binding of the RPA heterotrimeric complex  



	   49	  

 
 
Figure 2.1. Cellular responses to replication stress upon SNM1B depletion.   
A. Cellular survival in response to aphidicolin treatment. Wildtype human 
fibroblasts transfected with NS or siSnm1B-1 were treated with the indicated doses of 
aphidicolin for 24 hr at 48 hr post transfection. Cells were allowed to proliferate for 5-7 
days. Percent survival was determined compared to an untreated control. Graph 
represents the average of three independent experiments. Error bars; standard 
deviation.   
B.  ATR-dependent signaling in SNM1B depleted cells. NS or siSnm1B-1 
transfected HCT116 cells were treated with aphidicolin (0.3 µM) for 24 hr, and whole 
cell lysates were analyzed by western blotting. Phosphorylation of RPA (pRPA32) and 
CHK1 (pCHK1) and monoubiquitination of PCNA (Ub-PCNA) were examined.  
Representative blots from at least six independent experiments are shown.  
Topoisomerase I (TOP1), loading control; U, untreated controls.  
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to ssDNA at stalled forks and recruitment of ATR to ssDNA-RPA via its binding partner, 

ATRIP.  Subsequent activation of ATR-ATRIP results in phosphorylation of downstream 

substrates to potentiate damage induced signaling 33. 

One key signaling event indicative of ATR activation in response to replication 

stress is phosphorylation of the effector protein kinase, CHK1 34.   To assess the 

importance of SNM1B in ATR dependent signaling, we depleted SNM1B in the HCT116 

human colon cancer cell line and assessed pCHK1 S317 levels upon exposure to 

aphidicolin (0.3 µM) by western blotting.  We observed that aphidicolin treatment 

induced phosphorylation of CHK1 in both siSnm1B-1 and NS transfected cells, and the 

levels of CHK1 p-S317 were approximately equivalent (Figure 2.1B).  ATR-dependent 

phosphorylation of the RPA32 subunit is another well-characterized event in response 

to replication stress.  Thus, we next examined levels of RPA32 phosphorylation and 

observed that aphidicolin induced similar levels of p-RPA in the SNM1B depleted cells 

compared to controls (Figure 2.1B).  

PCNA is the homotrimeric sliding clamp that tethers DNA polymerases to 

replication forks.  It becomes monoubiquitinated in a CHK1-dependent, ATR-

independent manner and facilitates translesion DNA synthesis upon replication fork 

stalling 35,36.  We found that SNM1B depletion did not have a significant impact on Ub-

PCNA levels compared to NS transfected controls (Figure 2.1B).  These results indicate 

that SNM1B does not play a critical role in the cellular signaling response to replication 

stress, including PCNA ubiquitination and ATR-dependent phosphorylation of CHK1 

and RPA32.   Consistent with these findings, we observed that SNM1B depleted and 

control cells exhibit similar proportions of cells accumulating in S phase in response to 

low dose aphidicolin treatment (Suppl. Fig. 2.2).  However, higher percentages of sub-

G1 cells were observed in SNM1B depleted cells, consistent with the reduced cell 

survival observed in Fig. 1A (Suppl. Fig. 2.2). 

 

SNM1B is not required for localization of RPA, γH2AX, and the MRN complex to 

aphidicolin induced subnuclear foci. 

 RPA localization to regions of ssDNA at replication forks can be visualized as 

punctate, subnuclear foci by immunofluorescence microscopy (Figure 2.2A).  We  
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Figure 2.2. SNM1B is not required for localization of RPA, γH2AX, and the MRN 
complex to aphidicolin-induced subnuclear foci.  
A.  RPA foci formation in SNM1B depleted cells. RPA foci (red fluorescence) were 
quantitated in SNM1B depleted and control HCT116 cells exposed to aphidicolin (0.3 
µM) for 6 or 24 hr. The average percentage of cells containing >10 RPA foci is plotted. 
The results represent data from at least three independent experiments; at least 100 
cells were scored from each experiment. Nuclei, DAPI stained (blue). Error bars, SEM; 
UNT, untreated controls.   
B.  γH2AX foci formation in SNM1B depleted cells.  γH2AX foci (red) were 
quantitated in SNM1B depleted and control HCT116 cells treated with aphidicolin for 6 
or 24 hr, as described in A.   
C. NBS1 and MRE11 foci formation in SNM1B depleted cells. NBS1 foci (green) 
were quantitated in SNM1B depleted and control HeLa cells treated with aphidicolin for 
6 or 24 hr, as described in A. MRE11 foci (green) were quantitated in SNM1B depleted 
and control HCT116 cells treated with aphidicolin for 24 hours, as described in A.  
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examined the impact of SNM1B depletion on RPA foci formation in HCT116 cells 

exposed to 0.3µM aphidicolin at early (6 hrs) and later (24 hrs) time points. Upon 

aphidicolin treatment, we observed an approximately 2-fold increase in RPA foci 

positive cells in both siSnm1B-1 and NS transfected cells at 6 hours and an even further 

increase at 24 hours (Figure 2.2A).  We noted that the percentages of aphidicolin 

induced RPA foci positive cells in SNM1B depleted cells were consistently higher at 24 

hours compared to controls.  These findings demonstrate that SNM1B is not required 

for RPA localization and suggest that SNM1B depletion results in increased ssDNA 

formation upon replication fork stalling.  

 The histone variant, H2AX, is phosphorylated by ATR in response to stalled or 

blocked replication forks.  Recent studies have demonstrated that phosphorylated H2AX 

(γH2AX) is localized at stalled forks prior to the detection of DNA breaks and is required 

for efficient recruitment of other repair proteins, including FANCD2 and BRCA1 37-39.  I 

observed that aphidicolin treatment of siSnm1B-1 and NS transfected cells induced 

γH2AX foci formation (Fig. 2B).  However, SNM1B depletion did not impact the 

percentage of γH2AX foci positive cells at either 6 or 24 hours post aphidicolin treatment 

compared to controls. 

 MRE11 is a DNA nuclease that functions within the context of the heterotrimeric 

MRN protein complex.  MRN plays central roles in the repair of DNA DSBs, and it also 

has functions during DNA replication.  MRE11 and NBS1 have been demonstrated to 

co-localize with RPA, γH2AX, and FANCD2 at stalled replication forks 17-19, and both 

MRE11 and NBS1 physically interact with RPA 40.  Previous studies identified physical 

interactions between SNM1B and the MRE11 and RAD50 components of MRN 7.  

Therefore, I next examined the impact of SNM1B depletion on replication stress induced 

MRE11 and NBS1 foci formation.  I found that, similar to RPA and γH2AX foci, MRE11 

and NBS1 localization to sites of stalled forks was not dependent on SNM1B (Figure 

2.2C).   

 

Impact of SNM1B depletion on FANCD2 monoubiquitination, chromatin localization, and 

foci formation. 



	   54	  

The FA protein, FANCD2, plays a central role in cellular responses to stalled 

forks.  It forms a stable complex with FANCI, and both proteins undergo 

monoubiquitination by the FA core complex in response to genotoxic stress.  

Monoubiquitinated FANCD2-FANCI becomes associated with nuclear chromatin and 

subsequently assembles into foci.  FANCD2 then recruits additional repair factors 

required for resolution of stalled replication forks 41,42.  We examined the levels of 

aphidicolin induced FANCD2 ubiquitination (FANCD2-Ub) and chromatin localization of 

FANCD2-Ub in SNM1B depleted cells.  The cytosolic and chromatin bound proteins 

were fractionated from siSnm1B-1 and NS transfected cells, and the levels of FANCD2 

(S) and FANCD2-Ub (L) in each fraction were determined by western blotting.  We 

observed that SNM1B depletion did not significantly impact the extent of 

monoubiquitination of FANCD2 (FANCD2-L) upon aphidicolin treatment nor did it affect 

accumulation of FANCD2-Ub in the chromatin fraction (P1) (Figure 2.3A). 

We next examined replication stress induced FANCD2 foci in siSnm1B-1 and NS 

transfected cells exposed to 0.3 µM aphidicolin.  We observed that the percentage of 

control cells containing FANCD2 foci increased approximately 3.5- and 13-fold at 6 and 

24 hrs of aphidicolin treatment, respectively (Figure 2.3B).   In contrast, SNM1B 

depletion markedly reduced the percentage of aphidicolin induced FANCD2 foci to 

approximately 50% of controls at both 6 and 24 hrs (p < 0.01).  I observed a similar 

decrease in FANCD2 formation in HCT116 cells transfected with siSnm1B-2 upon 

aphidicolin treatment (Suppl. Fig. 2.3A).  Furthermore, I examined replication stress 

induced FANCD2 foci in HeLa cells and confirmed that depletion of SNM1B significantly 

impairs recruitment to sites of stalled forks.  I observed a decrease in the percentage of 

HeLa cells with FANCD2 foci to approximately 50% and 35% of controls upon 

transfection with siSnm1B-1 and siSnm1B-2, respectively (Suppl. Fig. 2.3B). Thus, 

these results clearly establish that SNM1B is required for efficient assembly of FANCD2 

into DNA repair foci; however, it is dispensable for activation and chromatin localization 

of FANCD2. 

 SNM1B possesses intrinsic 5’ to 3’ DNA exonuclease activity on single and 

double strand substrates 4,5,43,44.  This nuclease activity is required for DNA end 

resection of telomeres to generate 3’ single strand overhangs for protection against  
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Figure 2.3. Replication stress induced FANCD2 foci formation is impaired in 
SNM1B depleted cells.   
A. FANCD2 monoubiquitination in SNM1B depleted cells.   HCT116 cells 
transfected with NS or siSnm1B-1 (si-1) were treated with aphidicolin (0.3 µM) for 24 hr.  
Cells were harvested, and the soluble (S1) and chromatin associated (P1) proteins were 
fractionated.  Western blotting to detect the unmodified (FANCD2-S) and 
monoubiquitinated (FANCD2-L) forms of FANCD2 was performed using α-FANCD2 
antibodies. UNT, untreated controls.   
B. FANCD2 foci formation. HCT116 cells transfected with NS or siSnm1B-1 were 
treated with aphidicolin (0.3 µM) for 6 or 24 hr, as indicated. The average percentage of 
cells containing >10 FANCD2 foci (red) is plotted. The results represent data from three 
independent experiments; at least 100 cells were scored from each experiment. Nuclei, 
DAPI stained (Blue).  Error bars, SEM.  UNT, untreated controls.  
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inappropriate end-to-end joining of chromosomes 4,5,43.  We assessed the importance of 

SNM1B nuclease activity on localization of FANCD2 to DNA repair foci in response to 

replication stress.  To this end, we generated an siRNA-resistant lentiviral SNM1B 

cDNA with a C-terminal V5 epitope tag and mutated a residue within the highly 

conserved metallo-β-lactamase domain required for nucleolytic activity, D14N (Figure 

2.4A, Suppl. Fig. 2.4A,B).  This residue has been previously demonstrated to be 

essential for SNM1B 5’ to 3’ exonuclease activity in vitro 4,45 and for the functions of 

SNM1B in telomere processing in vivo 4,45.  The SNM1B-D14N mutant and wildtype 

siRNA resistant cDNAs were expressed from a construct harboring an IRES-GFP 

cassette, and cells expressing GFP were sorted and cultured.  We confirmed 

expression of the siRNA resistant cDNAs by immunoblotting using α-V5 antibodies and 

observed both the wildtype and SNM1B-D14N proteins in NS and siSnm1B-1 

transfected cells (Suppl. Fig. 2.4C). 

I observed that the wildtype SNM1B expressing cells fully complemented the 

defect in aphidicolin induced FANCD2 foci formation in siSnm1B-transfected cells 

(Figure 2.4B).  In contrast, the nuclease deficient SNM1B-D14N construct did not 

complement this defect and exhibited a significantly lower percentage of FANCD2 foci 

containing cells (45% vs. 22%, p < 0.05; wildtype vs. SNM1B-D14N, respectively).  

These findings indicate that the nucleolytic activity intrinsic to SNM1B facilitates the 

localization of FANCD2-Ub to stalled replication forks. 

 

Impact of SNM1B depletion on BRCA1 localization to DNA repair foci.  

FANCD2 co-localizes with the breast cancer suppressor protein, BRCA1, in 

response to UV-induced stalled replication forks, and its localization is dependent on 

BRCA1 37.  Recently, BRCA1 has also been demonstrated to play central roles in 

stabilizing replication forks prior to collapse 21.  Given our observations that SNM1B is 

required for FANCD2 foci formation in response to replication stress, I also examined 

the impact of SNM1B depletion on BRCA1 localization.  Upon exposure to aphidicolin, I 

observed a significant, approximately 5-fold, increase in the percentage of control cells 

containing BRCA1 foci (p < 0.008) (Figure 2.5A).   However, BRCA1 foci formation was 

markedly impaired in siSnm1B-1 transfected HCT116 cells.  I observed a minimal  
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Figure 2.4. SNM1B nuclease activity is required for efficient FANCD2 foci 
formation.   
A. Nuclease deficient SNM1B cDNA.  Diagram of SNM1B cDNA encoding the 
conserved metallo-β-lactamase/βCASP domain. Alignment between the S. cerevisiae 
and H. sapiens orthologous amino acid sequences of βCASP family members adjacent 
to the inactivating D14N mutation is shown. Identical residues, grey box; conserved 
residues, open boxes.  Base changes within the target region of the SNM1B siRNA are 
indicated below wildtype cDNA sequence as siSnm1B-R (resistant).  
B. FANCD2 foci formation with nuclease deficient SNM1B.  HCT116 cells 
transduced with WT-SNM1B-IRES-GFP (WT) or D14N-SNM1B-IRES-GFP (D14N) 
retroviruses were sorted, then transfected with NS or siSnm1B-1 and treated with 
aphidicolin (0.3 µM) for 24 hr. FANCD2 foci (red) were visualized by 
immunofluorescence (left panels). The percentage of cells with >10 FANCD2 foci were 
quantitated (right panel). Graph represents the results from at least three independent 
experiments; at least 100 cells were scored from each experiment. Nuclei, DAPI stained 
(Blue).  Error bars, SEM.  UNT, untreated controls. 
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Figure 2.5. Replication stress induced BRCA1 foci formation is impaired in 
SNM1B deficient cells.  
A. BRCA1 foci formation.  HCT116 cells transfected with NS or siSnm1B-1 were 
treated with aphidicolin (0.3 µM) for 24 hr. The percentage of cells containing > 10 
BRCA1 foci (green) was determined. Graph represents average of four independent 
experiments; at least 100 cells were scored from each experiment.  
B. Complementation of defective BRCA1 foci formation. HCT116 cells transduced 
with pLL-IRES-GFP empty vector (EV) or WT-SNM1B-IRES-GFP (WT) retroviruses 
were sorted, then transfected with NS or siSnm1B-1 and treated with aphidicolin (0.3 
µM) for 24 hr. BRCA1 foci (green) were visualized by immunofluorescence (left panels).  
The percentage of cells with >10 BRCA1 foci were quantitated (right panel). Graph 
represents the results from two independent experiments; at least 100 cells were scored 
from each experiment. Nuclei, DAPI stained (Blue). Error bars, SEM.  
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increase in replication stress induced localization (approximately 1.5-fold), and the 

percentage of aphidicolin induced BRCA1 foci containing cells was significantly lower 

compared to controls (p < 0.05).  I observed a similar defect in BRCA1 foci formation in 

HeLa cells transfected with siSnm1B-1, which reduced the percentage of cells with 

aphidicolin-induced BRCA1 foci to 50% of controls (Suppl. Fig. 2.5).  This impairment in 

localization of BRCA1 to sites of stalled forks was fully complemented upon expression 

of the siRNA resistant SNM1B cDNA (Figure 2.5B).  Together, these findings 

demonstrate that SNM1B is required for efficient recruitment of the key repair proteins, 

BRCA1 and FANCD2, to sites of stalled replication forks. 

 

SNM1B localizes to subnuclear foci upon aphidicolin treatment. 

Based on our observations that depletion of SNM1B impairs localization of 

FANCD2 and BRCA1 to aphidicolin induced subnuclear foci, we hypothesized that 

SNM1B may be recruited to sites of stalled forks to facilitate repair.  Thus, I treated cells 

expressing V5-tagged SNM1B with 0.3 µM aphidicolin and examined SNM1B foci 

formation.  I observed a marked 8-fold increase in cells containing SNM1B foci upon 

exposure to aphidicolin (Figure 2.6).  These findings indicate that, similar to other 

proteins required for resolution of replication stress, SNM1B localizes to stalled forks to 

facilitate repair.     

 

SNM1B prevents accumulation of spontaneous and replication stress induced 

chromosome damage. 

 Defects in the resolution of stalled replication can result in fork collapse and the 

generation of DNA DSB intermediates that undergo repair via RAD51-mediated 

homologous recombination.  Inefficient repair of collapsed forks results in accumulation 

of gaps and breaks, and these DNA lesions accumulate in cells defective in responses 

to replication stress, including ATR, CHK1, and FANCD2 deficiencies 13,31,46,47.  

Therefore, we examined the impact of SNM1B depletion on spontaneous and 

aphidicolin induced gaps and breaks. 

 We observed that SNM1B depletion in HCT116 cells resulted in significantly 

elevated levels of spontaneous gaps and breaks compared to controls, as previously  
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Figure 2.6. SNM1B forms subnuclear foci in response to aphidicolin.   
HCT116 cells transduced with WT-SNM1B-IRES-GFP (WT) retrovirus were sorted and 
treated with aphidicolin (0.3 µM) for 24 hr. V5-SNM1B foci (green) were visualized by 
immunofluorescence (left panels). The average percentage of cells with V5-SNM1B foci 
was quantitated, and the percentage of cells containing >5 foci is plotted (right panel).  
Graph represents the results from four independent experiments; at least 100 cells were 
scored from each experiment. Nuclei, DAPI stained (Blue). Error bars, SEM. UNT, 
untreated controls. 
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reported 7,9,10,48 (Figure 2.7A).  Untreated NS transfected cells harbored an average of 

0.17 gaps and breaks per metaphase, whereas siSnm1B-1 transfected cells contained 

approximately 3-fold more anomalies (0.5 gaps/breaks per metaphase) (Figure 2.7B).   

SNM1B depleted cells exhibited a dose dependent increase in gaps/breaks, and at 0.5 

µM aphidicolin, siSnm1B-1 transfected cells harbored a substantially higher average 

number of anomalies per metaphase compared to NS transfected controls (5 vs. 1.7 

gaps/breaks per metaphase, respectively; Figure 2.7B).  A Poisson distribution analysis 

of the number of spontaneous and aphidicolin induced gaps/breaks revealed that the 

differences in mean rate of anomalies in SNM1B depleted versus control cells were 

significant in all cases (p < 0.001; Fig. 7C). 

 We note that approximately 26% of metaphases scored in SNM1B depleted cells 

treated with 0.5 µM aphidicolin contained greater than 20 gaps and breaks per 

metaphase, and in some cases, the number of anomalies was too numerous to 

quantitate.  In contrast, only 5% of control metaphases exhibited greater than 20 

gaps/breaks at this aphidicolin dose (Suppl. Fig. 2.6). These metaphases were not 

included in the quantitative analyses; therefore, the phenotypes graphically shown 

underestimate the extent of replication stress induced chromosomal damage in SNM1B 

depleted cells (Figure 2.7B,C).  Together, these findings demonstrate a critical role for 

SNM1B in preventing chromosomal gaps/breaks in response to replication perturbation. 

 

SNM1B is required to suppress spontaneous and replication stress induced common 

fragile site expression. 

 Common fragile sites are genomic loci that recurrently exhibit gaps and breaks 

on metaphase chromosomes in response to partial replication inhibition 49.  Thus, we 

hypothesized that SNM1B depletion would result in increased common fragile site 

instability.  Two of the most frequently expressed common fragile sites in the human 

genome are FRA3B and FRA16D, located at 3p14.2 and 16q23, respectively 49.  We 

examined the impact of SNM1B depletion on the frequency of spontaneous and 

aphidicolin induced instability at both FRA3B and FRA16D 49 using a fluorescence in 

situ hybridization (FISH) approach with YAC/BAC probes located at the fragile sites 13.  
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Figure 2.7. SNM1B depletion results in elevated gaps and breaks in response to 
aphidicolin.  
A. Chromosomal anomalies in SNM1B depleted cells.  Representative Giemsa 
stained metaphases from SNM1B depleted HCT116 cells that were untreated (UNT) or 
were treated with aphidicolin (0.3 or 0.5 µM) for 24 hr prior to harvesting. Arrows 
indicate chromosomes with gaps or breaks.   
B. Quantitation of gaps and breaks in SNM1B depleted cells. Graphical 
representation of the average number of gaps/breaks in metaphase chromosomes that 
were untreated or treated with aphidicolin.  Graph represents data from three 
independent experiments with SEM.  
C.  Poisson distributions of gaps and breaks. Poisson distributions illustrating the 
frequencies of gaps and breaks per metaphase observed in untreated (light gray), 0.3 
µM (dark gray), and 0.5 µM (black) aphidicolin treated NS (solid) and siSnm1B-1 
(dotted) transfected cells (p < 0.001).  
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 We observed low or undetectable levels of chromosomal breaks within either the 

FRA3B (1.4% of FRA3B signals with breaks) or FRA16D (0% of signals with breaks) 

loci in metaphases from NS transfected, untreated cells (Figure 2.8A,B).  In contrast, 

SNM1B depletion significantly increased the frequency of spontaneous breaks at both 

FRA3B and FRA16D (to 6.9% and 4.6%, respectively).  Aphidicolin treatment of SNM1B 

depleted cells lead to a further increase in fragile site instability, and the percentages of 

FRA3B (22%) and FRA16D (10%) signals localized to a break were consistently higher 

in comparison to NS transfected controls (approximately 7% for both FRA3B and 

FRA16D) (Figure 2.8A,B).  These findings indicate that SNM1B is important for 

maintaining fragile site stability not only in response to partial inhibition of DNA 

polymerase, but also in the context of unperturbed DNA replication.  

 

Discussion 

In this study, we provide evidence that the SNM1B/Apollo DNA nuclease has 

critical functions in the resolution of DNA replication stress.  We demonstrate that 

SNM1B is required for cellular survival in response to replication fork stalling.  Depletion 

of SNM1B does not significantly affect ATR dependent signaling events or localization 

of proteins involved in the early response to stalled replication forks prior to DSB 

formation, i.e., RPA, γH2AX, and the MRN complex 20,38.  In contrast, SNM1B depletion 

markedly impairs localization of the critical repair proteins, FANCD2-Ub and BRCA1, to 

replication stress induced foci.  We also found that SNM1B protects the genome from 

accumulation of spontaneous and aphidicolin induced gaps and breaks, including those 

at common fragile sites.  Thus, our findings demonstrate that SNM1B is dispensable for 

recognition of the lesion and activation of the DNA damage response, but is required 

during the downstream events to facilitate fork stabilization and repair.      

 During DNA synthesis, the replication fork frequently encounters barriers that 

impede progression and cause stalling.   These barriers can be in the form of blocking 

DNA lesions or intrinsic, natural impediments to fork progression, such as secondary 

DNA structures, highly transcribed regions, or tightly bound proteins 50-52.   Evidence 

indicates that the replication machinery remains stably associated with the stalled fork 

and is poised for replication restart.  Prolonged stalling or defects in maintaining fork  
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Figure 2.8. SNM1B depleted cells exhibit increased fragile site expression. 
HCT116 cells were transfected with NS or siSnm1B-1 and treated with aphidicolin (0.3 
µM) for 24 hr.  Untreated samples were used as controls.  FISH analyses using 
YAC/BAC probes were used to determine the frequency of FRA3B and FRA16D 
expression.   
A. Expression of FRA3B in SNM1B depleted cells. Quantitation of FRA3B 
expression in NS and siSnm1B-1 transfected cells treated with 0 (UNT) or 0.3 µM 
aphidicolin. Bar graph represents average percentage of FRA3B signals localized at 
breaks from at least 3 independent experiments; Error bars, SEM.   
B. Expression of FRA16D in SNM1B depleted cells. Quantitation of FRA16D 
expression in NS and siSnm1B-1 transfected cells treated with 0 (UNT) or 0.3 µM 
aphidicolin. Bar graph represents average percentage of FRA16D signals localized at 
breaks from at least 3 independent experiments; Error bars, SEM. 
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stability can lead to fork collapse and increased genome instability, including 

chromosomal deletions, duplications, or more complex rearrangements.  Previous 

studies have provided evidence that FANCD2, BRCA1, BRCA2, and RAD51 act in 

concert to stabilize stalled replication forks by protecting nascent DNA present from 

excessive MRE11 dependent resection 20-22,53.   We demonstrated impaired recruitment 

of FANCD2 and BRCA1 to sites of aphidicolin-induced stalled forks in SNM1B depleted 

cells (Figure 2.3B, 2.5).  This defect in FANCD2/BRCA1 localization could result in 

excessive resection, which would manifest as long stretches of ssDNA and an 

increased percentage of RPA positive cells, as observed in our study (Figure 2.2A).  

Thus, our findings suggest that SNM1B facilitates the stabilization and repair of stalled 

replication forks. 

We find that the intrinsic SNM1B nuclease activity plays an important role during 

resolution of stalled replication forks, as the D14N mutant protein is unable to restore 

aphidicolin-induced FANCD2 foci formation.  While the precise functions of SNM1B 

nuclease activity during replication have yet to be uncovered, the roles of SNM1B in 

telomere processing provide some insights.  At telomeres, the 5’ to 3’ exonuclease 

activity of SNM1B has been demonstrated to be involved in the generation of the 3’ 

overhang at leading strand telomeres 4-6.  SNM1B nuclease activity could also relieve 

topological strain induced during replication of telomeres 45.   Both SNM1B catalyzed 

end resection and/or regulation of DNA topology may have relevance at replication 

forks.  In this regard, unregulated unwinding of DNA ahead of a stalled fork, caused by 

uncoupling of polymerase and helicase activities, can result in positive supercoiling that 

promotes fork regression 54.  SNM1B may play a role in relieving this torsional strain, 

similar to its proposed roles in unwinding superhelical strain at telomeres 45.  

Alternatively, SNM1B-mediated 5’ to 3’ exonucleolytic processing of nascent lagging 

strand DNA could generate ssDNA regions necessary for loading of fork stabilizing 

proteins, such as FANCD2, BRCA1, and RAD51 20,21, or degrade reversed forks to 

facilitate replication restart 2.  It is likely that SNM1B collaborates with other DNA 

nucleases at stalled forks, as it physically interacts with MRE11 7 and MUS81 23 and the 

nuclease scaffold protein, SLX4, each of which have been implicated in the repair of 

blocked or stalled forks 26,55,56.  Detailed molecular analyses of nascent DNA strand 
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degradation and synthesis will provide significant insights into the roles of SNM1B and 

functional interactions with other DNA nucleases during resolution of replication stress. 

Our studies demonstrated that SNM1B is required for preventing chromosomal 

damage, including common fragile site instability, not only in response to aphidicolin 

induced replication inhibition, but also during unperturbed DNA replication.  Common 

fragile sites are difficult to replicate loci in the genome and are hot spots for 

chromosomal rearrangements, deletions, sister chromatid exchanges, and plasmid 

integration in response to treatment with low doses of aphidicolin 49.  Rearrangements 

and deletions at common fragile sites are observed in cancer cells, indicating that fragile 

site instability may contribute to tumorigenesis 57.  Indeed, the common fragile sites 

FRA3B and FRA16D both are located within well-characterized tumor suppressor 

genes, FHIT and WWOX 49,58.  In addition, replication stress induced by aphidicolin or 

hydroxyurea, produces copy number alterations, which arise frequently in cancer cells 
59.  Thus, it will be of interest to further define the functions of the SNM1B nuclease 

activity in DNA processing at stalled replication forks and examine its roles in 

suppressing genomic instability, including potentially oncogenic chromosomal 

rearrangements.   
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Supplemental Figure 2.1.  SNM1B depletion in HeLa and HCT116 cells results in 
hypersensitivity to aphidicolin treatment.   
A. HeLa cells transfected with NS, siSnm1B-1, or siSnm1B-2 were treated for 24 hr with 
the indicated doses of aphidicolin at 48 hr post transfection. The concentrations of 
aphidicolin used in the survival curve were optimized for the HeLa cell line and were 
higher than those used for HCT116 cells and fibroblasts. Cells were allowed to 
proliferate for 5-7 days. The survival fraction was determined compared to untreated 
controls.  
B. HCT116 cells transfected with NS or siSnm1B-1 were plated and analyzed as above.  
Graphs represent the average of two independent experiments. Error bars, SEM.  
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Supplemental Figure 2.2. Cell cycle analysis of SNM1B depleted cells.  
HCT116 cells were untreated (UNT) or treated with 0.3µM aphidicolin 48 hours post 
siRNA transfection. After 6 and 24 hrs of aphidicolin treatment, DNA content was 
assessed by fixing then staining cells with propidium iodide and analyzing DNA content 
by FACS.   A.  Similar percentages of NS and siSnm1B-1 transfected cells in S 
phase.  Quantitation of cells in the G1, S, and G2/M phases of the cell cycle using the 
Watson algorithm (FlowJo, TreeStar). The percentage of live cells in each cell cycle 
phase is plotted as a function of fluorescence intensity as an indicator of DNA content 
(PI, propidium iodide). No significant differences in the percentages of S phase cells 
upon SNM1B depletion compared to controls were observed in either untreated or 
aphidicolin treated cultures. Exclusion of the sub-G1 populations yielded similar results 
(data not shown). We observed an increase in the sub-G1 population of cells in the 
siSnm1B-1 transfected untreated and aphidicolin treated cells, consistent with the 
notion that unrepaired DNA damage associated with replication stress in SNM1B 
depleted cells induces apoptosis (Average % of cells in sub-G1: UNT, 8.5%; 0.3 µM 
aphidicolin 6h, 7.9%; 0.3 M aphidicolin at 24h, 8.3%).  In comparison, the average 
percentages of sub-G1 cells in NS transfected cells were significantly lower (UNT, 0%; 
0.3 µM aphidicolin 6h, 0.7%; 0.3 µM aphidicolin at 24h, 0.6%).  Data represent an 
average of 2 independent experiments. 
B. Flow cytometry analyses of propidium iodide stained cells.  Representative cell 
cycle profiles of untreated and 0.3µM aphidicolin treated NS and siSnm1B-1 transfected 
cells at 6 and 24 hrs post treatment.    
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Supplemental Figure 2.3. FANCD2 foci formation is significantly decreased in 
SNM1B depleted HCT116 and HeLa cells.   
A. Transfection of a distinct siRNA, siSnm1B-2, impairs recruitment of FANCD2 in 
HCT116 cells. HCT116 cells transfected with NS or siSnm1B-2 were treated with 
aphidicolin (0.3 µM) for 24 hr. The percentage of cells containing > 10 FANCD2 foci 
(green) was determined.  
B. FANCD2 foci formation in HeLa cells. HeLa cells transfected with NS, siSnm1B-1, 
or siSnm1B-2 were treated with aphidicolin (0.3 µM) for 24 hr. The percentage of cells 
containing > 10 FANCD2 foci (red) was determined. Graphs represent average of two 
independent experiments; at least 100 cells were scored from each experiment. Nuclei, 
DAPI stained (Blue). Error bars, SEM. UNT, untreated controls. 
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Supplemental Figure 2.4. Semi-quantitative RT-PCR for SNM1B expression.   
A. RT-PCR strategy to detect endogenous and siRNA-resistant, lentiviral cDNA 
expression of SNM1B.  Upper panel.  Diagram of SNM1B cDNA exonic structure with 
positions of siSnm1B-1 (si-1) and siSnm1B-2 (si-2) target sites and RT-PCR primers.  
Lower panel.  Total RNA (1µg) was reverse transcribed, and the cDNA was PCR 
amplified with SNM1B-specific primers to exons 3/4 (black arrows) for detection of both 
endogenous and siRNA-resistant cDNA transcripts, and primers that amplified a region 
containing the 3’UTR (grey arrows), which only amplify endogenous SNM1B mRNAs.  A 
representative gel of RT-PCR products from HCT116 cells transfected with NS, si-1, or 
si-2 siRNAs at 48h post-transfection is shown. RT-PCR of GAPDH was used for 
normalization of cDNA levels.  Bands were quantitated using AlphaImager 2200 (Alpha 
Innoten) to verify efficient knockdown of SNM1B expression to between 20-30% of NS 
transfected controls.   
B. Expression levels of endogenous and siRNA-resistant SNM1B transcripts.  
HCT116 cell lines harboring pLL IRES GFP lentiviral expression constructs were 
generated, and GFP expressing cells were sorted. RT-PCR was performed on total 
RNA isolated from sorted lines expressing GFP alone (EV-pLL), siRNA-resistant 
wildtype V5-tagged SNM1B (WT-si-1-R), and siRNA-resistant nuclease dead V5-tagged 
SNM1B-D14N (D14N-si-1-R) at 48 hr post-transfection of NS or siSnm1B-1 siRNAs.  
The negative control EV-pLL cell line showed a marked decrease of SNM1B RT-PCR 
products upon siSnm1B-1 knockdown with primers amplifying both the 3'UTR and Exon 
3/4, thereby indicating efficient knockdown.  In contrast, the siSnm1B-1 transfected cells 
expressing siRNA-resistant WT and D14N mutant SNM1B constructs exhibit 
knockdown of endogenous SNM1B expression using the 3’UTR primers; however, 
expression of the exon 3/4 region, which is common to both endogenous and cDNA 
transcripts, is not decreased.   
C. Western blot analysis of siRNA resistant SNM1B protein levels.  HCT116 cells 
transduced with pLL-IRES-GFP empty vector (EV), siRNA-resistant wildtype V5-tagged 
SNM1B (WT), and siRNA-resistant nuclease dead V5-tagged SNM1B-D14N (D14N) 
retrovirus were sorted and harvested 48 hr post-transfection with NS or siSnm1B-1 
siRNAs, as indicated. Whole cell lysates were then analyzed by immunoblotting with V5 
antibody.  HEK293T cells transiently transfected with V5-SNM1B PEF6 vector was used 
as a positive control (V5-S 293T). Representative blots from at least three independent 
experiments are shown. Ku70, loading control. 
 
 
 
 
 
 
 
 
 
 
 
 



	   76	  

 
 
Supplemental Figure 2.5. BRCA1 foci formation is significantly impaired in 
SNM1B depleted HeLa cells.   
HeLa cells transfected with NS or siSnm1B-1 were treated with aphidicolin (0.3 µM) for 
24 hr. The percentage of cells containing > 10 BRCA1 foci (green) was determined.  
Graph represents average of two independent experiments; at least 100 cells were 
scored from each experiment.  Nuclei, DAPI stained (Blue).  Error bars, SEM.  UNT, 
untreated controls. 
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Supplemental Figure 2.6. SNM1B depletion results in a high proportion of 
metaphases harboring excessive chromosomal damage.  
The total number of metaphases harboring the indicated number of gaps/breaks in NS 
or siSnm1B-1 transfected HCT116 cells treated with 0.5 µM aphidicolin is plotted. Some 
metaphases in aphidicolin treated siSnm1B-1 transfected cells contained gaps/breaks 
that were too numerous to quantitate and were categorized as >20 gaps/breaks per 
metaphase. A subset of metaphases from SNM1B depleted cells treated with 0.3 µM 
aphidicolin also exhibited greater than 20 gaps and breaks (average of 5% in SNM1B 
depleted cells, compared to 0% in controls at 0.3 µM aphidicolin; data not shown). 
Metaphases with excessive chromosomal damage were rarely observed in NS 
transfected control cells treated with either 0.3 or 0.5 µM aphidicolin.  Thus, the 
quantitative results shown in Figure 2.7 underestimate the levels of replication stress 
induced chromosomal anomalies in SNM1B depleted cells. 
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Chapter 3: The nuclease activity of SNM1B is important in the stabilization and 
repair of stalled replication forks 

 

Summary 

  The SNM1B DNA nuclease is a member of the metallo-β-lactamase/β-CASP 

superfamily of proteins which has functions in telomere processing, interstrand crosslink 

repair, double-strand break repair, and resolving replication stress. SNM1B functions 

within the FA/BRCA network to respond to stalled replication forks, but the precise 

mechanism of the nuclease activity of SNM1B in this process is not defined. In this 

study, I found that SNM1B localizes to aphidicolin-induced stalled replication forks after 

early response proteins (Mre11 and RPA) but prior to FANCD2 and is therefore not 

needed to sense the stalled fork. Additionally, I demonstrate that SNM1B prevents the 

accumulation of long stretches of unstable single-stranded DNA and promotes Rad51 

filament formation at aberrant DNA intermediate structures or collapsed forks after 

aphidicolin treatment. I have also identified that in normal proliferating cells SNM1B 

depletion results in increased stalled and collapsed replication forks suggesting SNM1B 

has critical roles in resolving spontaneous replication stress that occurs during every 

cell division cycle. Thus, this study provides evidence that the nuclease activity of 

SNM1B is important in the stabilization and restart/repair of stalled replication forks, 

thereby preventing genomic instability.  
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Introduction 

 Complete replication of the genome is of fundamental importance to ensure the 

accurate transmission of genetic information during every cell division.  Due to the 

essential nature of DNA replication for all cellular processes, it is a tightly monitored and 

controlled process. During DNA synthesis, the replication machinery can encounter 

obstacles including secondary DNA structures, unrepaired lesions in the DNA template, 

highly transcribed regions, or protein-DNA complexes that impair progression of the 

replication fork resulting in slow or stalled replication 1. Multiple mechanisms are 

employed by cells to sense and resolve stalled replication forks. Incomplete or faulty 

DNA replication can lead to deleterious consequences including accumulation of 

mutations, deletions, insertions, translocations, and cell growth defects. Mutations in 

DNA repair genes can ultimately cause genome instability disorders in humans, some of 

which are characterized by developmental defects, immunodeficiency, 

neurodegeneration, and cancer predisposition 1-3.  

DNA polymerase inhibition, through treatment with aphidicolin, leads to the 

uncoupling of DNA polymerase and helicase activities, resulting in the helicase 

continuing to unwind the DNA double helix 4. This generates long stretches of single-

stranded DNA (ssDNA) which become bound by the heterotrimeric complex RPA 

(replication protein A) 5. The ATR kinase (ataxia telangiectasia and Rad3 related 

protein) is then recruited and activated which triggers signaling of downstream effector 

proteins that initiate cellular responses including the recruitment of DNA repair proteins 

to the site of damage 5-7. 

One mechanism through which stalled forks are restarted is a process called fork 

regression, which leads to the annealing of the nascent complementary DNA strands, 

thereby forming an intermediate ‘chicken foot’ structure at the fork (Figure 1.3) 8-11. A 

number of DNA repair proteins have been implicated in stimulating fork regression 

including PARP (poly(ADP-ribose) polymerase), BLM helicase, FANCM (Fanconi 

anemia complementation group M), HLTF (human helicase-like transcription factor), 

and SMARCAL1 DNA translocase 12-17.  

DNA nucleases are involved in resolving the ‘chicken-foot’ structure by digesting 

the annealed nascent leading and lagging strands thereby resetting the fork so that 
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replication can continue. It has been suggested that the nuclease Mre11, which is a 

component of the MRN (Mre11/Rad50/Nbs1) complex, may be involved in this digestion 

process, although this nuclease activity needs to be tightly regulated to prevent hyper-

degradation of the DNA 18,19. FAN1 (FANCD2/FANCI-associated nuclease1) and DNA2 

(human nuclease/helicase 2) are both 5’ to 3’ exonucleases that have also been 

implicated in processing regressed forks 20,21. Furthermore, extension of strands at 

regressed forks using the respective complementary strand followed by reverse branch 

migration, which resets the replication fork, is another mechanism to restart stalled forks 

(Figure 1.3) 22,23. The DNA translocase SMARCAL1 has roles in promoting efficient 

reverse branch migration 14. The roles of DNA repair proteins in resolving regressed 

forks and initiating replication restart are not well understood. Specifically, the functions 

of nucleases in resolving intermediate DNA structures that form at stalled replication 

forks is not well characterized.  

SNM1B/Apollo is a DNA nuclease that plays critical roles in preventing genome 

instability through telomere maintenance and DNA repair. SNM1B is comprised of a 

highly conserved, catalytic metallo-β-lactamase/β-CASP N-terminal domain, responsible 

for its 5’ to 3’ exonuclease activity, and a unique C-terminus 24-27. Previous work from 

our lab has demonstrated that SNM1B has important functions in the repair of ICLs and 

stalled replication forks 28,29. We established that the intrinsic 5’ to 3’ single and double-

strand exonuclease activity of SNM1B is required for its repair functions at stalled 

replication forks, thereby indicating that it may be involved in processing DNA 

intermediates 28. 

Ineffective repair or restart of stalled forks can lead to replication fork collapse, 

which results in the dissociation of components of the replisome and generation of a 

DNA double-strand break (DSB) at the fork 30-34. These DSBs can then be repaired 

through homologous recombination (HR) by using the available homologous template 
9,35-37. The repair of collapsed forks through HR also requires the enzymatic activity of 

both endonucleases and exonucleases. Firstly, an endonuclease makes an initial break 

in the ssDNA region at the stalled fork to generate a one-ended DSB, and Mus81-Eme1 

is a nuclease that has been implicated in this role 35,38. Upon formation of this one-

ended DSB, proteins involved in the DSB response including the MRN complex sense 
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this break and recruit and activate the ATM kinase (Ataxia-telangiectasia mutated), 

which goes on to phosphorylate downstream targets 39-41. In order to initiate HR, the 

DSB has to be acted on by a 5’ to 3’ exonuclease which resects one strand of the DSB 

resulting in a 3’ overhang. An HR factor Rad51 binds to this overhang and forms 

filaments which initiates events that lead to strand invasion to the homologous template 

to begin repair of the break 2. During HR, intermediate structures called Holliday 

junctions form which are processed by structure-specific endonucleases (Mus81-Eme1, 

SLX1) that are bound to the scaffold protein SLX4/FANCP 42. Once HR-mediated repair 

takes place, the collapsed fork is repaired, the replisome is reloaded and intact, and 

replication restarts and continues to progress. If the collapsed fork is not repaired, these 

DSBs persist, resulting in chromosomal aberrations, such as deletions, insertions, and 

deleterious translocations 1. Therefore, DNA nucleases play multiple roles in generating 

and resolving intermediate structures arising at stalled or collapsed replication forks.  

It has been shown that SNM1B interacts with the nucleases Mre11 and Mus81, 

which have critical roles in resolving stalled and collapsed replication forks as stated 

above 43. SNM1B was also found to interact with SLX4 which has important roles in 

stabilizing stalled forks and facilitating Holliday junction resolution 44. Interestingly, 

SNM1B was also found to interact with PSF2, a component of the GINS complex, which 

along with Cdc45 and MCM2-7 helicase, forms the CMG helicase complex that is 

important for DNA replication initiation and progression 45,46.  

These interactions of SNM1B with key DNA repair and replication factors suggest 

that SNM1B has multiple functions during normal DNA replication and in stabilizing and 

resolving stalled or collapsed replication forks through its collaborations with other DNA 

repair proteins. However, the precise roles of SNM1B in these processes have not been 

elucidated.   

In this study, I found that localization of SNM1B to stalled replication forks does 

not occur immediately upon replication fork stalling but after the initial DNA damage 

response proteins have sensed the stalled fork. SNM1B was also found to be important 

in preventing the accumulation of ssDNA regions. Furthermore, I demonstrate that 

SNM1B is important in maintenance of replication fork stability and the prevention of 

collapsed replication forks. SNM1B may also have roles in repairing collapsed 
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replication forks by promoting Rad51 filament formation at the DSB. These results also 

suggest that SNM1B has important functions during normal DNA replication by 

responding to spontaneous replication stress. Overall, these findings present evidence 

that SNM1B plays a key role in maintaining replication fork stability, facilitating 

replication recovery, and potentially in HR-mediated repair of replication-associated 

genomic damage.  

 

Materials/Methods 

Cell systems and knockdown of SNM1B expression by siRNA 

The HCT116 colon cancer cell line was cultured in McCoy’s media (10% FBS, 

1% Pen/Strep) as previously described 28. All siRNAs (50 nM) were transfected using 

Lipofectamine 2000 (Invitrogen) as per manufacturer’s instructions.  SNM1B mRNA 

levels were determined via semi-quantitative RT-PCR in every experiment to verify the 

extent of siRNA knockdown as previously described 29.  

 

Generation of HCT116 cell lines expressing siRNA-1-resistant wild-type and mutant 

SNM1B 

A siSnm1B-1 resistant cDNA containing three silent point mutations within the 

siRNA-1 core sequence was used for the complementation experiments and to 

generate the site specific mutant 29. The wildtype and mutant siRNA resistant cDNAs 

were subcloned into the pLL IRES GFP lentiviral vector (UM vector core).  Lentiviruses 

expressing the SNM1B-IRES-GFP cassettes were generated as previously described 
29.  HCT116 cells (2.0x105) were incubated with 1 mL of virus containing media with 4 

mg/mL polybrene, 1 mL DMEM, and 10% FBS for 24 hours.  Cells were harvested 24 

hours later, and expression of the SNM1B-IRES-GFP expression cassette was 

determined by flow cytometry by analyzing the percentage of GFP positive cells. 

 GFP positive cells were sorted (University of Michigan Flow Cytometry Core), 

cultured, and resorted.  SNM1B expression levels were assessed by semi-quantitative 

RT-PCR using primers specific for the siRNA resistant cDNAs.  Early passage sorted 

cell lines with comparable levels of SNM1B expression were used for complementation 
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experiments.  HCT116 cells infected with the pLL empty vector (EV) control were used 

for all experiments. 

 

Immunofluorescence of subnuclear foci 

WT-SNM1B-IRES-GFP HCT116 cells (6 x 104) were plated on coverslips in 12 

well dishes. Cells were treated with 0.3µM aphidicolin for either 1, 2, 4, 6, or 24 hours. 

For RPA, Mre11, and FANCD2 foci experiments, cells were incubated in cold extraction 

buffer (20mM HEPES, 50mM NaCl, 300mM sucrose, 3mM MgCl2, 0.5% TX-100) for 5 

min followed by fixation in 3% paraformaldehyde/2% sucrose for 20 min. For V5-

SNM1B foci, cells were fixed with ice cold 70% methanol/30% acetone at -20°C for 20 

min and then air dried at room temperature. Cells were blocked in 0.5% BSA, 0.05% 

Tween-20, 1X PBS for 1 hr. Cells were then stained with primary antibodies for 45 min 

and then Alexa Fluor secondary antibodies for 45 min.  Prolong Gold antifade reagent 

with DAPI was used to mount coverslips on slides.   

HCT116 cells (4 x 104) were plated on coverslips in 12 well dishes 24 hours prior 

to siRNA transfection. Forty-eight hours post transfection, cells were treated with 2µM 

aphidicolin for 1, 6, and 24 hours. For Rad51 foci, cells were fixed in 3% 

paraformaldehyde/2% sucrose with 0.5% TX-100 for 20 minutes. Cells were blocked in 

5% FBS, 1% goat serum, 0.05% Tween-20, 1X PBS for 1 hour and stained with primary 

antibody overnight at 4°C. Cells were then stained with Alexa Fluor secondary antibody 

for 45 minutes. Prolong Gold antifade reagent with DAPI was used to mount coverslips 

on slides. Images were acquired using Olympus BX61 microscope and FISHview 

Software (Applied Spectral Imaging).  At least three independent experiments analyzing 

approximately 100 cells per sample were conducted.     

 

ssDNA immunofluorescent assay 

HCT116 cells and EV, WT-SNM1B, D14N-SNM1B-IRES-GFP HCT116 cells (4 x 

104) were plated on coverslips in 12 well dishes. Cells were depleted of SNM1B using 

siSnm1B-1 or a nonspecific control (NS) for 48 hours. Cells were then labeled for 24 

hours with 20µM BrdU and then treated with 1µM aphidicolin for either 6 or 24 hours. 

Without denaturing the DNA, cells were incubated in cold extraction buffer (20mM 
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HEPES, 50mM NaCl, 300mM sucrose, 3mM MgCl2, 0.5% TX-100) for 5 minutes and 

then fixed with 3% paraformaldehyde/2% sucrose solution for 20 minutes. For 

experiments performed to ensure the specificity of BrdU detection as being indicative of 

ssDNA, cells were treated with hydrochloric acid (HCl) for 30 mins before the fixation 

step.  

Cells were then incubated with α-BrdU antibody followed by Alexafluor 

secondary antibody to visualize BrdU staining using immunofluorescence microscopy. 

Images were acquired with an Olympus BX61 microscope and the FISHview Software 

(Applied Spectral Imaging). Using the contours setting on this software, the 

fluorescence intensity for every nucleus was measured along with the area, shape, and 

perimeter measurements. This fluorescence intensity was normalized to background 

levels for each experiment. At least three independent experiments analyzing 

approximately 100 cells per sample were performed.  

 

DNA fiber assay 

HCT116 cells were depleted of SNM1B using siSnm1B-1 or a nonspecific control 

(NS). For untreated experiments, cells were labeled with 50µM IdU for 20 min and then 

labeled with 100µM CldU for 20 min. Cells were harvested and re-suspended in ice-cold 

PBS with 200 cells/µL. Two microliters of cell suspension was deposited on a silanized 

slide (Sigma), and 15µL of lysis buffer (200mM Tris pH 7.4, 0.5% SDS, 50mM  EDTA) 

was added to the cells on the slide for 10 minutes. The slides were tilted to 15° to 

stretch the DNA fibers and allowed to dry for 6-8 hours. Slides were then fixed in 

methanol:acetic acid (3:1) for 2 minutes and then allowed to dry overnight in the dark. 

Slides were placed at -20°C for 24 hours.  

The DNA was then denatured with 2.5M HCl for 30 minutes and stained with 

mouse α-IdU and rat α-CldU and then Alexa Fluors 594 and 488 secondary antibodies 

to visualize the fibers using immunofluorescence microscopy. Fibers were imaged with 

an Olympus BX61 microscope and the FISHview software (Applied Spectral Imaging). 

At least three independent experiments were conducted with at least 200 fibers scored 

for each sample for every experiment. When scoring images, replication tracts with a 

red to green transition were labeled as ongoing, only red tracts were labeled as stalled 
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forks, and only green tracts were newly originated forks. The average percentage of 

stalled forks was calculated by dividing the number of stalled forks by the total number 

of ongoing and stalled forks. The average percentage of new forks was calculated as 

the number of new forks divided by the total number of ongoing, stalled, and new forks.  

 
Pulse Field Gel Electrophoresis 

HCT116 cells were transfected with NS or siSnm1B-1 for 48 hours and then 2µM 

aphidicolin was added for 24 hours. Cells were harvested and washed in PBS and 106 

cells were used to make low melting point agarose (lmt) plugs (Lonza) using BiorRAD 

50-well plug molds (#170-3713). To prepare these plugs, 106 cells were re-suspended in 

50µL of washing buffer (10mM Tris, 100mM EDTA; TE100) and mixed with 50µL of 1% 

agarose in water.  Then 80µL of this solution was added to each plug mold, and the 

agarose plugs were allowed to polymerize at 4°C for 30 minutes. The plugs were then 

lysed at 37°C in buffer (10mM Tris, 100mM EDTA, 1% sodium lauryl sarcosine, 0.2% 

sodium deoxycholate, and 1 mg/ml proteinase K) for 48 hours. The plugs were then 

washed 3 times for 30 minutes each in TE100.  

The plugs were then loaded onto a 1% agarose gel in 0.5X TBE. In order to seal 

the plugs in the gel, 1% lmt agarose in 0.5X TBE was added to each well and allowed to 

polymerize. The gel was run for 24 hr at 14°C in the BioRAD CHEF III system using the 

following parameters: initial switch time 60s, final switch time 240s, 4 Volts/cm, 120° 

angle. Gels were then stained with 1.25µg/mL ethidium bromide in 0.5X TBE for 30 min 

and visualized using Alpha Imager 2200. The Spot Denso analysis tool, which 

measures the Integrated Density Value (IDV) was used to quantitate bands, including 

broken DNA versus intact chromosomes in the wells. The percent of broken DNA was 

calculated as the intensity of DNA in the migrated segment over the total intensity of 

DNA in the well and in the lane. This was then normalized to NS untreated samples for 

each experiment. At least 3 independent experiments were performed.   

 

Cell cycle analysis   

HCT116 cells were plated in a 6 well dish (1 x 105 in each well) and then 

transfected with siRNA 24 hours later.  Cells were treated with 1µM aphidicolin 48 hours 
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post transfection. Cells were then fixed with cold 70% ethanol, stored at -20°C 

overnight, and stained with propidium iodide (PI) for 30 min at room temperature.  FACS 

analysis was performed using an Accuri C6 flow cytometer and cell cycle profiles were 

analyzed using FlowJo (TreeStar) software.  

 

Antibodies 

α-IdU was from Becton Dickinson (347580). α-CldU was from AbD Serotec 

(OBT0030G). α-BrdU was from BD Pharmingen (555627). α-RPA was from Calbiochem 

(NA19L). α-FANCD2 and α-Mre11 was from Novus Biologicals (100-182, 100-142). α-

V5 was from Invitrogen (R960-25). α-Rad51 was from GeneTex (GTX70230). 

 

Results 

Determining SNM1B localization to repair foci relative to DNA repair proteins that are 

critical for the cellular response to stalled replication forks.  

 We previously demonstrated that SNM1B is not required for efficient ATR 

signaling in response to aphidicolin-induced stalled replication forks. Furthermore, we 

have shown that SNM1B is not required for the localization of DNA repair proteins that 

are critical in the initial response to stalled forks, including RPA and Mre11. However, 

SNM1B is required for the efficient localization of FANCD2 (the Fanconi anemia 

complementation group D2) 28. FANCD2 functions with the rest of the FA (Fanconi 

anemia) pathway in stabilizing stalled forks and is recruited to the stalled fork after the 

initial recognition step 19,47.  

 To further examine SNM1B localization to stalled forks, the timing of SNM1B 

localization to sites of aphidicolin-induced stalled forks relative to other DNA repair 

proteins was assessed. To address this question, HCT116 cells stably expressing V5-

tagged SNM1B were exposed to 0.3µM aphidicolin, and localization of SNM1B was 

determined at 1, 2, 4, 6, and 24 hours of aphidicolin treatment.  The localization of 

SNM1B to sub-nuclear foci was examined by immunofluorescence microscopy using α-

V5 antibody. Foci formation of RPA, Mre11, and FANCD2 was also determined at the 

same time points (Figure 3.1).  I observed that RPA and Mre11 formed foci as early as 

1 hour of aphidicolin treatment and increased to approximately 40% foci positive cells at  
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Figure 3.1 SNM1B foci formation to stalled forks occurs after RPA and Mre11 but 
before FANCD2. 
A. WT-SNM1B-IRES-GFP HCT116 cells were treated with 0.3µM aphidicolin for various 
times (1, 2, 4, 6, 24 hr).  Plotted here are the average percentages of foci positive cells 
for V5-SNM1B, RPA, Mre11, and FANCD2 foci. The results represent data from at least 
three independent experiments; at least 100 cells were analyzed in each experiment. 
Error bars, SEM. 
B. Representative images of V5-SNM1B, RPA, Mre11, and FANCD3 foci (green) after 
0, 1, 2, 4, 6, and 24 hours of 0.3µM aphidicolin treatment. Nuclei, DAPI stained (blue). 
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2 hours, which persisted through 24 hours of aphidicolin treatment. An induction of 

FANCD2 foci beginning at 6 hours of aphidicolin treatment further increased to 

approximately 40% at 24 hours. I observed a two-fold induction of SNM1B foci after 4 

hours of aphidicolin treatment compared to untreated samples, which further increased 

with 6 and 24 hours of aphidicolin treatment. All proteins reached an approximately 

similar percentage of foci positive cells (40%) by 24 hours of aphidicolin treatment 

(Figure 3.1A). These results indicate that RPA and Mre11 localize to stalled forks 

initially. SNM1B is subsequently recruited, and FANCD2 localizes at a later time point 

suggesting a requirement for nucleolytic processing for efficient FANCD2 foci formation.  

 

SNM1B is important in preventing the accumulation of single-stranded DNA during 

spontaneous and induced stalled replication forks.  

 Our previous studies demonstrated that knockdown of SNM1B by siRNA 

consistently results in increased numbers and intensity of RPA foci after aphidicolin 

treatment 28. This finding suggests that SNM1B depletion may lead to increased 

availability of ssDNA resulting in increased RPA loading. Therefore, I examined how 

SNM1B depletion in cells would affect formation of regions of ssDNA.  

 To directly examine regions of ssDNA upon DNA polymerase inhibition, SNM1B 

depleted and control HCT116 cells were exposed to the thymidine analog, 

bromodeoxyuridine (BrdU) for 24 hours, which allowed for incorporation into both 

parental and nascent DNA strands. Cells were then treated with 1µM aphidicolin for 

either 6 or 24 hours. This higher dose of aphidicolin (compared to 0.3µM) was used to 

ensure that the majority of progressing replication forks would be stalled to allow 

detection of regions of ssDNA. Without denaturing the DNA, cells were fixed and 

stained with α-BrdU antibody, which recognized exposed and labeled ssDNA. The 

regions of ssDNA were then detected using immunofluorescence microscopy (Figure 

3.2A). BrdU staining within the nucleus was quantitated and the dot plot shows the BrdU 

fluorescence intensity of every nucleus analyzed (Figure 3.2B). The average 

fluorescence intensity of SNM1B knockdown cells with and without 24 hours of 

aphidicolin treatment was significantly higher compared to NS controls while there was 

no difference after 6 hours of aphidicolin treatment. To further analyze a subset of cells  
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Figure 3.2 SNM1B is important for preventing the accumulation of single-stranded 
DNA during spontaneous and induced replication stress. 
A. SNM1B depleted and control HCT116 cells were allowed to incorporate BrdU for 24 
hr, which labeled both parental and nascent DNA strands, and then were treated with 
1µM aphidicolin for 6 and 24 hr. Cells were fixed and stained with α-BrdU antibody 
without denaturing the DNA. Representative images are shown. An image of cells with 
no BrdU incorporation is shown as a negative control. BrdU (green). Nuclei, DAPI 
stained (blue).  
B. BrdU staining within the nucleus was analyzed and quantitated using Applied 
Spectral Imaging software, which measures fluorescence intensity. This normalized 
BrdU fluorescence intensity per nucleus is shown on the dot plot. Error bars, SEM.  
C. The average percentage of cells with high intensity BrdU staining  (>2.5 fluorescence 
intensity) is plotted on the bar graph. The results represent data from at least three 
independent experiments; at least 100 cells were analyzed in each experiment. Error 
bars, SEM. * p < 0.05.  
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with large amounts of detectable ssDNA, the average percentage of cells with high 

intensity BrdU staining  (>2.5 fluorescence intensity) was calculated (Figure 3.2C). In 

control cells treated with hydrochloric acid to completely denature the DNA and then 

stained with α-BrdU antibody, I observed that every nucleus contained bright BrdU 

fluorescence staining. This indicates that the staining detected in the non-denaturing 

experiments was ssDNA regions (Supplemental Figure 3.1A).   

 SNM1B depletion in untreated cells resulted in a 4-fold higher percentage of cells 

with high intensity BrdU fluorescence compared to controls, indicating an increase in 

regions of ssDNA (Figure 3.2C). Since these cells were not synchronized, the number 

of cells in S-phase, and therefore the number of cells incorporating BrdU, could vary in 

the SNM1B knockdown cells compared to the controls, which could affect the results. 

Therefore, the cell cycle profiles were analyzed and the percentage of cells in S-phase 

in the control (35%) and siSnm1B-1 (28%) cells was found to be relatively similar 

(Supplemental Figure 3.1B). Therefore, the increase in BrdU fluorescence observed in 

SNM1B depleted cells is not a result of more cells in S-phase. These findings suggest 

that SNM1B is important for preventing the accumulation of ssDNA during spontaneous 

replication stress. 

 When comparing the untreated and aphidicolin treated NS control cells, I observed 

a 5-fold increase in high BrdU fluorescence intensity after 6 hours of aphidicolin 

treatment. However, there was no significant difference in the percent of cells with 

ssDNA in the SNM1B knockdown cells compared to NS after 6 hours of aphidicolin 

treatment (Figure 3.2C). This result provides evidence that SNM1B is not needed for the 

generation of ssDNA through the initial uncoupling and resection events at the stalled 

fork. On the contrary, after 24 hours of aphidicolin treatment when many stalled forks 

have collapsed, the amount of high BrdU fluorescence intensity in SNM1B depleted 

cells was significantly higher compared to controls (Figure 3.2C). Therefore, these 

findings indicate that with longer aphidicolin treatment, SNM1B functions to prevent 

extensive generation of ssDNA.  

 To test the importance of the intrinsic nuclease activity of the SNM1B protein in 

preventing the accumulation of ssDNA during spontaneous replication stress, a 

conserved residue within the SNM1B catalytic domain that has been previously 



	   91	  

identified to be essential for exonuclease activity was mutated to impair exonucleolytic 

activities (D14N) 24,27,48. The BrdU immunofluorescence assay with HCT116 cells stably 

expressing siSnm1B-1 resistant WT-SNM1B or the nuclease mutant D14N-SNM1B was 

performed. In unperturbed cells, an increase in BrdU staining in cells expressing the 

SNM1B nuclease mutant compared to WT-SNM1B was observed, while the WT-

SNM1B cells complemented the SNM1B knockdown phenotype (Figure 3.3). 

Altogether, these data suggest that the nuclease activity of SNM1B prevents the 

accumulation of ssDNA during the repair of spontaneous stalled forks. These results 

also suggest that SNM1B may have a distinct function in resolving spontaneous stalled 

forks versus aphidicolin-induced stalled forks since we did not observe any phenotypes 

in SNM1B depleted cells after 6 hours of aphidicolin treatment. However, longer 

inhibition of DNA polymerase (24 hours) did result in increased ssDNA after SNM1B 

depletion (Figure 3.2C).  

 

SNM1B is important in stabilizing stalled replication forks and efficiently restarting 

replication.  

 In order to further define SNM1B functions at stalled replication forks, specifically 

its roles in replication fork stability, restart of stalled replication forks, and new origin 

firing, the established DNA fiber assay was utilized. This assay uses two different 

thymidine analogs, iodo-deoxyuridine (IdU) and chloro-deoxyuridine (CldU), which are 

incorporated into the DNA. DNA fibers are stained with different fluorescent antibodies 

that recognize IdU and CIdU and are visualized using immunofluorescence microscopy 

(Figure 3.4A). DNA fiber tracts that incorporated both IdU and CldU (red to green 

transition) are indicative of ongoing replication forks. DNA fibers that only incorporate 

IdU (only red DNA tract) indicate forks that initially were progressing but then stalled or 

stopped during the second labeling period.  Finally, DNA fibers that only incorporated 

CldU (only green DNA tract) were scored as newly originated replication forks (Figure 

3.4B).  
 I observed that in unperturbed cells, knockdown of SNM1B resulted in a 

significant increase in the percent of stalled forks, while the percent of new forks 

remained unchanged when compared to control cells (Figure 3.4C,D). These findings  
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Figure 3.3 The nuclease activity of SNM1B prevents the accumulation of single-
stranded DNA during spontaneous replication stress.  
A. HCT116 cells stably expressing siSnm1B-1 resistant WT-SNM1B or the nuclease 
mutant D14N-SNM1B were transfected with NS or siSnm1B-1. Cells were allowed to 
incorporate BrdU. The dot plot shows the normalized BrdU fluorescence intensity of 
every nucleus analyzed in unperturbed cells. Error bar, SEM. 
B. The average percentage of cells with >2.5 fluorescence intensity is plotted in the bar 
graph. The results represent data from at least three independent experiments; at least 
100 cells were analyzed in each experiment. Error bars, SEM. * p < 0.05. 
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Figure 3.4: SNM1B is important in stabilizing stalled replication forks.  
A. HCT116 cells were transfected with NS or siSnm1B-1. For untreated experiments, 
log-phase cells were labeled with IdU for 20min and then CldU for 20min. For 
aphidicolin treated experiments, cells were labeled with IdU for 20min, 1µM aphidicolin 
for 24 hr with additional IdU, and then CldU for 20min as shown by the schematics.  
B. Representative DNA fiber images of ongoing forks, stalled forks, and new forks are 
shown. IdU (red), CldU (green).  
C. The average percent of stalled forks was calculated by dividing the number of stalled 
forks by the total number of ongoing and stalled forks. The average percent of new forks 
was calculated as the number of new forks divided by the total number of ongoing, 
stalled, and new forks. The graphs represent the average of at least three independent 
experiments; at least 200 fibers were analyzed in each experiment. Error bars, SEM.   
*p < 0.01.  
D. Representative DNA fiber images of NS and siSnm1B-1 untreated and 1µM 
aphidicolin treated cells.  
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indicate that SNM1B is important in stabilizing spontaneous stalled replication forks and 

allowing for efficient replication recovery. 

For cells treated with aphidicolin for 24 hours, the percent of stalled forks was 

similar in SNM1B depleted cells compared to controls (Figure 3.4C,D). These results 

indicate that after 24 hours of aphidicolin treatment with 20 minutes of recovery time, 

SNM1B depletion does not affect the stability of stalled forks compared to controls. After 

aphidicolin treatment the percent of ongoing forks decreased (Supplemental Figure 3.2) 

while the percent of new forks increased, which may be a result of stalled replication 

forks not being processed and repaired. Studies have shown that during replication 

stress, the cell may begin to fire dormant origins to ensure the whole genome is 

duplicated 49-51. Therefore, the cell may be compensating for this replication defect 

caused by aphidicolin treatment by firing more origins to aid in completing the 

replication process. In this experiment, the cells were allowed a 20 minute recovery 

after aphidicolin treatment which may not be enough time for the efficient restart of 

stalled forks even in the NS samples. Thus, the increased ssDNA we observed in 

SNM1B depleted cells (Figure 3.2C) may not necessarily be due to increased stalled 

forks.   

 

SNM1B is important in preventing the accumulation of chromosomal breaks during DNA 

replication.  

 The above results of increased regions of ssDNA and increased numbers of 

stalled forks in unperturbed SNM1B knockdown cells suggest that the pathways that are 

in place to efficiently resolve stalled forks are defective upon SNM1B depletion. These 

persistent stalled forks are then more vulnerable to nuclease digestion which would 

generate breaks at the stalled fork resulting in collapsed replication forks. Therefore, in 

order to analyze the appearance of collapsed replication forks upon SNM1B depletion, 

Pulse Field Gel Electrophoresis (PFGE) was performed which allows the detection of 

broken DNA from intact chromosomes. HCT116 cells depleted of SNM1B were treated 

with 2µM aphidicolin for 24 hours to ensure the formation of collapsed replication forks. 

Using PFGE, broken DNA was then separated from intact chromosomes, and the 

percentage of faster migrating DNA was determined as a measure of the extent of  
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Figure 3.5 SNM1B prevents the accumulation of double-strand breaks during DNA 
replication.  
A. PFGE image of HCT116 cells transfected with NS or siSnm1B-1 and untreated or 
2µM aphidicolin treated (24 hours). Intact chromosomes are in the wells while broken 
DNA has migrated into the lanes.  
B. The percent of broken DNA in each sample relative to NS untreated samples (set at 
1) is plotted. The graph represents the average of at least three independent 
experiments. Error bars, SEM. * p < 0.02.  
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chromosomal breakage (Figure 3.5A). 

 In the untreated samples, SNM1B depletion consistently resulted in a significant 

increase in broken DNA. The percent of broken DNA was plotted relative to NS controls  

(which was set to 1). Therefore, I observed an average 1.6 fold increase in breaks upon 

SNM1B depletion compared to controls. In cells treated with aphidicolin however, there 

was no significant difference in the amount of broken DNA in SNM1B depleted cells 

compared to NS cells. Aphidicolin treatment did result in an increase in broken DNA 

when compared to untreated in NS control cells (Figure 3.5B). These data demonstrate 

that DSBs accumulate in SNM1B depleted cells during normal DNA replication; 

however, aphidicolin does not further increase the levels of DSBs in SNM1B depleted 

cells compared to controls.  

 

SNM1B plays a role in promoting efficient Rad51 filament formation  

 Since SNM1B depletion results in an increase in broken DNA upon spontaneous 

replication stress, SNM1B may play a role in DSB repair at a collapsed fork. SNM1B is 

known to be involved in the 5’ to 3’ resection of telomeres, resulting in a 3’ overhang 

which allows for binding of the shelterin complex that works to protect telomeres 24,27. 

Therefore, the exonuclease activity of SNM1B may have a role in the resection step that 

occurs at DSBs at collapsed forks to initiate HR-mediated repair. Upon formation of the 

3’ overhang at collapsed replication forks, Rad51 binds to the ssDNA forming Rad51 

filaments to which HR factors BRCA2, PALB2, and BRCA1 are recruited, and this 

initiates strand invasion to the homologous template resulting in HR 2. Furthermore, it 

has also been demonstrated that Rad51 is important in stabilizing stalled replication 

forks by binding to ssDNA regions either at the stalled fork or that are present at a 

regressed fork 9,31.  Therefore, Rad51 has multiple roles at different stages during the 

stabilization and resolution of stalled replication forks and also in HR-mediated repair of 

collapsed forks.  

Rad51 foci formation was analyzed in SNM1B depleted cells after 2µM 

aphidicolin treatment for 1, 6, and 24 hours to determine if SNM1B, and specifically its 

nuclease activity, is involved in the resection step at the DSB at collapsed replication 

forks (Figure 3.6A). If SNM1B is involved in this step, I would expect a decrease in  
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Figure 3.6 SNM1B is important for efficient Rad51 filament formation. 
A. SNM1B depleted and control HCT116 cells were treated with 2µM aphidicolin for 1, 
6, and 24 hrs. Cells were fixed and stained with Rad51 antibody. Representative 
images are shown. Rad51 (green). Nuclei, DAPI stained (blue).  
B. The average percentage of cells with >5 Rad51 foci is plotted on the bar graph. The 
results represent data from at least three independent experiments; at least 100 cells 
were analyzed in each experiment. Error bars, SEM. * p <0.03 
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Rad51 foci after SNM1B depletion upon 24 hours of aphidicolin treatment. After 24 

hours of aphidicolin treatment, SNM1B knockdown cells exhibited a significantly lower 

percent of Rad51 foci positive cells compared to controls (Figure 3.6B). In untreated 

cells and cells treated with aphidicolin for 1 hour, knockdown of SNM1B resulted in a 

significant two-fold increase in Rad51 foci compared to NS samples; although still at a 

relatively low percentage (10%). Interestingly, Rad51 foci formation did not increase 

upon 1 or 6 hours of aphidicolin treatment in NS cells suggesting that using this method 

we are not able to detect Rad51 filaments at forks that have been stalled for short time 

periods 52. Therefore, the Rad51 foci I detect with 24 hours of aphidicolin are Rad51 

filaments at DSBs or extensively long stretches of ssDNA. These data suggest that 

during the repair of aphidicolin-induced collapsed forks, SNM1B is important for efficient 

Rad51 localization. Since at the 24 hour timepoint of aphidicolin treatment I observed 

similar levels of DSBs in SNM1B depleted and NS cells as measured by PFGE, this 

suggests that Rad51 is able to form filaments and initiate HR in controls but not in 

SNM1B depleted cells.  

 

Discussion  

In this study, I provide evidence to demonstrate that the DNA nuclease SNM1B 

plays critical roles in the stabilization of stalled replication forks and in repairing 

collapsed replication forks. In elucidating the precise roles of SNM1B, I have analyzed 

its role at early and later events in the resolution of stalled forks. Furthermore, I have 

also uncovered that SNM1B is important during spontaneous replication stress, which 

may be distinct to its roles at aphidicolin-induced stalled forks.  

Upon aphidicolin-induced replication fork stalling, the uncoupling of the helicase 

and polymerase activities results in long stretches of ssDNA. RPA binds to the long 

stretches of ssDNA at stalled forks and Mre11 has been shown to have functions in this 

initial response to stalled forks. For example, the MRN complex has been shown to 

colocalize with RPA upon replication fork stalling 53,54. I have shown that within 1 hour of 

aphidicolin treatment both RPA and Mre11 form foci.  

 I observed a significant increase in SNM1B foci formation after 4 hours of 

aphidicolin treatment (Figure 3.1). Furthermore, no difference was detected between 
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SNM1B knockdown and NS samples when analyzing regions of ssDNA at 6 hours of 

aphidicolin treatment, suggesting the ssDNA needed to activate signaling events has 

already been generated (Figure 3.2). These data along with previous data that SNM1B 

is not required for efficient RPA and Mre11 foci formation, suggest that SNM1B is not 

needed for sensing stalled forks or activating early events during the repair process 28. 

At this timepoint of aphidicolin treatment, many stalled forks have begun the process of 

fork regression in an attempt to initiate fork restart 35,36. As mentioned previously, Mre11 

is involved in degrading nascent DNA at a regressed fork, and BRCA2, FANCD2, and 

Rad51 regulate the 3’ to 5’ exonuclease activity of Mre11 to prevent unregulated 

degradation of nascent DNA 18,19. Once Mre11 digests the nascent leading strand, a 5’ 

to 3’ exonuclease, like SNM1B, could digest the nascent lagging strand. The timing of 

localization through foci formation suggests sequential actions of Mre11 and SNM1B.  

I found that FANCD2 foci formation induction is detectable 6 hours post 

aphidicolin treatment, once SNM1B has already begun to localize to the stalled fork 

(Figure 3.1). Previous results also show that SNM1B is required for efficient FANCD2 

foci formation 28. Therefore, once SNM1B localizes to the area of damage, it can 

nucleolytically process intermediate DNA structures and allow room or generate binding 

sites for further downstream proteins like FANCD2, BRCA1, and Rad51 to localize to 

the stalled fork and function in restarting replication. Additionally, SNM1B may 

collaborate with other nucleases that are also responsible for degrading regressed 

forks.  

 SNM1B may also have roles at later events during the repair process. When 

analyzing regions of ssDNA using the BrdU immunofluorescence assay after 24 hours 

of aphidicolin treatment, I observed a significant increase in ssDNA in SNM1B depleted 

cells compared to controls (Figure 3.2). More ssDNA could either indicate the presence 

of more stalled forks and/or longer stretches of ssDNA resulting from the helicase 

continuing to unwind the DNA while the stalled forks are being repaired. Increased 

ssDNA could also result from uncontrolled resection at stalled forks. If these stalled 

forks are not resolved, many of them by this timepoint of aphidicolin treatment may have 

collapsed. To further examine how SNM1B depletion affects replication fork 

progression, the DNA fiber analysis was performed. I did not observe any difference in 
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the percent of stalled forks when comparing SNM1B depleted cells compared to 

controls (Figure 3.4). These results show that with a 20 minute restart and recovery time 

after aphidicolin treatment SNM1B depletion does not affect the percent of stalled forks 

but there is an increase in unstable ssDNA (Figure 3.2). Allowing for longer recovery 

may give more insight into prolonged stalled or collapsed forks upon SNM1B depletion.  

 To analyze collapsed replication forks, I performed PFGE and found no difference 

in the percent of DSBs that separated from intact chromosomes in SNM1B depleted 

cells compared to controls after 24 hours of aphidicolin treatment (Figure 3.5). These 

data suggest that SNM1B is not needed to generate the breaks at collapsed replication 

forks, a function that Mus81 has been implicated in 35,55,56. Instead, SNM1B may be 

involved in helping to sense the DSB. Furthermore, the exonuclease activity of SNM1B 

may be important in the initial resection step at DSBs at collapsed forks, which forms a 

3’ overhang that initiates Rad51 filament formation and HR-mediated repair. To 

determine if SNM1B has a role in this resection step, Rad51 filament formation was 

analyzed after aphidicolin treatment, and there was a significant decrease in Rad51 foci 

formation in SNM1B depleted cells compared to control cells (Figure 3.6). This suggests 

that upon aphidicolin treatment, SNM1B depletion results in collapsed forks at similar 

levels to control cells, but Rad51 is unable to form filaments to initiate HR. SNM1B 

could play a role in promoting Rad51 loading onto ssDNA thereby preventing extensive 

resection of aberrant DNA structures at stalled and collapsed forks by other nucleases. 

If SNM1B is absent and Rad51 filament formation is inhibited, these other nucleases 

can act on these DNA structures in an uncontrolled manner possibly resulting in 

increased unstable ssDNA (Figure 3.2C). 

 There are several pieces of evidence from our lab and others that suggest 

SNM1B is important in DSB repair. We have previously shown that BRCA1 foci 

formation is impaired after aphidicolin treatment in SNM1B depleted cells lending 

evidence that decreased BRCA1 localization to DSBs at collapsed forks could be the 

reason there is defective Rad51 filament formation 28. As previously mentioned, SNM1B 

exonuclease activity is important in resecting telomeres which allows for telomere 

protection 24,27,57. We have shown, using the established DR-GFP assay, that SNM1B is 

needed for efficient repair of I-SceI induced breaks 29. Other studies have found that 
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SNM1B localizes to IR (ionizing radiation) induced breaks independent of ATM and is 

important in the DSB response signaling events 58. All these studies exemplify how 

SNM1B may play different roles at DSBs depending on the source of DNA damage. Our 

data in this study show that SNM1B localizes to stalled forks and plays important roles 

at the later events that occur during the stabilization and restart of stalled replication 

forks or in the repair of collapsed replication forks.  

 It is important to note the differences between aphidicolin-induced stalled forks 

versus spontaneous replication stress. Spontaneous fork stalling can result from a 

multitude of sources as previously described including secondary structures, 

protein:DNA adducts, or encounters with the transcription machinery. Uncoupling of 

polymerase and helicase activities may not necessarily occur in the response to all 

these spontaneous sources 1. We have found some of the most striking and interesting 

phenotypes in untreated SNM1B depleted cells, which are dealing with spontaneous 

replication stress that occurs during every S phase of the cell cycle.   

When SNM1B is absent or nuclease deficient, I observed a significant increase in 

regions of ssDNA compared to NS suggesting that the stalled forks are not repaired 

efficiently (Figures 3.2,3.3). SNM1B was also found to be important in preventing the 

occurrence of stalled replication forks in untreated cells, during spontaneous replication 

stress using DNA fiber analysis (Figure 3.4). These results indicate that there is clearly 

a role for SNM1B in preventing stalled replication upon spontaneous replication stress. 

If SNM1B nuclease activity is involved in digesting or processing regressed forks, during 

its absence or nuclease deficiency, these structures remain, resulting in persistent 

stalled forks. SNM1B nucleolytic activity may digest the nascent DNA strands at stalled 

forks to provide binding sites for recruitment of repair proteins, as previously discussed.  

 In normal proliferating cells when SNM1B is absent, I found a significant increase 

in the percent of broken DNA from intact chromosomes using PFGE, indicating an 

increase in genome instability (Figure 3.5). In conclusion, I have demonstrated there are 

increased regions of ssDNA, numbers of stalled forks, and broken DNA in unperturbed 

SNM1B depleted cells. These results exemplify that SNM1B is critical in stabilizing 

stalled replication forks, preventing aberrant accumulation of ssDNA, and also 

preventing collapsed replication forks in normal proliferating cells.  
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One responsibility of SNM1B in normal proliferating cells could be to relieve 

torsional stress, especially since it has a role in unwinding supercoiled DNA structures 

at telomeres with its association with Topoisomerase 2α 48. During spontaneous 

replication stress, SNM1B may also process topological barriers to avoid fork regression 

and maintain replication fork progression. Future studies determining the specific roles 

of SNM1B in responding to spontaneous and induced stalled forks would address the 

interplay of SNM1B and other nucleases and DNA repair factors involved in these 

processes.  
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Supplemental Figure 3.1 Control experiments for BrdU immunofluorescence 
assay. 
A. HCT116 cells were allowed to incorporate BrdU and then treated with hydrochloric 
acid (HCl) to completely denature the DNA. Cells were then fixed and stained with α-
BrdU antibody. BrdU (green). Nuclei, DAPI stained (blue).  
B. SNM1B depleted and control HCT116 cells were untreated or treated with 1µM 
aphidicolin for 24 hours. DNA content was assessed by fixing then staining cells with 
propidium iodide and analyzing DNA content by FACS. Cell cycle profiles are shown, 
and quantitation of the percent of cells in the G1, S, and G2/M phases of the cell cycle 
were assessed using the Watson algorithm (FlowJo, TreeStar).   
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Supplemental Figure 3.2 Aphidicolin treated cells result in a decrease in ongoing 
replication forks. 
HCT116 cells were transfected with NS or siSnm1B-1. For untreated experiments, log-
phase cells were labeled with IdU for 20min and then CldU for 20min. For aphidicolin 
treated experiments, cells were labeled with IdU for 20min, 1µM aphidicolin for 24 hr 
with additional IdU, and then CldU for 20min. The average percent of ongoing forks was 
calculated by dividing the number of ongoing forks divided by the total number of 
ongoing, stalled, and new forks. The graphs represent the average of at least three 
independent experiments; at least 200 fibers were analyzed in each experiment. Error 
bars, SEM.  
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Chapter 4: Regulation of SNM1B functions during the repair of stalled replication 
forks.  

Summary 

SNM1B/Apollo is a DNA nuclease involved in telomere maintenance, double-

strand break repair, interstrand crosslink repair, and resolution of replication stress. It 

has been shown that SNM1B functions within the FA/BRCA network to repair 

interstrand crosslinks and stalled replication forks; however, how SNM1B functions are 

regulated is not well defined. In this chapter, I sought to determine how SNM1B 

localization, functions, and protein stabilization is regulated in response to aphidicolin-

induced stalled replication forks. We identified a residue within a conserved 

monoubiquitination motif in SNM1B as being critical for SNM1B and FANCD2 

localization to subnuclear foci. I also determined that SNM1B protein levels are elevated 

upon aphidicolin treatment suggesting SNM1B protein stabilization may be induced by 

DNA damage or regulated by the cell cycle. I further found that SNM1B protein levels 

are regulated through proteasomal degradation. In conclusion, this study provides 

evidence that multiple mechanisms are employed by cells to regulate SNM1B functions 

by controlling SNM1B localization to stalled replication forks and modulating SNM1B 

protein stability. 
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Introduction 

The DNA comprising our genome is constantly under assault from endogenous 

and exogenous sources that cause many different types of damage.  If unrepaired, DNA 

lesions can accumulate, thereby leading to insertions, deletions, and aberrant 

chromosomal rearrangements 1. The DNA Damage Response (DDR) is a signaling 

network which senses the damage, initiates cell cycle checkpoints, induces apoptosis if 

the damage is too severe, and activates signaling pathways that recruit DNA repair 

proteins which fix the damaged DNA through different repair mechanisms 2. All these 

cellular events that occur during the DDR are tightly monitored and regulated. The 

recruitment and timely activation of repair proteins is critical for the maintenance of 

genome integrity. The functions of DNA repair proteins are regulated at multiple levels 

including post-translational modifications (PTMs), cell cycle regulation, protein stability, 

and proteasomal degradation.  

PTMs affect protein functions, interactions, enzymatic activity, and localization, 

and therefore are a critical part of the DDR and repairing DNA damage. Some PTMs 

that commonly occur during DNA repair processes are phosphorylation, ubiquitination, 

SUMOylation, acetylation, methylation, and PARylation 3,4.  

There are three central protein kinases responsible for key phosphorylation 

events during the DDR: ATM (Ataxia telangiectasia mutated), ATR (Ataxia 

telangiectasia and Rad3 related), and DNA-PK (DNA-dependent protein kinase) which 

are members of the PIKK (phosphoinositide-3-kinase-like protein kinase) family 5-7. All 

of these kinases phosphorylate the histone variant H2AX, which is a key 

phosphorylation event that signals that DNA damage has occurred 8-12. Phosphorylation 

of H2AX (denoted as γH2AX) initiates downstream events including the recruitment of 

repair proteins 10,13. ATM and ATR phosphorylate the effector kinases CHK2 and CHK1, 

respectively which ultimately results in cell cycle arrest to allow time for the cell to repair 

the damage 14-17. 

Another PTM that is utilized to regulate DNA repair proteins is ubiquitination. 

Ubiquitin is a 76 amino acid polypeptide that is covalently attached to lysine residues on 

proteins through E1 (activating), E2 (conjugating), and E3 (ligase) enzymes 18-20. 

Ubiquitin itself has seven lysine residues and therefore, polyubiquitin chains can form 
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and this primarily targets the protein for proteasomal degradation 21-23. 

Monoubiquitination of a protein can aid in its localization to a specific site and promote 

protein:protein interactions through ubiquitin-binding domains (UBD) 24,25. FANCD2 and 

FANCI (ID complex), two Fanconi anemia (FA) proteins, are monoubiquitinated by the 

FA core complex which possesses E3 ubiquitin ligase functions, which results in 

localization of the ID complex to sites of blocked or stalled replication forks 26. The 

monoubiquitinated ID complex binds to the UBD of the nuclease FAN1 (Fanconi-

associated nuclease 1) resulting in the recruitment of FAN1 to the replication fork 27-30.  

 SUMOylation, which covalently links SUMO (small ubiquitin-like modifier) to a 

protein, is another example of a PTM 31. SUMOylation of RPA (replication protein A) 

facilitates the interaction between RPA and Rad51, which recruits Rad51 to DSBs to 

initiate homologous recombination (HR) 32. PARylation, characterized by the addition of 

ADP-ribose polymers to proteins through PARP (poly(ADP-ribose) polymerase) 

enzymes is another important PTM because PARylation of targets recruits DDR 

proteins to DNA breaks. 33. Histone methylation and acetylation regulates opening up of 

the chromatin allowing room for localization of repair proteins 34. Cross-talk between 

these different types of PTMs can be involved in regulating one protein, especially if this 

protein has multiple functions in several different repair pathways. One example of this 

is CtIP (carboxy-terminal binding protein interacting protein) which plays a key role in 

regulating if a DSB is repaired through HR or non-homologous end joining (NHEJ) 35. 

Removal of PTMs is just as critical in regulating protein functions. For example, 

DUBs (deubiquitylating enzymes) promote inactivation of protein functions, disassembly 

of protein complexes, and disruption of interactions that are no longer required at the 

site of DNA damage 36,37. If proteins are not modified in a timely manner, their functions 

can be impaired resulting in unrepaired DNA damage and genome instability.  

The ubiquitin-proteasome system (UPS) is involved in protein stability which 

regulates protein levels. While monoubiquitination is involved in localization, protein 

interactions, and repair functions as described above, K48 linked polyubiquitin chains 

target proteins to the proteasome for degradation 38,39. The BLM helicase is 

monoubiquitinated which promotes its localization to stalled replication forks and binding 

to proteins with UBDs. BLM is also polyubiquitinated and targeted for degradation 40,41. 
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These two types of ubiquitination work together to monitor the activity of BLM during the 

restart of stalled replication forks.  

Having higher levels of certain proteins in normal proliferating cells may result in 

deleterious phenotypes, so the cell rapidly degrades these proteins in normal 

conditions. Upon DNA damage, which may require the protein to fix the damage, it is 

not targeted for proteasomal degradation. p53 is an example of this form of regulation 

as it is stabilized and activated in response to DNA damage. 42-44. Protein levels of DNA 

repair factors may also be regulated by the cell cycle. CtIP functions are not only 

regulated by PTMs but also by the cell cycle. CtIP protein levels are low in G1 and as 

the cell progresses though S phase the protein levels increase (with consistent 

transcription) suggesting a mechanism through which CtIP plays a role in deciding 

between HR and NHEJ by promoting HR-mediated repair 45. Interactions between 

proteins is another mechanism through which a protein can be stabilized. For example, 

the binding of two helicases important in the stabilization and restart of stalled forks, 

FANCJ and BLM, stabilizes the BLM protein while this interaction does not affect protein 

levels of FANCJ 46-48.  

DNA nucleases have critical functions in repairing all types of DNA damage, 

including restarting stalled replication forks. A number of nucleases including Mre11, 

Mus81, FAN1, DNA2, Exo1, and SNM1B have been implicated in this process, but how 

their functions are regulated and how they collaborate is unknown. The nuclease 

activities of these proteins have to be tightly controlled because unmonitored nuclease 

activity can degrade the DNA, resulting in even more damage and increased genome 

instability. It has been shown that Mre11-mediated nucleolytic processing of regressed 

forks is controlled by the FA/BRCA network thereby ensuring these structures are not 

highly degraded 49. Therefore, we sought to determine how SNM1B nuclease activity, 

functions, and localization during the repair of stalled replication forks are regulated.  
Through its 5’ to 3’ exonuclease activity, SNM1B forms 3’ overhangs at 

telomeres which is necessary for telomere protection. A member of the shelterin 

complex, POT1b, inhibits hyper-resection of leading-end telomeres by SNM1B. 

However, the specific mechanism through which POT1b regulates SNM1B functions at 

telomeres is not known 50. Furthermore, SNM1B interacts with TRF2, another 
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component of the shelterin complex,  and this interaction promotes recruitment of 

SNM1B to telomeres and also stabilizes SNM1B protein levels by inhibiting 

polyubiquitination of SNM1B, thereby preventing proteasomal degradation 50-52. In 

addition to TRF2, SNM1B has also been shown to interact with DNA repair proteins 

Mre11, FANCD2, Mus81, and SLX4 53,54. However, how these interactions are mediated 

and their functional significance is unknown.  

 SNM1B functions may be regulated at multiple levels including PTMs, cell cycle 

regulation, protein stability, and proteasomal degradation, and the interplay between 

these different types of regulation can mediate its recruitment, localization, and 

enzymatic functions. Furthermore, since SNM1B has been implicated in repairing ICLs, 

DSBs, stalled replication forks, and spontaneous replication stress, the specific 

mechanisms through which it is regulated could vary depending on the type of DNA 

damage.  

In this chapter, a residue on the C terminus of SNM1B was found to be critical for 

SNM1B localization to aphidicolin-induced stalled forks. This residue was also shown to 

be important for efficient FANCD2 foci formation upon aphidicolin treatment. 

Furthermore, I found that SNM1B protein levels increase upon aphidicolin treatment and 

are regulated by the proteasome, suggesting that SNM1B functions are regulated at 

multiple levels of protein stability and turnover along with localization to stalled 

replication forks.  

 

Materials/Methods 

Cell systems and knockdown of SNM1B expression by siRNA 

The HCT116 colon cancer cell line was cultured in McCoy’s media (10% FBS, 

1% Pen/Strep) as previously described 55. All siRNAs (50 nM) were transfected using 

Lipofectamine 2000 (Invitrogen) as per manufacturer’s instructions.  SNM1B mRNA 

levels were determined via semi-quantitative RT-PCR in every experiment to verify the 

extent of siRNA knockdown as previously described 55,56.  

 

Generation of HCT116 cell lines expressing siRNA-1-resistant wild-type and mutant 

SNM1B 
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A siSnm1B-1 resistant cDNA containing three silent point mutations within the 

siRNA-1 core sequence was used for the complementation experiments and to 

generate the site specific mutants 56. The wildtype and mutant siRNA resistant cDNAs 

were subcloned into the pLL IRES GFP lentiviral vector (UM vector core).  Lentiviruses 

expressing the SNM1B-IRES-GFP cassettes were generated as previously described 
56.  HCT116 cells (2.0x105) were incubated with 1 mL of virus containing media with 4 

mg/mL polybrene, 1 mL DMEM, and 10% FBS for 24 hours.  Cells were harvested 24 

hours later, and expression of the SNM1B-IRES-GFP expression cassette was 

determined by flow cytometry to determine the percentage of GFP positive cells. 

 GFP positive cells were sorted (University of Michigan Flow Cytometry Core), 

cultured, and re-sorted. SNM1B expression levels were assessed by semi-quantitative 

RT-PCR using primers specific for the siRNA resistant cDNAs.  Early passage sorted 

cell lines with comparable levels of SNM1B expression were used for complementation 

experiments.  HCT116 cells infected with the pLL empty vector (EV) control were used 

for all experiments. 

 

Immunofluorescence of subnuclear foci 

Empty vector (EV), WT-SNM1B and K398R-IRES-GFP HCT116 cells were 

plated on coverslips in 12 well dishes. For some experiments, cells were then 

transfected with NS or siSnm1B-1. Cells were treated with aphidicolin (either 0.3, 0.5, or 

1µM) 48 hours post transfection for 24 hr. For FANCD2 foci, cells were incubated in 

cold extraction buffer (20mM HEPES, 50mM NaCl, 300mM sucrose, 3mM MgCl2, 0.5% 

TX-100) for 5 min followed by fixation in 3% paraformaldehyde/2% sucrose for 20 min. 

For V5-SNM1B foci, cells were fixed with ice cold 70% methanol, 30% acetone at -20°C 

for 20 min and then air dried at room temperature. For experiments co-staining for GFP 

and V5-SNM1B, cells were incubated in 3% p-formaldehyde/2% sucrose for 20 min 

followed by incubation in cold extraction buffer (20mM HEPES, 50mM NaCl, 300mM 

sucrose, 3mM MgCl2, 0.5% TX-100) for 5 min. Cells were blocked in 0.5% BSA, 0.05% 

Tween-20, 1X PBS for 1 hr. Cells were then stained with primary antibody for 45 min 

and then Alexa Fluor 488 or 594 (Invitrogen Molecular Probes) secondary antibodies for 

45 min.  Prolong Gold antifade reagent with DAPI (Invitrogen) was used to mount 
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coverslips on slides.  Images were acquired using Olympus BX61 microscope and 

FISHview Software (Applied Spectral Imaging).  At least three independent experiments 

analyzing approximately 100 cells per sample were conducted.     

 

Western blot analyses 

WT-SNM1B and K398R-SNM1B HCT116 cells were treated with either 1µM 

aphidicolin for 24 hr, 10µM MG-132 for 8 hr, or 1µM MMC for 8 hr. Cells were harvested 

and re-suspended in protein lysis buffer (10mM PIPES pH 6.8, 100mM NaCl, 300mM 

sucrose, 1mM MgCl2, 0.1% Triton-X 100) containing phosphatase (Roche PhosSTOP) 

and protease inhibitors (Roche Complete Mini EDTA free), and Benzonase (Purity 

>99% Novagen).  Expression of SNM1B protein was analyzed by western blotting using 

α-V5 antibody and IRDye 800 CW secondary antibodies (Li-Cor). Bands were 

visualized and quantitated using the Odyssey 2.1 software. All experiments were 

performed at least three independent times.  

WT-SNM1B and K398R HCT116 cells were treated with 1µM aphidicolin for 24 

hr and then cells were harvested for cellular fractionation experiments. Cells were first 

lysed with buffer 1 (50mM HEPES pH 7.5, 150mM NaCl, 1mM EDTA, 0.2% NP-40, 

containing phosphatase and protease inhibitors) for 5 min on ice. After centrifugation 

(1000g, 5min) the supernatant was labeled as the cytoplasmic fraction. The pellet was 

then lysed with buffer 2 (50mM HEPES pH 7.5, 150mM NaCl, 1mM EDTA, 0.5% NP-40, 

containing phosphatase and protease inhibitors) for 40 min on ice. After centrifugation 

(16000g, 15min) the supernatant was labeled as the nuclear fraction. The final pellet 

was then re-suspended in RIPA buffer (50mM Tris-Cl, 0.5% sodium deoxycholate, 0.1% 

SDS, 1% NP-40, 150mM NaCl) containing the chromatin-associated fraction. GAPDH 

and H2AX were used as loading controls for cytoplasmic and chromatin fractions, 

respectively. Expression of SNM1B protein was analyzed by western blotting using α-

V5 antibody and IRDye 800 CW secondary antibodies (Li-Cor). FANCD2 

monoubiquitination was also analyzed using α-FANCD2 antibody. Bands were 

visualized and quantitated using the Odyssey 2.1 software. All experiments were 

performed at least three independent times. 
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Cell Cycle Analysis 

WT-SNM1B HCT116 cells were plated in a 6 well dish (1 x 105 in each well) and 

treated with 1µM aphidicolin for 24 hours and 1µM MMC for 8 hours. Cells were then 

fixed with cold 70% ethanol, stored at -20°C overnight, and stained with propidium 

iodide (PI) for 30 min at room temperature.  FACS analysis was performed using an 

Accuri C6 flow cytometer and cell cycle profiles were analyzed using FlowJo (TreeStar) 

software.  

 

Antibodies 

α-FANCD2 was from Novus Biologicals (100-182). α-V5 was from Invitrogen (R960-25). 

α-GAPDH was from Santa Cruz (32233). α-H2AX was from Millipore (07-627). α-GFP 

was from Abcam (ab5450). α-Topoisomerase I was from BD Biosciences (556597). 

 

Results 

Identification of a residue within SNM1B that is important for FANCD2 localization to 

stalled replication forks 

 One key PTM of the FA pathway in responding to ICLs and stalled replication 

forks is the monoubiquitination of the ID complex as mentioned above.  

Monoubiquitination results in subnuclear localization of the ID complex to sites of 

damage 26. Interestingly, SNM1B possesses a lysine residue within a motif (KKQL) 

similar to the monoubiquitination consensus sequence in FANCD2 (RKQL) and FANCI 

(RKAM) 57. Shown in the diagram is the conserved sequence of SNM1B in humans and 

mice and of FANCD2 and FANCI in humans, mice, and amoeba (Figure 4.1A).  

To determine if the localization and function of SNM1B in the response to 

replication stress could possibly be regulated through this potential monoubiquitination 

motif, the lysine residue of SNM1B was mutated to arginine (K398R). Lysine and 

arginine are both polar, positively charged amino acids, but ubiquitin cannot be added to 

arginine; therefore, this conservative amino acid substitution is commonly used to 

mutate ubiquitination sites. HCT116 cell lines which stably express the K398R-SNM1B 

mutant protein were generated using a pLL-IRES-GFP lentiviral vector. Since we have 

previously found that both depletion of SNM1B and expression of a nuclease deficient  
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Figure 4.1: Identification of a residue within SNM1B that is important for FANCD2 
foci formation  
A. Schematic of SNM1B showing the lysine residue (K398) that is located within the 
monoubiquitination consensus sequence found in FANCD2 and FANCI. Protein 
sequence in human and mice are shown for all three plus amoeba for FANCD2 and 
FANCI.  This potential mono-ubiquitination lysine residue of SNM1B was mutated to 
arginine (K398R).  
B. HCT116 cells transduced with pLL-IRES-GFP empty vector (EV) or K398R-SNM1B 
retroviruses were sorted, transfected with NS or siSnm1B-1, and treated with 1µM 
aphidicolin treatment for 24 hr. FANCD2 foci formation was visualized by 
immunofluorescence microscopy. Representative images are shown. FANCD2 (red). 
Nuclei, DAPI stained (Blue). 
C. The average percentage of cells with >10 FANCD2 foci was quantitated. The graph 
represents the results from at least three independent experiments; at least 100 cells 
were scored in each experiment. Error bars, SEM. *p<0.01 
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SNM1B mutant (D14N) results in defective FANCD2 foci formation in response to 

aphidicolin-induced stalled replication forks, I examined FANCD2 foci formation in the 

K398R-SNM1B cells (Figure 4.1B) 55. In EV cells, knockdown of SNM1B resulted in 

decreased aphidicolin-induced FANCD2 foci as previously reported 55. I also found that 

the K398R-SNM1B mutant cells exhibited a significant decrease in the percent of cells 

with >10 FANCD2 foci after aphidicolin treatment, even in cells containing endogenous 

SNM1B (Figure 4.1B,C). These results suggest that mutation of this residue may have a 

dominant negative effect on SNM1B functions and is important for efficient FANCD2 foci 

formation upon aphidicolin-induced stalled forks.  

 

Identification of a residue within SNM1B that is important for SNM1B localization to 

aphidicolin-induced stalled replication forks. 

 I have also previously found that SNM1B localization to aphidicolin-induced 

repair foci occurs before FANCD2 (Figure 3.1). Therefore, I next determined if the 

K398R-SNM1B mutant can localize to aphidicolin-induced sites of stalled replication 

forks. WT-SNM1B and K398R-SNM1B cells were treated with increasing doses of 

aphidicolin (0.3, 0.5, and 1µM) for 24 hours. Cells were then co-stained with α-GFP and 

α-V5 antibodies and V5-SNM1B foci were visualized by immunofluorescence 

microscopy. Only the GFP positive cells were analyzed since these cells contain the 

pLL IRES GFP vector and express the V5 tagged SNM1B protein (Figure 4.2A). While 

WT-SNM1B cells showed increased percentages of V5-SNM1B foci positive cells with 

increasing doses of aphidicolin compared to untreated controls, the K398R-SNM1B 

mutant was severely defective in localization to aphidicolin-induced sites of stalled forks 

(Figure 4.2B). V5-SNM1B foci formation was also determined by analyzing the whole 

population of cells and similar results were found (Figure 4.2C). These results suggest 

that the K398 residue is important for efficient localization of SNM1B to sites of stalled 

replication forks.  

I also assessed the ability of a nuclease deficient SNM1B (D14N) to localize to 

aphidicolin-induced stalled replication forks. D14N-SNM1B exhibited a moderate defect 

in forming foci (~25% foci positive cells) when compared to WT-SNM1B (~40%), but 

there was not as severe a defect in foci formation like what I observed with the K398R- 



	   119	  

 
 
Figure 4.2 Identification of the K398 residue as being important for SNM1B 
localization to aphidicolin-induced stalled replication forks.  
A. WT-SNM1B and K398R-SNM1B HCT116 cells were treated with increasing doses of 
aphidicolin (0.3, 0.5, and 1µM) for 24 hr. Cells were then co-stained with α-GFP and α-
V5 antibodies, and V5-SNM1B foci were visualized by immunofluorescence microscopy. 
Representative images are shown. GFP (green). V5-SNM1B (red). Nuclei, DAPI stained 
(Blue). 
B. The average percentage of GFP positive cells (green) that also contained V5-
SNM1B foci staining (red) was quantitated. The graph represents the results from three 
independent experiments; at least 100 cells were scored in each experiment. Error bars, 
SEM. *p<0.02 
C. WT-SNM1B, D14N, and K398R HCT116 cells were treated with 0.3µM aphidicolin for 
24 hours and then fixed and stained with α-V5 antibody to detect V5-SNM1B foci 
formation. The average percent of cells with V5-SNM1B foci is plotted. Error bars, SEM.  
*p<0.05, **p<0.005 
D. Whole cell lysates of EV, WT-SNM1B, and D14N-SNM1B pLL-IRES-GFP HCT116 
cells were analyzed for V5-SNM1B protein levels. TOP1, loading control.  
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SNM1B mutant (~6%) (Figure 4.2C). Protein levels of the D14N SNM1B mutant was 

expressed at similar levels to WT-SNM1B in our stably expressing cell lines, as shown 

by the western blot (Figure 4.2D). Therefore, a nuclease deficient SNM1B can localize 

to stalled forks but not as effectively as WT-SNM1B, and the K398 residue is clearly 

important for ensuring SNM1B subnuclear localization.  

 

SNM1B protein levels increase upon aphidicolin treatment and are regulated by 

proteasomal degradation.  

 Since the K398R-SNM1B mutant results in decreased FANCD2 foci formation 

and exhibits a marked impairment in forming foci upon aphidicolin treatment, protein 

levels of this mutant SNM1B were compared to WT-SNM1B to assess if this mutation 

results in an unstable SNM1B protein. WT-SNM1B and K398R-SNM1B HCT116 cells 

were treated with 1µM aphidicolin for 24 hours. Interestingly, an increase in SNM1B 

protein levels after aphidicolin treatment was consistently observed (a two-fold increase) 

in both WT-SNM1B and K398R-SNM1B cells (Figure 4.3A,B). As transcription of 

SNM1B is driven by a constitutive CMV promoter in the WT-SNM1B and K398R-

SNM1B stably expressing cell lines, these results suggest that the SNM1B protein may 

be stabilized in response to DNA damage.  

To assess if the stabilized SNM1B protein is chromatin associated, cellular 

fractionation experiments were performed. An increase in SNM1B protein levels after 

aphidicolin treatment in all fractions (cytoplasmic, nuclear, and chromatin-associated) 

for both WT-SNM1B and K398R-SNM1B (at least two-fold increase) was observed. 

There was also more SNM1B protein in the chromatin-associated fraction for untreated 

and aphidicolin treated cells in both WT-SNM1B and K398R cells (at least three-fold 

increase) (Figure 4.3C). These results indicate that SNM1B protein levels increase 

overall after aphidicolin treatment and that there is more chromatin-associated SNM1B 

protein in unperturbed proliferating cells. FANCD2 monoubiquitination was also 

analyzed as a control since the modified form of FANCD2 has previously been shown to 

be enriched in the chromatin fraction upon replication stress, which is what I observed 
58.  
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Figure 4.3 SNM1B protein levels increase upon aphidicolin treatment and 
proteasome inhibition 
A. WT-SNM1B and K398R-SNM1B HCT116 cells were treated with 1µM aphidicolin for 
24 hr, and whole cell lysates were analyzed by western blotting. V5-SNM1B protein 
levels were examined. Representative blots from at least three independent 
experiments are shown. TOP1, loading control.  
B. Quantitation of western blots is shown. The protein levels were calculated relative to 
the untreated samples for each cell line. Error bars, SEM. *p<0.05 
C. WT-SNM1B and K398R-SNM1B HCT116 cells were treated with 1µM aphidicolin for 
24 hr. Cells were harvested and separated into cytoplasmic, nuclear, and chromatin-
associated fractions. Western blotting to detect the unmodified and monoubiquitinated 
forms of FANCD2 was performed as a control. V5-SNM1B protein levels in the different 
fractions were assessed. GAPDH was a control for the cytoplasmic fraction while H2AX 
was a control from the chromatin-associated fraction. Representative blots from at least 
2 independent experiments are shown.  
D. WT-SNM1B and K398R-SNM1B HCT116 cells were treated with 10µM MG-132 
(proteasome inhibitor) for 8hr and whole cell lysates were analyzed by western blotting. 
V5-SNM1B protein levels were examined. Representative blots from two independent 
experiments are shown. TOP1, loading control.  
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 Since aphidicolin treatment results in an accumulation of cells in S-phase, the 

increase in SNM1B protein levels that I observe could be a result of SNM1B being 

under cell cycle control. SNM1B protein levels could potentially increase during the S-

phase of normal proliferating cells. If SNM1B protein levels oscillate as a cell 

progresses through the cell cycle, inhibition of the proteasome should result in 

increased SNM1B protein levels since the protein is not degraded. Therefore, WT-

SNM1B and K398R cells were treated with the proteasome inhibitor MG-132 and an 

increase (3 fold) in SNM1B protein levels in WT-SNM1B and K398R cell lines was 

found (Figure 4.3D). These results demonstrate that SNM1B protein levels are 

regulated through proteasomal degradation.  

 I have shown that protein levels of both WT-SNM1B and the K398R mutant 

increase after aphidicolin treatment, associate with the chromatin, and are under 

proteasome regulation (Figure 4.3). However, unlike WT-SNM1B, the K398R-SNM1B 

mutant is defective in aphidicolin-induced foci formation and FANCD2 foci formation 

(Figure 4.1, 4.2). Furthermore, since K398R-SNM1B could associate with the chromatin 

but was not detected to form foci, this residue could be important in localization of 

SNM1B to the specific site of a stalled replication fork. These results suggest that 

SNM1B protein levels, localization, and functions are regulated at multiple levels 

through different mechanisms. Moreover, there is the possibility that SNM1B has 

different roles repairing spontaneous replication stress versus induced stalled 

replication forks and consequently, how its functions are controlled are distinct for each 

type of damage.  

 

Discussion 

SNM1B localizes to aphidicolin induced stalled replication forks before FANCD2, 

and we have previously shown that depletion of SNM1B results in defective FANCD2 

foci formation (Figure 3.1) 55. Additionally, I now have found that mutation of a residue, 

K398, located within the conserved monoubiquitination motif in SNM1B, results in a 

significant defect in FANCD2 and SNM1B foci formation (Figure 4.1, 4.2). Taken 

together, these data demonstrate that this amino acid is required for SNM1B cellular 

functions. Furthermore, I showed that a nuclease deficient SNM1B is able to form foci 
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more efficiently that the K398R mutant but not to levels of WT-SNM1B (Figure 4.2). 

These data suggest that SNM1B is able to localize to the stalled fork, but since it cannot 

nucleolytically process any DNA structures that are present, perhaps it is removed. 

Because the orthologous residue in FANCD2 and FANCI undergoes monoubiquitination 

and plays critical roles for these proteins in proper localization, I hypothesize that 

SNM1B could also be modified on this residue to initiate its localization to stalled 

replication forks. Consequently, SNM1B nucleolytically processes intermediate DNA 

structures allowing room or generating binding sites for downstream repair proteins like 

FANCD2 to localize and initiate replication restart or repair.  

Not only is SNM1B localization regulated by this lysine residue, but I also found 

evidence to suggest SNM1B protein levels are modulated. Increased SNM1B protein 

levels after aphidicolin treatment could be caused by cell cycle regulation of SNM1B 

protein (Figure 4.3A,B). Since aphidicolin induces arrest of cells in S phase, SNM1B 

protein levels may be elevated during the S phase of every cell cycle. Additionally, we 

observed an increase in SNM1B protein levels after aphidicolin treatment in the whole 

cell (cytoplasm, nucleus, and chromatin-associated fraction) (Figure 4.3C). If SNM1B 

plays a role during normal replication or responding to spontaneous replication stress, it 

would make sense that it is up-regulated during every S phase within the cell cycle 

similar to CtIP 45. Furthermore, proteasome inhibition also resulted in a significant 

increase in SNM1B protein levels similar to aphidicolin treatment (Figure 4.3). These 

results show that SNM1B is proteasomally regulated and provide some evidence that it 

could be cell cycle regulated which may explain the aphidicolin-induced protein levels 

as well. In previous chapters I have shown that depletion of SNM1B in unperturbed cells 

results in increased chromosomal gaps and breaks, breaks at CFS, regions of unstable 

ssDNA, stalled forks, and collapsed replication forks, indicating SNM1B is critical during 

normal cellular proliferation 55,56. 

 The increase in SNM1B protein levels after aphidicolin treatment could also be 

damage induced. We did not observe a similar increase in SNM1B protein levels when 

cells were treated with mitomycin C (MMC) suggesting that the up-regulation of SNM1B 

protein levels may be damage specific since MMC induces cell cycle arrest in S phase 

similar to aphidicolin (Suppl. Fig. 4.1).  If SNM1B protein is stabilized in response to 
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stalled replication forks, there would be an accumulation of the protein specifically in S 

phase. Therefore, one line of investigation would be to examine SNM1B protein levels 

in G1, S, and G2 phases of the cell cycle. Further studies analyzing cell cycle 

progression and investigating other damaging agents could define the mechanisms 

through which SNM1B protein levels are regulated.  

Interestingly, when I analyzed protein levels of the K398R-SNM1B mutant, which 

is defective in foci formation, I found that its levels were similar to WT-SNM1B. K398R 

protein levels increased with both aphidicolin treatment and proteasome inhibition. 

K398R-SNM1B also localized to the chromatin fraction and the increase in SNM1B 

protein after aphidicolin was across all fractions, although more pronounced in the 

chromatin fraction (Figure 4.3). It has been shown that FANCD2 chromatin localization 

can be independent of foci formation as well 59. Together, this suggests that SNM1B is 

regulated at multiple levels. The stability of SNM1B protein and its target for degradation 

is one way through which it is regulated while its localization is somehow regulated 

through the K398 residue. This lysine residue may be monoubiquitinated and future 

studies will address this hypothesis. Alternatively, this residue could be important in 

promoting SNM1B interactions with other proteins which are important for its 

recruitment or localization. Furthermore, SNM1B binding partners like the scaffold 

protein SLX4 or other nucleases like Mre11 and Mus81 could potentially have protein 

stabilizing effects that suppress degradation of SNM1B when it is needed for cellular 

functions.  

 The importance of nucleases in resolving replication stress is becoming 

increasingly evident. Therefore, understanding how the localization, enzymatic 

activities, and functions of these nucleases, including SNM1B, are regulated is a critical 

question to address. Faulty or absent regulation of DNA nucleases during replication 

and the DDR could have adverse affects resulting in genome instability. Determining 

how SNM1B functions are controlled may uncover mechanisms through which other 

nucleases or DNA repair proteins, including SNM1B binding partners, are regulated. 

Additionally, spontaneous replication stress occurs during every cell cycle in normal 

proliferating cells, and nucleases are critical in ensuring that the resolution of replication 

stress occurs correctly.  
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Supplemental Figure 4.1 SNM1B protein levels do not increase upon MMC 
treatment.  
A. EV and WT-SNM1B HCT116 cells were treated with 1µM aphidicolin for 24 hours or 
1µM MMC for 8 hours. Whole cell lysates were analyzed by western blotting. V5-
SNM1B protein levels were examined. Blots from two independent experiments are 
shown. TOP1, loading control.  
B. WT-SNM1B cells treated as above were stained with PI to analyze the cell cycle 
profile. FACS analysis was performed and cell cycle profiles were analyzed using 
FlowJo (TreeStar) software.  
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Chapter 5: Conclusions  

Summary 

Genomic DNA is constantly damaged through both exogenous and endogenous 

sources. Remarkably, one source of DNA damage is the fundamental process of DNA 

replication. This occurs during every cell cycle in proliferating cells. Progression of the 

replication fork can be blocked or disrupted through various ways leading to stalled 

replication. If these stalled replication forks are not restarted, they can collapse resulting 

in a double-stranded break (DSB). If not repaired, this DSB can engage in deleterious 

chromosomal rearrangements including deletions, insertions, and translocations. The 

DNA damage response (DDR) senses stalled replication forks and activates DNA repair 

pathways to resolve this genomic damage. Mutations in DNA repair proteins can result 

in genome instability disorders with phenotypes including developmental defects, 

immunodeficiency, and cancer predisposition. Therefore, understanding the 

mechanisms involved in the cellular response to replication-associated genomic 

damage is critical in uncovering how genome integrity is maintained.  

The DNA nuclease SNM1B has functions in telomere protection, DSB repair, and 

repair of interstrand crosslinks (ICLs). In this thesis, I have established that SNM1B also 

has important roles in repairing stalled replication forks that result from DNA polymerase 

inhibition and during normal cellular proliferation. We have found that SNM1B is 

important for cellular survival upon aphidicolin-induced replication fork stalling. We 

showed that SNM1B is not required for sensing stalled replication forks, the activation of 

ATR-dependent signaling, or localization of DNA repair proteins that function during 

early events in the DDR. We demonstrated that SNM1B is important for efficient 

localization of key repair proteins during the later steps of these repair processes. We 

found that SNM1B plays a key role in preventing replication- associated DNA damage. I 

also have begun to uncover how SNM1B protein stability, localization, and functions are 

regulated during the repair of stalled replication forks. These findings indicate that 
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SNM1B is important for restarting stalled replication forks and repairing collapsed forks 

and thereby critical for preventing genome instability. 

In this chapter, I will discuss the implications of these novel functions of the 

SNM1B DNA nuclease. Future directions will also be proposed to further understand the 

precise mechanisms through which SNM1B prevents replication-associated genomic 

damage and maintains overall genome stability.  

 

SNM1B is not required for the detection of stalled replication forks or the activation of 

early events in the DDR. 

My studies have provided evidence that SNM1B has functions in restarting 

stalled replication forks after the early signaling events of the DDR have been activated. 

In order to activate the DDR at a stalled fork, long stretches of single-stranded (ssDNA) 

are needed for RPA (Replication Protein A) binding which initiates ATR (ataxia 

telangiectasia and Rad3 related) kinase signaling. The MRN (Mre11/Rad50/Nbs1) 

complex has been shown to colocalize with RPA upon replication fork stalling 1,2. I found 

that both RPA and Mre11 localize quickly (within 1 hour of aphidicolin treatment) to foci 

(Figure 3.1). SNM1B depletion did not affect localization of RPA and the MRN complex 

or ATR-dependent signaling, which are all early events that occur in the cellular 

response to stalled forks (Figures 2.1B, 2.2).  

Interestingly, we have previously found that SNM1B is needed for ATR-

dependent signaling in response to MMC-induced ICLs 3. However, we have now 

shown that SNM1B is dispensable for these signaling events after aphidicolin-induced 

replication stress 4. This phenotypic difference suggests that SNM1B has different roles 

in responding to blocked versus stalled forks. At a blocked fork, ssDNA needs to be 

generated while upon DNA polymerase inhibition, the polymerase and helicase 

uncouple, resulting in the helicase unwinding the DNA which forms long stretches of 

ssDNA 5-7.  Therefore, SNM1B may be responsible for generating ssDNA at an ICL to 

activate ATR-dependent signaling while at an aphidicolin-induced stalled fork, SNM1B 

functions after ATR-depending signaling has already been initiated.   

Once a stalled fork has been recognized and the DDR is activated, the cell 

initiates processes that will restart the stalled fork. One mechanism is through fork 
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regression as previously explained in Chapter 1 (Figure 1.3). Mre11 has been 

implicated in nucleolytically digesting the nascent leading strand at a ‘chicken-foot’ 

structure with its 3’ to 5’ exonuclease activity. At a regressed fork, once a 3’ to 5’ 

exonuclease, like Mre11, begins to digest the nascent leading strand, a 5’ to 3’ 

exonuclease needs to resect the nascent lagging strand. I found that SNM1B forms foci 

upon aphidicolin treatment, providing evidence that it localizes to sites of stalled 

replication forks (Figure 2.6). Furthermore, I demonstrated that SNM1B localizes to 

these stalled forks after both RPA and Mre11 localization, suggesting SNM1B functions 

after Mre11 perhaps by digesting the nascent lagging strand at a regressed fork (Figure 

3.1). It has been shown that degradation of a regressed fork by Mre11 is regulated by 

the FA/BRCA network 8-10. 

 

SNM1B functions within the FA/BRCA network in the repair of stalled replication forks 

by recruiting key DNA repair proteins  

The Fanconi anemia (FA) pathway has roles in ICL repair and responding to 

replication stress. We have previously shown that SNM1B functions within the FA 

pathway in repair of MMC induced ICLs 3. Furthermore, SNM1B depleted cells have 

similar phenotypes to FA patient cells including hypersensitivity to ICL inducing agents 

and ionizing irradiation (IR) and exhibition of chromosomal anomalies 11-13. I found that 

SNM1B localizes to stalled forks before FANCD2 and that SNM1B is needed for 

efficient FANCD2 foci formation to aphidicolin-induced stalled replication forks (Figures 

3.1, 2.5). Importantly, FANCD2 monoubiquitination, which is important for FANCD2 foci 

formation, is not affected by SNM1B depletion (Figure 2.3). Interestingly, the nuclease 

activity of SNM1B was found to be important for FANCD2 foci formation (Figure 2.4). 

These data provide additional evidence that SNM1B may act in processing a regressed 

fork, after Mre11 has begun digesting the nascent leading strand, by nucleolytically 

digesting the nascent lagging strand, and thereby generates binding sites for FANCD2 

and other DNA repair complexes which work to stabilize the fork and promote restart. I 

also found that SNM1B depletion results in deficient BRCA1 foci formation upon 

aphidicolin treatment (Figure 2.5). BRCA1 depletion results in defects in FANCD2 foci 

formation but does not affect monoubiquitination, similar to what is observed upon 
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SNM1B knockdown 14,15. Therefore, SNM1B could generate a binding site for BRCA1 

which then recruits FANCD2, forming a complex with classic HR proteins, BRCA1, 

BRCA2, and Rad51, which have interestingly been shown to be important prior to the 

formation of DSBs at collapsed forks by stabilizing stalled forks and facilitating restart of 

replication 16-19. This FA/BRCA complex then prevents uncontrolled degradation of 

regressed forks by Mre11 9,20. 

In this model (Figure 5.1), SNM1B acts on regressed forks after Mre11 has 

begun nucleolytic digestion of the annealed nascent strands. Once SNM1B 

nucleolytically processes the regressed fork and generates binding sites, the FA/BRCA 

complex is recruited to the stalled fork and works to stabilize the fork, one mechanism of 

which is to prevent extensive degradation of the nascent strands by Mre11.  

   

SNM1B prevents accumulation of ssDNA and chromosomal aberrations during the 

repair of stalled replication forks by processing aberrant DNA intermediates.  

 If SNM1B functions within the FA/BRCA network, when SNM1B is absent we 

would expect replication fork destabilization. For example, if SNM1B is not present, the 

nascent lagging strand remains exposed and single-stranded while Mre11 continues to 

degrade the nascent leading strand with no regulation. When I analyzed regions of 

ssDNA, using the BrdU immunofluorescence assay explained in Chapter 3, SNM1B 

depleted cells exhibited an increase in ssDNA after 24 hours of aphidicolin treatment 

but not after 6 hours (Figure 3.2). Similar results were found when analyzing RPA foci 

formation which binds to ssDNA (Figure 2.2). These results show that SNM1B is 

important in preventing the accumulation of ssDNA once the DNA polymerase has been 

inhibited for a longer time (24hr). However, upon SNM1B depletion, I did not observe a 

significant difference in the percent of stalled forks after aphidicolin treatment (24h) 

compared to treated controls using the DNA fiber assay (Figure 3.4). Furthermore, in 

order to analyze collapsed replication forks, I used PFGE to assess the amount of 

broken DNA from intact chromosomes and found that SNM1B depletion did not result in 

a significant increase in collapsed replication fork formation after aphidicolin treatment  
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Figure 5.1: Potential role of SNM1B in processing a regressed fork  
 

One mechanism through which a stalled fork is restarted is (1) fork regression, 
which results in a ‘chicken-foot’ structure where the nascent leading (red) and lagging 
(blue) strands have annealed together. (2) Nuclease digestion to process the regressed 
fork can involve Mre11 (orange) mediated 3’ to 5’ exonuclease activity of the nascent 
leading strand. (3) One working model is that SNM1B (purple) could then process the 
nascent lagging strand with its 5’ to 3’ exonuclease activity. (4) This processing results 
in formation of binding sites for downstream repair factors like members of the 
FA/BRCA network. (5) Once localized to the fork, these factors work to regulate Mre11 
digestion to prevent hyper-resection of the fork. (6) Once nuclease digestion of the 
regressed fork is complete, reverse branch migration resets the replication fork.  
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compared to controls (Figure 3.5).  Therefore, the unstable regions of ssDNA seem to 

result from excessive resection at the regressed fork forming longer stretches of ssDNA 

potentially from uncontrolled Mre11 digestion in the absence of SNM1B (Figure 5.1).  

 There can also be another nuclease that uncontrollably digests the DNA at the 

regressed fork suggesting SNM1B could be involved in regulating the functions of other 

nucleases. For example, the nuclease FAN1 (FANCD2/FANCI-associated nuclease 1) 

has been implicated in digesting nascent DNA strands at regressed forks. FAN1 is in a 

complex with FANCD2 and BLM helicase, and its functions seem to be regulated by 

both FANCD2 and Mre11 21,22. Therefore, SNM1B is likely collaborating with other 

nucleases to ensure proper restart of stalled replication forks. Studies determining if 

nucleases like Mre11, FAN1, or DNA2 (human nuclease/helicase 2) regulate SNM1B 

localization or functions, or vice versa, would provide insights into how nucleases 

function in concert to respond to stalled replication forks. Moreover, SNM1B is known to 

associate with Mre11, Mus81, and SLX4; therefore, it would be interesting to examine 

the functional importance of these interactions in the response to stalled replication 

forks 23-27. Furthermore, DNA combing experiments will allow us to analyze the 

dynamics of replication fork progression besides replication fork restart; for example, 

replication tract lengths and replication rates. These experiments will provide a way to 

examine if SNM1B depletion results in hyper-resection at a stalled replication fork.   

The persistence of longer stretches of ssDNA upon SNM1B depletion suggests 

that this region of ssDNA is not unstable because it is available for nuclease digestion 

and therefore has potential to break. Even though we did not find an increase in 

collapsed forks in SNM1B depleted cells, we did observe an increase in breaks at 

common fragile sites (CFSs) after aphidicolin treatment (Figures 3.5, 2.8). CFSs are 

regions that are more ‘fragile,’ so more unstable ssDNA might be present and therefore 

these regions are more prone to break. To analyze replication fork dynamics at CFSs, 

DNA combing experiments combined with FISH using probes that recognize CFSs can 

be performed. We also observed an overall increase in gaps and breaks in metaphase 

chromosomes from SNM1B deleted cells after aphidicolin treatment, which provides 

evidence that SNM1B is important for preventing replication-associated genomic 

damage.  
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Although after aphidicolin treatment in SNM1B depleted cells, we did not observe 

increased stalled or collapsed forks, in unperturbed cells we saw a significant increase 

in both. Spontaneous replication fork stalling, if not repaired, can lead to collapsed forks; 

therefore, SNM1B may also play a role in repairing collapsed forks. There may be 

specific regions of the genome or DNA structures that are more susceptible to breakage 

when SNM1B is depleted. 

 

SNM1B facilitates the recruitment of HR proteins to collapsed replication forks  

Previous evidence has shown that SNM1B has a role in general DSB repair, as 

explained in Chapter 1. For example, SNM1B is known to generate 3’ overhangs at 

leading end telomeres through its 5’ to 3’ exonuclease activity. Once this resection 

results in enough room for a shelterin complex component, POT1b, to bind to the 

overhang, POT1b limits the nuclease activity of SNM1B. This results in the 

exonuclease, Exo1, to generate a longer 3’ overhang which recruits further downstream 

factors important in telomere maintenance 28,29. Therefore at telomeres, SNM1B works 

with another nuclease to maintain telomere length, and similar mechanisms could be 

employed at collapsed forks.  

In the previous section I described a model in which SNM1B plays a role prior to 

fork collapse by processing a regressed fork and generating binding sites for the 

recruitment of repair proteins. Another model is that SNM1B plays a role after fork 

collapse once the break has already been generated. In this model, SNM1B may have 

functions in facilitating events that occur to repair a collapsed replication fork through 

HR (Figure 5.2). I have shown that SNM1B is not needed for the generation of the break 

that forms a collapsed fork, which has been partly attributed to Mus81 30,31. The 5’ to 3’ 

exonuclease activity of SNM1B could be responsible for generating a 3’ overhang at the 

one-ended DSB at a collapsed fork, which results in Rad51 filament formation along 

with assembly of HR proteins and strand invasion for HR. I found that SNM1B depletion 

in cells treated with aphidicolin for 24 hours results in a defect in Rad51 foci formation, 

which could lead to defects in FA/BRCA complex formation, as we have shown (Figure 

3.6, 2.3, 2.5). Another possibility is that SNM1B may play a role in regulating RPA  
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Figure 5.2: Potential role of SNM1B in repairing collapsed replication forks 
 

If a stalled replication fork cannot be restarted, (1) it can collapse. (2) An 
endonuclease like Mus81 (blue) generates a break in the unstable ssDNA region at a 
stalled replication fork. (3) This results in a one-ended DSB, which activates the DSB 
response. (4) SNM1B (purple) through its 5’ to 3’ exonuclease activity could be involved 
in end resection of the DSB, (5) resulting in a 3’ overhang. (6) This leads to Rad51 
filament formation and recruitment of HR proteins, (7) which initiate HR (8) to repair the 
break, and the replication fork continues to progress.  
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displacement from the ssDNA to allow for Rad51 filament formation. Therefore, upon 

SNM1B depletion we observe increased ssDNA which RPA binds to, but a defect in 

Rad51 foci formation (Figures 3.6, 2.2A, 3.3, 3.2). Detection of Rad51 foci through 

immunofluorescence requires several kilobases of ssDNA, perhaps explaining why I did 

not observe induction of Rad51 foci upon shorter aphidicolin treatment, even though it 

has been shown that Rad51 is important in stabilizing stalled replication forks along with 

its roles at collapsed forks (Figure 3.6) 32. Therefore, SNM1B may be responsible for 

generating a certain length of ssDNA overhang to initiate RPA displacement by Rad51.   

Future studies to determine why SNM1B depletion results in defective Rad51 foci 

formation could utilize the Rad51 stabilizing mutant (K133R) which does not possess 

ATPase activity that is needed for Rad51 dissociation from DNA. Therefore, this mutant 

results in hyper-stable Rad51 filaments, and we may be able to analyze if this mutant 

Rad51 can rescue any phenotypes we have observed upon SNM1B depletion, including 

increased RPA foci formation and regions of ssDNA 9,33.  

In this model we propose that SNM1B is important for facilitating the assembly of 

HR proteins to ssDNA regions at collapsed replication forks allowing for HR-mediated 

repair. It is important to remember that SNM1B may function differently in repairing 

DSBs that are induced by IR, during the repair of ICLs, collapsed forks that result from 

inefficient restart of aphidicolin-induced stalled forks, and during the repair of 

spontaneous replication-associated breaks. For example, SNM1B may be important for 

efficient ATM-dependent signaling in response to a DSB caused by IR, as has been 

previously suggested 34. During the repair of ICLs, removal of the crosslink generates a 

break, and SNM1B could be involved in this step. Additionally, like explained above 

SNM1B could be important for recruitment of repair proteins to collapsed forks to initiate 

HR. Finally, SNM1B could have distinct functions in repairing DSBs at collapsed forks 

and restarting stalled forks, similar to components of the FA/BRCA network that have 

critical roles in both these processes (Figure 5.1, 5.2).   

 

SNM1B is important in the resolution of replication stress in normal proliferating cells 

We have observed that in unperturbed cells with SNM1B knockdown there is an 

increase in chromosomal aberrations, breaks at CFSs, regions of ssDNA, frequency of 
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stalled forks, and broken DNA. This increase in genome instability upon SNM1B 

deletion in normal proliferating cells can partly be attributed to telomere defects 35-37. 

Furthermore, these striking phenotypes suggest that SNM1B plays a role in responding 

to spontaneous replication stress and perhaps even in normal DNA replication.  

Replication forks can stall when encountering endogenous sources of stress 

including secondary structures, collision with transcription machinery, and protein:DNA 

adducts, for example 38. It is important to note that some stalled forks resulting from 

endogenous sources of replication stress are different from aphidicolin-induced stalled 

forks. During spontaneous replication stress, there might be a physical block in 

progression of the replication fork, and therefore no generation of ssDNA. On the other 

hand, aphidicolin treatment results in long stretches of ssDNA as previously described. 

SNM1B has been shown to interact with PSF2 which is a component of the CMG 

helicase complex 39. Several FA proteins have also been found to interact with PSF2 

and have been shown to associate in a complex at replication forks in unperturbed cells 
40. Therefore, through its interaction with PSF2, SNM1B could be recruited to not only 

stalled replication forks but normal progressing forks.  

 SNM1B may have roles in removing secondary DNA structures that are difficult 

to replicate by working with other factors. A study found that SNM1B and TRF2 work 

with topoisomerase 2α to relieve topological stress of inner telomeres when telomeres 

are being replicated. They found that the binding of TRF2 and SNM1B to telomeres 

decreased the amount of TOP2 at telomeres during S phase. They concluded that 

SNM1B processes barriers at telomeres or prevents fork reversal 41. It is known that 

TRF2 prefers binding to positive supercoiled DNA not just at telomeres, so TRF2 could 

potentially play a role through its association with SNM1B at other regions throughout 

the genome, not just at telomeres. Unregulated unwinding of the DNA double helix 

ahead of a stalled replication fork could result in more topological stress and positive 

supercoiling 42. SNM1B could potentially be involved in relieving this strain as it does at 

telomeres.  

BLM, WRN, and FANCJ are three helicases that SNM1B may potentially work in 

a complex with to process torsional strain or DNA secondary structures. FANCJ 

processes secondary structures at G-rich regions 43. These need to be processed so 
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that ssDNA can form for efficient replication to occur. G-quadruplexes are resolved by 

the WRN helicase 44,45, and it was shown that DNA2 degrades reversed forks with WRN 

helicase 46. Therefore, SNM1B could be involved with a helicase to process 

intermediate DNA structures and restart replication. Studies analyzing SNM1B 

association and colocalization with these helicases would provide insights into how 

SNM1B may be involved in preventing spontaneous replication stress.  

 

Regulation of SNM1B functions 

 I have found that SNM1B plays critical roles in responding to aphidicolin-induced 

stalled replication forks and in maintaining genome stability. However, the mechanism 

through which SNM1B functions are regulated during these processes is not defined. I 

found that SNM1B forms foci after aphidicolin treatment (Figure 2.6), and the 

localization of many DNA repair proteins is regulated through post-translations 

modifications (PTMs). For example, FANCD2 and FANCI are monoubiquitinated by the 

FA core complex in response to DNA damage. This PTM is important for localization of 

FANCD2 and FANCI to repair foci 12,13. Interestingly, we identified a lysine residue in 

SNM1B (K398) that was within a semi-conserved motif (KKQL) where FANCD2 (RKQL) 

and FANCI (RKAM) are monoubiquitinated (Figure 4.1A) 47.  

I identified that this residue within SNM1B is important for localization of SNM1B 

to stalled forks induced by aphidicolin (Figure 4.2). Furthermore, I found that mutation of 

this residue (K398R) results in a defect in FANCD2 foci formation (Figure 4.1B,C). If this 

residue is a possible monoubiquitination site, when there is a defect in this PTM, 

SNM1B is not able to localize to the stalled fork and therefore downstream factors, like 

FANCD2, are not recruited as efficiently. Mass spectrometry analysis to identify if this 

residue is indeed monoubiquitinated can be performed. There may be other residues 

that are important for SNM1B localization or other PTMs that are relevant for SNM1B 

functions in the response to different damaging agents like MMC or IR. These additional 

PTMs (like phosphorylation or SUMOylation) can be identified through mass 

spectrometry as well. The functional relevance of these residues can be further 

investigated using site-directed mutagenesis of SNM1B.  
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 There is also the possibility that this lysine reside is not modified but instead is 

important in mediating SNM1B interactions with other proteins. These protein 

interactions may be critical for the ability of SNM1B to localize to damaged DNA sites. 

Therefore, disruption of these potential protein interactions could result in decreased 

SNM1B localization to stalled forks and subsequent defects in recruitment of FANCD2 

to the stalled replication fork.  

 Although the K398R SNM1B mutant had defects in foci formation to sites of 

stalled replication forks, I found that protein levels of this mutant SNM1B were similar to 

wildtype SNM1B (Figure 4.3A). Cellular fractionation experiments demonstrated that 

both WT-SNM1B and K398R SNM1B protein was found in the chromatin-associated 

fraction. I also observed that after aphidicolin treatment there was an increase in 

SNM1B protein in not only the chromatin fraction but in the cytoplasmic and nuclear 

fractions as well (Figure 4.3C). I have consistently observed that after aphidicolin 

treatment there is a two-fold induction of SNM1B protein in whole cell lysates. The 

K398R mutant was found to be similar to WT-SNM1B, suggesting that this mutant can 

associate with chromatin but is not localizing to sites of stalled replication forks (Figure 

4.3A,B).  

 SNM1B protein levels have previously been reported to be low in cells, and I 

found that treatment with a proteasome inhibitor resulted in an increase in SNM1B 

protein levels (Figure 4.3D). Therefore, this demonstrates that SNM1B protein is 

regulated through proteasome degradation. Since I observed an increase in SNM1B 

protein after aphidicolin, this increase could mean that upon induction of stalled 

replication forks SNM1B protein levels are stabilized. I found that MMC treatment did 

not result in this increase in SNM1B protein levels (Supp. Fig. 4.1A). Analyzing other 

DNA damaging agents like HU and IR would provide insight into if this increase in 

protein levels is for a specific type of DNA damage. Another explanation is that SNM1B 

protein levels could be cell cycle regulated. Since aphidicolin treatment results in cells 

being arrested in S phase, there is an accumulation of S phase cells and this could 

explain the increase in SNM1B protein I observe. Analyzing SNM1B protein levels in 

synchronized cells would provide insights into this hypothesis.  
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 One mechanism through which SNM1B protein can be stabilized is by protein 

interactions. One study found that the interaction of SNM1B with TRF2, a component of 

the shelterin complex, stabilized SNM1B protein levels. It was shown that upon TRF2 

binding to SNM1B, polyubiquitination of SNM1B was inhibited therefore preventing 

degradation of SNM1B via the proteasome. Furthermore, it was demonstrated that 

expression of an SNM1B mutant that was not degraded resulted in increased cell death 

suggesting that SNM1B could be nucleolytically digesting DNA with no control 35,48.  

This provides further evidence as to why SNM1B protein levels are kept low and 

also as to why SNM1B nuclease activity needs to be tightly controlled during its 

functions in repairing stalled replication forks. This study however did not address the 

fact that SNM1B has functions beyond its role at telomeres and concluded that when 

SNM1B is not TRF2 bound it is degraded. However, when SNM1B is needed for 

something other that telomere processing, like restarting a stalled fork or repairing a 

collapsed fork, it could be stabilized through another mechanism. Perhaps another 

protein regulates SNM1B protein levels upon entrance into S phase or upon induction of 

stalled replication forks. One possibility is that SNM1B protein could be cell cycle 

regulated where it is induced at a certain point within the cell cycle, then further 

regulated via protein interactions that promote protein stabilization, and then localization 

to sites of stalled forks is regulated separately, potentially through other protein 

interactions or PTMs.  

 Since SNM1B protein levels are expressed as such low levels in the cell, it is 

very difficult to detect endogenous SNM1B with the available antibodies. Therefore, all 

these experiments have been conducted by ectopic expression of V5 tagged SNM1B. 

One way to analyze if endogenous SNM1B protein levels behave similarly could be to 

use the CRISPR/Cas9 genome editing system to tag the endogenous SNM1B locus 
49,50. In our cellular system, transcription of SNM1B is driven by a constitutive CMV 

promoter. Therefore, it would also be important to analyze endogenous mRNA 

transcript levels of SNM1B throughout the cell cycle and upon aphidicolin treatment. 

 

SNM1B has critical functions during the resolution of replication stress which can have 

implications for human disease. 
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 Nucleases are critical to the maintenance of genome stability. Defects in 

nucleases and other DNA repair proteins lead to deleterious chromosomal 

rearrangements that can lead to human diseases like Fanconi anemia or cancer 38. A 

truncation mutant of SNM1B was identified in a patient with a severe form of 

dyskeratosis congenita, Hoyeraal-Hreidarsson syndrome, who exhibited phenotypes 

including microcephaly, bone marrow failure, and developmental defects. Cells 

expressing this truncation mutant had defects in telomere functions but did not exhibit 

hypersensitivity to ICL inducing agents, providing further evidence that SNM1B has 

separate functions in telomere protection and the DDR 51. The SNM1B locus is 

emerging as being mutated in a variety of cancer types 52. In one study, SNM1B was 

mutated in half of primary mediastinal B cell lymphomas, and the SNM1B locus has 

been mapped at a chromosomal breakpoint associated with Wilms tumor 53,54. Defects 

in SNM1B functions in processing aberrant DNA intermediates at stalled forks to 

facilitate replication restart or in repairing collapsed forks could lead to an accumulation 

of deleterious oncogenic chromosomal rearrangements.  

We showed in Chapter 2 that SNM1B depletion results in increased breaks at 

common fragile sites (CFSs) in both unperturbed and aphidicolin treated cells (Figure 

2.8). These results demonstrate that SNM1B is important in preventing instability at 

these specific sites that are susceptible to replication-induced genomic damage. It has 

also been shown that deletions and duplications in the genome, copy number variants 

(CNVs), can arise from defects in replication 55-59. Replication stress induced by 

aphidicolin, hydroxyurea (HU), or low dose IR produces CNVs 60-62. Interestingly, certain 

hotspots for CNVs overlap with CFSs and are present at areas of active transcription of 

large genes 63. These results suggest that areas of the genome where transcription of 

large genes and replication occur simultaneously are more prone to breaks, which can 

lead to deleterious CNVs. However, the proteins involved in these processes and the 

mechanistic details have not been uncovered. Since SNM1B is important in preventing 

breaks at CFSs, analyzing any changes in frequency of CNVs upon SNM1B depletion 

would provide insights into not only the mechanism behind formation of these 

rearrangements but also provide insight into if SNM1B has a role in resolving replication 

stress induced by the collision of replication and transcription machinery.  
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Since CNVs can result from aphidicolin, IR, and HU, determining how SNM1B 

depletion affects HU induced stalled replication forks is a potential future area of 

investigation. Another source of replication stress is over expression of oncogenes 

which drives cells into S-phase as described in Chapter 1. Therefore, it would be 

interesting to determine if the hyper-proliferation and hyper-replication of these cells in S 

phase affects SNM1B protein levels.  

 

In conclusion, in this thesis I have found that the SNM1B DNA nuclease has 

critical roles in the response to spontaneous and induced stalled replication forks. 

Together, my findings demonstrate that SNM1B functions downstream of ATR-

dependent signaling in the response to stalled replication forks. SNM1B is likely 

important in processing aberrant DNA intermediates thereby providing binding sites for 

downstream repair proteins in the FA/BRCA network to localize and facilitate the restart 

of replication fork progression. Furthermore, SNM1B also has critical roles in 

responding to endogenous sources of replication stress that occur during every S phase 

of the cell cycle. I have also begun to uncover how SNM1B functions during these repair 

processes are regulated. SNM1B is an important player in the prevention of potentially 

deleterious rearrangements resulting from replication-associated genomic damage. By 

further defining the functions of SNM1B nuclease activity in facilitating complete 

replication of the genome, we can understand the cellular mechanisms that are in place 

to maintain genome stability and prevent chromosomal anomalies including potential 

oncogenic translocations. 
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